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Abstract

We investigate the effect of a Heaviside cut-off on the front propagation dynamics of a degenerate advection-reaction
-diffusion equation. In particular, we consider two formulations of the equation, one with the cut-off function
multiplying the reaction kinetics alone and one in which the cut-off is also applied to the advection term. We
prove the existence and uniqueness of a “critical” front solution in both cases, and we derive the leading-order
correction to the front propagation speed in dependence on the advection strength and the cut-off parameter. We
show that, while the asymptotics of the correction in the cut-off parameter remains unchanged to leading order when
the advection term is cut off, the corresponding coefficient is different. Finally, we consider a generalised family of
advection-reaction-diffusion equations, and we identify scenarios in which the application of a cut-off to the advection
term substantially affects the front propagation speed. Our analysis relies on geometric techniques from dynamical
systems theory and, specifically, on geometric desingularisation, also known as “blow-up”.

1 Introduction
The Fisher-Kolmogorov-Petrowskii-Piscounov (FKPP) equation with a Heaviside cut-off function multiplying the
reaction kinetics was first studied by Brunet and Derrida [3]:

∂u
∂ t

=
∂ 2u
∂x2 +u(1−u)H(u− ε), (1.1)

with u = u(x, t) for x ∈ R and t ≥ 0. Here, the cut-off models the situation where no reaction is possible for low
particle densities or concentrations, i.e., when u≤ 1

N =: ε for N sufficiently large, with N being the number of particles.
Specifically, the Heaviside cut-off in Equation (1.1) produces an O[(lnε)−2]-shift in the speed of the front connecting
the rest states u = 1 and u = 0, and hence addresses the discrepancy observed between the front propagation speed
found for the FKPP equation without cut-off and the speed in the corresponding, discrete N-particle system.

In this article, we aim to show that a cut-off in the nonlinear advection term can also induce a shift in the front
propagation speed in a family of advection-reaction-diffusion equations. Nonlinear advection terms naturally appear in
the continuum approximation of discrete systems; examples include models for traffic flow [11, 12] or density-dependent
migration of populations [8, 7]. In both of these, nonlinear advection may produce a discrepancy in front speed between
the advection-reaction-diffusion equation and the corresponding discrete system.

*z.sattar@sms.ed.ac.uk
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As a motivating example, we consider the (viscous) Burgers equation

∂u
∂ t

+ ku
∂u
∂x

= σ
∂ 2u
∂x2 , (1.2)

where the term ku ∂u
∂x models the directed transport of u, with k > 0 the strength of the advection, while σ > 0 is

the diffusion coefficient. It is straightforward to show that Equation (1.2) admits a front solution connecting u = 1
and u = 0 that propagates with speed c = k

2 . As is the case for the reaction kinetics in (1.1), the advection term in
(1.2) should be zero when u ≤ ε

(
= 1

N

)
. Therefore, it seems plausible to multiply that term with a Heaviside cut-off

function, which yields
∂u
∂ t

+ ku
∂u
∂x

H(u− ε) = σ
∂ 2u
∂x2 . (1.3)

In analogy to (1.2), Equation (1.3) admits a front connecting u = 1 and u = 0 that propagates with speed c = k
2 −∆c(ε),

where ∆c(ε) = k
2 ε2. In particular, since ∆c(ε) is positive, the speed of that front is therefore reduced by a cut-off. This

reduction in propagation speed is substantiated by simulations of a corresponding N-particle system for the Burgers
equation which is introduced in [2]. We provide the computational details in Appendix A. In Figure 1, we plot the
tails of the fronts computed for the N-particle system, as well as the exact solution u(x, t) =

(
e5(x−t/2)+1

)−1 to (1.2),
for k = 1 and σ = 1

10 ; here, T = 3, with step size ∆t =
1

1000 [2]. It is evident that the simulated, discrete fronts lag
behind the true solution, and that they approach it with increasing N. As the shift in the speed of the front induced by
a cut-off in (1.3) is O(ε2), we expect the optimal rate of convergence for the front speed in the underlying N-particle
system to be of the order O(N−2).

Figure 1: Particle simulation, averaged over 40 simulation runs, for Equation (1.3) with k = 1 and σ = 1
10 .

Front propagation in the Burgers-FKPP advection-reaction-diffusion equation with cut-off,

∂u
∂ t

+ ku
∂u
∂x

H(u− ε) =
∂ 2u
∂x2 +u(1−u)H(u− ε), (1.4)

has been studied in [10], where it was observed that the leading-order correction to the propagation speed of the front
is independent of a Heaviside cut-off multiplying the advection term. That is not too surprising, as in both the pulled
and pushed front propagation regimes, the leading-order ε-correction in the expansion for the speed c(ε) is of lower
order than the correction to the speed of propagation induced by the advection term alone, as seen in the Burgers
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equation with cut-off in (1.3). Hence, from a modelling perspective, it is often sufficient to consider merely a cut-off
in the reaction kinetics.

However, we do not expect that observation to be true in general. For certain advection-reaction-diffusion equations
where advection is of comparable order (in u) to the reaction kinetics, application of a cut-off to the kinetics only
should produce a significantly different front propagation speed than when both the reaction kinetics and the advection
term are cut off. Moreover, the speed of the front should differ substantially in the underlying N-particle system in
these cases. The purpose of this article is to consider such a case. Recall that the speed of the front solution in the
Burgers equation with cut-off in (1.3) is reduced by ∆c(ε) = k

2 ε2. For the Zeldovich equation with cut-off,

∂u
∂ t

=
∂ 2u
∂x2 +u2(1−u)H(u− ε), (1.5)

on the other hand, it has been shown in [9, Theorem 1.1] that the shift in the propagation speed of the front due to a
Heaviside cut-off is also of the order O(ε2). Hence, one may expect that a combination of these two equations will
produce an example where the leading-order ε-asymptotics of the correction to the front propagation speed is driven
by both advection and the reaction kinetics.

Correspondingly, in this article, we consider the degenerate advection-reaction-diffusion equation

∂u
∂ t

+ ku
∂u
∂x

=
∂ 2u
∂x2 +u2(1−u), (1.6)

which is a realisation of the so-called generalised Burgers-Fisher equation [7, Equation (1.1)] from population dynamics.
Here and in the following, we assume without loss of generality that the diffusion coefficient has been rescaled to
σ = 1.

As we are interested in travelling wave solutions to (1.6), we set ξ = x−ct for c > 0. With U(ξ ) = u(x, t) and U ′ =V ,
we then obtain the first-order system of equations

U ′ =V,

V ′ =−cV + kUV −U2(1−U).
(1.7)

We note that heteroclinic orbits connecting the equilibria of (1.7) are equivalent to travelling wave solutions of (1.6).
We have the following basic result; as the proof is straightforward, we omit it here.

Proposition 1. The first-order system in (1.7) admits a heteroclinic orbit connecting the equilibria Q− = (1,0) and
Q+ = (0,0) for c ≥ ccrit =

1
4 (k +

√
k2 +8). Moreover, for c = ccrit, that heteroclinic orbit is given explicitly by

V =−ccritU(1−U).

We note that the orbit obtained for the “critical” speed ccrit corresponds to the front solution of (1.6) with the fastest
decay rate (in ξ ), whereas fronts propagating with c > ccrit decay at slower rates [1].

After multiplication of either both the reaction kinetics and the advection term in (1.6), or of the kinetics only, with a
Heaviside cut-off, we obtain the two degenerate advection-reaction-diffusion equations

∂u
∂ t

+ ku
∂u
∂x

H(u− ε) =
∂ 2u
∂x2 +u2(1−u)H(u− ε) and (1.8)

∂u
∂ t

+ ku
∂u
∂x

=
∂ 2u
∂x2 +u2(1−u)H(u− ε), (1.9)

which will be considered in the following.

Our main result can be stated as follows.

Theorem 2. Let ε ∈ [0,ε0), with ε0 > 0 sufficiently small, and let k > 0. Then, there exist unique propagation
speeds c(1)(ε) and c(2)(ε), with limε→0+ c(i)(ε) = ccrit (i = 1,2) the critical speed in the absence of a cut-off, such that
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Equations (1.8) and (1.9), respectively, admit unique critical front solutions connecting the rest states u = 1 and u = 0.
Moreover, c(i)(ε) = ccrit −∆c(i)(ε), where

∆c(1)(ε) =
1
4
(
− k+3

√
k2 +8

)
ε

2 and (1.10)

∆c(2)(ε) = 2
−k+3

√
k2 +8(

k+
√

k2 +8
)2 ε

2, (1.11)

to leading order in ε .

Remark 3. We note that Theorem 2 only considers front solutions to (1.8) and (1.9) which are perturbations of the
critical fronts obtained for ε = 0 and c(0) := limε→0+ c(i)(ε) = ccrit, with i = 1,2.

Theorem 2 implies, in particular, that the front propagation speed in (1.8) and (1.9) is reduced by a Heaviside cut-off,
as ∆c(i) > 0 for i = 1,2 when k > 0.

This article is organised as follows: in Section 2, we apply the blow-up technique (geometric desingularisation) to
construct a singular heteroclinic orbit. The proof of Theorem 2 is completed in Section 3, where we prove persistence
of the singular orbit and derive Equations (1.10) and (1.11). Furthermore, we provide numerical verification of our
results. In Section 4, we extend our findings to a generalised family of advection-reaction-diffusion equations. Finally,
in Section 5, we discuss our results and possible topics for future work.

2 Geometric desingularisation

We introduce the travelling wave variable ξ (i) = x− c(i)t (i = 1,2) in (1.8) and (1.9), respectively. Writing u(x, t) =
U(ξ (i)) and appending the trivial equation for the cut-off parameter ε , we obtain

U ′ =V,

V ′ =−c(1)V + kUV H(U − ε)−U2(1−U)H(U − ε),

ε
′ = 0

(2.1)

and
U ′ =V,

V ′ =−c(2)V + kUV −U2(1−U)H(U − ε),

ε
′ = 0

(2.2)

from (1.8) and (1.9), respectively. Next, we define the following blow-up transformation at the origin in (2.1) and
(2.2),

U = r̄ū, V = r̄v̄, and ε = r̄ε̄, (2.3)

which serves to desingularise the non-smooth transition between the inner and outer regions that are defined by {U <
ε} and {U > ε}, respectively. Here, (ū, v̄, ε̄)∈ S2

+ := {(ū, v̄, ε̄) | ū2+ v̄2+ ε̄2 = 1}, with r̄ ∈ [0,r0] for r0 > 0 sufficiently
small and ε̄ ≥ 0.

We will analyse the dynamics of (2.1) and (2.2) in two coordinate charts: we will consider the rescaling chart K2
and the phase-directional chart K1 which are defined by ε̄ = 1 and ū = 1, respectively. By construction, these charts
correspond to the inner and outer regions where U < ε and U > ε , respectively. By combining the dynamics in these
two charts, we will construct a singular (in ε) heteroclinic orbit Γ. In particular, we will show that Γ represents the
singular orbit for both (2.1) and (2.2).
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2.1 Dynamics in the rescaling chart K2

In this subsection, we construct Γ2, which is the segment of the singular heteroclinic orbit Γ in chart K2. We will find
that Γ2 is equal for (2.1) and (2.2), but that its perturbation for ε positive and small differs for the two systems.

Setting ε̄ = 1 in (2.3), we find the transformation

U = r2u2, V = r2v2, and ε = r2 (2.4)

in K2. We first describe the singular geometry of (2.1); then, we show that the geometry of (2.2) is identical in the
singular limit.

2.1.1 Dynamics of (2.1) in chart K2

Applying the transformation in (2.4) to (2.1), we obtain

u′2 = v2,

v′2 =−c(1)v2 + kr2u2v2H(u2 −1)− r2u2
2(1− r2u2)H(u2 −1),

r′2 = 0.

(2.5)

In the inner region, we have U < ε , which is equivalent to u2 < 1. Hence, H(u2 −1)≡ 0, and we can reduce (2.5) to

u′2 = v2,

v′2 =−c(1)v2,

r′2 = 0.

(2.6)

Equation (2.6) admits a line of equilibria at ℓ+2 = {(0,0,r2) |r2 ∈ [0,r0]}. (While equilibria are found for any u2 ∈ (0,1),
only those on ℓ+2 correspond to Q+ after blow-down.) We are particularly interested in the point Q+

2 = (0,0,0) which
is obtained by taking the singular limit as r2 → 0+ on ℓ+2 .

Lemma 4. The eigenvalues of the linearisation of (2.6) about Q+
2 are given by −c(0) and 0 (double), where the second

zero eigenvalue is due to the trivial r2-equation. The corresponding eigenspaces are spanned by (1,−c(0),0)T and{
(1,0,0)T ,(0,0,1)T

}
, respectively.

Taking r2(= ε)→ 0+, we have c(1) → c(0), which further reduces (2.6) to

u′2 = v2,

v′2 =−c(0)v2.
(2.7)

Solving the equivalent equation dv2
du2

=−c(0) under the condition that v2(0) = 0, we find the singular orbit

Γ2 : v2(u2) =−c(0)u2. (2.8)

The section

Σ
in
2 = {(1,v2,r2) |(v2,r2) ∈ [−v0,0]× [0,r0]}

is introduced to track Γ2 as it leaves the rescaling chart K2 in backward “time”. (Here, v0 > 0 is an appropriately
chosen constant.) We define the entry point into K2 as Pin

2 = Γ2 ∩Σin
2 = (1,−c(0),0). For r2 ∈ (0,r0], with r0 > 0

sufficiently small, the stable manifold W s
2 (ℓ

+
2 ) of ℓ+2 can be obtained directly from (2.6) by solving dv2

du2
=−c(1) under

the condition that v2(0) = 0, which gives

W s
2 (ℓ

+
2 ) : v2(u2) =−c(1)u2. (2.9)
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2.1.2 Dynamics of (2.2) in chart K2

We now consider the dynamics of (2.2) in chart K2. Applying (2.4) to (2.2) and recalling that H(u2−1)≡ 0, we obtain

u′2 = v2,

v′2 =−c(2)v2 + kr2u2v2,

r′2 = 0.

(2.10)

Taking r2 → 0+ in (2.10), we again find (2.7). Hence, the singular orbit Γ2 for (2.2) is given by (2.8), as before.
Correspondingly, the entry point Pin

2 = Γ2 ∩Σin
2 into chart K2 also equals (1,−c(0),0).

While the singular geometries of (2.6) and (2.10) are identical, differences arise when considering a perturbation to
Γ2 for r2 ∈ (0,r0], with r0 sufficiently small: we can determine the (non-singular) stable manifold W s

2 (ℓ
+
2 ) of ℓ+2 by

solving dv2
du2

=−c(2)+ kr2u2 under the condition that v2(0) = 0 to obtain

W s
2 (ℓ

+
2 ) : v2(u2) =−c(2)u2 +

k
2

r2u2
2, (2.11)

which clearly differs from (2.9).

The geometry of (2.6) and (2.10) in the rescaling chart K2 is depicted in Figure 2; recall that, when r2 > 0, W s
2 (ℓ

+
2 ) is

given by (2.9) for the former, whereas it is defined in (2.11) for the latter.

Remark 5. The stable manifolds W s
2 (ℓ

+
2 ) in (2.9) and (2.11), respectively, are not required for the construction of the

singular orbit Γ. However, precise knowledge of those manifolds, and of their intersections with Σin
2 for ε = r2 > 0, is

necessary for determining ∆c(i) (i = 1,2) to leading order in ε , see Section 3.

Figure 2: Geometry and dynamics of (2.6) (left) and (2.10) (right) in chart K2.

2.2 Dynamics in the phase-directional chart K1

In this subsection, we analyse the dynamics of (2.1) and (2.2) in the phase-directional chart K1. We construct the
singular orbit Γ1, which is the continuous extension of Γ2 in K1. In the outer region, where U > ε , we have H(U −ε)≡
1. Hence, (2.1) and (2.2) are identical, and we can perform the analysis of both systems simultaneously.

For ū = 1 in (2.3), we obtain the following transformation in K1,

U = r1, V = r1v1, and ε = r1ε1. (2.12)
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Applying (2.12) to (2.1) and (2.2) and noting that H(1− ε1)≡ 1 for ε1 < 1, we find

r′1 = r1v1,

v′1 =−c(i)v1 + kr1v1 − r1(1− r1)− v2
1,

ε
′
1 =−ε1v1,

(2.13)

for i = 1,2.

The system in (2.13) admits a line of equilibria at ℓ−1 = {(1,0,ε1) |ε1 ∈ [0,ε0]}. We are interested in the point Q−
1 =

(1,0,0) ∈ ℓ−1 , which is obtained in the limit as ε1 → 0+ and which corresponds to Q− in the singular limit after
blow-down.

A further equilibrium of (2.13) is found at P1 = (0,−c(0),0), for which we have the following result.

Lemma 6. The eigenvalues of the linearisation of (2.13) about P1 =(0,−c(0),0) are given by −c(0) and c(0) (double).
The corresponding eigenspaces are spanned by

(
2c(0),1+ kc(0),0

)T and
{
(0,0,1)T ,(0,1,0)T

}
, respectively.

Remark 7. For future reference, we note the occurrence of potential resonances in (2.13) at P1, corresponding to
monomials of the form r j−1

1 v j
1 for integer-valued j ≥ 2.

As ε = r1ε1 in (2.3), we have to analyse both the limit as r1 → 0+ and the limit of ε1 → 0+. We will construct the
corresponding segments Γ

+
1 and Γ

−
1 of Γ1 in the invariant planes {r1 = 0} and {ε1 = 0}, respectively.

The change of coordinates κ21 : K2 → K1 between charts K2 and K1 is given by

κ21 : r1 = r2u2, v1 = v2u−1
2 , and ε1 = u−1

2 . (2.14)

We introduce the section Σout
1 as

Σ
out
1 = {(r1,v1,1) |(r1,v1) ∈ [0,r0]× [−v0,0]}, (2.15)

which is defined such that κ21(Σ
in
2 ) = Σout

1 , with v0 > 0 chosen as before. Since u2 = 1 in Σin
2 or, equivalently, since

ε1 = 1 in Σout
1 , we have vout

1 = vin
2 and, therefore, Pout

1 = (0,−c(0),1).

To construct the segment Γ
+
1 of Γ1, we take the limit as r1 → 0+ in (2.13) to obtain

v′1 =−c(0)v1 − v2
1,

ε
′
1 =−ε1v1.

(2.16)

Solving dv1
dε1

=− c(0)+v1
ε1

, with v1(1) =−c(0) due to vout
1 =−c(0) = vin

2 , we find

Γ
+
1 : v1(ε1) =−c(0). (2.17)

The segment Γ
−
1 is found in the limit as ε1 → 0+ in (2.13). Hence,

r′1 = r1v1,

v′1 =−c(0)v1 + kr1v1 − r1(1− r1)− v2
1,

(2.18)

which is equivalent to (1.7) after blow-down.

Lemma 8. For r1 ∈ (0,1], the system in (2.18) admits an explicit orbit

Γ
−
1 : v1(r1) =−c(0)(1− r1), (2.19)

with v1(1) = 0.
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Proof. For c(0) = 1
4 (k+

√
k2 +8)(= ccrit), we have an explicit orbit for (1.7) which is given by V (U) =−c(0)U(1−

U), see Proposition 1. Application of the transformation in (2.12) to that orbit gives the stated result.

To track Γ
−
1 as it enters a neighbourhood of P1, we introduce the following section,

Σ
in
1 = {(r0,v1,ε1) |(v1,ε1) ∈ [−v0,0]× [0,1]}, (2.20)

which implies Pin
1 = Γ

−
1 ∩Σin

1 = (r0,−c(0)(1− r0),0). The geometry of (2.13) in the phase-directional chart K1 is
depicted in Figure 3.

Figure 3: Geometry and dynamics of (2.13) in chart K1.

2.3 Construction of the singular orbit Γ

We conclude this section by constructing the singular orbit Γ in (ū, v̄, ε̄)-space.

Proposition 9. For (2.1) and (2.2), there exists a singular heteroclinic orbit Γ connecting Q−
1 and Q+

2 .

Proof. The orbit Γ is given by the union of the orbits Γ
−
1 , Γ

+
1 , and Γ2 with the equilibria Q−

1 , P1, and Q+
2 in blown-up

phase space; see Figure 4 for an illustration.

3 Persistence and leading-order asymptotics
In this section, we prove our main result, Theorem 2. We begin by showing that the singular orbit Γ constructed in the
previous section persists for ε sufficiently small.
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3.1 Persistence of the singular orbit Γ

Our first result implies the existence of a unique speed c(i) (i= 1,2) for which Γ will persist as a heteroclinic connection
between Q− and Q+.

Proposition 10. For ε ∈ (0,ε0), with ε0 sufficiently small, k > 0, and c(i) (i = 1,2) close to c(0), there exists a critical
heteroclinic orbit for (2.1) and (2.2), respectively, which connects Q− and Q+ for a unique, k-dependent speed c(i)(ε).
Moreover, c(i)(ε)≤ c(0) for i = 1,2.

Proof. We will first prove the result for (2.1). In the inner region, where U < ε , we find W s
2 (ℓ

+
2 )∩Σin

2 = (1,vin
2 ,r2) in

chart K2, where W s
2 (ℓ

+
2 ) is given by (2.9) and vin

2 =−c(1)(r2). From (2.4), we know that V = r2v2 and ε = r2; hence,
V in =−c(1)(ε)ε and ∂V in

∂c(1)
=−ε .

For general c(1), the dynamics of (2.1) in the outer region {U > ε} are governed by

U ′ =V,

V ′ =−c(1)V + kUV −U2(1−U).
(3.1)

The intersection of the unstable manifold W u(Q−) of Q− with {U = ε} can be written as the graph of an analytic
function V out(c(1),ε), with ∂V out

∂c(1)
> 0. A standard phase plane argument shows that V out(c(1),ε) must be O(1) and

negative for c(1) ≲ c(0), which implies V in >V out.

It remains to consider the case where c(1) = c(0). The singular heteroclinic orbit is given explicitly by V (U) =
−c(0)U(1−U) in that case, see Proposition 1. Therefore, V out(c(0),ε) =−c(0)ε(1−ε) and, hence, −c(0)ε =V in <
V out =−c(0)ε(1− ε) for ε sufficiently small.

Next, we consider (2.2) in the inner region where U < ε . We find W s
2 (ℓ

+
2 )∩Σin

2 = (1,vin
2 ,r2), where W s

2 (ℓ
+
2 ) is given

by (2.11) and vin
2 =−c(2)(r2)+

k
2 r2. It follows from (2.4) that V in =−c(2)(ε)ε + k

2 ε2 and, hence, that ∂V in

∂c(2)
=−ε .

For general c(2), the dynamics of (2.2) in the outer region {U > ε} are governed by

U ′ =V,

V ′ =−c(2)V + kUV −U2(1−U).
(3.2)

We conclude that V out(c(2),ε) must be O(1) and negative for c(2) ≲ c(0), which implies V in >V out; moreover, ∂V out

∂c(2)
>

0.

Finally, we again consider the case where c(2) = c(0). As before, the singular heteroclinic orbit is then given by
V (U) =−c(0)U(1−U). Therefore, −c(0)ε + k

2 ε2 =V in <V out =−c(0)ε(1− ε), as k
2 < 1

4 (k+
√

k2 +8) = c(0) for
k ≥ 0.

Applying the implicit function theorem and noting that ∂V out

∂c(i)
− ∂V in

∂c(i)
> 0 for both (2.1) (i = 1) and (2.2) (i = 2), we

conclude that W s(Q+) and W u(Q−) intersect at {U = ε} for a unique value of c(i)(ε) ≲ c(0), which completes the
proof.

The persistent heteroclinic connection constructed in Proposition 10 is again illustrated in Figure 4.

Remark 11. We note that vin
2 (= vout

1 ) differs for (2.1) and (2.2) when r2 = ε > 0, see Figure 2. Therefore, we will label
the v1-coordinates of the corresponding exit points from chart K1 for (2.1) and (2.2) as vout,(1)

1 and vout,(2)
1 , respectively.
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Figure 4: Global geometry of the blown-up vector field obtained from (2.1) (top) and (2.2) (bottom).

3.2 Leading-order asymptotics of ∆c(i)

In this subsection, we determine the leading-order asymptotics (in ε) of ∆c(i) = c(0)− c(i)(ε). Recall that in chart
K1, the dynamics of (2.1) and (2.2) are governed by (2.13). Therefore, we will approximate the transition map Π1 :
Σin

1 → Σout
1 under the flow of (2.13) for ε ∈ (0,ε0), with ε0 sufficiently small. In preparation, we shift the point

P1 = (0,−c(0),0) to the origin via the transformation z = v1 + c(0), and we rewrite (2.13) as

r′1 =−(c(0)− z)r1,

z′ = (c(0)− z)(z−∆c(i))− kr1(c(0)− z)− r1(1− r1),

ε
′
1 = (c(0)− z)ε1.

(3.3)

Rescaling “time” in (3.3) by a positive factor of c(0)− z, noting that the equation for ε1 decouples, and appending the
trivial equation for ∆c(i), we obtain

ṙ1 =−r1,

ż = z−∆c(i)− kr1 −
r1(1− r1)

c(0)− z
,

˙
∆c(i) = 0.

(3.4)

Here, the overdot denotes differentiation with respect to the new independent variable ζ (i).
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Lemma 12. There exists a sequence of smooth transformations that transforms (3.4) into

ṙ1 =−r1,

˙̂w = ŵ− 1
c(i)(ε)3

r1ŵ2[1+O(r1ŵ)],

˙
∆c(i) = 0.

(3.5)

Specifically, that sequence is composed of the transformation w = z−∆c(i), followed by w̃ = w−
(

k
2 +

1
2c(i)(ε)

)
r1 and

a sequence of smooth near-identity transformations of the form ŵ = w̃+O(r2
1,r1w̃).

Proof. We first define the new variable w = z−∆c(i), which removes ∆c(i) from the z-equation in (3.4), to obtain

ẇ = w− kr1 −
r1(1− r1)

c(i)(ε)−w
. (3.6)

Expanding 1
c(i)(ε)−w

= 1
c(i)(ε)

[
1+ w

c(i)(ε)
+
(

w
c(i)(ε)

)2
+O(w3)

]
, we can write (3.6) as

ẇ = w−
(

k+
1

c(i)(ε)

)
r1 +

r2
1

c(i)(ε)
− r1(1− r1)

c(i)(ε)

[
w

c(i)(ε)
+

(
w

c(i)(ε)

)2

+O(w3)

]
. (3.7)

Similarly, the transformation w̃ = w−
(

k
2 +

1
2c(i)(ε)

)
r1 removes the O(r1)-term from (3.7).

Finally, we remove all non-resonant terms by applying a sequence of near-identity transformations, with ŵ = w̃+
O(r2

1,r1w̃). The existence of such a transformation follows from standard normal form theory, see e.g. [4]. Since the
lowest-order resonant term is of the form r1w̃2, we find

˙̂w = ŵ− 1
c(i)(ε)3

r1ŵ2[1+O(r1ŵ)], (3.8)

as claimed.

Next, we approximate P̂in
1 and P̂out,(i)

1 (i= 1,2), which are the entry and exit points in the sections Σin
1 and Σout

1 under the
flow of (3.5), respectively, to a sufficient order in ε , r0, and ∆c(i). To that end, we first prove the following preparatory
result.

Lemma 13. For (U,V ) defined as in (1.7) and U ∈ [0,U0], with U0 sufficiently small, there holds

∂V
∂c

(U,c(0)) =
1

3− k
c(0)

(1−U). (3.9)

Proof. We rewrite (1.7) with U as the independent variable, which gives

V
dV
dU

=−cV + kUV −U2(1−U). (3.10)

Differentiation of (3.10) with respect to c yields

∂V
∂c

∂V
∂U

+V
∂

∂c

(
∂V
∂U

)
=−V − c

∂V
∂c

+ kU
∂V
∂c

. (3.11)

11



Next, we evaluate (3.11) along the singular orbit V =−c(0)U(1−U), as given by Proposition 1, and we make use of
∂V
∂U =−c(0)(1−2U), with c = c(0), to obtain the ordinary differential equation

d
dU

(
∂V
∂c

)
=

(
2− k

c(0)

)
1

1−U
∂V
∂c

−1 (3.12)

for ∂V
∂c . Solving (3.12) under the condition that ∂V

∂c (U,c(0)) remains bounded as U → 1−, we find (3.9).

Lemma 14. For ε and ∆c(i) (i = 1,2) sufficiently small and k > 0, the points P̂in
1 =

(
r0, ŵin, ε

r0

)
and P̂out,(i)

1 =

(ε, ŵout,(i),1) satisfy

ŵin =− 1
r0

1
3− k

c(0)

∆c(i) [1+o(1)] , (3.13)

as well as
ŵout,(1) =−c(0)ε [1+o(1)] and ŵout,(2) =− 1

2c(0)
ε [1+o(1)] , (3.14)

where o(1) denotes higher-order terms in ε , r0, and ∆c(i). Furthermore, ŵout,(1) and ŵout,(2) correspond to the
transformed exit points from chart K1, which are derived from vout,(1)

1 and vout,(2)
1 , respectively.

Proof. We begin by approximating ŵout,(1). Recall from the proof of Proposition 10 that vout,(1)
1 =−c(1)(ε) =−c(0)+

∆c(1) for (2.1). Having shifted the point P1 to the origin via the transformation z = v1 + c(0), we have zout,(1) = ∆c(1).
As we removed the ∆c(1)-term by defining w = z−∆c(1), it follows that wout,(1) = 0. The final two transformations are
given by w̃ = w−

(
k
2 +

1
2c(1)(ε)

)
r1 and the sequence of near-identity transformations ŵ = w̃+O(r2

1,r1w̃). Recalling

that r1 = ε in Σout
1 , we finally have

ŵout,(1) =−
(

k
2
+

1
2c(0)

)
ε =−c(0)ε (3.15)

to leading order, where we have made use of c(0) = 1
4 (k+

√
k2 +8).

Next, we approximate ŵout,(2). Again, recall from the proof of Proposition 10 that vout,(2)
1 =−c(2)(ε)+ k

2 ε =−c(0)+
∆c(2) + k

2 ε . Shifting P1 to the origin via the transformation z = v1 + c(0), we find zout,(2) = ∆c(2) + k
2 ε . The term

∆c(2) is removed by defining w = z−∆c(2), which yields wout,(2) = k
2 ε . The final two transformations are given by

w̃ = w−
(

k
2 +

1
2c(2)(ε)

)
r1 and the sequence of near-identity transformations ŵ = w̃+O(r2

1,r1w̃) which, together with

r1 = ε in Σout
1 , shows

ŵout,(2) =
k
2

ε −
(

k
2
+

1
2c(0)

)
ε =− 1

2c(0)
ε (3.16)

to leading order.

Finally, we derive the approximation for ŵin. Since W u(Q−) is analytic in U and c(i), we can write

V (U,c(i)) =
∞

∑
j=0

1
j!

∂ jV
∂ (c(i)) j

(U,c(0))
(
−∆c(i)

) j

=V (U,c(0))− ∂V
∂c(i)

(U,c(0))∆c(i)+O
[(

∆c(i)
)2]

=−c(0)U(1−U)− 1
3− k

c(0)

(1−U)∆c(i)+O
[(

∆c(i)
)2]

(3.17)
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for i = 1,2. Here, the coefficient of ∆c(i) is obtained from Lemma 13, as Equations (2.1) and (2.2) are identical for
ε = 0, and given by (1.7). Making use of V = r1v1, U = r1, and r1 = r0 in Σin

1 , we find

vin
1 = c(0)(r0 −1)− 1

r0

1
3− k

c(0)

(1− r0)∆c(i)+O
[(

∆c(i)
)2]

. (3.18)

Then, considering z = v1 + c(0) and w = z−∆c(i), we have

win = c(0)r0 −
1
r0

1
3− k

c(0)

(1− r0)∆c(i)−∆c(i)+O
[(

∆c(i)
)2]

. (3.19)

Finally, since ŵ = w−
(

k
2 +

1
2c(i)(ε)

)
r1 +O(r2

1,r1w) and since we can expand 1
c(i)(ε)

= 1
c(0)−∆c(i)

= 1
c(0) +

1
c(0)2 ∆c(i)+

O[(∆c(i))2], we obtain

ŵin =

[
c(0)− k

2
− 1

2

(
1

c(0)
+

1
c(0)2 ∆c(i)+O

[(
∆c(i)

)2])]r0 −
1
r0

[
1

3− k
c(0)

∆c(i)+O
(
r0∆c(i)

)]

=− 1
r0

[
1

3− k
c(0)

∆c(i)[1+O(r0)]+O
[(

∆c(i)
)2]]

,

(3.20)

where the constant terms cancel due to c(0) = 1
4 (k+

√
k2 +8). We note that ∆c(i) must be independent of r0, which

was defined as an arbitrary small constant in (2.20). Moreover, we will find that ŵin, as given in (3.20), is sufficient
for calculating ∆c(i) to leading order in ε . In other words, terms of the order O[r0∆c(i),(∆c(i))2] have no effect on the
leading-order asymptotics of ∆c(i). Hence, the proof is complete.

Consider the simplified normal form obtained by omitting the O(r2
1ŵ3)-terms in (3.8),

˙̌w = w̌− 1
c(i)(ε)3

r1w̌2. (3.21)

The next result is required to show that Equation (3.21) is sufficient for determining ∆c(1) and ∆c(2) to leading order
in ε.

Proposition 15. Let ε ∈ (0,ε0), with ε0 > 0 sufficiently small, let k > 0, and let ŵ and w̌ be defined as in (3.8) and
(3.21), respectively. Then, for ŵin = w̌in, we have

∣∣ŵout,(i)− w̌out,(i)∣∣≤ |r0ŵin|
ε

O
(
|r0ŵin|2| lnε|

)
, (3.22)

where i = 1,2.

Proof. Let the right-hand side of (3.21) be denoted by g(ζ (i), w̌). Then,∣∣g(ζ (i), w̌1)−g(ζ (i), w̌2)
∣∣= ∣∣∣∣w̌1 −

1
c(i)(ε)3

r1w̌2
1 − w̌2 +

1
c(i)(ε)3

r1w̌2
2

∣∣∣∣
= |w̌1 − w̌2|

∣∣∣∣1− 1
c(i)(ε)3

r1(w̌1 + w̌2)

∣∣∣∣ . (3.23)

The equation d
dζ (i) (r1w̌) =− 1

c(i)(ε)3 r2
1w̌2, with (r1w̌)(0) = r0w̌in, has the unique solution

(r1w̌)(ζ (i)) =
r0w̌in

1+ 1
c(i)(ε)3 r0w̌inζ (i)

= r0w̌in[1+o(1)]
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for |r0w̌in| sufficiently small. Therefore, we can estimate∣∣∣∣1− 1
c(i)(ε)3

r1(w̌1 + w̌2)

∣∣∣∣≤ 1+
2

c(i)(ε)3
|r0w̌in|+o(r0w̌in).

Denoting the right-hand side of (3.8) by f (ζ (i), ŵ), we obtain∣∣ f (ζ (i), ŵ)−g(ζ (i), ŵ)
∣∣= ∣∣∣∣ 1

c(i)(ε)3
r2

1ŵ3[1+O(r1ŵ)]
∣∣∣∣

≤ 2
c(i)(ε)3

|r0ŵin|3

r1
=

2
c(i)(ε)3

|r0ŵin|3

r0
eζ (i)

,

(3.24)

where we have used that r1(ζ
(i)) = r0e−ζ (i)

, as is found by solving the r1-equation in (3.5). Then, an application of
Gronwall’s inequality implies

∣∣(ŵ− w̌)(ζ (i))
∣∣≤ exp

[(
1+

2
c(i)(ε)3

|r0ŵin|
)

ζ
(i)
]∫

ζ (i)

0
exp

[
−
(

1+
2

c(i)(ε)3
|r0ŵin|

)
x
]

2
c(i)(ε)3

|r0ŵin|3

r0
exdx

=
|r0ŵin|2

r0
eζ (i)

[
exp

(
2

c(i)(ε)3
|r0ŵin|ζ (i)

)
−1

]
=

|r0ŵin|2

r0
eζ (i)

O(|r0ŵin|ζ (i)).

(3.25)
Evaluating the right-hand side of (3.25) at ζ out,(i) =− ln ε

r0
, we obtain the stated result.

We are now in a position to prove the main result of this section.

Proposition 16. For ε ∈ [0,ε0), with ε0 > 0 sufficiently small, and k > 0, the functions ∆c(1) and ∆c(2) defined in
Theorem 2 satisfy

∆c(1)(ε) =
1
4
(
− k+3

√
k2 +8

)
ε

2[1+o(1)] and (3.26)

∆c(2)(ε) = 2
−k+3

√
k2 +8(

k+
√

k2 +8
)2 ε

2[1+o(1)], (3.27)

respectively.

Proof. We begin by solving the simplified normal form in (3.21). Substituting r1(ζ
(i)) = r0e−ζ (i)

into (3.21), we obtain

˙̌w = w̌− 1
c(i)(ε)3

r0e−ζ (i)
w̌2, (3.28)

which has the solution

w̌(ζ (i)) =
eζ (i)

β + 1
c(i)(ε)3 r0ζ (i)

, (3.29)

where β is a constant of integration. We require that w̌(ζ (i)) = ŵin at ζ in,(i) = 0 and, hence, β = 1
ŵin . Expanding (3.29)

in terms of |r0ŵin|, we have
w̌(ζ (i)) = ŵineζ (i)[

1+O
(
r0ŵin

ζ
(i))]. (3.30)

Evaluating (3.30) at ζ out,(i) =− ln ε

r0
, we find

ŵout,(i) =
r0ŵin

ε

[
1+O

(
r0ŵin| lnε|

)]
, (3.31)
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for i = 1,2. We note that (3.31) is of lower order than (3.22), as derived in Proposition 15, which implies that the
simplified normal form in (3.21) is sufficient for approximating ∆c(i) to leading order. Substituting the estimate for
ŵin from Lemma 14 into (3.31), we obtain

ŵout,(i) =− r0

ε

1
r0

1
3− k

c(0)

∆c(i)[1+o(1)]
[
1+O

(
∆c(i) lnε

)]
=−1

ε

1
3− k

c(0)

∆c(i)[1+o(1)].
(3.32)

Since ŵout,(1) =−c(0)ε[1+o(1)], by Lemma 14, we conclude that

∆c(1) = [3c(0)− k]ε2[1+o(1)]. (3.33)

Similarly, as ŵout,(2) =− 1
2c(0)ε[1+o(1)], recall again Lemma 14, we have

∆c(2) =
3− k

c(0)

2c(0)
ε

2[1+o(1)]. (3.34)

Finally, substitution of c(0) = 1
4 (k+

√
k2 +8) into (3.33) and (3.34), respectively, yields the stated result.

Proposition 16 implies, in particular, that ∆c(i) > 0 for i= 1,2, in agreement also with Proposition 10, which completes
the proof of Theorem 2.

Remark 17. We note that Proposition 16 remains true for k = 0, which corresponds to the Zeldovich equation with
cut-off [9]: both (3.26) and (3.27) reduce to ∆c(ε) = 3√

2
ε2[1+o(1)] then, which agrees with [9, Theorem 1.2].

To compare the leading-order corrections ∆c(1) and ∆c(2) to c(0) for Equations (1.8) and (1.9), we evaluate their
difference ∣∣c(1)(ε)− c(2)(ε)

∣∣= ∣∣∆c(1)(ε)−∆c(2)(ε)
∣∣= ∣∣∣∣1

4
k
(
6+ k2 − k

√
k2 +8

)
ε

2[1+o(1)]
∣∣∣∣ . (3.35)

We observe that Equation (3.35) has a unique root at k = 0, as is to be expected, since (1.8) and (1.9) are identical
for k = 0. In addition, the right-hand side in (3.35) is monotonically increasing in k and approaches k

2 ε2[1+O(k−1)]
as k → ∞. These observations are consistent with the corresponding result for the motivating example of the Burgers
equation in (1.2), where multiplication of the advection term with a Heaviside cut-off produced a shift ∆c = k

2 ε2 in the
front propagation speed for (1.3), and is related to the fact that, for large k, the advection terms in Equations (1.8) and
(1.9) are dominant. In other words, the reaction kinetics becomes negligible for k large, which implies that (1.8) and
(1.9) are well approximated by (1.3) and (1.2), respectively, in that limit.

Finally, we provide numerical verification of Proposition 16. To that end, we calculate the error incurred by approximating
c(i)(ε) with the corresponding first-order expansion ĉ(i)(ε) for i = 1,2 and k = 1, which yields ĉ(1)(ε) = 1−2ε2 and
ĉ(2)(ε) = 1− ε2. The numerical values of c(i)(ε) (i = 1,2) are determined by integrating Equations (2.1) and (2.2)
and returning final values of U = Ufinal(c) that are obtained after a sufficiently large number of time steps. We then
minimise |Ufinal(c)| by applying a Nelder–Mead method [6]. Our findings are illustrated in Figure 5, where we have
used a double logarithmic scale, with ε ∈ [10−4,10−2]. Figure 5 suggests that |c(i)(ε)− ĉ(i)(ε)|= O(ε3) for i = 1,2,
which is consistent with [9, Theorem 1.2] for k = 0; specifically, the slopes of the lines |c(i)(ε)− ĉ(i)(ε)| are given by
3.005078 (i = 1) and 3.002047 (i = 2), respectively.
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Figure 5: Error of the approximation for c(i)(ε) by ĉ(i)(ε) for Equations (1.8) and (1.9), where i = 1,2, k = 1, and
ε ∈ [10−4,10−2].

4 Generalisation
In this section, we briefly consider generalisations of Equations (1.8) and (1.9) where the reaction kinetics in both
equations is replaced with un(1−u)H(u− ε) for n = 1,2,3, which gives

∂u
∂ t

+ ku
∂u
∂x

H(u− ε) =
∂ 2u
∂x2 +un(1−u)H(u− ε) and (4.1)

∂u
∂ t

+ ku
∂u
∂x

=
∂ 2u
∂x2 +un(1−u)H(u− ε), (4.2)

respectively, where k > 0, as before. For n = 1, the corresponding equations without a cut-off are known as the
Burgers-FKPP equation [5, Chapter 11]. The change in front propagation speed due to the Heaviside cut-off in
(4.1) and (4.2) was studied in [10], where it was shown that for k ≤ 2, the speeds of the critical front solutions to
Equations (4.1) and (4.2) converge to the singular speed c(0) logarithmically in ε , whereas for k > 2, convergence
is sub-linear in ε . As in the statement of Theorem 2, let c(1)(ε) and c(2)(ε) denote the unique propagation speeds
of critical front solutions to (4.1) and (4.2), respectively; then, it follows from [10, Theorem 2 and Appendix A] that
c(1)(ε) = c(2)(ε) to leading order, for all k > 0.

That result contrasts with our main result in this article, Theorem 2, which applies precisely in the case where n = 2
in (4.1) and (4.2): here, the orders (in ε) of c(1)(ε) and c(2)(ε) are equal, while the corresponding coefficients differ.

Finally, we consider Equations (4.1) and (4.2) with n= 3. The analysis of these equations is complicated by the fact that
the singular critical speed c(0) = ccrit is not known explicitly. However, an adaptation of the approach in [9] still allows
us to determine the leading-order asymptotics of c(i)(ε). In Figure 6, we show similar error estimates as are displayed
in Figure 5 for Equations (1.8) and (1.9). We first compute numerical values for the singular propagation speed c(0)
for Equations (4.1) and (4.2) and then apply the same approach as at the end of Section 3 to approximate c(i)(ε). In
Figure 6, we plot c(0)−c(i)(ε) = ∆c(i)(ε) for i = 1,2, which implies that ∆c(1)(ε) = O(ε2) and ∆c(2)(ε) = O(ε3) for
n = 3: the slopes of the lines ∆c(i)(ε) are given by 2.001391 (i = 1) and 2.999524 (i = 2), respectively.

Our findings are summarised in Table 1, where α
(i)
k denotes the leading-order (ε-independent) coefficient in the
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expansion of ∆c(i)(ε) for i = 1,2.

Figure 6: Approximation of ∆c(i)(ε) for Equations (4.1) and (4.2) with n = 3, where i = 1,2, k = 1, and ε ∈
[10−4,10−2].

n α
(1)
k = α

(2)
k ∆c(1) ∆c(2)

1 (k ≤ 2) ✔ O[(lnε)−2] O[(lnε)−2]

1 (k > 2) ✔ O(ε1−4/k2
) O(ε1−4/k2

)
2 ✘ O(ε2) O(ε2)
3 ✘ O(ε2) O(ε3)

Table 1: Correction to the propagation speed of front solutions to Equations (4.1) and (4.2) for n = 1,2,3.

5 Discussion
In this article, we have proven the existence and uniqueness of “critical” propagating fronts for two degenerate
advection -reaction-diffusion equations in the presence of a cut-off. In particular, in Equation (1.8), a Heaviside cut-off
function multiplies both the reaction kinetics and the advection term, whereas in Equation (1.9), only the kinetics is
affected by the cut-off. In both cases, we have derived the leading-order asymptotics (in ε) of the corresponding unique
front propagation speeds c(1)(ε) and c(2)(ε), respectively.

It is possible to determine higher-order terms in the expansions of c(1)(ε) and c(2)(ε) via the approach outlined in [9],
since the singular front is known explicitly and since the calculation of ∂V

∂c (U,c(0)) in Lemma 13 can be generalised
to higher orders, which hence allows one to approximate ŵin to a sufficiently high order. However, the primary goal of
this article was to demonstrate the importance of “cutting off” the advection term in addition to the reaction kinetics;
specifically, Theorem 2 implies that failure to do so can result in a different leading-order correction to the propagation
speed of the front.

Numerical verification of Theorem 2 suggests that the second-order term in the expansions for both c(1)(ε) and c(2)(ε)
is of the order O(ε3), recall Figure 5. That suggestion is consistent with [9, Theorem 1.2], where it was shown that
for Equations (1.8) and (1.9) with k = 0, the second-order correction to c(ε) is indeed O(ε3).
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Section 4 introduces a family of scalar advection-reaction-diffusion equations which generalise Equations (1.8) and
(1.9). Our findings are summarised in Table 1. We conclude that for n = 1, it is sufficient to consider a cut-off in the
reaction kinetics only. However, for n = 2 and n = 3, the leading-order asymptotics of c(1)(ε) and c(2)(ε) depends
strongly on the advection term due to the effect of the kinetics being weaker. Specifically, for n = 2, the leading-order
correction to c(1)(ε) and c(2)(ε) is of the same order in ε , while the corresponding coefficients differ. For n = 3,
front propagation is dominated by advection; hence, failure to include a cut-off in the advection term results in a
leading-order correction to the speed of propagation which is of the wrong order. While the generalisation in Section 4
illustrates the significance of cutting off advection for the front propagation dynamics, we focused on (1.6) in our
analysis due to the corresponding critical speed ccrit being known explicitly.

A Particle system for Burgers equation
In this section, we consider the N-particle system underlying the (viscous) Burgers equation, solutions of which
converge to those of the following initial boundary value problem as N → ∞:

ut + kuux = σuxx, with lim
x→−∞

u(x, t) = 1 and lim
x→∞

u(x, t) = 0, (A.1)

where u(x,0) = u0(x), x ∈ R, and t ≥ 0.

In our numerical simulation of the stochastic particle system, we applied the algorithm proposed in [2], as it is simple
to implement and computationally efficient; the basic details are given below for completeness. We begin by fixing N
points (particles) in R, with corresponding positions {yi

0}N
i=1, which allows us to write the initial particle density as

u0(x) =
1
N

N

∑
i=1

H(x− yi
0).

Fixing T , we can discretise the time interval [0,T ] by writing T = M∆t , with step size ∆t and time steps given by
tm = m∆t for m = 0, . . . ,M. We then proceed with the following iteration,

Y i
tm+1

= Y i
tm +

k
N

N

∑
j=1

H(Y i
tm −Y j

tm)∆t +σ
√

∆t∆wi
m+1 for m = 0, . . . ,M−1,

Y i
0 = yi

0,

(A.2)

where ∆wi
m+1 ∼ N (0,1) is normally distributed with mean 0 and variance 1. The numerical approximation u(x, tm)

for u at time tm (m = 1, . . . ,M), with x ∈ R, is then recovered from

u(x, tm) =
1
N

N

∑
i=1

H(x−Y i
tm), (A.3)

see [2]. In particular, we only require for the spatial domain to be discretised in order to plot the solution, see Figure 1.
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