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Abstract

We investigate the effect of a Heaviside cut-off on the front propagation dynamics of a degenerate advection-reaction
-diffusion equation. In particular, we consider two formulations of the equation, one with the cut-off function
multiplying the reaction kinetics alone and one in which the cut-off is also applied to the advection term. We
prove the existence and uniqueness of a “critical” front solution in both cases, and we derive the leading-order
correction to the front propagation speed in dependence on the advection strength and the cut-off parameter. We
show that, while the asymptotics of the correction in the cut-off parameter remains unchanged to leading order when
the advection term is cut off, the corresponding coefficient is different. Finally, we consider a generalised family of
advection-reaction-diffusion equations, and we identify scenarios in which the application of a cut-off to the advection
term substantially affects the front propagation speed. Our analysis relies on geometric techniques from dynamical
systems theory and, specifically, on geometric desingularisation, also known as “blow-up”.

1 Introduction

The Fisher-Kolmogorov-Petrowskii-Piscounov (FKPP) equation with a Heaviside cut-off function multiplying the
reaction kinetics was first studied by Brunet and Derrida [3]]:

d d?
o =S +u(l—wH(u—e¢), (1.1)

with u = u(x,t) for x € R and r > 0. Here, the cut-off models the situation where no reaction is possible for low
particle densities or concentrations, i.e., when u < % =: ¢ for N sufficiently large, with N being the number of particles.
Specifically, the Heaviside cut-off in Equation (T.T)) produces an ¢'[(In€)~2]-shift in the speed of the front connecting
the rest states # = 1 and u = 0, and hence addresses the discrepancy observed between the front propagation speed
found for the FKPP equation without cut-off and the speed in the corresponding, discrete N-particle system.

In this article, we aim to show that a cut-off in the nonlinear advection term can also induce a shift in the front
propagation speed in a family of advection-reaction-diffusion equations. Nonlinear advection terms naturally appear in
the continuum approximation of discrete systems; examples include models for traffic flow [11.[12] or density-dependent
migration of populations [8,(7]]. In both of these, nonlinear advection may produce a discrepancy in front speed between
the advection-reaction-diffusion equation and the corresponding discrete system.
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As a motivating example, we consider the (viscous) Burgers equation

2
8u+ku8u 0°u

where the term ku% models the directed transport of u, with £ > 0 the strength of the advection, while ¢ > 0 is
the diffusion coefficient. It is straightforward to show that Equation (I.2) admits a front solution connecting u = 1
and u = 0 that propagates with speed ¢ = % As is the case for the reaction kinetics in (I.I)), the advection term in
(T.2) should be zero when u < 8( = %) Therefore, it seems plausible to multiply that term with a Heaviside cut-off
function, which yields

2

%—i—ku%H(u—e):G%. (1.3)
In analogy to (1.2)), Equation admits a front connecting u = 1 and u = 0 that propagates with speed ¢ = % —Ac(e),
where Ac(€) = %82. In particular, since Ac(€) is positive, the speed of that front is therefore reduced by a cut-off. This
reduction in propagation speed is substantiated by simulations of a corresponding N-particle system for the Burgers
equation which is introduced in [2]. We provide the computational details in Appendix [A] In Figure [T} we plot the
tails of the fronts computed for the N-particle system, as well as the exact solution u(x,t) = (es(x’t/ 2 4 1) o (1.2),
fork=1and o = %; here, T = 3, with step size A, = ﬁ [2]]. It is evident that the simulated, discrete fronts lag
behind the true solution, and that they approach it with increasing N. As the shift in the speed of the front induced by
a cut-off in is 0(€?), we expect the optimal rate of convergence for the front speed in the underlying N-particle
system to be of the order O(N~2).
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Figure 1: Particle simulation, averaged over 40 simulation runs, for Equation (I.3)) with k =1 and 0 = %.
Front propagation in the Burgers-FKPP advection-reaction-diffusion equation with cut-off,
du du d’u
—thku—Hu—¢€¢)=—==+u(l—u)H(u—¢ 1.4
kS H (- e) = 55 a1~ wH(u—e), (14)

has been studied in [10], where it was observed that the leading-order correction to the propagation speed of the front
is independent of a Heaviside cut-off multiplying the advection term. That is not too surprising, as in both the pulled
and pushed front propagation regimes, the leading-order €-correction in the expansion for the speed c(€) is of lower
order than the correction to the speed of propagation induced by the advection term alone, as seen in the Burgers



equation with cut-off in (I.3). Hence, from a modelling perspective, it is often sufficient to consider merely a cut-off
in the reaction kinetics.

However, we do not expect that observation to be true in general. For certain advection-reaction-diffusion equations
where advection is of comparable order (in u) to the reaction kinetics, application of a cut-off to the kinetics only
should produce a significantly different front propagation speed than when both the reaction kinetics and the advection
term are cut off. Moreover, the speed of the front should differ substantially in the underlying N-particle system in
these cases. The purpose of this article is to consider such a case. Recall that the speed of the front solution in the
Burgers equation with cut-off in is reduced by Ac(g) = %82. For the Zeldovich equation with cut-off,

du J*u
on the other hand, it has been shown in [9, Theorem 1.1] that the shift in the propagation speed of the front due to a
Heaviside cut-off is also of the order ¢/(&?). Hence, one may expect that a combination of these two equations will
produce an example where the leading-order €-asymptotics of the correction to the front propagation speed is driven
by both advection and the reaction kinetics.

Correspondingly, in this article, we consider the degenerate advection-reaction-diffusion equation

2
8u+ku8u 0°u

o r_Z= 201 _ 1.6
o TRugy T g T u), (16)

which is a realisation of the so-called generalised Burgers-Fisher equation 7, Equation (1.1)] from population dynamics.
Here and in the following, we assume without loss of generality that the diffusion coefficient has been rescaled to
c=1.

As we are interested in travelling wave solutions to (T.6), we set & =x—ct for ¢ > 0. With U () = u(x,t) and U’ =V,
we then obtain the first-order system of equations
U'=v,

1.7
V' = —cV4+kUV —U*(1-U). D

We note that heteroclinic orbits connecting the equilibria of (I.7) are equivalent to travelling wave solutions of (I.6).
We have the following basic result; as the proof is straightforward, we omit it here.

Proposition 1. The first-order system in (1.7) admits a heteroclinic orbit connecting the equilibria O~ = (1,0) and
0" = (0,0) for ¢ > cerig = 3(k+Vk*+8). Moreover, for ¢ = cerir, that heteroclinic orbit is given explicitly by
V=—cqU(l-0U).

We note that the orbit obtained for the “critical” speed ¢, corresponds to the front solution of (I.6) with the fastest
decay rate (in &), whereas fronts propagating with ¢ > ¢, decay at slower rates [1]].

After multiplication of either both the reaction kinetics and the advection term in (I.6)), or of the kinetics only, with a
Heaviside cut-off, we obtain the two degenerate advection-reaction-diffusion equations

du du Pu
du ou *u

which will be considered in the following.
Our main result can be stated as follows.

Theorem 2. Let € € [0,&), with & > 0 sufficiently small, and let kK > 0. Then, there exist unique propagation
speeds c(1) () and ¢ (g), with lim,_,o+ ¢! (€) = ceri¢ (i = 1,2) the critical speed in the absence of a cut-off, such that



Equations (1.8) and (T.9), respectively, admit unique critical front solutions connecting the rest states u = 1 and u = 0.
Moreover, ¢(!) (&) = Cerit — Actd) (€), where

1

Ac<1>(£)21(—k+3\/k2+8)82 and (1.10)
_ 2

A () = o KTIVELE o (1.11)
(k+ VK2 +38)

to leading order in €.

Remark 3. We note that Theorem [2] only considers front solutions to (I.8) and (I.9) which are perturbations of the
critical fronts obtained for € = 0 and ¢(0) := lim,_,o+ ¢\ (&) = cerqy, With i = 1,2.

Theore;mimplies, in particular, that the front propagation speed in (1.8) and (I1.9) is reduced by a Heaviside cut-off,
as Ac()) > 0 fori = 1,2 when k > 0.

This article is organised as follows: in Section 2] we apply the blow-up technique (geometric desingularisation) to
construct a singular heteroclinic orbit. The proof of Theorem [2|is completed in Section|3] where we prove persistence
of the singular orbit and derive Equations and (I.TT). Furthermore, we provide numerical verification of our
results. In Sectiond] we extend our findings to a generalised family of advection-reaction-diffusion equations. Finally,
in Section[5] we discuss our results and possible topics for future work.

2 Geometric desingularisation

We introduce the travelling wave variable &) = x — c()¢ (i = 1,2) in (T.8) and (T.9), respectively. Writing u(x,t) =
U (i)) and appending the trivial equation for the cut-off parameter €, we obtain

U'=v,
V' =V 4+ kUVH(U — &) —U*(1 —U)H(U —¢), (2.1)
=0
and
U'=v,
V' = —PV4kUuv —-U*(1-U)H(U —¢), (22)
=0

from (1.8) and (1.9), respectively. Next, we define the following blow-up transformation at the origin in (2.1) and

(2.2),
U=ria, V=irv, and €=TE, (2.3)

which serves to desingularise the non-smooth transition between the inner and outer regions that are defined by {U <
e} and {U > €}, respectively. Here, (i1,7,&) € S% := {(&,7,) |#> + 7> + & = 1}, with 7 € [0, o] for o > O sufficiently
small and € > 0.

We will analyse the dynamics of (2.I) and (2.2) in two coordinate charts: we will consider the rescaling chart K,
and the phase-directional chart K| which are defined by € = 1 and & = 1, respectively. By construction, these charts
correspond to the inner and outer regions where U < € and U > €, respectively. By combining the dynamics in these
two charts, we will construct a singular (in €) heteroclinic orbit I'. In particular, we will show that I" represents the

singular orbit for both (2.1) and (2.2).



2.1 Dynamics in the rescaling chart K,

In this subsection, we construct I';, which is the segment of the singular heteroclinic orbit I" in chart K>. We will find
that I, is equal for (2.1)) and (2.2)), but that its perturbation for € positive and small differs for the two systems.

Setting € = 1 in (2.3)), we find the transformation
U=nru, V=mrnvw, and e£=nr 2.4)

in Kp. We first describe the singular geometry of (2.1); then, we show that the geometry of (2.2)) is identical in the
singular limit.

2.1.1 Dynamics of (2.1) in chart K,
Applying the transformation in (2.4) to (2.1)), we obtain

u/z =V,

Vh = —cMy, +krpupvoH(up — 1) — rzu%(l —roup)H (up — 1), (2.5)
/

r2 = 0

In the inner region, we have U < &, which is equivalent to u; < 1. Hence, H(u — 1) = 0, and we can reduce @ to

Uy = vy,
v/z = —cmvz, (2.6)
rh=0

Equation admits a line of equilibria at £ = {(0,0,r2) | r2 € [0,70]}. (While equilibria are found for any u; € (0, 1),
only those on Z; correspond to Q" after blow-down.) We are particularly interested in the point Q2+ = (0,0,0) which
is obtained by taking the singular limit as , — 0" on €2+ .

Lemma 4. The eigenvalues of the linearisation of (2.6) about Q5 are given by —c(0) and 0 (double), where the second
zero eigenvalue is due to the trivial 72-equation. The corresponding eigenspaces are spanned by (1,—c(0),0)” and
{(1,0,0)7,(0,0,1)"}, respectively.

Taking r2(= €) — 0T, we have ¢!!) — ¢(0), which further reduces (2.6) to

/
Uy V2,
2.7
vy = —c(0)vy @7
Solving the equivalent equation % = —c(0) under the condition that v,(0) = 0, we find the singular orbit
Fz . V2(u2) = 7C(0)u2. (2.8)

The section
= {(1,v2,72) | (va,r2) € [-v0,0] x [0, 70] }

is introduced to track I'; as it leaves the rescaling chart K> in backward “time”. (Here, vo > 0 is an appropriately
chosen constant.) We define the entry point into K, as " = I, N XY = (1,—¢(0),0). For ry € (0,rg], with 19 >0
sufficiently small, the stable manifold Wy (E;) of €2+ can be obtained directly from (2.6) by solving ?73 = —c(1) under
the condition that v,(0) = 0, which gives

Ws(£3) = va(un) = —cWay. (2.9)



2.1.2 Dynamics of (Z.2) in chart K
We now consider the dynamics of (2.2)) in chart K,. Applying (2.4) to (2.2)) and recalling that H(u; — 1) = 0, we obtain

u'2 =V,
vy = 7C(2)V2 + kraup vy, (2.10)
rh=0.

Taking r, — 0" in (Z.10), we again find 2.7). Hence, the singular orbit I'; for (2.2) is given by 2.8), as before.
Correspondingly, the entry point P;" = I', N X3 into chart K5 also equals (1,—c(0),0).

While the singular geometries of (2.6) and (2.10) are identical, differences arise when considering a perturbation to
I'; for ry € (0,rg], with ry sufficiently small: we can determine the (non-singular) stable manifold W; (£2+) of E;r by

solving fi% = —c® 4 kryu; under the condition that v;(0) = 0 to obtain
. k
W3 (63) 2 va(u2) =~y + Sraus, (2.11)

which clearly differs from (2.9).

The geometry of (2.6) and (2.10) in the rescaling chart K; is depicted in Figure recall that, when r, > 0, W5 (£3) is
given by (2:9) for the former, whereas it is defined in (Z.11)) for the latter.

Remark 5. The stable manifolds W5 (¢; ) in (Z.9) and 2.TT)), respectively, are not required for the construction of the
singular orbit I'. However, precise knowledge of those manifolds, and of their intersections with X3! for € = rp > 0, is
necessary for determining Ac') (i = 1,2) to leading order in &, see Section
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Figure 2: Geometry and dynamics of (2.6)) (left) and (2.10) (right) in chart K.

2.2 Dynamics in the phase-directional chart K|

In this subsection, we analyse the dynamics of (2.1) and (2.2) in the phase-directional chart K;. We construct the
singular orbit I';, which is the continuous extension of I'; in K. In the outer region, where U > €, we have H(U —¢) =
1. Hence, (2.1) and (2.2)) are identical, and we can perform the analysis of both systems simultaneously.

For i = 1 in (2.3), we obtain the following transformation in K|,

U=r, V=rv, and €=rg. (2.12)



Applying Z:12) to (Z.1) and (Z.2) and noting that H(1 —¢&;) = 1 for & < 1, we find

ry=rivi,
Vi = =Dy +krpvy — (1= rp) =3, (2.13)
8{ = _elvla

fori=1,2.

The system in (2.13)) admits a line of equilibria at £; = {(1,0,¢&) | &; € [0, &)]}. We are interested in the point Q] =
(1,0,0) € ¢7, which is obtained in the limit as & — 0" and which corresponds to Q in the singular limit after
blow-down.

A further equilibrium of (2:13) is found at P, = (0,—c(0),0), for which we have the following result.

Lemma 6. The eigenvalues of the linearisation of (Z.13)) about P; = (0, —c(0),0) are given by —c(0) and ¢(0) (double).
The corresponding eigenspaces are spanned by (2¢(0), 1+ kc(O),O)T and {(0,0,1)7,(0,1,0)" }, respectively.

Remark 7. For future reference, we note the occurrence of potential resonances in (2.13) at P;, corresponding to
monomials of the form r/~'v/ for integer-valued j > 2.

As & = rig; in (2.3), we have to analyse both the limit as r; — 0" and the limit of & — 0. We will construct the
corresponding segments I'{” and I';” of Iy in the invariant planes {r; = 0} and {&; = 0}, respectively.

The change of coordinates k»; : K» — K| between charts K, and K] is given by

Ko @ Pl =huy, V= vzuz_l, and € = uz_l. (2.14)

We introduce the section Z‘l’“t as
29U = {(r1,v1, 1) | (r1,v1) € [0,r0] X [=v0,0]}, (2.15)

which is defined such that x»; (Eizn) = Z(l’“t, with vg > 0 chosen as before. Since u, =1 in Eizn or, equivalently, since
g1 = 1 in 9", we have v{"' = v and, therefore, P?"' = (0, —c(0),1).

To construct the segment I'}” of I'y, we take the limit as r; — 0" in (Z:13) to obtain

/ — 0 _ 2,
N cOvi =i (2.16)
& = —€1vy1.
Solving 91 = O with vy (1) = —¢(0) due to 5" = —c(0) = i1, we find
g T = e with vy (1) = —c(0) due to v = —c(0) = vy', we fin
7 vi(e) =—c(0). (2.17)
The segment I'; is found in the limit as & — 0" in 2.13). Hence,
r = rivy
! ’ , (2.18)
vi=—c(0)vi +krivi —ri(1—r1)—vi,
which is equivalent to (1.7) after blow-down.
Lemma 8. For r; € (0, 1], the system in (2.18) admits an explicit orbit
Ly vi(r) =—c(0)(1—rp), (2.19)

with vl(l) =0.



Proof. For ¢(0) = 1 (k+vk* 4+ 8)(= ccrit), we have an explicit orbit for (I.7) which is given by V(U) = —c(0)U (1 —
U), see Proposition Application of the transformation in (2.12) to that orbit gives the stated result. O

To track I']” as it enters a neighbourhood of P;, we introduce the following section,
P ={(ro,vi,&1) | (v1.&) € [-v0,0] x [0, 1]}, (2.20)

which implies P = I’y NZM = (ry, —c(0)(1 — r9),0). The geometry of (Z.13) in the phase-directional chart K is
depicted in Figure 3]

T1

Figure 3: Geometry and dynamics of (Z.13) in chart K.

2.3 Construction of the singular orbit T’

We conclude this section by constructing the singular orbit I in (i, 7, €)-space.

Proposition 9. For (2.1) and ([2.2)), there exists a singular heteroclinic orbit I" connecting O, and Q; .

Proof. The orbit T is given by the union of the orbits I'}, IT, and I'; with the equilibria Q| , Py, and Q; in blown-up
phase space; see Figure [ for an illustration. O

3 Persistence and leading-order asymptotics

In this section, we prove our main result, Theorem[2] We begin by showing that the singular orbit I" constructed in the
previous section persists for € sufficiently small.



3.1 Persistence of the singular orbit I

Our first result implies the existence of a unique speed ¢l (i = 1,2) for which T will persist as a heteroclinic connection
between O~ and Q.

Proposition 10. For & e (0, &), w1th & sufficiently small, k > 0, and ¢\¥) (i = 1,2) close to ¢(0), there exists a critical
heteroclinic orbit for (Z.1) and (2.2), respectively, which connects O~ and Q* for a unique, k-dependent speed ¢/ (g).
Moreover, ¢l (g) < (O) fori= 1 2.

Proof. We will first prove the result for (2.I). In the inner region, where U < €, we find W5 (¢ ) NI = (1,v,72) in
chart K,, where W;(é*) is given by (2.9) and vizIl = fc(l)(rz). From (2.4), we know that V = rpv; and € = ry; hence,

vin = —c(D(g)e and §V<1 =—¢.

For general ¢!!), the dynamics of (2-T) in the outer region {U > €} are governed by

U'=v,

3.1
V = -y +kuv —U*(1-0). G-D

The intersection of the unstable manifold W"(Q~) of O~ with {U = €} can be written as the graph of an analytic
function Vo (c(1) ), with avou > 0. A standard phase plane argument shows that V°"(c(!) &) must be ¢’(1) and

negative for ¢(!) < ¢(0), Wthh 1mphes yin > yout,

It remains to consider the case where c(!) = ¢(0). The singular heteroclinic orbit is given explicitly by V({U) =
—c(0)U(1 —U) in that case, see Proposition Therefore, V°"(c(0),€) = —c(0)&(1 — €) and, hence, —c(0)e = V" <
Vou = —¢(0)e(1 — €) for € sufficiently small.

Next, we consider (2.2) in the inner region where U < €. We find W5 (¢; ) NZ = (1 Vil r2), where W2 (é ) is given

by @11) and vl = —c? () + %rg. It follows from @4) that Vi" = —c(®)(g)e + 2 and, hence, that 2 m =—¢.

For general ¢(?), the dynamics of (2.2) in the outer region {U > €} are governed by

U'=v,

3.2)
V = —PvV4+kuv -Ur(1-0). (

We conclude that V°(c(?) &) must be /(1) and negative for ¢(?) < ¢(0), which implies VI > V°U; moreover, ‘3‘;—&? >
0.

Finally, we again consider the case where ¢(2) = c(O). As before, the singular heteroclinic orbit is then given by
V(U) = —c(0)U(1 —U). Therefore, —c(0)e + 52 = Vit < VUl = —¢(0)e(1 —¢),as & < L(k+ VA2 +8) = c(0) for
k>0.

Applying the implicit function theorem and noting that av ) % > 0 for both @I) (i = 1) and 22) (i = 2), we

conclude that W*(Q™) and W"(Q™) intersect at {U = 8} for a unique value of ¢ () < ¢(0), which completes the
proof. O

The persistent heteroclinic connection constructed in Proposition [I0]is again illustrated in Figure ]

Remark 11. We note that vi? (= v§"Y) differs for (2.1) and 2:2) when r, = € > 0, see Flgure Therefore, we will label

(1 ut, (2)

the v;-coordinates of the corresponding exit points from chart K; for -I) and 2:2) as v{"""" and v]""'“), respectively.



Figure 4: Global geometry of the blown-up vector field obtained from (2.1)) (top) and (Z:2) (bottom).

3.2 Leading-order asymptotics of Ac()

In this subsection, we determine the leading-order asymptotics (in €) of Act) = ¢(0) — ¢{)(g). Recall that in chart
K, the dynamics of (2.1) and (2.2) are governed by (2.13). Therefore, we will approximate the transition map II; :
it — X under the flow of 2.13) for & € (0,g&), with & sufficiently small. In preparation, we shift the point
P1 = (0,—¢(0),0) to the origin via the transformation z = v; 4 ¢(0), and we rewrite Z.13)) as

= —(c(0)—z2)ry,
7 = (c(0) —2)(z— AcD) —kry (¢(0) —2) — r (1 — 1), (3.3)
€ =(c(0)—2z2)e.

—_

Rescaling “time” in 1| by a positive factor of ¢(0) — z, noting that the equation for & decouples, and appending the
trivial equation for Acl) | we obtain

rp=—ri,
) gy -1 =r1)

A ’
i=z—Ac 0)—2

(3.4)
Acl) = 0.

Here, the overdot denotes differentiation with respect to the new independent variable { @,

10



Lemma 12. There exists a sequence of smooth transformations that transforms (3.4)) into

’;l =Ty,
P 1 2 .
e T [(1+O(nw)], (3.5)
Ac() = 0.
Specifically, that sequence is composed of the transformation w = z — Ac), followed by W = w — (% + 20(,-1) (8)> ry and

a sequence of smooth near-identity transformations of the form v = w+ &'(r}, r1Ww).

Proof. We first define the new variable w = z — Ac(’), which removes Ac(!) from the z-equation in (3:4), to obtain

o ri(1—rp)
2
: 1 _ _1 w w 3 :
Expanding T =~ 0@ [1 togt <c<") 8)) +O0(w )} , we can write (3.6) as
o 1 r% ri(l—ry) w w 2 3
e (k ! <><e>> ") ) | (e@ (e)) Hoe)) G-

k

Similarly, the transformation w = w — (j + ) r1 removes the &'(ry)-term from (3.7).

1
2¢0) (g)

Finally, we remove all non-resonant terms by applying a sequence of near-identity transformations, with w = W +
0 (r% r1w). The existence of such a transformation follows from standard normal form theory, see e.g. [4]. Since the
lowest-order resonant term is of the form rw?, we find

1
c() (€)3

W1+ 0 (rw)), (3.8)

W=w-—
as claimed. ]

Next, we approximate 13\1““ and 1310 ot (0 (i=1,2), which are the entry and exit points in the sections Eiln and " under the
flow of (B.3), respectively, to a sufficient order in &, ry, and Ac). To that end, we first prove the following preparatory
result.

Lemma 13. For (U,V) defined as in (I.7) and U € [0,Up), with Uy sufficiently small, there holds

av 1

S U.e(0) = -—(1-0). (3.9)
¢(0)

Proof. We rewrite (1.7) with U as the independent variable, which gives

dv
Vﬁ:chJrkUVfUz(lfU). (3.10)

Differentiation of (3.10) with respect to ¢ yields

VAV 9 v o av
(Y _y i 3.11
8C8U+V8c<8U) Voege U5 G-11)

11



Next, we evaluate (3.1T) along the singular orbit V = —c(0)U (1 — U), as given by Proposition 1} and we make use of

% = —¢(0)(1 —2U), with ¢ = ¢(0), to obtain the ordinary differential equation
d (dV k 1 9V
— | =—]=12-—= 1 3.12
dU<8c> < (0)>1—Uac (3.12)
for %. Solving (3.12) under the condition that %(U ,¢(0)) remains bounded as U — 1~, we find (3.9). O

Lemma 14. For € and Acl) (i = 1,2) sufficiently small and k£ > 0, the points le = (ro, win, rf) ) and P, Aout() =
(£,w°(0) 1) satisfy

. 1 1 4
W= — o A 1+ o (1) (3.13)
¢(0)
as well as )
WOl = —c(0)e[1+0(1)] and WUt = — g[l+o(1)], (3.14)
2¢(0)
where o(1) denotes higher-order terms in g, ry, and Act), Furthermore, wout(1) and ypout,(2) correspond to the

out,(1)

o . . 2
transformed exit points from chart K, which are derived from v, out,(2)

and v, , respectively.

Proof We begin by approximating w°(!) . Recall from the proof of Proposmonthat W () — _ () (€) = —c(0)+
AcV) for (1)) Having shifted the point P; to the origin via the transformation z = v; + ¢(0), we have z2"4(1) = Ac(D,
As we removed the Ac(!)-term by defining w = z— Ac(), it follows that w*">(!) = 0. The final two transformations are

given by w =w — (% =+ m) ri and the sequence of near-identity transformations w = w+ & (r%7 r1w). Recalling

that r; = € in 2", we finally have

k 1
~out,(1) _ [ —
W = <2 + 2c(0)> e=—c(0)e (3.15)

to leading order, where we have made use of ¢(0) = £ (k+ VA% +38).

Next, we approximate w°"(2) Again, recall from the proof of Proposmonthat v(l)ut AC) (e)+ %e = —c(0)+

Ac + 58. Shifting P; to the origin via the transformation z = v; + ¢(0), we find 2202 = A 4 %s. The term

out,(2) _

Ac?) is removed by defining w = z — Ac(?), which yields w = %8. The final two transformations are given by

W=w-— (% + m) r1 and the sequence of near-identity transformations w = w+ & (r%, r1w) which, together with

ri = € in X", shows

koo(k 1 1
sout,(2) o (R, & -
W 2¢ <2 + 2c(0)) £~ 720)° 610

to leading order.

Finally, we derive the approximation for wi". Since W"(Q™) is analytic in U and ¢, we can write
, =1 9V N
VU, =Y = ———(U,c(0)(—AcD)

=V(U,c(0)) -

ov
dcl)

=—c(0O)U(1-U)— %(1 —U)A + ﬁ[(Ac@)z]
(0

7 U c)Aac) + o [(ac)?] (3.17)
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for i = 1,2. Here, the coefficient of Ac'") is obtained from Lemma |13} as Equations (2.I) and (2-2) are identical for
€ =0, and given by (I.7). Making use of V = rjv, U = ry, and r; = ro in £, we find
. 11 . N2
Vir=c(0)(ro—1) = ——F(1~- VQ)AC(’) + ﬁ[(AcO)) ] (3.18)

ro3—m

Then, considering z = v; +¢(0) and w =z — Ac) | we have

1 1

Wi = ¢(0)rg — — ———— (1 —rp)Ac®) — Ac) + @[ (AcD)?]. (3.19)
Finally, since w = w — (k + ¥) 1+ O(r3,ryw) and since we can expand —— = —L_— = L4 L Ac() 4
’ 2 T 2l (e) b c(g) 7 ¢(0)—ac T c(0) T ¢(0)2
O[(Ac))?], we obtain
. k1 1 1 ; : 1 1 : ;
pin I AD ()2 _ (i) (@)
W [C(O) ) (c(0)+c(0)2Ac +0[(Ac") })]ro . [ *C(LO)AC + 0 (roAc")

(3.20)

A1+ O(ro)] + O[(AcD)?]

)

1[ !
0 3= oy

where the constant terms cancel due to ¢(0) = }—‘(k + vk +38). We note that Ac)) must be independent of ry, which
was defined as an arbitrary small constant in @ Moreover, we will find that Wi, as given in @, is sufficient
for calculating Ac) to leading order in €. In other words, terms of the order @[roAct?), (Ac))?] have no effect on the
leading-order asymptotics of Ac()). Hence, the proof is complete. O

Consider the simplified normal form obtained by omitting the &'(r}?)-terms in (3.8)),

v v 1 v2
w=w— c(i)(8)3r1w . (3.21

The next result is required to show that Equation (3.21) is sufficient for determining AcM) and Ac® to leading order
in €.

Proposition 15. Let € € (0, 80)7 with & > 0 sufficiently small, let k > 0, and let ¥ and W be defined as in (3.8) and
(3:21), respectively. Then, for ™ = W™, we have

WOUt7<1) _‘X}Ou[,(l>’ S |r02} |ﬁ(|r0vi>m|2|lngD7 (322)

where i = 1,2.

Proof. Let the right-hand side of (3.21) be denoted by g({ (), ). Then,

| | 1 1
O 1 () I R R S A SV
[$(6% ) (% W2)| = 1 — s i =i+

(3.23)

= [W1 — W

1 o
I—er(\’vl‘i'wz)

The equation ﬁ(nvﬁ) =

- c(i)é€)3 r%vT/Z, with (r1W)(0) = row'™", has the unique solution

r()Wm

= = o1 +o(1
1+ o g ot et
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for |row™| sufficiently small. Therefore, we can estimate

1—

ri(W1+wp)| <1+ |roW™™| + o(row'™).

_2
c(e)3

c(e)3

Denoting the right-hand side of (3:8) by £(£?, ), we obtain

N PR 1 . R
|f(c(l)vw)_g(c()vw)| = ) 3V%W3[1+ﬁ(’"lw)}
c(e) (3.24)
< 2 |r0wm|3 2 |r0wm|3 ’
- c(i) (g) r1 C(i) (8)3 ro ’

where we have used that r;(§ (i)) = roe’g(i), as is found by solving the ri-equation in (3.3). Then, an application of
Gronwall’s inequality implies

: 2 N 2 2 g
by (0 2 ) o (e i) o 2 0P
(W= )¢ )‘Sexp[(l+c(l)( o )c M exp{ <1+C<1)( S |) ]C(i>(£)3 e

[ro®™ > e 2 <in| # (i)
T@ exXp WP’QW |§ —1

B |r0vT/in|2 . )

o (jrown g ).

o
(3.25)

Evaluating the right-hand side of @ at é‘out,(i) = —1In %, we obtain the stated result. O
We are now in a position to prove the main result of this section.

Proposition 16. For € € [0, &), with & > 0 sufficiently small, and k > 0, the functions AcV) and Ac® defined in
Theorem [2] satisfy

AcD(e) :%( k+3Vk2+8)e*[1+0(1)] and (3.26)
Ac?) (e _,kH3VE+S €1 +o(1)], (3.27)
(k+ V&2 +8)

respectively.

Proof. We begin by solving the simplified normal form in (3:21)). Substituting r; () = roe=¢" into (3:21)), we obtain

. 1 20
o ¢ 2
w=w c<i>(8)3 roe we, (3.28)
which has the solution 0
Ww(gW) = * (3.29)
B+ 6(073"04(1)
where B is a constant of integration. We require that w(&)) = i at £™() = 0 and, hence, 8 = -1-. Expanding (3.29)
W(ED) =i [1 4 6 (rgd" ¢ D)]. (3.30)
Evaluating (330) at {0 = —In £, we find
o Ain .
pout(i) — mf: [1+ 6 (row"| Ingl)], (3.31)
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for i = 1,2. We note that (3.3T) is of lower order than (3.22), as derived in Proposition [I5] which implies that the
simplified normal form in (3.21) is sufficient for approximating Ac! to leading order. Substituting the estimate for
Wit from Lemma|14{into (3.31)), we obtain

gou() — oL 1 —AcY 1 +0(1)][1+ (A Ine)]

f h f 0 (3.32)
=—— Ac()[l—i-o(l)]
€3~
Since w*"(1) = —¢(0)e[1+40(1)], by Lemma we conclude that
Ac'Y) = [3¢(0) — kle*[1 +0(1)). (3.33)
Similarly, as w°'t() = — 2610) €[1+0(1)], recall again Lemma we have
Ac<z>:3_ﬁ82[1+0<1>]. (3.34)
2¢(0) '
Finally, substitution of ¢(0) = I (k-+v/k>+ 8) into (3-33) and (3:34), respectively, yields the stated result. O

Propositionimplies, in particular, that Ac() > 0 for i = 1,2, in agreement also with Proposition which completes
the proof of Theorem [2]

Remark 17. We note that Proposition |16|remains true for k = 0, which corresponds to the Zeldovich equation with
cut-off [9]: both (3:26) and (3:27) reduce to Ac(e) = %82[1 +0(1)] then, which agrees with [9, Theorem 1.2].

To compare the leading-order corrections Ac(!) and Ac®) to ¢(0) for Equations (T-8) and (T.9), we evaluate their
difference

|c(1>(£)—c ’—‘Ac )—Ac@ (e )’ (6+k2 k2 + ) [1+o(1 (3.35)

We observe that Equation (3.35) has a unique root at k = 0, as is to be expected, since (I.8) and (I.9) are identical
for k = 0. In addition, the right-hand side in (3:35) is monotonically increasing in k and approaches 5&2[1+ &' (k™ !)]
as k — oo. These observations are consistent with the corresponding result for the motivating example of the Burgers
equation in (T.2), where multiplication of the advection term with a Heaviside cut-off produced a shift Ac = %82 in the
front propagation speed for (I.3), and is related to the fact that, for large &, the advection terms in Equations (T.8)) and
(I.9) are dominant. In other words, the reaction kinetics becomes negligible for k large, which implies that (I.8) and
(T.9) are well approximated by (T.3) and (T.2)), respectively, in that limit.

Finally, we provide numerical verification of Proposmon@ To that end, we calculate the error incurred by approximating
() (g) with the corresponding first-order expansion ¢()(g) for i = 1,2 and k = 1, which yields é(!) () = 1 —2¢? and
¢?)(g) = 1 — €%, The numerical values of ¢ (¢) (i = 1,2) are determined by integrating Equations 2.I) and 2.2)
and returning final values of U = Ugp, (c) that are obtained after a sufficiently large number of time steps. We then
minimise |Ugpai(¢)| by applying a Nelder-Mead method [6]. Our findings are 111ustrated 1n Figure [5] where we have
used a double logarithmic scale, with € € [1074,1072]. Flguresuggests that |c() (g) — &) (g)| = O(€3) for i = 1,2,
which is consistent with [9l Theorem 1.2] for k = 0; specifically, the slopes of the lines |c )(g) — ¢l (g)] are given by
3.005078 (i = 1) and 3.002047 (i = 2), respectively.
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Figure 5: Error of the approximation for ¢()(g) by ¢\ (¢) for Equations (T:8) and (T.9), where i = 1,2, k = 1, and
ec 10741072
4 Generalisation

In this section, we briefly consider generalisations of Equations (I.8) and (I.9) where the reaction kinetics in both
equations is replaced with u"(1 —u)H (u — €) for n = 1,2, 3, which gives

du du Pu

E—!—kuaH(u—s):ﬁ—ku (1—u)H(u—¢) and 4.1
du ou J*u
Eﬁ-kuazﬁ-l-u (I1—u)H(u—e¢), 4.2)

respectively, where k > 0, as before. For n = 1, the corresponding equations without a cut-off are known as the
Burgers-FKPP equation [3, Chapter 11]. The change in front propagation speed due to the Heaviside cut-off in
(@1) and @2) was studied in [10], where it was shown that for k < 2, the speeds of the critical front solutions to
Equations (@) and {2) converge to the singular speed ¢(0) logarithmically in €, whereas for k > 2, convergence
is sub-linear in €. As in the statement of Theorem [2| let ¢(!)(g) and ¢(?)(¢) denote the unique propagation speeds
of critical front solutions to (4.1) and (@.2), respectively; then, it follows from [10, Theorem 2 and Appendix A] that
cM(e) = c@(e) to leading order, for all k > 0.

That result contrasts with our main result in this article, Theorem 2} which applies precisely in the case where n = 2
in @T)) and (@2): here, the orders (in &) of ¢!!) (¢) and ¢(?) (¢) are equal, while the corresponding coefficients differ.

Finally, we consider Equations (@.I) and @.2) with n = 3. The analysis of these equations is complicated by the fact that
the singular critical speed ¢(0) = ¢y is not known explicitly. However, an adaptation of the approach in [9] still allows
us to determine the leading-order asymptotics of cli) (&). In Figure EI, we show similar error estimates as are displayed
in Figure [5| for Equations (T.8) and (T.9). We first compute numerical values for the singular propagation speed ¢(0)
for Equations (.1) and (@.2)) and then apply the same approach as at the end of Section to approximate ¢() (). In
Figure[6} we plot ¢(0) — ¢ (¢) = Ac() (g) for i = 1,2, which implies that Ac(!) (g) = &(€?) and Ac?) (g) = 6(€?) for
n = 3: the slopes of the lines Ac@(s) are given by 2.001391 (i = 1) and 2.999524 (i = 2), respectively.

Our findings are summarised in Table |1} where a,gi) denotes the leading-order (e-independent) coefficient in the
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expansion of Ac®) (¢) fori =1,2.

].0_41 ,X
107 5
10764 -
1077 5 K ‘/
Error 10-84 =%~ e~
10_9“ e
10-104 »°
1071 5 ~

10—12 d z.’

1074 1073 1072

Figure 6: Approximation of Ac()(g) for Equations @) and @Z) with n = 3, where i = 1,2, k=1, and € €
[1074,1072].

n ‘ a,gl) = OCIEZ) ‘ AcD ‘ Ac®
1 (k<2) v Ol(Ing)~?] | O[(Ine)~?]
1(k>2) v O(e1=4%) | 0(e!=4%)
2 X 0(€?) 0(e?)
3 x 0(€?) o(e)

Table 1: Correction to the propagation speed of front solutions to Equations (4.1) and (4.2) forn =1,2,3.

5 Discussion

In this article, we have proven the existence and uniqueness of “critical” propagating fronts for two degenerate
advection -reaction-diffusion equations in the presence of a cut-off. In particular, in Equation (1.8, a Heaviside cut-off
function multiplies both the reaction kinetics and the advection term, whereas in Equation (I.9), only the kinetics is
affected by the cut-off. In both cases, we have derived the leading-order asymptotics (in €) of the corresponding unique
front propagation speeds c(!)(g) and c(?)(g), respectively.

It is possible to determine higher-order terms in the expansions of ¢(!) (g) and c? (&) via the approach outlined in [9],
since the singular front is known explicitly and since the calculation of %—Y(U ,¢(0)) in Lemma can be generalised
to higher orders, which hence allows one to approximate W" to a sufficiently high order. However, the primary goal of
this article was to demonstrate the importance of “cutting off” the advection term in addition to the reaction kinetics;
specifically, Theorem[2]implies that failure to do so can result in a different leading-order correction to the propagation
speed of the front.

Numerical verification of Theorem suggests that the second-order term in the expansions for both c(!) (&) and ¢(?) (g)
is of the order & (83), recall Figure That suggestion is consistent with [9, Theorem 1.2], where it was shown that
for Equations (T.8) and (T.9) with k = 0, the second-order correction to c(€) is indeed €'(&3).
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Section [ introduces a family of scalar advection-reaction-diffusion equations which generalise Equations (I.8) and
(T.9). Our findings are summarised in Table[T[} We conclude that for n = 1, it is sufficient to consider a cut-off in the
reaction kinetics only. However, for n = 2 and n = 3, the leading-order asymptotics of ¢(!)(¢) and ¢(?)(¢) depends
strongly on the advection term due to the effect of the kinetics being weaker. Specifically, for n = 2, the leading-order
correction to ¢(!)(g) and ¢!?)(¢) is of the same order in &, while the corresponding coefficients differ. For n = 3,
front propagation is dominated by advection; hence, failure to include a cut-off in the advection term results in a
leading-order correction to the speed of propagation which is of the wrong order. While the generalisation in Section 4]
illustrates the significance of cutting off advection for the front propagation dynamics, we focused on in our
analysis due to the corresponding critical speed cj; being known explicitly.

A Particle system for Burgers equation

In this section, we consider the N-particle system underlying the (viscous) Burgers equation, solutions of which
converge to those of the following initial boundary value problem as N — oo:

U + kuuy, = Ouyy, with lim u(x,r) =1and lim u(x,7) =0, (A1)

X——o0 X—r00
where u(x,0) = up(x), x € R, and r > 0.

In our numerical simulation of the stochastic particle system, we applied the algorithm proposed in [2], as it is simple
to implement and computationally efficient; the basic details are given below for completeness. We begin by fixing N

points (particles) in R, with corresponding positions {yb}ivz 1> which allows us to write the initial particle density as

1 ¥ .
uo(X):ﬁ;H(xfyi))

Fixing T, we can discretise the time interval [0, 7] by writing T = MA,, with step size A; and time steps given by
tm =mA, form =0,...,M. We then proceed with the following iteration,

) N ) . )
Y, =Y + N Y HY] =Y )A+o/AAW, | form=0,....M—1,
=1 (A.2)
Y5 = Yo,
where Aw', | ~ .#(0,1) is normally distributed with mean 0 and variance 1. The numerical approximation u(x, )
for u at time 1, (m = 1,...,M), with x € R, is then recovered from

1 ¥ ,
u(x,ty) = NZH(x—Y,in), (A.3)
i=1

see [2]. In particular, we only require for the spatial domain to be discretised in order to plot the solution, see Figure[T]
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