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Abstract. We consider front propagation in a family of scalar reaction-diffusion equations in
the asymptotic limit where the polynomial degree of the potential function tends to infinity. We
investigate the Gevrey properties of the corresponding critical propagation speed, proving that
the formal series expansion for that speed is Gevrey-1 with respect to the inverse of the degree.
Moreover, we discuss the question of optimal truncation. Finally, we present a reliable numerical
algorithm for evaluating the coefficients in the expansion with arbitrary precision and to any desired
order, and we illustrate that algorithm by calculating explicitly the first ten coefficients. Our
analysis builds on results obtained previously in [F. Dumortier, N. Popović, and T.J. Kaper, The
asymptotic critical wave speed in a family of scalar reaction-diffusion equations. J. Math. Anal.
Appl., 326(2): 1007–1023, 2007], and makes use of the blow-up technique in combination with
geometric singular perturbation theory and complex analysis, while the numerical evaluation of the
coefficients in the expansion for the critical speed is based on rigorous interval arithmetic.

1. Introduction

The general family of scalar reaction-diffusion equations

∂u

∂t
=
∂2u

∂x2
+ fm(u),(1)

with fm(u) = 2um(1 − u) and m ≥ 1 real, has been studied extensively as a ‘bridge’ [26] between
the classical Fisher-Kolmogorov-Petrowskii-Piscounov (FKPP) equation [10, 15], which is obtained
for m = 1 in (1), and the family of non-degenerate bistable cubic equations with potential f(u) =
u(1− u)(u− a) [3, 14, 21], where a ∈ (0, 12) is a real parameter. Moreover, it has found numerous
applications in the biological [21] and physical [3] sciences, especially when m = 1 or m = 2. (In
the latter case, Equation (1) is also known as the Zeldovich equation.)

Of particular interest to us here are traveling front solutions that connect the two rest states
at u = 0 and u = 1 in (1). Reverting to a co-moving frame by introducing the traveling wave
variable ξ = x − ct, where c is the front propagation speed, we denote the corresponding front by
U(ξ) = u(x, t); thus, we find

U ′′ + cU ′ + 2Um(1− U) = 0(2)

for the traveling wave equation corresponding to (1), with

lim
ξ→∞

U(ξ) = 0 and lim
ξ→−∞

U(ξ) = 1.(3)

(Here, the prime denotes differentiation with respect to ξ.) As is well-known [2, 3], for each m ≥ 1,
there exists a so-called ‘critical’ wave speed ccrit(m) such that Equation (2) supports front solutions
which satisfy the condition in (3) when c ≥ ccrit. The speed ccrit is critical in the sense that
it separates fronts of different decay rates at the zero rest state: for m = 1, the front solution
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corresponding to ccrit = 2
√

2 decays at an algebro-exponential rate as ξ → ∞, whereas the decay
is strictly exponential for c > ccrit. By contrast, when m > 1, the front that propagates with speed
ccrit decays exponentially, while the decay is merely algebraic in ξ for c > ccrit.

The family of equations in (1) has been studied in detail in the regimes where m is close to 1
and 2, using geometric singular perturbation theory [24] and matched asymptotics [20, 27]. Finally,
the large-m limit in (1), first introduced as a model for a δ-distribution potential centered about
u = 1, which was considered in [23, 27] as well as in [22] via the method of matched asymptotic
expansions, was analyzed in full rigor in [7]. In particular, it was proven there that the critical
wave speed ccrit(m) for (2) is C∞-smooth in m−1, as well as that

ccrit(m) =
c1
m

+
c2
m2

+O(m−3) as m→∞,(4)

where c1 = 2 and c2 is defined as

c2 = lim
w0→∞

∫ w0

0

[
ω2e−ω√

1− (1 + ω)e−ω
− ω3

2
e−ω

]
dω ≈ −0.31191;

see [7, Theorem 1.1]. At the same time, the approach developed in [7] – which relied on a com-
bination of geometric singular perturbation theory [9, 13] and the blow-up technique (geometric
desingularization) [6, 16] – yielded an alternative (constructive) proof for the existence and unique-
ness of the corresponding traveling front solutions; in particular, it allowed for the regularization
of the neutrally stable zero rest state in the singular limit as m→∞ in (1).

The motivation in [7] for studying (2) in the large-m limit was twofold: first, it was confirmed
that ccrit(m) is monotonically decreasing in m, as predicted on formal and numerical grounds in
[22, 27]. Second, and perhaps more importantly, the approximation for ccrit(m) provided by (4)
was shown to agree well with the numerically obtained front speed over a wide range of m-values,
down to m = 2; cf. [27, Figure 3(a)]. (To state it differently, the large-m asymptotics of ccrit seems
to remain accurate even for finite values of m.)

In this article, we investigate the structure of the series expansion for the critical wave speed
ccrit(m) in (4) in more detail. As indicated already in [7, Remark 10], that expansion can be
expected to have Gevrey properties [1, 4]. Here, we confirm this expectation; more precisely, we
prove that the asymptotics in (4) is, in fact, Gevrey-1 with respect to the (small) parameter m−1,
i.e., that the k-th order coefficient ck in the expansion for ccrit will grow at most like k!; a precise
definition can be found in Equation (6) below. Moreover, we determine the optimal truncation
point in that expansion, and we obtain a bound on the error incurred by the resulting truncation;
to the best of our knowledge, no comparable results have been obtained before. Our study is
based on the geometric framework that was established in [7], complemented by techniques from
complex analysis and Gevrey asymptotics. (We remark that the blow-up technique has been applied
previously in the derivation of Gevrey-type expansions; see, e.g., [18, 19] for details.) Specifically,
our main result can be expressed as follows:

Theorem 1. For m ≥ m0, with m0 > 0 sufficiently large, the function ccrit(m) has a formal power
series expansion of the form

ccrit(m) ∼
∞∑

k=1

ck
mk

,(5)

with c1 = 2. Moreover, the expansion in (5) is Gevrey-1 with respect to m−1, i.e., there exists a
constant A > 0 such that, for k = 1, 2, 3, . . . ,

|ck| ≤ ABkk!, with B & (ln 2)−1 ≈ 1.44270.(6)
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Finally, the function ccrit(m) is well-approximated by this Gevrey-1 series, in the sense that

∣∣∣∣ccrit(m)−
[
m
B ]∑

k=1

ck
mk

∣∣∣∣ ≤ A
√

2π
(m
B

) 3
2
e−

m
B
(
1 +O(Bm−1)

)
.(7)

(Here, [mB ] denotes the integer that is nearest to m
B .)

Our second result in this article concerns the accurate numerical evaluation of the coefficients ck
in the formal series expansion for ccrit in (5). In other words, we explicitly extend the leading-order
expansion in (4), as found in [7, 23]: while only the coefficient c2 was calculated there, we present
an algorithm to evaluate ck numerically with arbitrary precision and for any k ≥ 1, hence obtaining
a uniform approximation for ccrit(m) to any desired degree of accuracy. Thus, for k = 1, . . . , 10,
the coefficients ck in (5) are as given in Table 1 below, up to 10 digits’ precision:

c1 2.0 c6 −0.2691796252
c2 −0.3119086360 c7 0.3478753430
c3 0.6762845522 c8 −0.2473705415
c4 −0.2941414626 c9 0.2959031591
c5 0.4425500680 c10 −0.2309020840

Table 1. The coefficients ck in (5) for k = 1, . . . , 10.

The evaluation of these coefficients is computer-assisted, and will be outlined in Section 4; in
particular, we remark that it makes substantial use of the Gevrey character of the expansion for
ccrit and, specifically, of the asymptotic bound on the growth of ck given in (6).

This article is organized as follows. In Section 2, we review the geometric framework established
in [7]; in Section 3, we prove our main result, Theorem 1; in Section 4, we outline the derivation of
Table 1; finally, in Section 5, we discuss and interpret our findings.

2. Geometric framework

In this section, we retrace some of the analysis from [7], as required for our purposes. First, we
note that it is useful to recast (2) into Liénard form, which yields

U ′ = V − cU,(8a)

V ′ = −2Um(1− U);(8b)

then, front solutions connecting the rest states at U = 1 and U = 0 in (2) correspond to heteroclinic
connections between the two equilibrium points Q− = (1, c) and Q+ = (0, 0) of (8). In particular,
the point Q+ is a saddle-node for c > 0 (with eigenvalues −c and 0) and fully degenerate (with a
double zero eigenvalue) when c = 0; cf. [7, Lemma 2.1]. Hence, for any m > 1, the critical speed
ccrit(m) > 0 is determined by the condition that the unstable manifold Wu(Q−) of the hyperbolic
saddle equilibrium at Q− coincides with the strong stable manifold Ws(Q+) of Q+; by contrast,
for c > ccrit(m), Wu(Q−) approaches Q+ on a center manifold. We refer the reader to [7, 24] for a
more complete discussion of critical wave speed phenomena from a geometric point of view.

Following [7], we define ε = m−1 for m large, and we consider the limit as ε → 0. After a

preliminary rescaling via V = εṼ , c = εc̃, and ξ = ξ̃
ε , see [7, Section 2.1], the equations in (8) read

U̇ = Ṽ − c̃U,(9a)

˙̃
V = − 2

ε2
U

1
ε (1− U),(9b)
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U0 1

S0 : {Ṽ = c̃U}

Q̃+

Q̃−

Γ+

Ṽ

U

(a) The ‘outer problem’ (10).

W01Q̃−

S0 : {Z = c̃W}

Q̃+

Γ−

Z

W

(b) The ‘inner problem’ (11).

Figure 1. The geometry for ε = 0.

where the overdot denotes differentiation with respect to ξ̃.
The analysis of (2) in [7] then proceeds by decomposing the phase space of the equivalent, rescaled

first-order system (9) into two distinct regions, the ‘outer region’ (with 0 ≤ U < 1) and the ‘inner
region’ (where U ≈ 1). The large-m asymptotics of ccrit(m) in (4) is hence obtained by constructing
a solution for (9) that is uniformly valid on [0, 1]. In particular, when ε = 0, a singular orbit Γ can

be defined as the unique heteroclinic connection between the equilibrium points Q̃− = (1, c̃) and

Q̃+ = (0, 0) of (9). The construction of Γ is outlined below; details can be found in [7, Section 2].

2.1. The ‘outer problem’. Since U
1
ε = e

1
ε
lnU , the right-hand side in (9b) is exponentially small

in ε for U ∈ [0, U0], with U0 < 1 constant. Correspondingly, the dynamics in this outer region is
governed by

U̇ = Ṽ − c̃U,(10a)

˙̃
V = 0,(10b)

where c̃ = c̃(ε) now. The line S0 :=
{

(U, Ṽ )
∣∣ Ṽ = c̃(0)U, U ∈ [0, U0]

}
is invariant for (10)

and normally attracting, as c̃ > 0; hence, S0 will persist, by standard theory [8, 9], as the line

Sε :=
{

(U, Ṽ )
∣∣ Ṽ = c̃(ε)U, U ∈ [0, U0]

}
, for ε > 0 sufficiently small. (Here, we note that Q̃+

lies on Sε for any value of ε.) Similarly, the fast foliation F0, which consists of axis-parallel fibers

{Ṽ = Ṽ0} for Ṽ0 constant, will persist as a foliation Fε whose fibers are exponentially close (in ε)

to those of F0. In particular, the fiber Γ+ : {Ṽ = 0} gives the leading-order strong stable manifold

Ws(Q̃+) of the origin Q̃+; see Figure 1(a) for an illustration.

2.2. The ‘inner problem’. For U ≈ 1, i.e., close to the point Q̃−, the contribution from the
right-hand side in (9b) remains significant even as ε → 0. (In fact, the rapid variation of fm(U)

signals the existence of a boundary layer in this inner region.) Translating Q̃− to the origin by
4
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Figure 2. The geometry of (11) after blow-up.

introducing the new variables W = 1− U and Z = −(Ṽ − c̃) in (9), we find

Ẇ = Z − c̃W,(11a)

Ż =
2

ε2
(1−W )

1
εW.(11b)

Even though the right-hand side in (11b) is undefined in the (non-uniform) limit as (W, ε)→ (0, 0),
it was shown in [7] that the corresponding singular dynamics can still be obtained using geometric
desingularization, or blow-up [6, 16]. Heuristically, that dynamics is described by the singular orbit
Γ− :=

{
(0, Z)

∣∣Z ∈ [0, c̃]
}
∪
{

(W, c̃)
∣∣W ∈ [0,W0]

}
, with W0 = 1−U0. Geometrically speaking, Γ−

consists of a portion of the Z-axis which represents the boundary layer at W = 0 (to lowest order),
as well as of a segment of {Z = c̃} that corresponds to the fiber Γ+; cf. Figure 1(b).

2.3. The blow-up transformation for (11). As in [7, Section 3], the dynamics of the inner
problem in a neighborhood of (W, ε) = (0, 0) is desingularized via the cylindrical blow-up transfor-
mation

W = r̄w̄, Z = z̄, and ε = r̄ε̄,(12)

which maps the Z-axis to the quarter-cylinder S1+× [0, z0]. (Here, (w̄, ε̄) ∈ S1+ =
{

(w̄, ε̄)
∣∣ w̄2 + ε̄2 =

1, w̄, ε̄ ≥ 0
}

, z̄ ∈ [0, z0], and r̄ ∈ [0, r0], with z0 > 2 fixed and r0 positive and sufficiently small.)
For details on the blow-up technique, the reader is again referred to [7] and the references therein.

The blown-up vector field corresponding to the equations in (11) is best studied in two coordinate
charts: the dynamics in the inner region is covered by a ‘rescaling chart’ K2, which is defined by
ε̄ = 1; the transition between the inner and outer regions, which will be termed the ‘intermediate
region,’ is naturally described in a ‘phase-directional chart’ K1, with w̄ = 1 in (12). For future
reference, we note that the coordinate change κ21 : K2 → K1 on the domain of overlap between
these charts is given by

r1 = r2w2, z1 = z2, and ε1 = w−12 .(13)
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(a) The ‘rescaling chart’ K2.
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(b) The ‘phase-directional chart’ K1.

Figure 3. The dynamics of the blown-up vector field.

The geometry in blown-up coordinates is illustrated in Figure 2.

Remark 1. Given any object �, we will denote the corresponding blown-up object by �; in chart
Kj (j = 1, 2), the same object will appear as �j . �

2.3.1. Dynamics in chart K2. In K2, the blow-up transformation in (12) is given by

W = r2w2, Z = z2, and ε = r2,

which we substitute into (11) to obtain the dynamics in this chart. The resulting equations – after
desingularization, i.e., after multiplication of the right-hand sides by a factor of r2 – read

w′2 = z2 − r2c̃w2,(14a)

z′2 = f(w2, r2),(14b)

r′2 = 0,(14c)

where the function f is defined as

f(w2, r2) = 2w2(1− r2w2)
1
r2 = 2w2 exp

[ 1

r2
ln(1− r2w2)

]
.(15)

The only finite equilibrium for the (c̃, r2)-family of vector fields in (14) is the origin Q̃−2 , which is
a hyperbolic saddle point for c̃ > 0 and r2 ∈ [0, r0] sufficiently small; see [7, Lemma 3.2]. We note

that Q̃−2 corresponds to the origin in (W,Z)-space or, alternatively, to the saddle equilibrium at

Q̃− = (1, c̃) in the original (U, Ṽ )-coordinates.
The singular limit of r2 = 0 in (14) is described by the integrable system

w′2 = z2,

z′2 = 2w2e
−w2
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or, equivalently, by the equation z2
dz2
dw2

= 2w2e
−w2 ; the unique solution satisfying z2(0) = 0 and

z2 → 2 as w2 →∞ is given by

z2(w2) = 2
√

1− (1 + w2)e−w2 .(16)

The corresponding orbit, which we denote by Γ−2 , approximates the unstable manifold Wu
2 (Q̃−2 ) of

Q̃−2 to lowest order. Hence, Γ−2 represents the portion of the singular orbit Γ− (before blow-up)
that is located in chart K2; see Figure 3(a) for an illustration.

2.3.2. Dynamics in chart K1. In chart K1, the transformation in (12) reduces to

W = r1, Z = z1, and ε = r1ε1,

which implies

r′1 = r1(z1 − r1c̃),(17a)

z′1 =
2

ε21
exp

[ 1

r1ε1
ln(1− r1)

]
,(17b)

ε′1 = −ε1(z1 − r1c̃)(17c)

after desingularization (multiplication by r1); in particular, (17) extends to a C∞-smooth vector field
as ε1 → 0 [7]. For r1 small, all equilibria of (17) are located on the line `1 =

{
(0, z1, 0)

∣∣ z1 ∈ [0, z0]
}

.

Given κ21, as defined in (13), and the expression for Γ−2 in (16), we find z1(ε1) = 2

√
1− (1 + 1

ε1
)e
− 1
ε1

for the portion Γ−1 of the singular orbit Γ that lies on the (invariant) blow-up locus {r1 = 0} in
K1. Since z1 → 2 as ε1 → 0, it follows that Γ−1 → P1 = (0, 2, 0) ∈ `1 in that limit, which also
shows c̃ ∼ 2, to lowest order in ε; cf. [7, Lemma 4.1]. The geometry in chart K1 is illustrated in
Figure 3(b).

2.3.3. Regularity of the transition in K1. Following [7, Section 3.3], we define two sections Σin
1 and

Σout
1 in chart K1 via

Σin
1 =

{
(rin1 , z

in
1 , δ)

∣∣ rin1 ∈ [0, ρ], |zin1 − 2| ≤ α
}

and

Σout
1 =

{
(ρ, zout1 , εout1 )

∣∣ |zout1 − 2| ≤ α, εout1 ∈ [0, δ]
}
,

(18)

where δ, ρ, and α are small and positive constants; see again Figure 3(b). (Here, we note that
Σin
1 corresponds, under the change of coordinates κ21 defined in (13), to a section Σout

2 for the flow
of (14); recall Figure 3(a).) Let Π1 : Σin

1 → Σout
1 denote the corresponding transition map that is

induced by the flow of (17); the following result on the regularity of Π1 can be found in [7]:

Proposition 1. [7, Proposition 3.4] The map

Π1 :

{
Σin
1 → Σout

1 ,
(εδ−1, zin1 , δ) 7→ (ρ, zout1 , ερ−1)

is C∞-smooth in zin1 , as well as in the parameters ε and c̃.

Remark 2. It was conjectured in [7, Remark 7] that the transition map Π1 is ‘infinitely close’ to
the identity, as the right-hand side in (17b) goes to zero as ε→ 0, along with its derivatives. This
conjecture appears to be true only in the following, more restrictive formulation: Π1 tends towards
the identity exponentially fast (in ε1) as δ → 0 in the definition of Σin

1 , recall (18); however, that
convergence is not uniform in r1 ∈ [0, ρ], i.e., for r1 → 0 and ε1 fixed. �
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3. Proof of Theorem 1

As in the proof of [7, Theorem 1.1], the critical wave speed ccrit defined in Theorem 1 is obtained
in the intersection of two invariant manifolds in an appropriately defined section in phase space:

specifically, the unstable manifold Wu(Q̃−) of the hyperbolic saddle equilibrium at Q̃− is tracked

in forward ‘time,’ and is matched, for ε positive and small, to the strong stable manifold Ws(Q̃+)

of the origin Q̃+. (Here, we recall that the heteroclinic connection between Q̃− and Q̃+ that
is realized in the intersection of these manifolds reduces to the singular orbit Γ in the limit as

ε → 0.) Since both Wu(Q̃−) and Ws(Q̃+) correspond, in fact, to families of manifolds that are
parametrized by c̃, and extended to the complex domain, the matching is accomplished using
a Gevrey-1 version of the Implicit Function Theorem along a curve c̃ = c̃(ε), which uniquely
determines ccrit(m) = m−1c̃(m−1); see also [7, Proposition 4.2].

The required analysis is performed in the framework of the blown-up vector field induced by
(11), i.e., of the two coordinate charts K2 and K1 introduced in Section 2, and draws heavily on
methods from complex analysis. In the process, we substantially refine the asymptotic estimates (in

c̃ and ε) for Wu(Q̃−) and Ws(Q̃+) that were derived in [7, Section 4]: in Section 3.1, we show that

the manifold Wu(Q̃−) is analytic when restricted to the inner region, but that it loses analyticity

in its transition through the intermediate region; correspondingly, the manifold Ws(Q̃+) is merely
C∞-smooth, as discussed in Section 3.2. In particular, these refined estimates then translate into
the Gevrey-1 asymptotics of ccrit postulated in (6), for m sufficiently large. Finally, the bound in
(7) is obtained by performing a ‘truncation to the least term,’ as explained in Section 3.3.

3.1. Asymptotics of Wu(Q̃−). In this subsection, we discuss the asymptotics of the unstable

manifold Wu(Q̃−) of Q̃−: we first consider the corresponding manifold Wu
2 (Q̃−2 ) in the rescaling

chart K2, i.e., in the inner region; then, we describe the transition through the intermediate region,

which is studied in the phase-directional chart K1. Finally, reverting to the original (U, Ṽ , ε)-
variables, we extend the resulting asymptotics to the outer region (away from the blow-up locus).

3.1.1. The inner region (chart K2). We recall that Wu(Q̃−) corresponds to the unstable mani-

fold Wu
2 (Q̃−2 ) of the hyperbolic saddle point Q̃−2 , after transformation to (w2, z2, r2)-coordinates;

cf. Section 2.3. Since that manifold is analytic for w2 in any compact subset of [0,∞), it can be
represented as a regular perturbation of the singular orbit Γ−2 or, equivalently, as the graph of some
function ζ that is analytic in w, as well as in the parameters c̃ and r:

z = ζ(w, c̃, r) =

∞∑

n=0

zn(w, c̃)rn, with ζ(0, c̃, r) = 0.(19)

(Here and in the remainder of this section, we omit the subscript 2 for convenience of notation.)
For r = 0 in (19), we have ζ(w, c̃, 0) = z0(w, c̃) ≡ z0(w), where we recall the expression for z0

from (16). It is evident that |z0(w)| ≤ 2. To obtain corresponding bounds on the higher-order
coefficient functions zn(w, c̃), for n = 1, 2, 3, . . . , we first rewrite (14) with w as the independent
variable:

∂z

∂w
(w, c̃, r) =

f(w, r)

z − rc̃w
,(20)

where the function f(w, r) is defined as in (15).

Lemma 1. The function f can be written as f(w, r) = 2w exp[−wψ(rw)], where

ψ(x) = − ln(1− x)

x
8



is analytic at x = 0, with ψ(0) = 1 and radius of convergence 1. Furthermore, ψ satisfies |ψ(x)| ≥
ln 2, as well as <ψ(x) ≥ ln 2 and =ψ(x) ≤ π

2 , for all x with |x| < 1.

Proof. All statements are immediately obvious, except for the bounds on |ψ(x)|, <ψ(x), and =ψ(x);
the latter can be obtained by observing that the function 1

ψ is well-defined and continuous on the

closed unit ball B(0, 1), with ( 1
ψ )(1) := 0. Applying the maximum principle to 1

ψ , we find that

minB(0,1) |ψ(x)| = min{|x|=1,x 6=1} |ψ(x)|. For |x| = 1, we write x = eiφ, and we consider the function

g(φ) =
∣∣ ln(1− cosφ− i sinφ)

∣∣2

=
∣∣∣ ln
√

2− 2 cosφ− i arctan
sinφ

1− cosφ

∣∣∣
2

=
(

ln
√

2− 2 cosφ
)2

+
(

arctan
sinφ

1− cosφ

)2
.

Next, we prove that g(φ) assumes its minimum at φ = π, which will imply that |ψ(x)| is minimal

at x = −1. Defining y = sinφ
1−cosφ , we observe that cosφ = y2−1

y2+1
then, as well as that φ = π yields

y = 0. Substituting into g, we obtain a simplified function g̃, as follows:

g̃(y) =
(

ln
√

4
y2+1

)2
+ (arctan y)2, with y ∈ (−∞,∞).

Correspondingly, we now show that g̃ is minimal at y = 0. By symmetry, we may restrict to studying
g̃ for y ∈ [0,∞): since the right-hand side in g̃′(y)(y2 + 1) = −2 ln 2 y + y ln(y2 + 1) + 2 arctan y
vanishes at y = 0, and since its derivative 2− 2 ln 2 + ln(y2 + 1) is strictly positive, it follows that
g̃′(y) > 0 for all y > 0, which proves the bound on |ψ(x)|. The bounds on <ψ(x) and =ψ(x) can
be obtained in a similar fashion. �

Remark 3. Lemma 1 implies, in particular, that | argψ(x)| is uniformly bounded away from π
2 . �

By Lemma 1, the function f is analytic at r = 0, for w in any compact subset of [0,∞); hence,
the series in (19) is uniformly convergent on any such subset. However, as w →∞, the convergence
becomes weaker; specifically, we claim that the series only satisfies Gevrey-1 growth properties at
w =∞, i.e., that there exist positive constants A and B such that

|zn(w, c̃)| ≤ ABn+1(n+ 1)! for all w ∈ [0,∞) and n = 0, 1, 2, . . . ,(21)

where c̃ is close to its singular value c̃0 = 2 [7, Lemma 4.1]. To prove the bound on |zn| in (21), we
first estimate the corresponding remainder terms in the series expansion in (19): we write

ζ [n](w, c̃, r) :=

(
ζ(w, c̃, r)−

n−1∑

k=0

zk(w, c̃)r
k

)
r−n,(22)

where we note that zn(w, c̃) = ζ [n](w, c̃, 0). (Here and in the following, we will consider the sum
from 0 to n− 1 to be empty when n = 0.) Applying the Residue Theorem, we find

ζ [n](w, c̃, r) =
1

2πi

∮
ζ(w, c̃, s)

sn(s− r)
ds,(23)

where the integration is performed along a complex contour encircling both s = 0 and s = r, with a
counterclockwise orientation. Next, we show that the function ζ is bounded on a sufficiently large
complex domain.

Proposition 2. For θ > 0 sufficiently small and η ∈ (0, 1), there exist constants M > 0, C0 > 0,
and R > 0 such that z = ζ(w, c̃, r) extends analytically to the domain defined by

|w| ≥M, |c̃− 2| ≤ C0, |r| ≤ R, |rw| ≤ η, and argw ∈ [−θ, θ].
9



Furthermore, there exist constants K0 > 0 and β > 0 such that, on that domain,

|ζ(w, c̃, r)| ≤ K0 and
∣∣∣ ∂ζ
∂w

(w, c̃, r)
∣∣∣ ≤ K0|w|e−β|w|.

The constants M , R, and β can be chosen independently of η; finally, the constant β satisfies
β = ln 2 +O(θ), where θ can be taken as small as required.

Proof. Choosing M > 0 sufficiently large, we may assume that z0(M) is as close to its asymptotic
limit 2 as desired. Since ζ(w, c̃, r) ∼ z0(w), to lowest order, we find

|ζ(Meiφ, c̃, r)− 2| ≤ 2− |c̃|η
4

(24)

for φ ∈ [−θ, θ] and |r| ≤ R, with R sufficiently small. By bounding | ∂z∂w |, we now prove that the

restriction of Equation (20) to the domain that is defined by |z− 2| ≤ 2−|c̃|η
2 has a solution on that

restricted domain. To that end, we observe that, under the above condition on z,

|z − rc̃w| ≥ 2− |z − 2| − |rc̃w| ≥ 2− |c̃|η
2

.(25)

In order to bound the function f(w, r), we estimate the argument wψ(rw) of the exponential in
the definition of f ; see Lemma 1:

<(wψ(rw)) = |w| |ψ(rw)| cos arg(wψ(rw)) = |w|cos arg(wψ(rw))

cos argψ(rw)
<ψ(rw).

Recalling that | argψ(rw)| is bounded away from π
2 , cf. Remark 3, as well as that | argw| = O(θ), we

may apply the identity cos(x+y)
cos y = cosx− sinx tan y = 1 +O(x) to obtain cos arg(wψ(rw))

cos argψ(rw) = 1 +O(θ).

Since, moreover, <ψ(rw) ≥ ln 2, we have <(wψ(rw)) ≥ βθ|w|, where βθ is some constant that

tends towards ln 2 as θ → 0. Hence, it follows that |f(w, r)| = |2we−wψ(rw)| ≤ 2|w|e−β|w|, with
β = ln 2 +O(θ), as claimed.

Next, fixing w in the restricted domain defined above, and letting φ be its complex argument,
we write

ζ(w, c̃, r) = ζ(Meiφ, c̃, r) +

∫ w

Meiφ

f(ω, r)

ζ(ω, c̃, r)− rc̃ω
dω,

where the integration is performed along a complex line segment (with fixed argument). Making
use of (24) and (25), we obtain

|ζ(w, c̃, r)− 2| ≤ |ζ(M, c̃, r)− 2|+
∫ |w|

M
|f(ω, r)| 2

2− |c̃|η
|dω|

≤ 2− |c̃|η
4

+
4

2− |c̃|η

∫ |w|

M
ωe−βω dω <

2− |c̃|η
2

,

which is satisfied as long as
∫ ∞

M
ωe−βω dω <

(2− |c̃|η)2

16
.(26)

As M →∞, the left-hand side in (26) tends to 0, which implies that we can integrate the solution

of (20) inside the region {|z − 2| ≤ 2−|c̃|η
2 } as far as we like (in w). Clearly, we have |ζ(w, c̃, r)| ≤

2 + 2−|c̃|η
2 inside that region; given (20) and the above estimate for f , we also find

∣∣∣ ∂ζ
∂w

(w, c̃, r)
∣∣∣ ≤ |f(w, r)|
|ζ(w, c̃, r)− rc̃w|

≤ 2|w|e−β|w| 2

2− |c̃|η
.

Finally, taking K0 to be the maximum of 2 + 2−|c̃|η
2 and 4

2−|c̃|η , we obtain the desired result. �
10



Remark 4. The requirement that β & ln 2 in the statement of Proposition 2 is a consequence of the
bound on <ψ obtained in Lemma 1; in particular, that restriction will imply that the coefficient
functions zn(w, c̃) are Gevrey-1 of type (ln 2)−1 and not of type 1, as one may have expected
intuitively. �

Next, we make use of the estimates obtained in Proposition 2 to bound ζ [n] – or, equivalently, the
coefficient functions zn – in the limit as w →∞ in chart K2; since, by (13), that limit corresponds

to taking ε1 = 0 in the phase-directional chart K1, the resulting large-w asymptotics of Wu(Q̃−)
will allow us to define a corresponding manifold there.

Proposition 3. For θ > 0 sufficiently small and η ∈ (0, 1), there exist constants M > 0, C0 > 0,
and R > 0 such that the function z = ζ(w, c̃, r) is analytic on the domain defined by

|w| ≥M, |c̃− 2| ≤ C0, |r| ≤ R, |rw| ≤ η, and argw ∈ [−θ, θ].
Moreover, on that domain, the coefficient functions {zn}∞n=0 in (19) satisfy

|zn(w, c̃)| ≤ |ζ [n](w, c̃, r)| ≤ ABn+1(n+ 1)!,(27)

for some (positive) constants A and B. Finally, there exists a sequence of functions {z∞n (c̃)}∞n=0

with

|zn(w, c̃)− z∞n (c̃)| ≤ A
∫ ∞

|w|
ωn+1e−βω dω ≤ ABn+1(n+ 1)!,(28)

for all w with |w| ≥ M and argw ∈ [−θ, θ]. At the expense of decreasing θ and R and increasing
A, the constant B can be chosen as close to (ln 2)−1 as desired.

Proof. Let µ ∈ (η, 1) be chosen arbitrarily; then, we may assume that the estimates derived in

Proposition 2 are valid for |rw| ≤ µ. Writing ϕ := ∂ζ
∂w for the derivative of ζ with respect to w, we

have

ϕ[n](w, c̃, r) =
1

2πi

∮
ϕ(w, c̃, s)

sn(s− r)
ds,

where the integration is performed along a contour with |s| = µ
|w| . Considering values of r inside

the disc that is defined by |r| ≤ η
|w| , we find

|ϕ[n](w, c̃, r)| ≤ 1

2π
K0|w|e−β|w|

( |w|
µ

)n( |w|
µ− η

)
2π

µ

|w|
= K0

µ1−n

µ− η
|w|n+1e−β|w|.

For w in the domain specified in the formulation of the proposition, we write φ = argw and
ζ [n](w, c̃, r) = ζ [n](Meiφ, c̃, r) +

∫ w
Meiφ ϕ

[n](s, c̃, r) ds. Making the substitution x = β|w|, we obtain

|ζ [n](w, c̃, r)| ≤
∣∣ζ [n](Meiφ, c̃, r)

∣∣+
K0µ

1−n

µ− η
β−n−2

∫ β|w|

βM
xn+1e−x dx

≤
∣∣ζ [n](M, c̃, r)

∣∣+
K0µ

1−n

µ− η
β−n−2

∫ ∞

0
xn+1e−x dx =

∣∣ζ [n](M, c̃, r)
∣∣+

K0µ
1−n

µ− η
β−n−2(n+ 1)!.

Since the function ζ(M, c̃, r) is analytic, ζ [n](M, c̃, r) can be bounded by a (convergent) geometric

series in terms of n; hence, there certainly exists A > 0 such that |ζ [n](w, c̃, r)| ≤ ABn+1(n + 1)!,
with B = (βµ)−1, which proves (27). Since, moreover, µ can be chosen arbitrarily close to 1, we
can take B as close to (ln 2)−1 as desired.

Finally, we define ϕn(w, c̃) = ϕ[n](w, c̃, 0) to be the n-th order Taylor coefficient of ϕ at r = 0;
then, ∂zn∂w = ϕn. As ϕn is exponentially decreasing at w =∞, by the above, it follows that the limit

z∞n (c̃) := lim
w→∞, argw∈[−θ,θ]

zn(w, c̃)

11



is well-defined and that it satisfies |z∞n | ≤ ABn+1(n+ 1)!; furthermore, we have

|zn(w, c̃)− z∞n (c̃)| =
∣∣∣∣
∫ ∞

w
ϕn(ω, c̃) dω

∣∣∣∣ ≤
∫ ∞

|w|

K0µ
1−n

µ− η
ωn+1e−βω dω.

Simplifying this estimate further by replacing the lower limit of integration by 0, we obtain (28),
which completes the proof. �

We remark that the bound on the error incurred when approximating zn by z∞n in (28) is too

pessimistic in the large-w regime, as
∫∞
|w| ω

n+1e−βω dω = O(|w|n+1e−β|w|) for |w| → ∞; however,

(28) will turn out to be optimal for |w| small, cf. the proof of Proposition 4 below.

Remark 5. Here and in the following, A will denote a generic constant whose value will remain
unspecified, whereas B = (βµ)−1 will always be defined as in the statement of Proposition 3. �

3.1.2. The intermediate region (chart K1). Given the asymptotics of the unstable manifoldWu
2 (Q̃−2 )

of Q̃−2 in the inner region, we now translate the corresponding estimates into the intermediate region,

which is studied in the phase-directional chart K1. Recalling thatWu
2 (Q̃−2 ) can be represented as the

graph of a function ζ2, with z2 = ζ2(w2, c̃, r2), and applying the coordinate change κ21 : K2 → K1

defined in (13), we find

z1 = ζ1(ε
−1
1 , c̃, r1ε1) =: ζ̃1(r1, c̃, ε1)(29)

for the corresponding manifold Wu
1 (Q̃−1 ) := κ21(Wu

2 (Q̃−2 )) in K1. (Here, ζ̃1 is some new, appro-
priately defined function of r1, c̃, and ε1.) The following result is an immediate consequence of
Proposition 3, in combination with (13):

Corollary 1. For |ε| ≥ 0 sufficiently small, the manifold Wu
1 (Q̃−1 ) is described by a function

z1 = ζ̃1(r1, c̃, ε1)

that is analytic on the domain defined by

|ε1| ≤M−1, |c̃− 2| ≤ C0, |r1ε1| ≤ R, |r1| ≤ η, and arg ε1 ∈ [−θ, θ].

Corollary 1 implies, in particular, that the manifold Wu
2 (Q̃−2 ) extends to a neighborhood of the

equilibrium point P1 = (0, 2, 0) ∈ `1 in chart K1; recall Section 2.3.

Remark 6. When applying the blow-up technique in the framework of geometric singular pertur-
bation theory, one typically constructs invariant manifolds in compact regions of the rescaling chart
K2; see, e.g., [7, 18] and the references therein. Subsequently, the domain of definition of these
manifolds has to be extended by transformation to a phase-directional chart, such as is given by
K1. In our case, however, Proposition 3 already shows the existence of an invariant manifold in a
domain that is ‘larger than compact’ in the w2-direction, since we allow for |w2| ≤ η

r2
; recall Propo-

sition 2. Consequently, the extension of that manifold to chart K1 is a straightforward corollary,
i.e., we do not need to invoke Proposition 1. �

Our next result bounds the error incurred when approximating the manifoldWu
1 (Q̃−1 ) – or, rather,

the function ζ̃1 defined in (29) – by its formal power series expansion with coefficients {z∞n }:

Proposition 4. For |ε1| ≤M−1 and arg ε1 ∈ [−θ, θ], there holds
∣∣∣∣ζ̃1(η, c̃, ε1)−

n−1∑

k=0

z∞k (c̃)(ηε1)
k

∣∣∣∣ ≤ ABn+1(n+ 1)!|ηε1|n,(30)

where n = 1, 2, 3, . . . , A is some (positive) constant, and M , θ, and B are defined as in Proposi-
tion 3.
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Proof. Recalling the definition of ζ̃1, we estimate the left-hand side in (30) as

(31)

∣∣∣∣ζ̃1(η, c̃, ε1)−
n−1∑

k=0

z∞k (c̃)(ηε1)
k

∣∣∣∣ =

∣∣∣∣ζ1(ε−11 , c̃, ηε1)−
n−1∑

k=0

z∞k (c̃)(ηε1)
k

∣∣∣∣

≤
∣∣∣∣ζ1(ε−11 , c̃, ηε1)−

n−1∑

k=0

zk(ε
−1
1 , c̃)(ηε1)

k

∣∣∣∣+

n−1∑

k=0

∣∣zk(ε−11 , c̃)− z∞k (c̃)
∣∣|ηε1|k.

By (22), the first term on the right-hand side in (31) corresponds to

ζ2(w2, c̃, r2)−
n−1∑

k=0

zk(w2, c̃)r
k
2 = ζ

[n]
2 (w2, c̃, r2)r

n
2

evaluated at (w2, r2) = (ε−11 , ηε1), which is bounded by ABn+1(n+ 1)!|ηε1|n; recall (27).
Next, considering the second term in (31), we find

n−1∑

k=0

∣∣zk(ε−11 , c̃)− z∞k (c̃)
∣∣|ηε1|k ≤

n−1∑

k=0

AB(k + 1)!|Bηε1|k = AB(n+ 1)!

n−1∑

k=0

(k + 1)!

(n+ 1)!
|Bηε1|k

≤ AB(n+ 1)!

(
1

n(n+ 1)

n−2∑

k=0

|Bηε1|k +
1

n+ 1
|Bηε1|n−1

)
,

where we have additionally made use of (28). Keeping |Bηε1| ≤ 1, we conclude that the terms
inside the brackets are bounded by 2

n+1 , which proves (30). �

3.1.3. The outer region. Having described the transition of Wu(Q̃−) through the intermediate
region, it remains to determine the resulting asymptotics in the outer region: ‘blowing down’

the graph z1 = ζ̃1(r1, c̃, ε1), i.e., reverting to (W,Z, ε)-variables, we find that Wu(Q̃−) can be

represented as Z = ζ̃(W, c̃, εW−1). Evaluating that function at W = (r1 =)η, for η ∈ (0, 1),

we obtain the intersection of the blown-down manifold Wu(Q̃−) with the hyperplane defined by
{W = η}. The following result is an immediate consequence of Proposition 4:

Proposition 5. For any η ∈ (0, 1), the intersection of Wu(Q̃−) with {W = η} is described by a
function

Z = γ(c̃, ε) := ζ̃(η, c̃, εη−1)

that satisfies
∣∣∣∣γ(c̃, ε)−

n−1∑

k=0

z∞k (c̃)εk
∣∣∣∣ ≤ ABn+1(n+ 1)!|ε|n

for n = 1, 2, 3, . . . In other words, γ is analytic in a sector of the complex plane, with arg ε ∈ [−θ, θ],
and is Gevrey-1 asymptotic to the formal power series

Z ∼
∞∑

n=0

z∞n (c̃)εn,

where the coefficients {z∞n }∞n=0 are defined as in the proof of Proposition 3.

Setting η = ρ, with ρ as in the definition of Σout
1 in (18), we have Zout := Z|{W=ρ} = ζ̃(ρ, c̃, ερ−1)

for the intersection of Wu(Q̃−) with the section Σout that is obtained from Σout
1 after blow-down.

In particular, it follows that Ṽ out = Ṽ |{U=1−ρ} = −Zout + c̃ =: γout− (c̃, ε) in the original (U, Ṽ , ε)-
variables.
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3.2. Asymptotics of Ws(Q̃+). Finally, we derive the asymptotics of the strong stable manifold

Ws(Q̃+) of the origin Q̃+, which is defined in the outer region, i.e., in (U, Ṽ )-space, with c̃ and ε as

parameters. Clearly, that manifold can be written as the graph of a function υ, with Ṽ = υ(U, c̃, ε),
whose series expansion about ε = 0 is identically zero (to all orders in ε). While υ is certainly not

analytic at ε = 0, as its Taylor series expansion does not converge to the nonzero function Ṽ , we

can nevertheless show that Ṽ is C∞-smooth (in ε) in a complex sector containing the positive real
axis, with the origin as its vertex:

Proposition 6. For |ε| ≥ 0 sufficiently small, the manifold Ws(Q̃+) is described by a function

Ṽ = υ(U, c̃, ε)

that is analytic (and, in fact, exponentially small) in ε, with arg ε ∈ [−θ, θ]. Moreover, υ is C∞-
smooth at ε = 0.

Proof. The proof is based on a standard fixed point argument: we consider the set of continuous
functions v(U, c̃, ε) that are defined on V := [0, U0] × B(2, C0) × Ω, where B(2, C0) is the closed
complex ball around c̃0 = 2 with radius C0 and where Ω denotes the topological closure of Ω ={
ε ∈ C

∣∣ 0 < |ε| < ε0, arg ε ∈ [−θ, θ]
}

. (Here, the positive constants C0, U0, θ, and ε0 will be taken
as small as required.) We denote by E the subset of the set of these functions that are furthermore
analytic with respect to (c̃, ε) on (0, U0)×B(2, C0)×Ω, uniformly in U . Finally, we define the norm
‖v‖ := sup(U,c̃,ε)∈V |U−1v(U, c̃, ε)| on E , and we let ER be the subset of E with ‖v‖ ≤ R. Then, it is

easy to see that (ER, ‖ · ‖) is a Banach space.

Given the equations in (9), it follows that the manifold Ṽ = Ṽ (U, c̃, ε) can be interpreted as a
fixed point of the functional τ : ER → ER, with

v 7→ τ(v) :=

∫ U

0

− 2
ε2
u

1
ε (1− u)

v(u)− c̃u
du.

Since τ is a contraction mapping with Lipschitz constant less than 1, for R sufficiently small, there

exists a fixed point υ for τ in ER. Hence, the corresponding manifold Ws(Q̃+) is analytic with
respect to ε in a complex sector with vertex at the origin.

It remains to show that the function υ is exponentially small (in ε) in that sector: we have

|υ| = |τ(υ)| ≤ 2

|ε|2(c̃−R)

∫ U

0

∣∣u 1
ε
−1∣∣ du,

where the integrand is bounded from above by |U
1
ε
−1|. Thus, we find that |υ| ≤ C

|ε|2 |U
1
ε
0 | for

some constant C > 0, which is exponentially small with respect to ε (uniformly in U and c̃).
Since the derivatives of exponentially small functions which are defined on a complex sector are
also exponentially small, it is evident that υ has a C∞-smooth extension down to ε = 0, which
completes the proof. �

Remark 7. We note that the smoothness of Ṽ does not follow from the standard Stable Manifold
Theorem: since the vector field in (9) is only finitely smooth for (U, Ṽ , ε) in any a priori given

neighborhood of the origin, that theorem merely implies thatWs(Q̃+) is Ck-smooth, non-uniformly
in ε. �

Finally, the intersection of Ws(Q̃+) with the section Σout, which we denote by γout+ , is found

by evaluating the function υ at U = 1 − ρ: Ṽ out = Ṽ |{U=1−ρ} = υ(1 − ρ, c̃, ε) =: γout+ (c̃, ε). In

particular, by Proposition 6, γout+ is exponentially small in ε ∈ [0, ε0], uniformly in c̃.
14



Remark 8. The loss of analyticity ofWs(Q̃+) can also be understood in terms of the asymptotics of

Wu(Q̃−), as discussed in Section 3.2: while the corresponding expansions are uniformly convergent
in compact subsets in the inner region, that uniformity is lost as one approaches infinity in chart
K2. �

3.3. End of proof of Theorem 1. In this subsection, we conclude the proof of Theorem 1:

matching the two manifoldsWu(Q̃−) andWs(Q̃+) in the section Σout, we obtain a curve c̃(ε) which
determines the critical wave speed ccrit; then, we discuss the question of the optimal truncation
point in the corresponding series expansion.

3.3.1. Matching Wu(Q̃−) and Ws(Q̃+). It was already established in [7, Proposition 4.2] that the

manifoldsWu(Q̃−) andWs(Q̃+) agree for (c̃, ε) = (2, 0) – as they both reduce to the singular orbit Γ
then – and that their intersection is transverse as c̃ is varied: definingD(c̃, ε) := γout− (c̃, ε)−γout+ (c̃, ε),

one has D(2, 0) = 0 as well as ∂D
∂c̃ (2, 0) = −1 6= 0. Moreover, the manifolds found in that intersection

are Gevrey-1, in the sense that their series expansions with respect to ε exhibit factorial growth
properties, as specified for instance in (21). Finally, the difference between the values of the
functions γout− and γout+ and their truncated expansions satisfies those same growth properties;
recall Propositions 5 and 6.

Hence, by the Implicit Function Theorem, the two manifolds must coincide along a curve c̃ = c̃(ε).
From a Gevrey version of that theorem, which can e.g. be found in [17], it then immediately follows
that the function c̃(ε) has a Gevrey-1 series expansion with respect to ε and that

∣∣∣∣c̃(ε)−
n−1∑

k=0

c̃kε
k

∣∣∣∣ ≤ ABn+1(n+ 1)!εn,(32)

for some positive constants A and B. (Specifically, B can be chosen as close to (ln 2)−1 as desired,
as stated in the proof of Proposition 3.) The first part of the statement of Theorem 1 is then
obtained by defining ccrit(m) = m−1c̃(m−1), as in [7], and by noting that ccrit has an expansion in
m−1 of the form in (5), with coefficients ck = c̃k−1 for k = 1, 2, 3, . . . .

Remark 9. While the analysis in Sections 3.1 and 3.2 allows for complex values of c̃ and ε, as w2

and r2 – or, equivalently, ε1 – are assumed to vary in complex sectors containing the positive real
axis (with vertex at the origin), it follows from [7, Theorem 1.1] that the critical wave speed ccrit
must be a real function of the real parameter m−1, in agreement with physical intuition. �

3.3.2. The optimal truncation point. Finally, the estimate in (32) leads to the truncation to the
least term stated in the second part of Theorem 1: given any fixed m, there exists an optimal
truncation point to which the series expansion in (5) has to be summed so that it is closest to the
actual value of the function ccrit(m). That point is calculated by determining

min
n≥1

Rn, where Rn := ABn+1 (n+ 1)!

mn

denotes the error of the truncation of the expansion for c̃ after the n-th term. Comparing Rn with
Rn−1, one finds Rn − Rn−1 = ABn n!

mn (B(n + 1) − m), which implies that Rn is minimal when
n+ 1 ≈ m

B . Setting n+ 1 = [mB ], where the square brackets again denote the integer nearest to m
B ,

we have m
B −

1
2 ≤ n+ 1 ≤ m

B + 1
2 and, hence,

ABn+1 (n+ 1)!

mn
≤ AB

(m
B

) 3
2
(B
m

)m
B

Γ(mB + 3
2).

(Here, Γ(·) denotes the Gamma function, and we have used the identity Γ(x+ 1) = xΓ(x), which is
certainly valid for x ∈ R+.) Finally, making use of the fact that x−xΓ(x+ 3

2)ex =
√

2πx(1+O(x−1))
15



when x = m
B is large, we find

AB
(m
B

) 3
2
(B
m

)m
B

Γ(mB + 3
2) ≤ A

√
2πm

(m
B

) 3
2
e−

m
B
(
1 +O(Bm−1)

)
(33)

for m ≥ m0, with m0 > 0 sufficiently large. Substituting (33) into (32) and recalling that c = m−1c̃,
we obtain (7), which completes the proof of Theorem 1.

Remark 10. As B & (ln 2)−1, the above discussion suggests that n ≈ ln 2m− 1 ≈ 0.69315m− 1
(or, rather, the corresponding nearest integer [n]) would provide an appropriate truncation point
for evaluating the critical wave speed ccrit(m). �

4. Derivation of Table 1

In this section, we outline our numerical algorithm for the evaluation of the coefficients ck in
the series expansion for the critical wave speed ccrit in (5) with fixed, but arbitrary, precision,
for any k ≥ 1. The first coefficient (c1 = 2) was determined previously in [7, 23, 27], while the
value of the second coefficient (c2 ≈ −0.31191) was calculated numerically in [23, 27] and verified
analytically in [7]. However, due to the inherent singular character of the problem, higher-order
coefficients in the expansion are increasingly hard to obtain. Here, we calculate ck explicitly up to
k = 10, as given in Table 1. Our approach is based on rigorous interval arithmetic, which allows
us to bound the numerical error that invariably accumulates in the evaluation of these coefficients,
even for relatively small k: as the required accuracy far exceeds what is provided by standard
double precision arithmetic, we used the GNU Arbitrary Precision Arithmetic library [12] for C,
in conjunction with the MPFI (Multiple Precision Floating-point Interval) library [25], to obtain
reliable intervals which must contain the coefficients ck. (In our case, the accuracy was chosen
sufficiently high to guarantee that the diameters of these intervals – and, hence, the resulting error
maxima – will be less than 10−10.) Finally, usage of the GNU MPFR (Multiple Precision Floating-
point Rounding) library [11] ensured that all relevant intervals are correctly rounded outwards.

Conceptually, the argument is again based on the geometric framework introduced in Section 2,
in that the phase space of the vector field in (9) is decomposed into the inner, intermediate, and

outer regions identified there. However, while the asymptotics of Wu(Q̃−) was analyzed separately
in the coordinate charts corresponding to these regions, recall Section 3.1, it suffices to restrict to
the rescaling chart K2 here: as observed already in [7, Remark 9], the regularity of the transition
through the intermediate region implies that the limit as w2 → ∞ in K2 is well-defined; see also
Remark 2.

To approximate the manifold Wu(Q̃−) in that transition, we need to determine the coefficient
functions zn(w, c̃) in the expansion for z = ζ(w, c̃, r), cf. (19), where we have again omitted the
subscript 2 for convenience of notation. Making use of the fact that this expansion represents a
formal invariant manifold for the vector field in (20), substituting and collecting like powers of r,
and recalling the expression for z0 from (16), we obtain a recursive sequence of differential equations
for the functions zn when n = 1, 2, 3, . . . :

n∑

k=0

zkz
′
n−k − c̃wz′n−1 = fn(w).(34)

(Here, fn is the Taylor coefficient of order n of f(w, r) about r = 0, and the prime now denotes
differentiation with respect to w.) Elementary properties of zn(w, c̃), such as the fact that zn is a
polynomial of degree n in c̃ (with smooth, w-dependent coefficients), as well as that zn(0, c̃) = 0,
are easily derived from the above recursion.
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Next, we integrate (34) between 0 and w to find the recursive formula

z0zn +
1

2

n−1∑

k=1

zkzn−k − c̃wzn−1 + c̃

∫ w

0
zn−1(ω, c̃) dω = Fn(w),(35)

where Fn(w) =
∫ w
0 fn(ω) dω denotes the antiderivative of fn. While the recursion in (35) theoreti-

cally allows us to evaluate the coefficient functions zn, the resulting integrals are nested for n ≥ 2,
which implies that, in practice, these functions have to be approximated.

That approximation can be accomplished as follows: for 0 < w0 < w1 < ∞, we divide the
(positive) real w-axis into the three intervals [0, w0], [w0, w1], and [w1,∞), which correspond to
the inner, intermediate, and outer regions, respectively. Since the dynamics in the inner region
is highly regular, the functions zn(w, c̃) can be approximated by polynomials in (w, c̃) when w ∈
[0, w0]. (Similarly, the polynomial approximations for z0,

1
z0

, and Fn(w) that are required for the

recursion in (35) are provided by the corresponding (univariate) Taylor series expansions, truncated
at sufficiently high order.) For w ∈ [w1,∞), i.e., in the outer region, we approximate z0 by a
bivariate polynomial in (w, e−w), as z0 = 2w

√
1− x|x=(1+w)e−w ; since the functions Fn that occur

in (35) – as well as the corresponding integrals of these functions – are of that same form, the
resulting approximation for zn is a polynomial in (w, e−w, c̃). Finally, an approximation for zn in
the intermediate region is obtained by partitioning the interval [w0, w1] uniformly into subintervals
on which the functions z0,

1
z0

, and Fn can be replaced by their Chebyshev interpolants.

It then remains to evaluate the coefficients c̃k in the corresponding series expansion for c̃(r): the
discussion in Section 3 implies that c̃ formally solves the relation

∞∑

n=0

z∞n (c̃)rn ≡ c̃ or, equivalently,

∞∑

n=0

z∞n

( ∞∑

k=0

c̃kr
k

)
rn ≡

∞∑

k=0

c̃kr
k,(36)

which is obtained from (19) for w →∞. (Here, we have taken into account that Ṽ → 0 to all orders
in ε and, hence, that Z → c̃, by Section 2.2.) Since zn is approximated by a polynomial in (w, e−w, c̃)
on [w1,∞), it is elementary to extract the asymptotic coefficients z∞n ; thus, for n = 0, . . . , 4, one
finds

z∞0 (c̃) = 2.0,

z∞1 (c̃) = −3.0 + 1.34405c̃,

z∞2 (c̃) = 4.750− 3.74689c̃+ 0.95982c̃2,

z∞3 (c̃) = −7.8750 + 10.68013c̃− 5.86670c̃2 + 1.10091c̃3,

z∞4 (c̃) = 13.54688− 30.87285c̃+ 30.21994c̃2 − 13.21187c̃3 + 2.11427c̃4.

(In particular, one confirms that the function Z ∼
∑∞

n=0 z
∞
n (c̃)rn has a divergent series expansion in

r; cf. Proposition 5.) Substituting into (36), solving implicitly for c̃k, and recalling that ck = c̃k−1,
with k = 1, 2, 3, . . . , one obtains Table 1, as claimed.

5. Discussion

Since the proof of Theorem 1 is based on singular perturbation techniques, with ε = m−1 as the
(small) perturbation parameter, our analysis of the Gevrey properties of the critical wave speed ccrit
for (1) is merely valid in the asymptotic limit where the polynomial degree m in fm(u) = 2um(1−u)
tends to infinity. Correspondingly, the expansion in (5) is only guaranteed to approximate ccrit well
for potentially very large m. Still, it follows that the smaller m is, the fewer terms in the series
expansion for ccrit need to be considered: unlike in the theory of convergent power series, one does
not automatically obtain a better approximation by including more terms in the truncation. In our
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Figure 4. The partial sums
∑n

k=1
ck
mk

for n = 1, . . . , 5 and m ∈ [1, 5].

case, the dependence of the optimal truncation point on the value of m is a reflection of the fact
that the expansion in (5) is divergent and, specifically, Gevrey-1: the number of terms that need
to be retained will (at least asymptotically) be linear in m.

The calculation of additional coefficients in (5) may seem irrelevant once it has been shown
that the expansion is divergent. However, as is well-known [5], divergent Gevrey-type series can
display seemingly convergent behavior to very high order: while the observation that |ck+2| < |ck|
for k = 1, . . . , 8, in combination with the alternating signs of these coefficients, seems to indicate
convergence, we fully expect the series expansion in (5) to diverge, and the coefficients ck to exhibit
factorial growth for k sufficiently large, as stated in (6). In that sense, our study confirms the
widely known fact that the evaluation of only a few terms in a series expansion (as was done here)
is no reliable indicator of its convergence properties.

Furthermore, this seeming convergence also explains why the first few truncations of (5) almost
coincide – or, equivalently, why the correction that is provided by higher-order terms in the series
seems negligible – for small values of m, in particular on the scale applied in [27, Figure 3(a)];
see our Figure 4 for comparison. Nevertheless, our analysis shows that a truncation to the least
term will, in fact, be optimal; recall Section 3.3. Correspondingly, low-order truncations of (5) will
approximate ccrit well even for relatively large m: on numerical grounds, one expects the one-term
truncation ccrit(m) ∼ 2

m to be optimal for m ∈ [2,m1), with m1 ≈ 4, in agreement with previous
heuristic observations on the quality of that approximation [7, 27]; similarly, it was conjectured in
[7] that the two-term truncation will be optimal on some finite interval [m1,m2), and so on. While
we rigorously confirm this conjecture here, the determination of the interval endpoints mk would
require knowledge of the optimal Gevrey type – and, hence, of the (Borel) summability – of the
formal series expansion in (5).

The convergence properties of (5) are closely related to the large-w asymptotics of the coefficient

functions zn(w, c̃) in the expansion for Wu(Q̃−), i.e., for the function ζ(w, c̃, r): replacing c̃ with
its formal series expansion in r and substituting into the definition of ζ in (19), we denote the
w-dependent coefficients in the resulting composite expansion by Zn(w). (Here, we again suppress
the subscript 2 for convenience of notation.) For illustration, we have plotted the first five of these
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Figure 5. The coefficient functions Zn(w) for n = 0, . . . , 4 and w ∈ [0, 40].

functions in Figure 5. Throughout, one observes large-amplitude oscillatory behavior that plateaus
for some finite value of w before Zn levels off to its asymptotic (constant) limit z∞n as w →∞, in
accordance with the estimates obtained in Section 3. Since these oscillations grow approximately
like (n + 1)!, cf. again Figure 5, and since the corresponding peaks shift towards infinity (in w)
as n increases, it follows that there can exist no neighborhood about infinity where all coefficient
functions zn are bounded. (Similarly, the terms fn(w) in the recursion in (34) which defines these
functions are not uniformly analytic on [0,∞).) While it is surprising that the evaluation of the
coefficients ck via the implicit relation in (36) then yields a seemingly convergent series expansion
for ccrit (to the order considered here), the underlying cause is unclear to us.

Finally, the discussion in Section 4 implies that the asymptotic coefficients z∞n (c̃) which are
obtained in the limit as w → ∞ also grow approximately like (n + 1)!, as predicted in Section 3;
in particular, both zn and z∞n satisfy Gevrey-1 growth estimates, as specified in (27) and (28),
respectively. Correspondingly, the expansion for ζ(w, c̃, r) in (19) is only Gevrey-1 with respect to r,
with coefficient functions zn(w, c̃) that are C∞-smooth in w and analytic in c̃; recall Proposition 3.

The analysis of the transition of Wu(Q̃−) through the intermediate region thus represents the
cornerstone of our argument, as was also the case in [7].
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