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Abstract. In ordinary differential equations of singular perturbation type,
the dynamics of solutions near saddle-node bifurcations of equilibria are rich.
Canard solutions can arise, which, after spending time near an attracting equi-
librium, stay near a repelling branch of equilibria for long intervals of time

before finally returning to a neighborhood of the attracting equilibrium (or
of another attracting state). As a result, canard solutions exhibit bifurcation
delay. In this article, we analyze some linear and nonlinear reaction-diffusion

equations of singular perturbation type, showing that solutions of these sys-
tems also exhibit bifurcation delay and are, hence, canards. Moreover, it is
shown for both the linear and the nonlinear equations that the exit time may
be either spatially homogeneous or spatially inhomogeneous, depending on the

magnitude of the diffusivity.

1. Introduction

1.1. Canards in singularly perturbed ODEs. Canards play a central role near
bifurcations in singularly perturbed ordinary differential equations (ODEs). A pro-
totypical example is given by the singularly perturbed van der Pol equation

{
ǫẋ = y − f(x),
ẏ = −(x+ α),

(1)

where x and y are real variables, the overdot indicates the derivative with respect
to time t, 0 < ǫ ≪ 1, α is a real number, and f(x) is a cubic function. In particular,

we use f(x) = x3

3 + x2

2 for illustration in our discussion and in Figure 1, which is of
the class of van der Pol type oscillators studied in Section 1.2 of [10]. While Hopf
bifurcations occur at α = 0 and α = 1 in (1), we focus on the former case here,
noting that similar results hold in the latter. For α < 0, the fixed point at x = −α

is attracting, see Figure 1(a), while it is repelling for 0 < α < 1. For 0 < ǫ ≪ 1,
limit cycles exist. The limit cycle in frame (e) is a classical relaxation oscillation.
In the frames in between, the limit cycles have increasingly larger amplitude and,
most interestingly, spend a significant, O(1) amount of slow time near the middle,
repelling (unstable) branch of the fast nullcline. These limit cycles were discovered
in [7] and were labeled canards, due to their resemblance to ducks, without and
with heads, see frames (b) through (d) in Figure 1.

The family of canards in (1) exists in an exponentially narrow interval of param-
eter values. In frame (c), α = αc(ǫ), where αc(ǫ) is a critical value which vanishes
as ǫ → 0+, and which corresponds to the maximal headless canard. In frames (b)
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Figure 1. Hopf bifurcation in the van der Pol equation (1).

and (d), α = αc(ǫ) + σe−k2/ǫ for some σ < 0 and σ > 0, respectively, and some
k > 0. A partial listing of references in which these canards have been studied
includes [1, 8, 9, 10, 11, 12].

More generally, a canard solution of a singularly perturbed ODE is a solution
that stays near a repelling slow manifold for an O(1) amount of slow time [7, 3].
Other examples of planar singularly perturbed ODEs that exhibit canard dynamics
include the FitzHugh-Nagumo system [2], the generalized Bonhoeffer-van der Pol
equations [4], and the generalized Rayleigh equations [4]. Singularly perturbed
ODEs in R

n with n ≥ 3 can also possess canards, see for example [3, 5, 13, 17, 16,
18]. Moreover, in these systems, the canards are generic phenomena, in that they
exist in O(ǫβ) intervals of parameter values, for some β > 0, rather than in the
exponentially narrow intervals characteristic for planar systems.

Closely related to the notion of canards is the phenomenon of bifurcation delay.
In the case of the van der Pol equation (1), as we just described, for values of α
exponentially close to αc(ǫ), the canard solution stays close to the repelling manifold
for an O(1) amount of time. In other words, the solution does not immediately feel
the loss of stability of the fixed point at the bifurcation. Rather, it takes an O(1)
amount of time before the solution jumps across to an attracting slow manifold;
recall Figure 1(d), for example.
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1.2. Canards in linear PDEs: first result. In this article, we study the phe-
nomena of canards and bifurcation delay in partial differential equations (PDEs)
of reaction-diffusion (RD) type. In order to fix ideas, we concentrate first and
foremost on an RD equation with linear kinetics, much simpler than those of the
van der Pol system (1), but still chosen so that the corresponding ODE possesses
canard solutions exhibiting bifurcation delay. In particular, the first set of main
results (see Theorem 1 below) concerns the scalar RD equation

(2)







ǫ(ut − uxx) = a(x, t, ǫ)u,
ux(0, t) = ux(1, t) = 0,
u(x, 0) = u0(x),

where a = a(x, t, ǫ) is chosen so that there is a smooth curve of turning points
t = t∗(x) > 0, with

a(x, t, 0) < 0 ∀t < t∗(x),(3)

a(x, t, 0) > 0 ∀t > t∗(x),(4)

and the initial data u0(x) is assumed to be bounded and strictly positive on [0, 1].

Remark. The restriction to nonzero u0 implies the presence of a boundary layer
in (2) at t = 0 for small ǫ, which is necessary for our argument, see e.g. Section 2
below. In particular, our results do not cover the important case of compactly
supported initial data, which is left for future study.

The ODE for the kinetics associated to the PDE (2) is

(5) ǫ
du

dt
= a(t, ǫ)u, u(0) = u0 > 0.

The conditions we impose on a are similar to those above. In particular, we assume
that a is a smooth function (Ck in t and ǫ for k ≥ 1). Moreover, we assume that
a changes sign at some t = t∗, with a(t, 0) < 0 for t ∈ [0, t∗[ and a(t, 0) > 0
for t ∈]t∗,∞[, respectively; t∗ is called the turning point. Under these conditions,
the ODE (5) exhibits bifurcation delay, which can be seen as follows: due to the
simplicity of that model, we can calculate the solution explicitly,

u(t) = u0 exp

(
1

ǫ

∫ t

0

a(s, ǫ)ds

)

.

Letting texit denote the unique, strictly positive time for which
∫ texit

0

a(s, 0)ds = 0,

we have the following interesting property:

limǫ→0 u(t, ǫ) = 0 ∀t ∈ ]0, texit[ ,
limǫ→0 u(t, ǫ) = ∞ ∀t ∈ ]texit,∞[ .

(6)

Hence, the time at which the solution is repelled from the equilibrium at u = 0
is given by texit, and is greater than the time t∗ at which the equilibrium loses its
stability.

Looking back at the PDE (2), we are interested in the effect the diffusion term
has on the equations. To that end, it is instructive to see first what the effect of an
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additional term in the ODE is. Consider the equation

(7) ǫ
du

dt
= a(t, ǫ)u+ b(t, ǫ), u(0) = u0 > 0,

with similar conditions imposed on a and assuming that b is equally smooth. It is
well known that there is again a well-defined exit time texit for which the solution
u of (7) satisfies (6); see e.g. [6]. However, the exit time in this case will be earlier
than the exit time in the case where b = 0. Indeed, for typical nonzero b, one has
texit = t∗, and there is no delay in the bifurcation. In case b is exponentially small,
the exit is delayed, just as in the case when b = 0. To illustrate this point further,
we calculate explicitly the solution of (7),

u(t, ǫ) = u0e
1
ǫ

∫
t

0
a(s,ǫ)ds +

1

ǫ

∫ t

0

e
1
ǫ

∫
t

r
a(s,ǫ)dsb(r, ǫ)dr.

If, for example, b = e−B/ǫ for some B > 0 independent of ǫ, i.e., if b is exponentially
small in ǫ, we find

u(t, ǫ) = u0e
1
ǫ

∫
t

0
a(s,ǫ)ds +O

(

e
1
ǫ
maxr∈[0,t]

∫
t

r
a(s,ǫ)ds−B

)

= u0e
1
ǫ

∫
t

0
a(s,ǫ)ds +O

(

e
1
ǫ

∫
t

t∗
a(s,ǫ)ds−B

)

,

and the exit time texit is given by the smaller of the times satisfying
∫ texit

t∗

a(t, 0)dt = B or

∫ texit

0

a(t, 0)dt = 0.

Clearly, texit > t∗ marks the time at which one of the terms in the solution becomes
exponentially large in the limit as ǫ → 0, i.e., the time at which u escapes to infinity.
Following the terminology introduced e.g. in [7, 3] and the discussion above, the
corresponding solution will again be termed a canard solution.

Remark. In the case where
∫ t∗
0

a(t, 0)dt = B, the exit time cannot be decided
from the above calculations.

Given the above discussion of canards and bifurcation delay in the van der Pol
equation (1) and in the simple ODE (7), we now turn to the PDE (2) and ask
whether or not solutions of (2) display the same exit time behavior. That question
was first considered by Nefedov and Schneider in [14], where they prove that bi-
furcation delay occurs, but without deriving expressions for the exit time. In this
article, we establish exact expressions for the exit time in RD equations, including
for those equations considered in [14].

Theorem 1. Given the smooth RD equation (2) with bounded, strictly positive
initial data u0(x), assume that the smooth curve t = t∗(x) > 0 satisfies conditions
(3) and (4).

Then, for any δ > 0, there exist ǫ0 > 0 and positive constants L0 and U0 such
that for all ǫ ∈ ]0, ǫ0], there is a solution u(x, t; ǫ) of (2) satisfying

(8) L0 exp
A(t)− δ

ǫ
≤ u(x, t; ǫ) ≤ U0 exp

A(t) + δ

ǫ

for all (x, t) ∈ [0, 1]× [0, tmax], where

A(t) =

∫ t

0

[

max
x

a(x, s, 0)
]

ds.
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As a corollary to Theorem 1, we identify the exit time tPDEexit as a (nontrivial)
zero of A(t). Moreover, we see that this time is independent of x. Indeed, from the
above theorem it follows that tPDEexit is located between the zero of A(t) + δ and
that of A(t)− δ. Since δ > 0 is arbitrary, it follows that

(9)

∫ tPDEexit

0

[

max
x

a(x, t, 0)
]

dt = 0,

and in particular also that the exit time is independent of x. Intuitively, one can
think of the diffusion as being fast enough to homogenize the solution with respect
to x.

1.3. Inhomogeneity of exit times in linear PDEs: second result. The sec-
ond main set of results we present quantifies more precisely the impact of the mag-
nitude of the diffusivities on the exit times. Specifically, we analyze RD equations
with diffusivity Dǫα, where D > 0 and α > 0:

(10)







ǫut −Dǫαuxx = a(x, t, ǫ)u,
ux(0, t) = ux(1, t) = 0,
u(x, 0) = u0(x),

again with conditions (3) and (4) on the function a. Clearly, Equation (2) corre-
sponds to the special case of α = 1 in (10). In the following theorem, we show
that the conclusions of Theorem 1 continue to hold for α < 2, i.e., that the effect
of diffusion is to homogenize the exit times. By contrast, we show that for smaller
diffusivities, i.e., if α > 2, the exit time is no longer homogeneous. Specifically, we
prove

Theorem 2. Given the smooth RD equation (10) with D > 0 and α > 0 and
bounded, strictly positive initial data u0(x), assume that conditions (3) and (4) are
satisfied.

Then, for α < 2, the solution of (10) has a homogeneous exit time determined by
(9). For α > 2, the solution of (10) has a non-homogeneous exit time equal to the
exit time of the associated ODE, i.e., tPDEexit(x) = texit(x), where texit(x) > t∗(x)
is defined by the relation

(11)

∫ texit(x)

0

a(x, t, 0)dt = 0.

Remark. The homogeneous exit time in Equation (2) – or in (10) with α < 2
– may be earlier than the earliest exit time texit(x), i.e., one does not neces-
sarily have tPDEexit = minx texit(x). The reason is of course that, in general,
∫ t

0
[maxx a(x, t, 0)] dt 6= maxx

∫ t

0
a(x, t, 0)dt. As an example, consider Equation (2)

with a(x, t, ǫ) = t2 − x2t+ x− 2. One calculates that
∫ t

0

a(x, s, 0)ds = t

(
t2

3
− x2

2
t+ x− 2

)

,

and texit(x) =
3
4x

2+ 1
4

√
9x4 − 48x+ 96. The minimum value numerically evaluates

to minx texit(x) ≈ 2.31. On the other hand, the maximum value of a(x, t, 0) is
reached at x = 1 for t ≤ 1

2 and at x = 1
2t for t > 1

2 . A simple integration and
numerical solve leads to tPDEexit ≈ 2.23.
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In the boundary case where α = 2 in (10), it is to be expected that the exit point
gradually changes from the inhomogeneous time texit(x) to the homogeneous exit
point defined in (9) as the coefficient D in the diffusivity is increased. We leave
the investigation of this case – which corresponds to the parabolic scaling with ǫ in
time and ǫ2 in space – for future study.

1.4. Canards in a class of nonlinear PDEs. Finally, in this article, we show
the existence of canards with spatially homogeneous and inhomogeneous exit times,
respectively, in the following class of scalar, nonlinear RD equations:

(12)







ǫut − ǫαuxx = f(u, x, t, ǫ)u,
ux(0, t) = ux(1, t) = 0,
u(x, 0) = u0(x),

where f is C2 and defined for all u ∈ [−K,K] with K > 0 fixed, x ∈ [0, 1],
t ∈ [0, tmax], α > 0, and ǫ > 0. The linear part

(13) a(x, t, ǫ) := f(0, x, t, ǫ)

of f is assumed to satisfy conditions (3) and (4), i.e., a turning point curve t =
t∗(x) exists, separating attracting from repelling behavior. Let us first describe the
dynamics in the case of large diffusivities:

Theorem 3. Given the RD equation (12) with α < 2 and bounded, strictly positive
initial data u0(x), assume that the linear part in (13) satisfies conditions (3) and
(4). Also, assume that

(14) f(u, x, 0, 0) < 0, ∀u ∈ [0, u0(x)], ∀x ∈ [0, 1],

i.e., that the initial condition lies in the basin of attraction of the attractor u = 0.
Then, Equation (12) has a positive solution u(x, t; ǫ), with a homogeneous exit time
tPDEexit given by

∫ tPDEexit

0

[

max
x

f(0, x, t, 0)
]

dt = 0.

In the case of small diffusivities, with α > 2, we need one additional condition
on f . In fact, in that case we assume that there is bistability, in the sense that
the solution u, after being repelled away from zero, has to tend to a secondary
equilibrium instead of blowing up to infinity.

Theorem 4. Given the RD equation (12) with α > 2 and bounded, strictly positive
initial data u0(x), assume that the linear part in (13) satisfies conditions (3) and
(4). Also, assume that

f(u, x, 0, 0) < 0 ∀u ∈ [0, u0(x)], ∀x ∈ [0, 1],

i.e., that the initial condition lies in the basin of attraction of the attractor u = 0.
Finally, assume that beyond the turning point, there is a simple positive zero of
f(u, x, t, 0), denoted ũ(x, t), and that

(15) 0 ≤ f(u, x, t, 0) ≤ f(0, x, t, 0) ∀u ∈ [0, ũ(x, t)] , ∀t > t∗(x), ∀x ∈ [0, 1].

Then, Equation (12) has a positive solution u(x, t; ǫ), with an inhomogeneous exit
time texit(x) given by

∫ texit(x)

0

f(0, x, t, 0)dt = 0.
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2. Proof of Theorem 1

The technique we use for proving Theorem 1 is the so-called method of lower
and upper solutions, see also [15]. We recall the relevant definitions here:

Definition 1. Let ǫ > 0 be fixed. Let L(x, t) be a continuous function, twice
continuously differentiable with respect to x and once with respect to t. The function
L(x, t) is called a lower solution of (2) if

ǫ(Lt − Lxx)− a(x, t, ǫ)L ≤ 0, 0 ≤ x ≤ 1, 0 ≤ t ≤ tmax,

L(x, 0) ≤ u0(x), 0 ≤ x ≤ 1,

Lx(0, t) ≥ 0 ≥ Lx(1, t), 0 ≤ t ≤ tmax.

Let U(x, t) be a continuous function, twice continuously differentiable with respect
to x and once with respect to t. The function U(x, t) is called an upper solution of
(2) if

ǫ(Ut − Uxx)− a(x, t, ǫ)U ≥ 0, 0 ≤ x ≤ 1, 0 ≤ t ≤ tmax,

U(x, 0) ≥ u0(x), 0 ≤ x ≤ 1,

Ux(0, t) ≤ 0 ≤ Ux(1, t), 0 ≤ t ≤ tmax.

The PDE (2) is of the type analyzed in [15]. Hence, we make use of the following
result to construct solutions for (2) and to prove Theorem 1:

Theorem 5. [15] Let ǫ > 0 be fixed. Let (L,U) be a pair of lower and upper
solutions of (2), and assume that L(x, t) ≤ U(x, t) on [0, 1] × [0, tmax]. Then, (2)
has a unique solution u(x, t; ǫ) that lies between L(x, t) and U(x, t).

In the proof of Theorem 1, we will first apply Theorem 5 to show the existence
and smoothness of a solution for (2). Then, in a second step, we will establish
sharp bounds on that solution. To that end, we will apply Theorem 5 again, but
this time with lower and upper solutions that are merely piecewise smooth. A
precise definition of the latter is given as follows.

Definition 2. Let ǫ > 0 be fixed, and let a finite number of time values t0 =
0, t1, t2, . . . , tN = tmax be given. For i = 0, . . . , N , let L(i)(x, t) be continuous
functions, twice continuously differentiable with respect to x and once with respect
to t on [0, 1]× [ti, ti+1]. The function

L(x, t) =







L(0), t ∈ [t0, t1] ,

L(1), t ∈ ]t1, t2] ,
...

L(N−1), t ∈ ]tN−1, tmax]

is called a piecewise lower solution of (2) if, for each i,

ǫ(L
(i)
t − L(i)

xx)− a(x, t, ǫ)L(i) ≤ 0, 0 ≤ x ≤ 1, ti ≤ t ≤ ti+1,

L(i)(x, ti) ≤ L(i−1)(x, ti), 0 ≤ x ≤ 1, i 6= 0,

L(i)
x (0, t) ≥ 0 ≥ L(i)

x (1, t), ti ≤ t ≤ ti+1

and if L(0)(x, 0) ≤ u0(x). A piecewise upper solution U(x, t) can be defined in a
similar fashion.
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The following result is a straightforward consequence of Theorem 5 which shows
that Pao’s theory also applies in this piecewise smooth case:

Corollary 1. Let ǫ > 0 be fixed. Let (L,U) be a pair of piecewise smooth lower
and upper solutions of (2), and assume that L(x, t) ≤ U(x, t) on [0, 1]× [0, tmax]. If
(2) has a unique smooth solution u(x, t; ǫ), then u lies between L(x, t) and U(x, t).

Finding an upper solution of (2) is elementary. Let

U(x, t) = U0 exp

(
1

ǫ
Aǫ(t)

)

,

with U0 = maxx u0(x) and Aǫ(t) =
∫ t

0
[maxx a(x, s, ǫ)] ds. It is readily checked

that U is an upper solution. Since Aǫ(t) = A(t) + O(ǫ), we can find a δ > 0 so
that Aǫ(t) ≤ A(t) + δ, which implies the upper bound given in the statement of
Theorem 1; see (8).

The difficult part of the proof is to find a good lower solution. Of course, u = 0 is
a trivial lower solution of (2), from which the existence of a solution can be derived.
To obtain a better lower estimate, which is necessary for establishing the bounds
in Theorem 1, we make the Ansatz

L(x, t) = L0 exp

(
1

ǫ

∫ t

0

w(x, s)ds

)

,

where L0 = minx u0(x) > 0. In the sequel, we keep ǫ fixed but small, and we
sometimes suppress the dependence on ǫ in both L and w. In fact, w will depend
on ǫ in a linear fashion. Note that

Lt(x, t) =
1

ǫ
L(x, t) · w(x, t),

Lx(x, t) =
1

ǫ
L(x, t) ·

∫ t

0

wx(x, s)ds,

Lxx(x, t) =
1

ǫ
L(x, t) ·

∫ t

0

wxx(x, s)ds+
1

ǫ2
L(x, t) ·

(∫ t

0

wx(x, s)ds

)2

.

In order to satisfy the definition of a lower solution, we need to find a function w

so that

(16)

{

w(x, t)− a(x, t, ǫ)−
∫ t

0
wxx(x, s)ds− 1

ǫ

(∫ t

0
wx(x, s)ds

)2

≤ 0,

wx(0, t) ≥ 0 ≥ wx(1, t).

The construction of the function w(x, t) constitutes the technical part of the proof
of Theorem 1.

2.1. Construction of w(x, t). For the construction, we require a uniform bound
on ax and aǫ. Hence, we define

(17) M = max {sup |ax(x, t, ǫ)|, sup |aǫ(x, t, ǫ)|} ,

where the supremum is taken for x ∈ [0, 1], t ∈ [0, tmax], and ǫ ∈ [0, ǫ0]. Throughout,
we also fix a choice of δ > 0.
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xi

a(x, t, 0)

a(xi, t, 0) + η(x− xi)

O(δ)

x0 1

Figure 2. Construction of w(x, t) on [ti, ti+1].

Step 1: Subdivision of the time interval. Applying uniform continuity, we find a
sequence t0 = 0, t1, . . . , tN = tmax so that for each of the intervals [ti, ti+1], there is
an xi ∈ [0, 1] with

(18) a(xi, t, 0) ≥ max
x∈[0,1]

a(x, t, 0)− δ ∀t ∈ [ti, ti+1].

(The sequence length N +1 depends of course on δ.) In Steps 2 and 3 of the proof,
we construct a function w(x, t) that satisfies (16), restricted to the interval [ti, ti+1]:
(19)
{

w(x, t)− a(x, t, ǫ)−
∫ t

ti
wxx(x, s)ds− 1

ǫ

(∫ t

ti
wx(x, s)ds

)2

≤ 0,

wx(0, t) ≥ 0 ≥ wx(1, t),
t ∈ [ti, ti+1].

Step 2: Definition of w(x, t) on the interval [ti, ti+1]. Consider the C2 auxiliary
function

η(x) =







− 2
3δ

3 − δ2(x− δ), x > δ;

−δx2 + 1
3x

3, 0 ≤ x ≤ δ;

η(−x), x < 0.

The graph defined by η connects a straight line with slope δ2 ending at x = −δ

in a C2-fashion to a line with slope −δ2 starting at x = δ. It does so such that
η′′ = O(δ). Now, define

(20) w(x, t) = a(xi, t, 0) + η(x− xi)− Ci −Di(t)−Mǫ,

where Ci and Di are positive but yet to be determined. The first two terms in (20)
give a curve that lies very close to maxx a(x, t, 0) near x = xi and that decreases
slightly away from xi in both directions; see Figure 2. The third and fourth terms
lower the curve further in a spatially uniform manner. The fifth term finally in-
troduces an ǫ-dependence, which is necessary because all previous terms only deal
with a(x, t, 0), as we will see. From the definition of w, it follows immediately that
wx(0, t) ≥ 0 ≥ wx(1, t), which constitutes the second part of (19). We now establish
that the first inequality also holds for a proper choice of Ci and Di(t).
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Step 3: Verification of the first part of (19). For values of x near xi, i.e., when
|x− xi| ≤ δ, we have

∫ t

ti

wxx(x, s)ds = (t− ti)η
′′(x− xi).

Hence, using the definition of η, we find that this term in (19) is bounded by
(ti+1 − ti)2δ. At the same time,

w(x, t)− a(x, t, ǫ) = a(xi, t, 0)− a(x, t, ǫ) + η(x− xi)− Ci −Di(t)−Mǫ

= a(xi, t, 0)− a(x, t, 0) + η(x− xi)− Ci −Di(t)

− [a(x, t, ǫ)− a(x, t, 0) +Mǫ] .

Using the Mean Value Theorem and the bound on aǫ in (17), one can see that the
expression inside the square brackets is nonnegative. Hence,

w(x, t)− a(x, t, ǫ) ≤ a(xi, t, 0)− a(x, t, 0) + η(x− xi)− Ci −Di(t)

≤ Mδ − Ci,

where we keep in mind that both η and −Di(t) are negative and use the Mean
Value Theorem on a(·, t, 0) in combination with |xi − x| ≤ δ and the bound on ax
in (17). Therefore, (19) is satisfied as soon as Mδ − Ci + (ti+1 − ti)2δ ≤ 0. It now
suffices to take Ci = [M + 2(ti+1 − ti)]δ to achieve that. For future reference, we
remember that

(21) Ci ≤ (M + 2tmax)δ.

For values of x away from xi, i.e., when |x − xi| ≥ δ, we have wxx = 0, which
implies that one term in (19) drops out. Furthermore, we have wx = ±δ2, so

1

ǫ

(∫ t

ti

wx(x, s)ds

)2

=
(t− ti)

2δ4

ǫ
.

For the remaining terms in (19), we have

w(x, t)− a(x, t, ǫ) ≤ a(xi, t, 0)− a(x, t, 0)−Di(t)− [a(x, t, ǫ)− a(x, t, 0) +Mǫ].

As before, the expression inside the brackets is nonnegative. Hence, using the Mean
Value Theorem on a(·, t, 0) in combination with |xi − x| ≤ 1 and the bound on ax
in (17), we conclude that w(x, t) − a(x, t, ǫ) ≤ M − Di(t). The left-hand side of
(19) is thus bounded by

M −Di(t)−
(t− ti)

2δ4

ǫ
.

Let us now finish Step 3. We define

(22) Di(t) =

{

0, t ≥ ti +
2
δ2

√
Mǫ,

M, t ≤ ti +
1
δ2

√
Mǫ,

and we extend the definition ofDi(t) by filling the gap in an obvious C1-fashion. For
that choice of Di(t), inequality (19) is satisfied for all t ∈ [ti, ti+1], which completes
the construction of w(x, t) on [ti, ti+1].
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2.2. End of the proof of Theorem 1. Using the definition of w on the interval
[ti, ti+1], we can recursively define a lower bound for the solution of (2) on successive
intervals [t0, t1], ]t1, t2],. . . , so that L(x, t) is defined on all of [0, tmax]. On the
interval [0, t1] = [t0, t1], we take

L(x, t) = L0 exp

(
1

ǫ

∫ t

0

w(x, s)ds

)

, t ∈ [0, t1].

Now, define L1 = infx L0 exp
(

1
ǫ

∫ t1
0

w(x, s)ds
)

= L1(L0), and set

L(x, t) = L1 exp

(
1

ǫ

∫ t

t1

w(x, s)ds

)

, t ∈ ]t1, t2] .

We continue in this manner until L(x, t) is defined as a piecewise continuous function
for all t ∈ [0, tmax] and all x ∈ [0, 1], with

L(x, t) = Li exp

(
1

ǫ

∫ t

ti

w(x, s)ds

)

, t ∈ ]ti, ti+1]

for Li = Li(Li−1).
On each time interval ]ti, ti+1], the functions L(x, t) and U(x, t) clearly satisfy

the hypotheses of Corollary 1; hence, the solution u(x, t) satisfies

L(x, t) ≤ u(x, t) ≤ U(x, t) ∀t ∈ [0, tmax], x ∈ [0, 1].

We remind the reader that the existence of a smooth solution has already been
shown; see the discussion after the statement of Corollary 1). The piecewise ap-
plication of Theorem 5 above only serves to improve the relevant bounds, and by
uniqueness, the smoothness of the solution u is retained.

Finally, we derive the required lower bound on u, as claimed in the statement of
Theorem 1; see (8). Let us first bound

∫
w(x, t)dt. We start with (20),

w(x, t) = a(xi, t, 0) + η(x− xi)− Ci −Di(t)−Mǫ

≥
[

max
x

a(x, t, 0)− δ
]

+ inf
x

η(x− xi)− (M + 2tmax)δ −Di(t)−Mǫ

≥
[

max
x

a(x, t, 0)
]

− (1 + 1 +M + 2tmax
︸ ︷︷ ︸

=:Y

)δ −Di(t)−Mǫ,

where we used (18) and (21) in the first inequality and η ≥ −δ in the second.
Hence, we find

∫ t

ti

w(x, s)ds ≥
∫ t

ti

[

max
x

a(x, s, 0)
]

ds− Y δ(t− ti)−M
2

δ2

√
Mǫ−Mǫ(t− ti),

where we used (22). For i = 0 and t ∈ [0, t1], we thus have

L(x, t) ≥ L0 exp

[
1

ǫ

(∫ t

0

[

max
x̃

a(x̃, s, 0)
]

ds− Y δt1 −M
2

δ2

√
Mǫ−Mǫt1

)]

,

which implies

L1 ≥ L0 exp

[
1

ǫ

(∫ t1

0

[

max
x̃

a(x̃, s, 0)
]

ds− Y δt1 −M
2

δ2

√
Mǫ−Mǫt1

)]

.
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Using that bound on L1, we find a bound on L for t ∈]t1, t2], and we can continue
in this manner up to t = tmax. At the end, one finds that for all values of t,

L(x, t) ≥ L0 exp

[
1

ǫ

(∫ t

0

[

max
x̃

a(x̃, s, 0)
]

ds

− Y δtmax −M(N + 1)
2

δ2

√
Mǫ−Mǫtmax

)]

,

where N + 1 is the (δ-dependent) sequence length of the subdivision of the time
interval [0, tmax] in (18). Observe that Y and tmax are independent of δ; hence, upon
a linear rescaling of the parameter δ, we replace Y δtmax by 1

2δ. It now suffices to
restrict ǫ to ]0, ǫ0], with

M(N + 1)
2

δ2

√

Mǫ0 +Mǫtmax ≤ 1

2
δ,

to prove Theorem 1.

Remark. By showing that N = O(δ−1), we find that ǫ0 = O(δ8). Therefore,
one can replace δ in the statement of Theorem 1 by any positive expression that is
o(ǫ1/8) as ǫ → 0. Of course, this estimate is most probably not optimal.

3. Proof of Theorem 2

As in the proof of Theorem 1, we make an Ansatz for the lower solution of the

form L(x, t) = L0 exp
(

1
ǫ

∫ t

0
w(x, s)ds

)

. Instead of (16), the function w now has to

satisfy
(23)

{

w(x, t)− a(x, t, ǫ)−Dǫα−1
∫ t

0
wxx(x, s)ds−Dǫα−2

(∫ t

0
wx(x, s)ds

)2

≤ 0,

wx(0, t) ≥ 0 ≥ wx(1, t).

When 1 ≤ α < 2, the dominant terms in (23) are the same as those appearing
in (16) in the proof of Theorem 1. Therefore, the proof is completely analogous.
When 0 < α < 1, the term multiplied by ǫα−1 becomes unbounded as well, making
this case slightly different. However, the proof can easily be adapted to cover that
situation; in fact, due to the larger diffusivity than in the case where α = 1, that
result is not unexpected.

When α > 2, the dominant terms in (20) are w(x, t)− a(x, t, 0). Therefore, it is
easy to define a good choice of w:

w(x, t) = a(x, t, 0)− δ − Eδ(x),

where Eδ is some C2 function that lies between 0 and 1
2δ and that has steep

enough slopes near x = 0 and x = 1 in order to satisfy the boundary conditions
wx(0, t) ≥ 0 ≥ wx(1, t). Choosing ǫ > 0 small enough for given δ, (23) is then
satisfied. With the same ease, one can define an upper bound. As a consequence,
when α > 2, we find that

L0 exp

[
1

ǫ

(∫ t

0

a(x, s, ǫ)ds− δ

)]

≤ u(x, t; ǫ) ≤ U0 exp

[
1

ǫ

(∫ t

0

a(x, s, ǫ)ds+ δ

)]

,

from which one can conclude directly that tPDEexit(x) = texit(x).
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4. The nonlinear setting

In this section, we prove Theorems 3 and 4. First, we observe that the notions of
lower and upper solutions are applicable to the nonlinear problem in (12), as well.
Also, Theorem 5, the result of Pao [15], applies in this nonlinear setting. Therefore,
it suffices to find good lower and upper estimates.

4.1. Proof of Theorem 3. Let us first treat the case of large diffusivities, i.e.,
the context of Theorem 3. The proof is split up into two parts: given any small
δ > 0, we first apply Theorem 5 on the time interval [0, δ], which yields a solution
u = u(x, t) of (12) for t ≤ δ. In the second step, we consider the same equation,
but with initial data given by u(x, δ) at t = δ. We then apply Theorem 5 again,
this time on [δ, tmax], to deduce that u can be extended for t ≥ δ. A priori, our
argument leads to a solution that is only continuous at t = δ. However, by varying
δ slightly and by repeating the above construction, one shows that u(x, t) is, in
fact, differentiable on the entire time interval.

For the first part of our argument, we introduce two auxiliary functions aδ(x, t, ǫ)
and aδ(x, t, ǫ), as follows: for δ small enough, it is certainly possible to find new
initial data u0(x) and u0(x) that satisfy

0 < u0(x)− δ ≤ u0(x) ≤ u0(x) ≤ u0(x) ≤ u0(x) + δ

as well as the boundary conditions u′

0(0) = u′

0(1) = 0 and u′

0(0) = u′

0(1) = 0,
respectively. Now, we let

aδ(x, t, ǫ) = max
u∈[0,u0(x)]

f(u, x, t, ǫ) < 0, t ∈ [0, δ]

and

aδ(x, t, ǫ) = min
u∈[0,u0(x)]

f(u, x, t, ǫ) < 0, t ∈ [0, δ],

where the signs of aδ and aδ follow from condition (14) as long as δ > 0 is small
enough. The solution of the linear problem ǫUt − ǫαUxx = aδ(x, t, ǫ)U , with initial
and boundary conditions U(x, 0) = u0(x) and Ux(0, t) = Ux(1, t) = 0, is clearly an
upper solution of the nonlinear problem (12), since

ǫUt − ǫαUxx − f(U, x, t, ǫ)U = [aδ(x, t, ǫ)− f(U, x, t, ǫ)]U ≥ 0 ∀t ∈ [0, δ].

Similarly, the solution of the linear problem ǫLt − ǫαLxx = aδ(x, t, ǫ)L, with initial
and boundary conditions L(x, 0) = u0(x) and Lx(0, t) = Lx(1, t) = 0, is a lower
solution of (12). As a consequence,

L(x, t, ǫ) ≤ u(x, t, ǫ) ≤ U(x, t, ǫ)

for all t ≤ δ. By choosing ǫ > 0 small enough, and by observing that U is exponen-
tially small with respect to ǫ for t > 0, we may assume that U ≤ δ at t = δ.

For t ≥ δ, we define

aδ(x, t, ǫ) = max
u∈[0,δ]

f(u, x, t, ǫ) and aδ(x, t, ǫ) = min
u∈[0,δ]

f(u, x, t, ǫ).

Extending the solutions L and U to times t ≥ δ will still provide lower and upper
solutions for the nonlinear problem (12), at least as long as U ≤ δ, i.e., at least
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until the exit time of U . This exit time is a δ-dependent homogeneous exit time
t = tPDEexit(δ) that is determined by the equation

∫ tPDEexit(δ)

0

[

max
x

aδ(x, t, 0)
]

dt = 0.

It follows that tPDEexit(δ) is a lower bound for the actual exit time of the nonlinear
equation.

Now, we observe that tPDEexit(δ) is a decreasing function in δ: for δ > 0, the
exit takes place earlier than for δ = 0, since the attraction before the turning point
is weaker and the repulsion after the turning point is stronger. Since tPDEexit(δ) =
tPDEexit + O(δ) and since δ > 0 is arbitrary, it follows that the exit time of the
nonlinear equation is bounded from below by the homogeneous bound t = tPDEexit

given by
∫ tPDEexit

0

[

max
x

f(0, x, t, 0)
]

dt = 0.

Similarly, by replacing L and aδ with U and aδ, respectively, one can show that
that same time tPDEexit is also an upper bound for the exit time, which establishes
Theorem 3.

4.2. Proof of Theorem 4. Let us finally prove Theorem 4. In the context of
that theorem, we have a bistable regime where, after the passage past the turning
point, two branches of singular points exist, u = 0 and u = ũ(x, t), both of which
are simple zeros of f(u, x, t, 0)u = 0. The simplicity of ũ(x, t) ensures that the
sign of f(u, x, t, 0) is negative for u > ũ(x, t). We first prove that a solution of the
nonlinear problem (12) exists, and that it stays approximately in between the two
branches u = 0 and u = ũ(x, t) after passing the turning point. For time values
t ∈ [0, δ], we proceed as in the proof of Theorem 3; from that proof, we know that
the solution u = u(x, t) is exponentially small with respect to ǫ at t = δ.

Let us define the piecewise function θ(x, t) by 0 for δ ≤ t ≤ t∗(x) and by ũ(x, t)
for t > t∗(x), see Figure 3. Ideally, we would like to be able to show that the
solution of (12) stays between 0 and θ. While that is not necessarily the case, we
can find an upper solution in a δ-neighborhood of θ, as follows.

Using appropriately defined bump functions, we can define a smooth function
θ1 so that the graph u = θ1(x, t) lies in a δ

4 -neighborhood of the piecewise smooth
graph u = θ(x, t). The function θ1 does not necessarily satisfy the required bound-
ary conditions. However, introducing bump functions near x = 0 and x = 1,
we can find a δ

4 -perturbation θ2(x, t) of θ1 so that the boundary conditions at

x = 0 and x = 1 are satisfied. Then, setting Ũ = θ2 + δ
2 gives a smooth

graph in a δ-neighborhood of θ that lies above u = θ(x, t). Consequently, we

have f(Ũ(x, t), x, t, 0) < 0. It is now easy to see that for ǫ small enough,

ǫŨt − ǫαŨxx − f(Ũ , x, t, ǫ)Ũ ≥ 0, Ũx(0, t) = Ũx(1, t) = 0,

and that at t = δ, the function Ũ is larger than the exponentially small solution
u(x, δ). Hence, we conclude that Ũ is an upper solution for t ≥ δ.

For the remainder of the proof, we define

f̃(u, x, t, ǫ) =

{

f(u, x, t, ǫ), u ≤ Ũ(x, t),

f(Ũ(x, t), x, t, ǫ), u ≥ Ũ(x, t) + δ,
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✲

✻

t

u

t∗(x)

ũ(x, t)

❑

❪❘

θ(x, t)

Figure 3. The function θ(x, t) used in the proof of Theorem 4,
for x fixed.

and we use bump functions to connect smoothly between the two cases. Since Ũ

is an upper solution for (12), we can safely replace f by f̃ in the definition of the
problem, as that will not change the solution u itself.

From this point on, we can continue the proof of Theorem 4 in the same manner
as the proof of Theorem 3 above, this time defining

aδ(x, t, ǫ) = max
u∈[0,∞[

f̃(u, x, t, ǫ), t > δ.

Given aδ, we now proceed as before to obtain a uniformly valid upper solution for u.
We note that the modified problem obtained from replacing f by f̃ in (12) coincides

with the original one as long as u ≤ Ũ ; the modification ensures that aδ will provide
a uniform bound even if u > Ũ and, hence, that Pao’s result (Theorem 5) can again
be applied, as in the proof of Theorem 3.

Specifically, due to condition (15) stated in the hypotheses of Theorem 4, we
have

aδ(x, t, ǫ) = f(0, x, t, ǫ) +O(δ)

since f(0, x, t, ǫ) > f(u, x, t, ǫ); hence, we can repeat the entire construction, which
provides us with the upper solution U(x, t) and the required O(δ)-lower bound on
the inhomogeneous exit time. The upper bound for the inhomogeneous exit time
is easier to obtain, and can be found as in the proof of Theorem 3.
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