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Abstract

The long-time behavior of solutions of systems of conservation laws has been extensively studied. In particular,
Liu and Zeng [6] have given a detailed exposition of the leading-order asymptotics of solutions close to a constant
background state. In this paper, we extend the analysis of Liu and Zeng by examining higher-order terms in the
asymptotics in the framework of the so-called two-dimensionalp-system, though we believe that our methods and
results also apply to more general systems. We give a constructive procedure for obtaining these terms, and we show
that their structure is determined by the interplay of the parabolic and hyperbolic parts of the problem. In particular,
we prove that the corresponding solutions developlong tails.

1 Introduction

In this paper, we consider the long-time behavior of solutions of systems of viscous conservation laws. This topic has
been extensively studied. In particular, for the case of solutions close to a constant background state, [6] (building on
work of [2]) contains a detailed exposition of the leading-order long-time behavior of such solutions. More precisely,
it is shown in [6] that the leading-order asymptotics are given as a sum of contributions moving with the characteristic
speeds of the undamped system of conservation laws and that each contribution evolves either as a Gaussian solution
of the heat equation or as a self-similar solution of the viscous Burger’s equation. Thus, with the exception of the
translation along characteristics, these leading-order terms reflect primarily the dissipative aspects of the problem.

In this paper, in an effort to better understand the interplay between the hyperbolic and parabolic aspects of the
problem, we examine higher-order terms in the asymptotics.We work with a specific two-dimensional system of
equations–thep-system, but we believe that its behavior is prototypical. In particular, we think that our methods and
results would extend to more complicated systems such as the‘full gas dynamics’ and the equations of magnetohy-
drodynamics (MHD), as considered in [6].

The specific set of equations we consider is the following:

∂ta = c1∂xb, a(x, 0) = a0(x),

∂tb = c2∂xa+ ∂xg(a, b) + α
(
∂2
xb+ ∂x(f(a, b)∂xb)

)
, b(x, 0) = b0(x).

(1.1)

We will make precise the assumptions on the nonlinear termsf andg below; however, in order to describe our
results informally, we basically assume that|g(a, b)| ∼ O((|a| + |b|)2) and|f(a, b)| ∼ O((|a| + |b|)). We also note
that, without loss of generality, we can setc1 = 1 = c2 andα = 2 in (1.1), which can be achieved by appropriate
scalings of space, time and the dependent variables, and possible redefinition of the functionsf andg.

Physically, (1.1) is a model for compressible, constant entropy flow, wherea represents the volume fraction (i.e.,
the reciprocal of the density) andb is the fluid velocity. The first of the two equations in (1.1) isthe consistency relation
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between these two physical quantities. In particular, it would not be physically reasonable to include a dissipative term
in this equation, whereas such a term arises naturally in thesecond equation which is essentially Newton’s law, in
which internal frictional forces are often present. As a consequence of the form of the dissipation, the damping here is
not ‘diagonalizable’ in the terminology of [6].

Next, we note that with the scalingc1 = 1 = c2 andα = 2 in (1.1), the characteristic speeds are±1. If the initial
conditionsa0 andb0 in (1.1) decay sufficiently fast as|x| → ∞, Liu and Zeng [6] showed thata(x, t) ± b(x, t) =

1√
1+t

g±0 (
x±t√
1+t

)+O((1+t)−
3
4 ), whereg±0 are self-similar solutions either of the heat equation or ofBurger’s equation,

depending on the detailed form of the nonlinear terms. In this paper, we derive similar expressions for the higher-order
terms in the asymptotics through a constructive procedure that can be carried out to arbitrary order.

More precisely, we show that, for anyN ≥ 1, there exist (universal) functions{g±n }Nn=1 and constants{d±n }Nn=1,
determined by the initial conditions, such that

a(x, t) + b(x, t) =
1√
1 + t

g+0
(

x+t√
1+t

)
+

N∑

n=1

1

(1 + t)1−
1

2n+1

d+n g
+
n

(
x+t√
1+t

)
+O

(
1

(1 + t)1−
1

2N+2

)
,

a(x, t)− b(x, t) =
1√
1 + t

g−0
(

x−t√
1+t

)
+

N∑

n=1

1

(1 + t)1−
1

2n+1

d−n g
−
n

(
x−t√
1+t

)
+O

(
1

(1 + t)1−
1

2N+2

)
.

(1.2)

We give explicit expressions for the functionsg±n below; however, focusing for the moment on the caseN = 1 and
the variablea, we have

a(x, t) =
1

2
√
1 + t

[
g+0
(

x+t√
1+t

)
+ g−0

(
x−t√
1+t

)]
+

1

2(1 + t)
3
4

[
d+1 g

+
1

(
x+t√
1+t

)
+ d−1 g

−
1

(
x−t√
1+t

)]
+O

(
1

(1 + t)
7
8

)
,

where the functionsg±0 (z) andg±1 (z) are solutions of the following ordinary differential equations:

∂2
zg

±
0 (z) +

1

2
z∂zg

±
0 (z) +

1

2
g±0 (z) + c±∂z(g

±
0 (z)

2) = 0, (1.3)

∂2
zg

±
1 (z) +

1

2
z∂zg

±
1 (z) +

3

4
g±1 (z) + 2c±∂z

(
g±0 (z)g

±
1 (z)

)
= 0. (1.4)

Here,c± are constants that depend on the Hessian matrix ofg(a, b) at a = 0 = b and that will be specified in the
course of our analysis. We will prove that, while all solutions of (1.3) have Gaussian decay as|x| → ∞, general
solutions of thelinear Equation (1.4) are linear combinations of two functionsg1,±(z), whereg1,±(z) decays like a
Gaussian asz → ∓∞ but only like|z|− 3

2 asz → ±∞; see also [5]. The graphs of the functionsg+0 (z) andg+1 (z) are
presented in Figure 1.

Thus, the higher-order terms in the asymptotics developlong tails. These tails are a manifestation of the hyperbolic
part of the problem (or, perhaps more precisely, of the interplay between the parabolic and hyperbolic parts). Were we
to consider just the asymptotic behavior of the viscous Burger’s equation which gives the leading-order behavior of the
solutions, we would find that, if the initial data are well localized, the higher-order terms in the long-time asymptotics
decay rapidly in space and have temporal decay rates given byhalf-integers.

We also note one additional fact about the expansion in (1.2). Prior research [3, 9] has shown that for both parabolic
equations and damped wave equations, the eigenfunctions ofthe operator

Lu(z) = ∂2
zu+

1

2
z∂zu

play an important role for the asymptotics. In particular, on appropriate function spaces, this operator has a sequence
of isolated eigenvalues whose associated eigenfunctions can be used to construct an expansion for the long-time
asymptotics. In this connection, we prove that the functionsg±n are closely approximated by eigenfunctions ofL with
eigenvaluesλn = − 1

2 + 2−(n+1); more precisely, the functionsg±n are eigenfunctions of a compact perturbation of
L; see, e.g., (1.4). However, so far we have not succeeded in finding a function space which both contains these
eigenfunctions (the functionsg±n decay slowly asz → ±∞) and in which the corresponding eigenvalues are isolated
points in the spectrum. We plan to investigate this point further in future research.
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Figure 1: Graphs of the functionsg+0 (left panel) andg+1 (right panel). Note thelong tail of
g+1 asz → ∞.

Before moving to a precise statement of our results, we note that our approach makes no use of Kawashima’s
energy estimates for hyperbolic-parabolic conservation laws [4]. Instead, we prove existence by studying directly the
integral form of (1.1).

We now state our results on the Cauchy problem (1.1). We beginby stating the precise assumptions we make on
the nonlinearitiesf andg in (1.1).

Definition 1 The mapsf, g : R2 → R are admissible nonlinearities for (1.1) if there is a quadratic mapg0 : R2 → R

and a constantC such that, for all|z|, |z1| and|z2| small enough,

|g(z)| ≤ C|z|2, |g(z1)− g(z2)| ≤ C|z1 − z2|(|z1|+ |z2|),
|∆g(z)| ≤ C|z|3, |∆g(z1)−∆g(z2)| ≤ C|z1 − z2|(|z1|+ |z2|)2,
|f(z)| ≤ C|z| and |f(z1)− f(z2)| ≤ C|z1 − z2|,

where∆g(z) ≡ g(z)− g0(z).

The main result of this paper can be formulated as follows:

Theorem 2 Fix N > 0. There existsǫ0 > 0 sufficiently small such that, if

(i) |a0|H1(R) + |a0|L1(R) < ǫ0 and|b0|H2(R) + |b0|L1(R) < ǫ0,

(ii) |x2a0|L2(R) + |x2b0|L2(R) < ∞,

then (1.1) has a unique (mild) solution with initial conditionsa0 and b0. Moreover, there exist functions{g±n }Nn=0

(independent of initial conditions forn ≥ 1) and constantsCN , {d±n }Nn=1, determined by the initial conditions, such
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that

a(x, t) + b(x, t) =
1√
1 + t

g+0
(

x+t√
1+t

)
+

N∑

n=1

1

(1 + t)1−
1

2n+1

d+n g
+
n

(
x+t√
1+t

)
+RN

u (x, t),

a(x, t)− b(x, t) =
1√
1 + t

g−0
(

x−t√
1+t

)
+

N∑

n=1

1

(1 + t)1−
1

2n+1

d−n g
−
n

(
x−t√
1+t

)
+RN

v (x, t),

(1.5)

where the remaindersRN
u andRN

v satisfy the estimates

sup
t≥0

(1 + t)
3
4− 1

2N+2
∥∥RN

{u,v}(·, t)
∥∥
L2(R)

≤ CN ,

sup
t≥0

(1 + t)
5
4− 1

2N+2
∥∥∂xRN

{u,v}(·, t)
∥∥
L2(R)

≤ CN .
(1.6)

Furthermore, forn ≥ 1, the functionsg±n satisfyg±n (z) ∼ |z|−2+ 1
2n asz → ±∞.

There is a slight incongruity in this result in that the norm in which we estimate the remainder term is weaker than
the one we use on the initial data; namely, we do not give estimates for the remainder inH2(R) or in the localization
normsL1(R) and the weightedL2(R)-norm (on that aspect of the problem, see Remark 3 below). Theorem 2 actually
holds for slightly more general initial conditions than those satisfying (i)–(ii). Furthermore, we will prove that the
estimates (1.6) hold for all initial conditions(a0, b0) in a subsetD2 ⊂ H1 × H2 that ispositively invariantunder the
flow of (1.1). However, since the topology used to define the subsetD2 is somewhat nonstandard, we have chosen to
state the result initially in this slightly weaker, but hopefully more comprehensible, form to keep the introduction as
simple as possible.

Remark 3 It is interesting to note (see Proposition 7 below) that‖x2a(·, t)‖L2(R) + ‖x2b(·, t)‖L2(R) is finite for all
finite t > 0, but that the terms withn ≥ 1 in the asymptotic expansion do not satisfy this property dueto the long tails
of the functionsg±n .

Remark 4 As the asymmetry in the degree ofx-derivatives in (1.1) suggests, we require more spatial regularity from
the second component (theb-variable) than from the first (thea-variable). It is then natural to expect thatRN

u or RN
v

are not necessarily inH2, but that only their difference is.

We conclude this section with a few remarks. Defineu±(x, t) = a(x, t) ± b(x, t). Then, the asymptotics of the
solutions of (1.1) in the variablesu± are the same as those of the two-dimensional (generalized) Burger’s equation

∂tu+ = ∂2
xu+ + ∂xu+ + ∂x(c+u

2
+ − c−u

2
−),

∂tu− = ∂2
xu− − ∂xu− + ∂x(c−u

2
− − c+u

2
+),

(1.7)

where the constantsc± are determined by the Hessian ofg(a, b) ata = 0 = b through

c± = ±1

8
(1,±1) ·

(
∂2
ag ∂a∂bg

∂a∂bg ∂2
b g

) ∣∣∣∣
a=b=0

·
(

1
±1

)
.

We will show that the hyperbolic effects manifest themselves through the ‘source’ terms−c−u2
− (respectively,c+u2

+)
in the first (respectively, second) equation in (1.7). In particular, none of the termsg±n with n ≥ 1 would be present in
the asymptotic expansion if those terms were absent.

Finally, note that we have chosen to state Theorem 2 for finiteN . As it turns out, the sums appearing in (1.5)
converge in the limit asN → ∞, in which case the estimates (1.6) hold with time weights replaced by(1+ t)

3
4 ln(2+

t)−1 and(1 + t)
5
4 ln(2 + t)−1. The proof can easily be done with the techniques used in thispaper and is left to the

reader.
The remainder of the paper is organized as follows: in Section 2, we discuss the well-posedness of the Cauchy

problem (1.1) in an appropriately defined topology. In Section 3, we explain our strategy for proving our main result
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(Theorem 2) on the long-time asymptotics of solutions of (1.1). Namely, we decompose that proof into a series of
simpler subproblems which are then tackled in subsequent sections: in Sections 4 and 5, we investigate properties
of solutions of Burger-type equations (respectively, of inhomogeneous heat equations), as they occur naturally in the
asymptotic analysis. In Section 6, we collect some estimates that are used in the proof of the well-posedness of (1.1).
Finally, in Section 7, we specify the sense in which the semigroup of the linearization of (1.1) is close to heat kernels
translating along the characteristics, and we give estimates on the remainder terms occurring in Theorem 2.

2 Cauchy problem

To motivate our technical treatment of the problem and in particular our choice of function spaces, we first note that,
upon taking the Fourier transform of the linearization of (1.1), it follows that

∂t

(
a

b

)
= L

(
a

b

)
≡
(
0 ik

ik −2k2

)(
a

b

)
. (2.1)

We then find that the (Fourier transform of) the semigroup associated with (2.1) is

eLt = e−k2t

(
cos(kt∆) + k

∆ sin(kt∆) i
∆ sin(kt∆)

i
∆ sin(kt∆) cos(kt∆)− k

∆ sin(kt∆)

)
, (2.2)

where∆ =
√
1− k2. The most important fact about the semigroupeLt is that it is close toeL0t, the semigroup

associated with the problem

∂t

(
u

v

)
= L0

(
u

v

)
≡
(
∂2
x + ∂x 0
0 ∂2

x − ∂x

)(
u

v

)
. (2.3)

Formally,eL0t can be obtained by setting∆ = 1 in eLt and by conjugating with the matrix

S ≡
(
1 1
1 −1

)
. (2.4)

These two operations correspond to a long-wavelength expansion and a change of dependent variables to quantities
that move along the characteristics. More precisely, we will prove thateLt satisfies the intertwining property

SeLt ≈ eL0tS,

where the symbol≈ means that the action of these two operators is the same in thelarge-scale–long-time limit; see
Lemma 19 at the beginning of Section 7 for details.

Furthermore,eLt satisfies parabolic-like estimates

|eLt| ≤ Ce−min{k2,1} t
4

(
1 1√

1+k2

1√
1+k2

1

)
, (2.5)

∣∣∣∣eLt
(
0
ik

)∣∣∣∣ ≤ C
e−min{k2,1} t

4√
t

(
1
1√

1+k2

)
(2.6)

uniformly in t ≥ 0 andk ∈ R.
Hence, to summarize,eLt behaves like a superposition of heat kernels translating along the characteristics of the

underlying hyperbolic problem. In view of the above observations as well as of classical techniques for parabolic
PDEs (see, e.g., [7, 1]), we will consider (1.1) in the following (somewhat non-standard) topology (cf. also [8]):

Definition 5 We defineB0 (respectively,B) as the closure ofC∞
0 (R,R2) (respectively,C∞

0 (R × [0,∞),R2)) under
the norm| · | (respectively,‖ · ‖), where forz0 = (a0, b0) : R → R

2 andz = (a, b) : R× [0,∞) → R
2, we define

|z0| = ‖ẑ0‖∞ + ‖z0‖2 + ‖Dz0‖2 + ‖D2b0‖2 and ‖z‖ = ‖ẑ‖∞,0 + ‖z‖2, 14 + ‖Dz‖2, 34 + ‖D2b‖2, 54 ⋆ .
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Here,(Da)(x, t) ≡ ∂xa(x, t), â(k, t) is the Fourier transform ofa(x, t),

‖f‖p,q = sup
t≥0

(1 + t)q‖f(·, t)‖p, ‖f‖p,q⋆ = sup
t≥0

(1 + t)q

ln(2 + t)
‖f(·, t)‖p

and‖ · ‖p is the standardLp(R)-norm.

Before turning to the Cauchy problem with initial data inB0, we collect a few comments on our choice of function
spaces.

Consider first the requirements on the initial conditions in(1.1): while the use ofH1-spaces is quite natural in
this context, we choose to replace theL1-norm by the (weaker) control of theL∞-norm in Fourier space. This has
the great advantage that all estimates can then be obtained in Fourier space, where the semigroupeLt has the simple,
explicit form (2.2).

In turn, our choice ofq-exponents in the norm‖ · ‖ is motivated by the fact that these are the highest possible
exponents for which the‖ · ‖-norm of the leading-order asymptotic term1√

1+t
g±0 (

x±t√
1+t

) is bounded. Note also that,
for the linear evolution (2.1), we have

‖eLtz0‖ ≤ C|z0|, (2.7)

sinceĵ(k, t) = e−min{k2,1}tu0(k) satisfies

‖Dnj(·, t)‖2 ≤ C
(
e−t‖Dnu0‖2 +min

{
t−

1
4−n

2 ‖û0‖∞, ‖Dnu0‖2
})

for all n = 0, 1, . . ..
Finally, we note that, for admissible nonlinearities in thesense of Definition 1, the maph(a, b) = f(a, b)∂xb +

g(a, b) = h(z) satisfies

‖h(z)‖1, 12 + ‖h(z)‖2, 34 + ‖Dh(z)‖2, 54 ≤ C‖z‖2, (2.8)

‖h(z1)− h(z2)‖1, 12 + ‖h(z1)− h(z2)‖2, 34 ≤ C‖z1 − z2‖(‖z1‖+ ‖z2‖), (2.9)

‖D(h(z1)− h(z2))‖2, 54 ≤ C‖z1 − z2‖(‖z1‖+ ‖z2‖). (2.10)

We are now fully equipped to study the Cauchy problem (1.1) inB.

Theorem 6 For all z0 ∈ B0 with |z0| = |(a0, b0)| ≤ ǫ0 small enough, the Cauchy problem (1.1) is (locally) well posed
in B if the nonlinearities are admissible in the sense of Definition 1. In particular, the solution satisfies‖z‖ ≤ cǫ0 for
somec > 1 and is unique among functions inB satisfying this bound.

Proof. Upon taking the Fourier transform of (1.1), we find

∂t

(
a

b

)
=

(
0 ik

ik −2k2

)(
a

b

)
+

(
0
ikh

)
, (2.11)

which gives the following representation for the solution:

z(t) ≡
(
a(t)
b(t)

)
= eLt

(
a0
b0

)
+

∫ t

0

ds eL(t−s)

(
0

∂xh(z(s))

)
≡ eLtz0 +N [z](t). (2.12)

We will prove below that for allzi ∈ B, i = 1, 2, we have

‖N [z]‖ ≤ C‖z‖2 and ‖N [z1]−N [z2]‖ ≤ C‖z1 − z2‖(‖z1‖+ ‖z2‖) (2.13)

for some constantC. The proof of Theorem 6 then follows from the fact that, for all z0 ∈ B0 with |z0| ≤ ǫ0 small
enough andc > 1, the right-hand side (r.h.s.) of (2.12) defines a contraction map from some (small) ball of radiuscǫ0
in B onto itself.
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The general rule for proving the various estimates involvedin (2.13) is to split the integration interval into two
parts, withs ∈ I1 ≡ [0, t

2 ] ands ∈ I2 ≡ [ t2 , t]. In I1, we place as many derivatives (or, equivalently, factors ofk) as
possible on the semigroupeL(t−s), while in I2, (most of) these derivatives need to act onh, since the integral would
otherwise be divergent ats = t.

Additional difficulties arise from the fact thateLt has very few smoothing properties (slow or no decay ink as
|k| → ∞), so that in some cases we need to consider separately the large-k part and the small-k part of theL2-norm,
say. This is done through the use ofP, defined as the Fourier multiplier with the characteristic function on[−1, 1].

We decompose the proof of‖N [z]‖ ≤ C‖z‖2 into that of

‖N [z]‖ ≤ ‖N̂ [z]‖∞,0 + ‖N [z]‖2, 14 + ‖PDN [z]‖2, 34 + ‖(1− P)DN [z]‖2, 34
+ ‖(1− P)D2N [z]2‖2, 54 ⋆ + ‖(1−Q)PD2N [z]2‖2, 54 ⋆ + ‖QPD2N [z]2‖2, 54 ⋆

≤ C‖z‖2, (2.14)

whereQ is the characteristic function fort ≥ 1 andN [z]2 denotes the second component ofN [z].
We now consider‖PDN [z]‖2, 34 as an example of how we will prove the above estimates: we have

‖PDN [z](·, t)‖2 ≤ ‖h(z)‖2, 34
(

sup
|k|≤1,τ≥0

|k|√τe−
k2τ
4

)∫ t
2

0

ds
(1 + s)−

3
4

t− s

+ ‖Dh(z)‖2, 54
(

sup
|k|≤1,τ≥0

e−
k2τ
4

)∫ t

t
2

ds
(1 + s)−

5
4√

t− s

≤ C‖z‖2
(
2

t

∫ t
2

0

ds

(1 + s)
3
4

+
1

(1 + t
2 )

5
4

∫ t

t
2

s
ds√
t− s

)
≤ C‖z‖2(1 + t)−

3
4 (2.15)

for all t ≥ 0, which shows that‖PDN [z]‖2, 34 ≤ C‖z‖2. All other estimates in (2.14) can be obtained in a similar
manner; we postpone their proof to Section 6 below.

Finally, we note that the Lipschitz-type estimate in (2.13)can be obtained in the same manner,mutatis mutandis,
due to the similarity between (2.9) and (2.10) with (2.8); weomit the details.

We can now turn to the question of the asymptotic structure ofthe solutions of (1.1) provided by Theorem 6.
Note that already if we wanted to prove thateLtz0 satisfies ‘Gaussian asymptotics,’ we would need more localization
properties onz0 than those provided by theB0-topology. It will turn out to be sufficient to requirez0 ∈ B0 ∩
L2(R, xmdx) for (some)m ≥ 2. We now prove that this requirement isforward invariantunder the flow of (1.1).

Proposition 7 Letρm(x) = |x|m, and define

Dm = {z0 ∈ B0 such that |z0|+ ‖ρmz0‖2 < ∞} .

If z0 ∈ Dm and|z0| ≤ ǫ0 such that Theorem 6 holds, then the corresponding solutionz(t) of (1.1) satisfiesz(t) ∈ Dm

for all finite t > 0. Furthermore, there holds|z(t)| ≤ (1 + δ)ǫ0 for some (small) constantδ.

Proof. Note first that, by Theorem 6,|z(t)| ≤ ‖z‖ ≤ (1 + δ)ǫ0, sincez0 ∈ B0 and |z0| ≤ ǫ0. Then, fixm ∈ N,
m ≥ 1. The proof of Theorem 6 can easily be adapted to show that (1.1) is locally (in time) well posed inDm. Global
existence then follows from the fact that the quantity

N(t) =
1

2
‖ρmz(·, t)‖2 =

1

2

∫ ∞

−∞
dx |x|m

(
a(x, t)2 + b(x, t)2

)

growsat most exponentiallyast → ∞. Namely, we have

∂tN(t) =

∫ ∞

−∞
dx |x|m

(
∂x(ab) + 2b∂2

xb+ b∂x (f(a, b)∂xb+ g(a, b))
)

= −
∫ ∞

−∞
dx m|x|m−1sign(x) (b(a+ g(a, b)) + (2 + f(a, b))b∂xb)
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−
∫ ∞

−∞
dx |x|m(∂xb)

2 (2 + f(a, b))

≤
∫ ∞

−∞
dx
(
(m− 1)m−1 + |x|m

)
|b(a+ g(a, b)) + (2 + f(a, b))b∂xb|

−
∫ ∞

−∞
dx |x|m(∂xb)

2 (2 + f(a, b))

≤
∫ ∞

−∞
dx
(
(m− 1)m−1 + |x|m

) (
|b(a+ g(a, b))|+ 2−1|2 + f(a, b)|b2

)

≤ C1(m, ǫ0) + C2(ǫ0)N(t),

due to the estimates‖f(a, b)‖∞ ≤ Cǫ0 ≪ 2 and‖ g(a,b)√
a2+b2

‖∞ ≤ Cǫ0.

3 Asymptotic structure–Proof of Theorem 2

We can now state our main result on the asymptotic structure of solutions of (1.1) in a definitive manner.

Theorem 8 LetDm be as in Proposition 7, withm ≥ 2, let z0 ∈ Dm with |z0| ≤ ǫ0 such that Theorem 6 holds, and
write z(t) = (a(t), b(t)) for the corresponding solution of (1.1). Then, there exist functions{g±n }Nn=0 (independent of
z0 for n ≥ 1) and constantsCN , {d±n }Nn=1, determined byz0, such that

a(x, t) + b(x, t) =
1√
1 + t

g+0
(

x+t√
1+t

)
+

N∑

n=1

1

(1 + t)1−
1

2n+1

d+n g
+
n

(
x+t√
1+t

)
+RN

u (x, t),

a(x, t)− b(x, t) =
1√
1 + t

g−0
(

x−t√
1+t

)
+

N∑

n=1

1

(1 + t)1−
1

2n+1

d−n g
−
n

(
x−t√
1+t

)
+RN

v (x, t),

(3.1)

where the remaindersRN
u andRN

v satisfy the estimates

sup
t≥0

(1 + t)
3
4− 1

2N+2
∥∥RN

{u,v}(·, t)
∥∥
L2(R)

≤ CN ,

sup
t≥0

(1 + t)
5
4− 1

2N+2
∥∥∂xRN

{u,v}(·, t)
∥∥
L2(R)

≤ CN .
(3.2)

Furthermore, forn ≥ 1, the functionsg±n satisfyg±n (z) ∼ |z|−2+ 1
2n asz → ±∞.

Remark 9 As will be apparent from the proof of Theorem 8, any hyperbolic-parabolic system of the form

∂tz+ f(z)x = (B(z)zx)x

with admissible nonlinearities in the sense of (the naturalextension of) Definition 1 gives rise to solutions that have
the same asymptotic structure as those of the p-system as long as the following two conditions are satisfied:

1. There exist two matricesS andA, withS non-singular andA diagonal and with eigenvalues of multiplicity1, for
whichSeLt ≈ eL0tS in the sense of Lemma 19 (see Section 7), whereL0 = ∂2

x+A∂x andL = B(0)∂2
x−f ′(0)∂x.

2. The Cauchy problem with initial conditions in the corresponding function space (the natural extension ofB0 to
the problem considered) is well posed and satisfies the analogues of Theorem 6 and Proposition 7.

We now briefly comment on the above assumptions for specific systems such as the ‘full gas dynamics’ and the
MHD system. The intertwining property of item 1 above is proven in [6] for quite general systems, though not in
exactly the same topology as that used in Lemma 19. As for item2, local well-posedness for initial data inB0 is

8



certainly not an issue, the only difficulty is to prove that the various norms of Definition 5 exhibit ‘parabolic-like’
decay ast → ∞. This is very likely to hold, particularly for systems satisfying item 1.

While the variables(a, b) are adapted to the study of the Cauchy problem because of the inherent asymmetry of
spatial regularity in (1.1), they are not the best frameworkfor studying the asymptotic structure of the solutions to
(1.1). It turns out to be more convenient to change variablesto quantities that move along the characteristics. We thus
define

(
u(x, t)
v(x, t)

)
≡
(
T −1 0
0 T

)(
1 1
1 −1

)(
a(x, t)
b(x, t)

)
≡
(
T −1 0
0 T

)
Sz(x, t),

whereT is the translation operator defined by

(T f)(x, t) = f(x+ t, t) or, equivalently, by T̂ f(k, t) = eiktf̂(k, t). (3.3)

Note in passing that

a(x, t) =
1

2
(u(x+ t, t) + v(x− t, t)) and b(x, t) =

1

2
(u(x+ t, t)− v(x− t, t)) .

We then use the fact thatz satisfies the integral equation

Sz(t) = SeLtz0 +
∫ t

0

ds SeL(t−s)

(
0

∂xh(z(s))

)

= eL0tSz0 +
∫ t

0

ds eL0(t−s)S
(

0
∂xg0(z(s))

)
+R[z](t), (3.4)

where

R[z](t) =
(
SeLt − eL0tS

)
z0 +

∫ t

0

ds

[
SeL(t−s)

(
0

∂xh(z(s))

)
− eL0(t−s)S

(
0

∂xg0(z(s))

)]
.

To justify the notation, which suggests thatR[z] = (Ru[z],Rv[z]) is a remainder term, we will prove in Section 7
thatR satisfies the improved decay rates

‖R{u,v}[z]‖2, 34 ⋆ + ‖DR{u,v}[z]‖2, 54 ⋆ ≤ Cǫ0, (3.5)

which follow from the intertwining relationSeLt ≈ eL0tS (see Lemma 19) and the fact thath(z) = g0(z) + h.o.t.

Recalling thatg0 is quadratic (cf. Definition 1), we will write

g0(z) = c+(a+ b)2 − c−(a− b)2 + c3(a+ b)(a− b)

= c+(T u)2 − c−(T −1v)2 + c3(T u)(T −1v)

for z = (a, b). We thus find from (3.4) thatu andv satisfy

u(t) = e∂
2
xt(a0 + b0) + ∂x

∫ t

0

ds e∂
2
x(t−s)

(
c+u(s)

2 − c−T −2v(s)2
)

+ T −1Ru[z](t) + c3∂x

∫ t

0

ds e∂
2
x(t−s)T −1

(
(T u(s))(T −1v(s))

)
, (3.6)

v(t) = e∂
2
xt(a0 − b0) + ∂x

∫ t

0

ds e∂
2
x(t−s)

(
c−v(s)

2 − c+T 2u(s)2
)

+ T Rv[z](t)− c3∂x

∫ t

0

ds e∂
2
x(t−s)T

(
(T u(s))(T −1v(s))

)
. (3.7)

9



Note that, but for the presence of the second lines in (3.6) and (3.7), these expressions are precisely Duhamel’s formula
for the solution of the model problem (1.7), written in termsof u = T −1u+ andv = T u−. The next step is to write

u = u⋆ +RN
u = u0 + u1 +RN

u and v = v⋆ +RN
v = v0 + v1 +RN

v ,

consideringRN
u andRN

v as new ‘unknowns’ and

u0(x, t) =
1√
1 + t

g+0
(

x√
1+t

)
, u1(x, t) =

N∑

n=1

1

(1 + t)1−
1

2n+1

d+n g
+
n

(
x√
1+t

)
,

v0(x, t) =
1√
1 + t

g−0
(

x√
1+t

)
, and v1(x, t) =

N∑

n=1

1

(1 + t)1−
1

2n+1

d−n g
−
n

(
x√
1+t

)
(3.8)

for some coefficients{d±n }Nn=1 and functions{g±n }Nn=0, to be determined later on.
We now use

u2 = (u− u⋆)(u+ u⋆) + u2
⋆ = RN

u (u+ u⋆) + u2
1 + 2u0u1 + u2

0,

v2 = (v − v⋆)(v + v⋆) + v2⋆ = RN
v (v + v⋆) + v21 + 2v0v1 + v20 ,

(T u)(T −1v) = (T RN
u )T −1

(v + v⋆

2

)
+ (T −1RN

v )T
(u+ u⋆

2

)
+ (T u⋆)(T −1v⋆).

Since

g+0 (x) = u0(x, 0), u1(x, 0) =

N∑

n=1

d+n g
+
n (x),

g−0 (x) = v0(x, 0), and v1(x, 0) =

N∑

n=1

d−n g
−
n (x),

we find thatRN
u andRN

v satisfy

RN
u (t) = e∂

2
xt(a0 + b0 − g+0 )

+

[
e∂

2
xtu0(0) + c+∂x

∫ t

0

ds e∂
2
x(t−s)u0(s)

2

]
− u0(t)

+

[
e∂

2
xtu1(0) + 2c+∂x

∫ t

0

ds e∂
2
x(t−s)u0(s)u1(s)

]
− u1(t)

− c−

[
∂x

∫ t

0

ds e∂
2
x(t−s)T −2

(
v0(s)

2 + 2v0(s)v1(s)
) ]

−
N∑

n=1

e∂
2
xtd+n g

+
n

+ R̃u[z,R
N ](t) + T −1Ru[z](t), (3.9)

RN
v (t) = e∂

2
xt(a0 − b0 − g−0 )

+

[
e∂

2
xtv0(0) + c−∂x

∫ t

0

ds e∂
2
x(t−s)v0(s)

2

]
− v0(t)

+

[
e∂

2
xtv1(0) + 2c−∂x

∫ t

0

ds e∂
2
x(t−s)v0(s)v1(s)

]
− v1(t)

− c+

[
∂x

∫ t

0

ds e∂
2
x(t−s)T 2

(
u0(s)

2 + 2u0(s)u1(s)
) ]

−
N∑

n=1

e∂
2
xtd−n g

−
n

+ R̃v[z,R
N ](t) + T Rv[z](t), (3.10)
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where

R̃u[z,R
N ](t) = c+E0[h1,u + h3,u](t)− c−E−2[h1,v + h3,v](t) + c3E−1[h2 + h4](t),

R̃v[z,R
N ](t) = c−E0[h1,v + h3,v](t)− c+E2[h1,u + h3,u](t)− c3E1[h2 + h4](t),

with R
N = (RN

u , RN
v ),

Eσ[h](t) = ∂x

∫ t

0

ds e∂
2
x(t−s) T σh(s),

and

h1,u = RN
u (u+ u⋆), h3,u = u2

1, h2 = (T RN
u )T −1

(v + v⋆

2

)
+ (T −1RN

v )T
(u+ u⋆

2

)
,

h1,v = RN
v (v + v⋆), h3,v = v21 , h4 = (T u⋆)(T −1v⋆).

Note that we can write (3.9) and (3.10) asRN = F [z,RN ]. If we now considerz fixed, we can interpretRN =
F [z,RN ] as an equation forRN which can be solved via a contraction-mapping argument. Namely, we will prove
that if ‖z‖ ≤ Cǫ0, RN 7→ F [z,RN ] defines a contraction map inside the ball

‖RN
u ‖2, 34−ǫ + ‖DRN

u ‖2, 54−ǫ + ‖RN
v ‖2, 34−ǫ + ‖DRN

v ‖2, 54−ǫ ≤ C (3.11)

for ǫ = 2−N−2, provided{g±n }Nn=0 and{d±n }Nn=1 are appropriately chosen.
Basically, we will chooseu0, v0, u1, andv1 in such a way that the second and third lines in (3.9) and (3.10)

vanish. Note that if, for instance, we set the second (respectively, third) lines of (3.9) and (3.10) equal to zero,
the resulting equalities are nothing but Duhamel’s formulae for Burger’s equations foru0 andv0 (respectively, for
linearized Burger’s equations foru1 andv1). Properties of solutions to these types of equations are studied in detail in
Section 4 below.

Onceu0, v0, u1, andv1 are fixed, the time convolutions in the fourth lines of (3.9) and (3.10) can then be viewed
as the solution of inhomogeneous heat equations with very specific inhomogeneous terms. Properties of solutions to
this type of equations are studied in detail in Section 5 below.

Assuming all results of Sections 4 and 5, we now explain how toproceed to prove thatF [z,RN ] defines a con-
traction map.

Obviously, the requirement on{g±n }Nn=0 and{d±n }Nn=1 is that the first four lines in (3.9) and (3.10) satisfy (3.11).
This is achieved in the following way:

1. The first line of (3.9) (respectively, of (3.10)) satisfies(3.11) for anyg±0 such that the total mass ofg±0 is equal
to that ofa0 ± b0, provideda0 ± b0 andg±0 satisfy‖x2(a0 ± b0)‖2 < ∞ and‖x2g±0 ‖2 < ∞. This fixes the
total mass ofg±0 . Note also that we need the estimate‖x2(a0 ± b0)‖2 < ∞. There is no smallness assumption
here, which is to be expected, since, generically,‖x2(a(·, t) ± b(·, t))‖2 will grow as t → ∞. Note, on the
other hand, that Proposition 7 shows that‖x2(a(·, t) ± b(·, t))‖2 remains finite for allt < ∞; thus, requiring
‖x2(a0 ± b0)‖2 < ∞ is acceptable.

2. We can set the second lines in (3.9) and (3.10) equal to zeroby picking foru0 andv0 any solution of Burger’s
equations

∂tu0 = ∂2
xu0 + c+∂x(u0)

2 and ∂tv0 = ∂2
xv0 + c−∂x(v0)

2

(or of the corresponding heat equations if eitherc+ or c− happen to be zero). In Proposition 12, we will prove
that there exist unique functionsu0 andv0 of the form given in (3.8) that satisfy the conditions of item1 above
(total mass and decay properties). This uniquely determinesu0 andv0.

3. We can also set the third lines in (3.9) and (3.10) equal to zero, by picking any solutionsu1 andv1 of the
linearized Burger’s equations

∂tu1 = ∂2
xu1 + 2c+∂x(u0u1) and ∂tv1 = ∂2

xv1 + 2c−∂x(v0v1). (3.12)
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In Proposition 12, we will also prove that there is a choice offunctions{g±n }Nn=1 such thatu1 andv1 in (3.8)
satisfy (3.12) for any choice of the coefficients{d±n }Nn=1. Furthermore, in Proposition 12, we will show that the
choice of functions can be made in such a way thatg±n (x) have Gaussian tails asx → ∓∞ and algebraic tails as
x → ±∞, which actually completely determinesg±n (x), up to multiplicative constants. (This last indeterminacy
will be removed when the coefficients{d±n }Nn=1 are fixed.)

4. We then further decompose the terms involvingg±n in the fourth lines in (3.9) and (3.10) asg±n (x) = fn(∓x) +
R±

n (x). The definition and properties offn(x) are given in Lemma 10. In particular, in Proposition 12, we will
prove thatR±

n (x) have zero total mass and Gaussian tails as|x| → ∞, which implies thate∂
2
xtR±

n also satisfy
(3.11).

5. Finally, in Section 5, we will show that the time convolution part of the fourth lines in (3.9) and (3.10) can be
split into linear combinations ofe∂

2
xtfn(∓x) with n = 1 . . . N + 1, plus a remainder that satisfies (3.11). The

coefficients{d±n }Nn=1 can then be defined recursively by requiring that all the terms withn = 1 . . . N coming
from the time convolution are canceled by those coming from item 4 above. This can always be done, as the
coefficient ofe∂

2
xtfm(∓x) in the time convolution part in the fourth lines in (3.9) and (3.10) depends only on

g±0 if m = 1 and ond±m−1 if m > 1. The only term that cannot be set to zero is the last term in thelinear
combination (the one withn = N + 1), which is the one that ‘drives’ the equations and fixesǫ = 2−N−2.

The procedure outlined in 1–5 takes care of the first four lines in (3.9) and (3.10). We will then prove in Section 7
that the termsR{u,v}[z] satisfy (3.11) and that

1∑

α=0

∥∥DαR̃{u,v}[z,R
N ]
∥∥
2, 34+

α
2 −ǫ

≤ Cǫ0

1∑

α=0

‖Dα
R

N‖2, 34+α
2 −ǫ + C, (3.13)

1∑

α=0

∥∥Dα
(
R̃{u,v}[z,R

N
1 ]− R̃{u,v}[z,R

N
2 ]
)∥∥

2, 34+
α
2 −ǫ

≤ Cǫ0

1∑

α=0

‖Dα(RN
1 −R

N
2 )‖2, 34+α

2 −ǫ. (3.14)

This finally proves thatF [z,RN ] defines a contraction map and that the solution ofR
N = F [z,RN ] satisfies (3.11),

which completes the proof of Theorems 2 and 8.�

4 Burger-type equations

In this section, we consider particular solutions of Burger-type equations

∂tu0 = ∂2
xu0 + γ∂xu

2
0, (4.1)

∂tu
±
n = ∂2

xu
±
n + 2γ∂x(u0u

±
n ) (4.2)

of the form

u0(x, t) =
1√
1+t

g0
(

x√
1+t

)
and u±

n (x, t) =
1

(1+t)
1− 1

2n+1
g±n
(

x√
1+t

)
. (4.3)

We will show that, for fixedM(u0) =
∫

∞

−∞

dx u0(x, t) =
∫

∞

−∞

dx g0(x) small enough, there is a unique choice ofg0

andg±n such thatg±n (x) = fn(∓x) +R±
n (x), where

fn(z) =

∫ ∞

z

dξ
ξe−

ξ2

4

(ξ − z)1−
1
2n

(4.4)

andR±
n has zero mean and Gaussian tails as|x| → ∞. In particular,g±n (x) decays algebraically asx → ±∞, as is

apparent from (4.4).
Before proceeding to our study of (4.1) and (4.2), we prove key properties of the functionsfn.
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Lemma 10 Fix 1 ≤ n < ∞. The functionfn is the unique solution of

∂2
zfn(z) +

1
2z∂zfn(z) +

(
1− 1

2n+1

)
fn(z) = 0, with

fn(0) = 2
1
2n Γ
(
1+2−n

2

)
and lim

z→∞
z−1+ 1

2n e
z2

4 fn(z) < ∞.
(4.5)

Moreover,fn satisfies
∫

∞

−∞

dz fn(z) = 0, and there exists a constantC(n) such that

sup
z∈R

2∑

m=0

ρ 1
2n −m,1+m− 1

2n
(z)|∂m

z (zfn(z) + 2∂zfn(z)) | ≤ C(n),

sup
z∈R

3∑

m=0

ρ 1
2n −1−m,2+m− 1

2n
(z)|∂m

z fn(z)| ≤ C(n),

(4.6)

where

ρp,q(z) =

{
(1 + z2)

p
2 e

z2

4 if z ≥ 0,

(1 + z2)
q
2 if z ≤ 0.

Proof. We first note thatfn can be written as

fn(z) =

∫ ∞

0

dξ
(ξ + z)e−

(ξ+z)2

4

ξ1−
1
2n

= −2

∫ ∞

0

dξ ξ
1
2n −1∂ξ

(
e−

(z+ξ)2

4

)
. (4.7)

This shows thatfn solves (4.5), since, by definingLf ≡ ∂2
zf + 1

2z∂zf + (1− 1
2n+1 )f , we find

Lfn(z) =
∫ ∞

0

dξ
[
ξ

1
2n ∂2

ξ

(
e−

(z+ξ)2

4

)
− 1

2n+1 (−2)ξ
1
2n −1∂ξ

(
e−

(z+ξ)2

4

)]
= 0.

As fn(z) is obviously finite for all finitez, we only need to prove thatfn satisfies the correct decay properties
as |z| → ∞ so that (4.6) holds. It is apparent from (4.4) thatfn decays like a (modified) Gaussian asz → ∞ and

algebraically asz → −∞. Furthermore, substitutingf(z) = C|z|p1 andf(z) = C|z|p2e−
z2

4 into Lf = 0 shows that
the only decay rates compatible withLf = 0 arep1 = −2 + 1

2n andp2 = 1− 1
2n .

We now complete the proof of the decay estimates in (4.6). LetFn,m(ξ, z) = ∂m
z ((ξ+z)e−

(ξ+z)2

4 ) andGn,m(ξ, z) =
∂m
z (zFn(ξ, z) + 2∂zFn(ξ, z)).

We first consider the case whenz > 0 and note thatFn,m andGn,m satisfy

|Fn,m(ξ, z)| ≤ |Fn,m(0, z)| and |Gn,m(ξ, z)| ≤ |Gn,m(0, z)|

for all ξ ≥ 0 if z ≥ z0 for somez0 large enough. We thus find, e.g.,

|fn(z)| =
∣∣∣∣
∫ ∞

0

dξ Fn,0(ξ, z)ξ
1
2n −1

∣∣∣∣ ≤ |Fn,0(0, z)|
∫ z−1

0

dξ ξ
1
2n −1 + z1−

1
2n

∫ ∞

z−1

dξ |Fn,0(ξ, z)| ≤ Cz1−
1
2n e−

z2

4 .

The estimates on|∂m
z (zfn(z) + 2∂zfn(z))| and |∂1+m

z fn(z)| for z > 0 andm ≥ 1 can be obtained in exactly the
same way; hence, we omit the details.

We now consider the case whenz < 0 and note thatFn,m andGn,m satisfy

|Fn,m(ξ, z)| ≤
∣∣Fn,m

(
− z

2 , z
)∣∣ and |Gn,m(ξ, z)| ≤

∣∣Gn,m

(
− z

2 , z
)∣∣ ,

respectively, for all0 ≤ ξ ≤ − z
2 if z ≤ −z0 for somez0 large enough. We thus have (integrating by parts in the

second integral below)

|fn(z)| =
∣∣∣∣
∫ ∞

0

dξ Fn,0(ξ, z)ξ
1
2n −1

∣∣∣∣ ≤
∣∣Fn,0

(
− z

2 , z
)∣∣
∫ − z

2

0

dξ ξ
1
2n −1 +

∣∣∣∣
∫ ∞

− z
2

dξ Fn,0(ξ, z)ξ
1
2n −1

∣∣∣∣
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≤ C|z| 1
2n −1e−

z2

16 + 2
(
1− 1

2n

) ∫ ∞

− z
2

dξ e−
(ξ+z)2

4 ξ
1
2n −2 ≤ C|z| 1

2n −2.

Since the remaining estimates can again be obtained in exactly the same way, we omit the details. It only remains to
show thatfn(z) has zero total mass; this follows from

∫ ∞

−∞
dz fn(z) =

(
1
2 − 1

2n+1

)−1
∫ ∞

−∞
dz Lfn(z) = 0,

since∂2
zfn, z∂zfn, andfn are all integrable overR.

Remark 11 Using the representation in (4.7), splitting the integration interval into[0, 2−
n
2 ) and[2−

n
2 ,∞), integrat-

ing by parts, and lettingn → ∞, one can prove that

lim
n→∞

2−nfn(z) = ze−
z2

4 ,

which shows that the constantC(n) in (4.6) grows at most like2n.

We can now study in detail the solutions of (4.1) and (4.2) that are of the form (4.3).

Proposition 12 Fix 1 ≤ n < ∞. For all α, γ ∈ R with |αγ| small enough, there exist unique functionsu0 andu±
n of

the form (4.3) that solve (4.1) and (4.2), withg0 satisfying

∫ ∞

−∞
dz g0(z) = α and

3∑

m=0

e
z2

4

(
√
1 + z2)m

|∂m
z g0(z)| ≤ C|α|

and withg±n (z) = fn(∓z) +R±
n (z), whereR±

n satisfy

∫ ∞

−∞
dz R±

n (z) = 0 and sup
z∈R

3∑

m=0

e
z2

4

(
√
1 + z2)1+m− 1

2n
|∂m

z R±
n (z)| ≤ C|αγ|.

Proof. The (unique) solution of (4.1) of the formu0(x, t) =
1√
1+t

g0(
x√
1+t

) that satisfies
∫

∞

−∞

dz g0(z) = α is given

by

g0(z) =
tanh(αγ2 )e−

z2

4

γ
√
π(1 + tanh(αγ2 )erf( z2 ))

.

In particular, we have

3∑

m=0

e
z2

4

(
√
1 + z2)m

|∂m
z g0(z)| ≤ C|α|. (4.8)

Next, we note that substitution of (4.3) into (4.2) gives

0 = ∂2
zg

±
n (z) +

1
2z∂zg

±
n (z) + (1− 1

2n+1 )g
±
n (z) + 2γ∂z(g0(z)g

±
n (z))

≡ Lg±n (z) + 2γ∂z(u0(z)g
±
n (z)). (4.9)

Formally (using integration by parts), we find
∫ ∞

−∞
dz g±n (z) =

(
1
2 − 1

2n+1

)−1
∫ ∞

−∞
dz Lg±n (z) + 2γ∂z(u0(z)g

±
n (z)) = 0, (4.10)

14



which shows thatg±n have zero total mass,provided the formal manipulations above are justified, i.e., providedg±n
and its derivatives decay fast enough so that the integrals are convergent.

As is easily seen,fn(z) andfn(−z) are two linearly independent solutions ofLf = 0, whose general solution
can thus be written asc1fn(z)+ c2fn(−z). Using the variation of constants formula, we find that the solution of (4.9)
satisfies the integral equation

g±n (z) = fn(z)

(
c±1 + 2γ

∫ z

0

dξ
fn(−ξ)∂ξ(g0(ξ)g

±
n (ξ))

W (ξ)

)
+ fn(−z)

(
c±2 − 2γ

∫ z

0

dξ
fn(ξ)∂ξ(g0(ξ)g

±
n (ξ))

W (ξ)

)
,

where the WronskianW (z) is given byW (z) = fn(z)∂zfn(−z)−fn(−z)∂zfn(z) andc±1 andc±2 are free parameters.

Note thatW (z) satisfies∂zW (z) = − z
2W (z) and, hence,W (z) = W (0)e−

z2

4 for someW (0) 6= 0. We now define
c±1 andc±2 in such a way that (after integration by parts), we have

g±n (z) = fn(∓z) +R[g±n ](z), (4.11)

R[g±n ](z) =
γ

W (0)fn(z)

∫ z

−∞
dξ e

ξ2

4 (ξfn(−ξ) + 2∂ξfn(−ξ))g0(ξ)g
±
n (ξ)

+ γ
W (0)fn(−z)

∫ ∞

z

dξ e
ξ2

4 (ξfn(ξ) + 2∂ξfn(ξ))g0(ξ)g
±
n (ξ).

By using Lemma 10 and (4.8), it is then easy to show that, for|αγ| small enough, (4.11) defines a contraction map in
the norm

|f |2− 1
2n

≡ sup
z∈R

(
√

1 + z2)2−
1
2n |f(z)|.

Namely, we have the improved decay rates

sup
z∈R

1∑

m=0

e
z2

4

(
√
1 + z2)1+m− 1

2n
|∂m

z R[g±n ](z)| ≤ C|αγ| |g±n |2− 1
2n

.

This shows that (4.11) has a (locally) unique solution amongfunctions with|f |2− 1
2n

≤ c0 if |αγ| is small enough. In
particular, there holds

sup
z∈R

1∑

m=0

e
z2

4

(
√
1 + z2)1+m− 1

2n
|∂m

z R[g±n ](z)| ≤ C|αγ|,

from which we deduce, using again (4.11) and Lemma 10, that|Dg±n |3− 1
2n

≤ c1 and, thus, that

sup
z∈R

e
z2

4

(
√
1 + z2)3−

1
2n

|∂2
zR[g±n ](z)| ≤ C|αγ|.

Iterating this procedure shows that|Dmg±n |2+m− 1
2n

≤ cm and that

sup
z∈R

3∑

m=0

e
z2

4

(
√
1 + z2)1+m− 1

2n
|∂m

z R[g±n ](z)| ≤ C|αγ|,

as claimed. In turn, this proves that the formal manipulations in (4.10) are justified; hence, the functionsg±n (z)
have zero total mass, which shows that the remaindersR[g±n ](z) have zero total mass, as claimed, sinceR[g±n ](z) =
g±n (z)− fn(±z) and since bothg±n (z) andfn(z) have zero total mass.

15



5 Inhomogeneous heat equations

In this section, we consider solutions of inhomogeneous heat equations of the form

∂tu = ∂2
xu+ ∂x

(
(1 + t)

1
2n − 3

2 f
(
x−2σt√

1+t

))
, u(x, 0) = 0, (5.1)

wheref is a regular function having Gaussian decay at infinity. Solutions of (5.1) satisfy the following theorem.

Theorem 13 Let1 ≤ n < ∞, σ = ±1, Ξ(x) = e
x2

8 , M(f) =
∫

∞

−∞

dz f(z), and

un(x, t) =
σ

(1+t)
1− 1

2n+1

2−1− 1
2n√

4π
fn
( −σx√

1+t

)
, with fn(z) =

∫ ∞

z

dξ
ξe−

ξ2

4

(ξ − z)1−
1
2n

. (5.2)

The solutionu of (5.1) satisfies

‖u−M(f)un‖2, 34 ⋆ + ‖D(u−M(f)un)‖2, 54 ⋆ ≤ C

2∑

m=0

‖ΞDmf‖∞ (5.3)

for all f such that the r.h.s. of (5.3) is finite.

Remark 14 Note that, whileu → M(f)un as t → ∞ in the Sobolev norm (5.3), it does not converge in spatially
weighted norms such asL2(R, x2dx), asun has infinite spatial moments for all times, while all momentsof u are
bounded for finite time.

Proof. We first define

F (ξ) =

∫ ξ

−∞
dz
(
f(z)−M(f) e−

z2

4√
4π

)
, with M(f) =

∫ ∞

−∞
dz f(z), (5.4)

and note thatF satisfies

‖D3F‖1 +
2∑

m=0

‖ρDmF‖1 +
2∑

m=1

‖DmF‖2 ≤ C

2∑

m=0

‖ΞDmf‖∞, (5.5)

whereρ(x) =
√
1 + x2. Namely, we first note that‖ρF‖1 ≤ ‖F̂‖2 + ‖F̂ ′′‖2 andF̂ (k) = (ik)−1(f̂(k)− f̂(0)e−k2

).
Then,F̂ is regular neark = 0, since‖Ξf‖∞ < ∞ implies thatf̂ is analytic. The proof of (5.5) now follows from
elementary arguments.

Finally, it follows from (5.4) that

(1 + t)
1
2n − 3

2 f
(
x−2σt√

1+t

)
= M(f) A(x, t) + ∂xB(x, t), where

A(x, t) =
(1 + t)

1
2n − 3

2√
4π

e−
(x−2σt)2

4(1+t) ,

B(x, t) = (1 + t)
1
2n −1∂xF

(
x−2σt√

1+t

)
. (5.6)

The proof of (5.3) is then completed by considering separately the solutions of heat equations with inhomogeneous
terms given by∂xA(x, t) and∂2

xB(x, t). This is done in Propositions 15 and 16 below.

Proposition 15 Letσ = ±1, 1 ≤ n < ∞, and letun be defined as in (5.2). Then, the solutionu of

∂tu = ∂2
xu+ ∂xA, u(x, 0) = 0, (5.7)

with A defined as in (5.6), satisfies

‖u− un‖2, 34 + ‖D(u− un)‖2, 54 ≤ C. (5.8)
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Proof. The solution of (5.7) is given by

u(x, t) = ∂x

∫ t

0

ds

∫ ∞

−∞
dy

e−
(x−y)2

4(t−s)

√
4π(t− s)

e−
(y−2σs)2

4(1+s)

√
4π(1 + s)

3
2− 1

2n
. (5.9)

To motivate our result, we note that, performing they-integration and changing variables froms to ξ ≡ 2s−σx√
1+t

in (5.9),
we find

lim
t→∞

(1 + t)1−
1

2n+1 u(−σz
√
1 + t, t) = lim

t→∞
σ2−1− 1

2n√
4π

∫ 2t√
1+t

+z

z

dξ ξe−
ξ2

4

(ξ−z+ 2√
1+t

)1−
1
2n

= σ2−1− 1
2n√

4π
fn(z).

More formally, taking the Fourier transform of (5.9), we obtain

û(k, t) = ike−k2(1+t)

∫ t

0

ds
e2ikσs

(1 + s)1−
1
2n

.

We now make use of
∣∣∣∣
∫ t

0

ds
e2ikσs

(1 + s)1−
1
2n

−
∫ t

0

ds
e2ikσs

s1−
1
2n

∣∣∣∣ ≤ C(n),

∫ t

0

ds
e2ikσs

s1−
1
2n

= |k|− 1
2n
(
θ(σk)Jn(|k|t) + θ(−σk)Jn(|k|t)

)
,

whereθ(k) is the Heaviside step function and we defined

Jn(z) =

∫ z

0

ds
e2is

s1−
1
2n

for z ≥ 0. The functionJn satisfies

sup
z≥0

z1−
1
2n |Jn(z)− Jn,∞| ≤ 1

2
for Jn,∞ = lim

z→∞
Jn(z).

Now, defining

ûn(k, t) = ike−k2(1+t)|k|− 1
2n
(
θ(σk)Jn,∞ + θ(−σk)Jn,∞

)
, (5.10)

we have

|û(k, t)− ûn(k, t)| ≤
(
C(n)|k|+ t−1+ 1

2n
)
e−k2(1+t) ≤ C̃(n)√

t
e−

k2(1+t)
2 , (5.11)

from which (5.8) follows by direct integration. The proof iscompleted by showing that the inverse Fourier transform
of the functionûn(k, t) defined in (5.10) satisfies

un(x, t) =
σ

(1+t)
1− 1

2n+1

2−1− 1
2n√

4π
fn
( −σx√

1+t

)
for fn(z) =

∫ ∞

z

dξ
ξe−

ξ2

4

(ξ − z)1−
1
2n

. (5.12)

This follows easily from the fact that

ûn(k, t) = (1 + t)−
1
2+

1

2n+1 ûn(k
√
1 + t, 0),

and that, with

fn(z) =

∫ ∞

0

dξ
(z + ξ)e−

(z+ξ)2

4

ξ1−
1
2n

,

17



we obtain

σ2−1− 1
2n√

4π
f̂n(−σk) = 2−

1
2n ike−k2

∫ ∞

0

dξ
eikσξ

ξ1−
1
2n

= ike−k2 |k|− 1
2n

∫ ∞

0

dξ
e2isign(kσ)ξ

ξ1−
1
2n

= ike−k2 |k|− 1
2n
(
θ(kσ)Jn,∞ + θ(−kσ)Jn,∞

)
= ûn(k, 0),

as claimed.

Proposition 16 Letσ = ±1, 1 ≤ n < ∞, and letρ(x) =
√
1 + x2. Then, the solutionu of

∂tu = ∂2
xu+ ∂2

xB, u(x, 0) = 0, (5.13)

with B defined as in (5.6), satisfies

‖u‖2, 34 ⋆ + ‖Du‖2, 54 ⋆ ≤ C

(
‖D3F‖1 +

2∑

m=0

‖ρDmF‖1 +
2∑

m=1

‖DmF‖2
)

(5.14)

for all F for which the r.h.s. of (5.14) is finite.

Proof. We first note that the Fourier transform ofu is given by

û(k, t) = −k2
∫ t

0

ds e−k2(t−s)−2ikσsF̂ (k
√
1 + s)(1 + s)

1
2n − 1

2 ,

which implies that

‖(1−Q)u‖2, 34 + ‖(1−Q)Du‖2, 54 ≤ C
(
‖DF‖2 + ‖D2F‖2

)
sup

0≤t≤1

∫ t

0

ds√
t− s

.

Here,Q is again defined as the characteristic function fort ≥ 1. Next, integrating by parts, we find

û(k, t) =
ikF̂ (k)e−k2t

2σ
− ikF̂ (k

√
1 + t)e−2ikσt

2σ(1 + t)
1
2− 1

2n
+ N̂(k, t),

where

N̂(k, t) =
ik

2σ

∫ t

0

ds e−k2(t−s)−2ikσs
(
k2 + ∂s

) ( F̂ (k
√
1 + s)

(1 + s)
1
2− 1

2n

)
.

We then note that

‖u−N‖2, 34 + ‖D(u−N)‖2, 54 ≤ C
(
‖F‖1 + ‖DF‖2 + ‖D2F‖2

)

and that, by defininĝG(k) = 1
2∂kF̂ (k), we haveN̂(k, t) = N̂0(k, t) + N̂1(k, t) + N̂2(k, t), where

N̂0(k, t) =
ik3

2σ

∫ t

0

ds e−k2(t−s)−2ikσs

(
F̂ (k

√
1 + s)

(1 + s)
1
2− 1

2n

)
,

N̂1(k, t) =
ik2

2σ

∫ t

0

ds e−k2(t−s)−2ikσs

(
Ĝ(k

√
1 + s)

(1 + s)1−
1
2n

)
,

N̂2(k, t) =
ik

2σ

(
1
2n − 1

2

) ∫ t

0

ds e−k2(t−s)−2ikσs

(
F̂ (k

√
1 + s)

(1 + s)
3
2− 1

2n

)
.
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The procedure is now similar to that outlined in the proof of Theorem 6: we split the integration intervals into[0, t
2 ]

and[ t2 , t], and distribute the derivatives (k-factors) either on the functionsF andG or on the Gaussian. By introducing
the notation

B1

[p1,q1

p2,q2

]
(t) ≡

∫ t
2

0

ds
(1 + s)−q1

(t− s)p1
+

∫ t

t
2

ds
(1 + s)−q2

(t− s)p2
, (5.15)

we then find that

‖QDαN0‖2, 34+α
2
≤ C

(
‖F‖1 + ‖D2+αF‖1

)
sup
t≥1

t
3
4+

α
2 B1

[ 7
4+

α
2 ,0

3
4 ,1+

α
2

]
(t),

‖QDαN1‖2, 34+α
2
≤ C

(
‖G‖1 + ‖D1+αG‖1

)
sup
t≥1

t
3
4+

α
2 B1

[ 5
4+

α
2 , 12

3
4 ,1+

α
2

]
(t),

‖QDαN2‖2, 34+α
2

⋆ ≤ C
(
‖F‖1 + ‖DαF‖1

)
sup
t≥1

t
3
4+

α
2

ln(2 + t)
B1

[ 3
4+

α
2 ,1

3
4 ,1+

α
2

]
(t)

for α = 0, 1. The proof is completed by a straightforward application ofLemma 18 below, where we consider
generalizations of the functionB1 in (5.15), since those will occur later on, in Sections 6 and 7(see Definition 17
below).

6 Proof of Theorem 6, continued

In view of the estimates oneLt andh in (2.6) and (2.8), respectively, the estimates needed to conclude the proof of
Theorem 6 will naturally involve the functionsB0 andB, which are defined as follows.

Definition 17 We define

B0[q](t) =

∫ t

0

ds
e−

t−s
8√

t− s(1 + s)q
,

B
[p1,q1,r1

p2,q2,r2,r3

]
(t) =

∫ t
2

0

ds
(1 + s)−q1

(t− s)p1(t− 1 + s)r1
+

∫ t

t
2

ds
(1 + s)−q2 ln(2 + s)r3

(t− s)p2(t− 1 + s)r2
. (6.1)

These functions satisfy the following estimates.

Lemma 18 Let0 ≤ p2 < 1, 0 ≤ r2 ≤ 1− p2, p1, q1, q2, r1 ≥ 0, andr3 ∈ {0, 1}. There exists a constantC such that
for all t ≥ 0, there holds

B0[q1](t) ≤ C(1 + t)−q1 ,

B
[p1,q1,r1

p2,q2,r2,r3

]
(t) ≤ C ln(2 + t)α

{
1

(1+t)β
if 0 ≤ p1 ≤ 1,

1
tp1−1 (1+t)β−p1+1 if p1 > 1,

(6.2)

whereβ = min{p1+min{q1−1, 0}+r1, p2+q2+r2−1}, α = max(δq1,1, δp2+r2,1+r3), andδi,j is the Kronecker
delta. Furthermore, since

B1

[p1,q1

p2,q2

]
(t) = B

[p1,q1,0

p2,q2,0,0

]
(t),

the estimate in (6.2) applies forB1, as well.

Proof. The proof follows immediately from

B0[q1](t) ≤ e−
t
16

∫ t
2

0

ds√
t− s

+
1

( t2 + 1)q1

∫ t
2

0

ds
e−

s
8√
s
,
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B
[p1,q1,r1

p2,q2,r2,r3

]
(t) ≤ 1

( t2 )
p1( t2 + 1)r1

∫ t
2

0

ds

(1 + s)q1
+

ln(2 + t)r3

( t2 + 1)q2

∫ t
2

0

ds

sp2(1 + s)r2
,

and straightforward integrations.
We can now complete the proof of Theorem 6.

Proof of Theorem 6, continued.First, we recall that our goal is to prove that the mapN defined by

N [z](t) =

∫ t

0

ds eL(t−s)

(
0

∂xh(z(s))

)
(6.3)

satisfies‖N [z]‖ ≤ C for all z ∈ B with ‖z‖ = 1. The estimate‖PDN [z]‖2, 34 ≤ C has already been proven. The
other necessary estimates are obtained as follows:

‖N̂ [z]‖∞,0 ≤ C sup
t≥0

B1

[ 1
2 ,

1
2

1
2 ,

1
2

]
(t) ≤ C,

‖N [z]‖2, 14 ≤ C sup
t≥0

(1 + t)
1
4B1

[ 1
2 ,

3
4

1
2 ,

3
4

]
(t) ≤ C,

‖PDN [z]‖2, 34 ≤ C sup
t≥0

(1 + t)
3
4B1

[1, 34
1
2 ,

5
4

]
(t) ≤ C,

‖(1− P)DN [z]‖2, 34 ≤ sup
t≥0

(1 + t)
3
4B0[

5
4 ](t) ≤ C,

‖(1−Q)PD2N [z]2‖2, 54 ⋆ ≤ C‖(1−Q)PDN [z]2‖2, 34 ≤ C‖PDN [z]2‖2, 34 ≤ C, (6.4)

‖QPD2N [z]2‖2, 54 ⋆ ≤ C sup
t≥1

(1+t)
5
4

ln(2+t) B
[ 3

2 ,
3
4 ,0

1
2 ,

5
4 ,

1
2 ,0

]
(t) ≤ C, (6.5)

‖(1− P)D2N [z]2‖2, 54 ⋆ ≤ sup
t≥0

(1 + t)
5
4B0[

5
4 ](t) ≤ C. (6.6)

In (6.4), we applied the obvious estimates‖PDf‖2 ≤ ‖Pf‖2 and‖(1 − Q)f‖2,p ≤ 2p−q‖(1 − Q)f‖2,q for q < p,
while in (6.5), we made use of sup

|k|≤1,t≥0

|k|
√
1 + te−k2t ≤ 1, and finally, in (6.6), we usedsupk∈R

|k|(1+k2)−
1
2 = 1.

Incidentally, (6.6) is the only place in the above estimateswhere the (crucial) presence of the extra factor(1 + k2)−
1
2

in the second component of the r.h.s. of (2.6) is used. This concludes the proof of Theorem 6.

7 Remainder estimates

We now make precise the sense in which the semigroupeLt is closeto that of (2.3), whose Fourier transform is given
by

eL0t ≡
(
e−k2t+ikt 0

0 e−k2t−ikt

)
. (7.1)

Lemma 19 LetP be the Fourier multiplier with the characteristic functionon [−1, 1], let eLt (respectively,eL0t) be
as in (2.2) (respectively, (7.1)), and letS be defined as in (2.4). Then, one has the estimates

sup
t≥0,k∈R

√
1 + te

k2t
2

∣∣∣
(
PSeLt − eL0tS

)
i,j

∣∣∣ ≤ C, (7.2)

where(PSeLt − eL0tS)i,j denotes the(i, j)-entry in the matrixPSeLt − eL0tS.

Proof. The proof follows by considering separately|k| ≤ 1 and|k| > 1. We first write

PSeLt − eL0tS = P
(
SeLt − eL0tS

)
+ (1− P)eL0tS.
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We then have

sup
t≥0,k∈R

√
1 + te

k2t
2

∣∣∣
(
(1− P)eL0tS

)
i,j

∣∣∣ ≤ sup
t≥0,|k|≥1

√
1 + te−

k2t
2 ≤ C.

For |k| ≤ 1, we first compute

eL0tS = e−k2t

(
eikt eikt

e−ikt −e−ikt

)
,

SeLt = e−k2t

(
cos(kt∆) + 1−ik

∆ i sin(kt∆) cos(kt∆) + 1+ik
∆ i sin(kt∆)

cos(kt∆)− 1+ik
∆ i sin(kt∆) −

(
cos(kt∆)− 1−ik

∆ i sin(kt∆)
)
)
,

where we recall that∆ =
√
1− k2. Next, we note that

P| sin(kt∆)− sin(kt)|+ P| cos(kt∆)− cos(kt)| ≤ P| cos(kt(∆− 1))− 1|+ P| sin(kt(∆− 1))|
≤ P

∣∣√1− k2 − 1
∣∣ |k|t ≤ P|k|3t,

P
∣∣( 1

∆ − 1
)
sin(kt∆)

∣∣ ≤ P
∣∣√1− k2 − 1

∣∣ |k|t ≤ P|k|3t.

The proof is completed by noting that

sup
|k|≤1,t≥0

t
m
2 |k|ne− k2t

2 ≤ C(n)

for any (finite)0 ≤ m ≤ n.
We are now in a position to prove that the remainder

R[z](t) =
(
SeLt − eL0tS

)
z0 +

∫ t

0

ds

[
SeL(t−s)

(
0

∂xh(z(s))

)
− eL0(t−s)S

(
0

∂xg0(z(s))

)]

satisfies improved estimates, as stated in (3.5):

Theorem 20 Let ǫ0 be again the (small) constant provided by Theorem 6. Then, for all z0 ∈ B0 with |z0| ≤ ǫ0, the
solutionz of (1.1) satisfies

‖R[z]‖2, 34 ⋆ + ‖DR[z]‖2, 54 ⋆ ≤ Cǫ0. (7.3)

Proof. We first note that
(
SeLt − eL0tS

)
z0 =

(
SPeLt − eL0tS

)
z0 + S(1− P)eLtz0 ≡ L1[z0](t) + L2[z0](t)

and then use the fact that, by Lemma 19, we have

‖DαL1[z0]‖2, 34+α
2
≤ C sup

t≥0
(1 + t)

1
4+

α
2 min

{
‖Dα

z0‖2, t−
1
4−α

2 ‖ẑ0‖∞
}
≤ C|z0|

for α = 0, 1, and, finally,

‖L2[z0]‖2, 34 + ‖DL2[z0]‖2, 54 ≤ C
(
‖z0‖2 + ‖Dz0‖2

)
sup
t≥0

(1 + t)
5
4 e−

t
4 ≤ C|z0|.

This proves
∥∥(SeLt − eL0tS

)
z0

∥∥
2, 34

+
∥∥D
(
SeLt − eL0tS

)
z0

∥∥
2, 54

≤ C|z0|
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for all z0 ∈ B0. We then show that
∥∥R[z](t)−

(
SeLt − eL0tS

)
z0

∥∥
2, 34

⋆ +
∥∥D
(
R[z](t)−

(
SeLt − eL0tS

)
z0

)∥∥
2, 54

⋆ ≤ C‖z‖2

for all z ∈ B. We only need to prove the estimates for‖z‖ = 1. We first decompose

R[z](t)−
(
SeLt − eL0tS

)
z0 = SN1[z](t) + SN2[z](t) +N3[z](t), (7.4)

where

N1[z](t) = (1− P)

∫ t

0

ds eL(t−s)

(
0

∂xh(z(s))

)
,

N2[z](t) = P

∫ t

0

ds eL(t−s)

(
0

∂xh(z(s))− ∂xg0(z(s))

)
,

N3[z](t) =

∫ t

0

ds
(
PSeL(t−s) − eL0(t−s)S

)( 0
∂xg0(z(s))

)
.

We then recall thath(z) satisfies

‖h(z)‖2, 34 + ‖Dh(z)‖2, 54 ≤ C‖z‖2,

which implies that

‖N1[z]‖2, 34 ≤ C sup
t≥0

(1 + t)
3
4B0[

3
4 ](t) ≤ C and ‖DN1[z]‖2, 54 ≤ C sup

t≥0
(1 + t)

5
4B0[

5
4 ](t) ≤ C.

Moreover,h0(a, b) ≡ f(a, b)∂xb+ g(a, b)− g0(a, b) satisfies

‖h0(z)‖1,1 + ‖Dh0(z)‖1, 32 ⋆ ≤ C‖z‖2.

Here, we need to consider separatelyt ∈ [0, 1] andt ≥ 1 when estimating‖PDN2[z]‖2, 54 ⋆ . Writing againQ for the
characteristic function fort ≥ 1, we find that

‖PN2[z]‖2, 34 ⋆ ≤ C sup
t≥0

(1+t)
3
4

ln(2+t)B1

[ 3
4 ,1
3
4 ,1

]
(t) ≤ C,

‖(1−Q)PDN2[z]‖2, 54 ⋆ ≤ C sup
0≤t≤1

(1 + t)
5
4 B1

[ 3
4 ,

3
2

3
4 ,

3
2

]
(t) ≤ C,

‖QPDN2[z]‖2, 54 ⋆ ≤ C sup
t≥1

(1+t)
5
4

ln(2+t) B
[ 5

4 ,1,0
3
4 ,

3
2 ,0,1

]
(t) ≤ C.

We finally note that

‖g0(z)‖2, 34 + ‖Dg0(z)‖2, 54 ≤ C‖z‖2;

hence, using Lemma 19, we find

‖N3[z]‖2, 34 ⋆ ≤ sup
t≥0

(1+t)
3
4

ln(2+t) B
[ 1

2 ,
3
4 ,

1
2

1
2 ,

3
4 ,

1
2 ,0

]
(t) ≤ C,

‖DN3[z]‖2, 54 ⋆ ≤ sup
t≥0

(1+t)
5
4

ln(2+t) B
[1, 34 , 12

1
2 ,

5
4 ,

1
2 ,0

]
(t) ≤ C.

This completes the proof.
It now only remains to prove the estimates (3.13) and (3.14) on the maps̃R{u,v}, where we recall that

R̃u[z,R
N ](t) = c+E0[h1,u + h3,u](t)− c−E−2[h1,v + h3,v](t) + c3E−1[h2 + h4](t),
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R̃v[z,R
N ](t) = c−E0[h1,v + h3,v](t)− c+E2[h1,u + h3,u](t)− c3E1[h2 + h4](t),

with

Eσ[h](t) = ∂x

∫ t

0

ds e∂
2
x(t−s) T σh(s)

and

h1,u = RN
u (u+ u⋆), h3,u = u2

1, h2 = (T RN
u )T −1

(v + v⋆

2

)
+ (T −1RN

v )T
(u+ u⋆

2

)
,

h1,v = RN
v (v + v⋆), h3,v = v21 , h4 = (T u⋆)(T −1v⋆).

Here, we will only prove

1∑

α=0

∥∥DαR̃{u,v}[z,R
N ]
∥∥
2, 34+

α
2 −ǫ

≤ Cǫ0

1∑

α=0

‖Dα
R

N‖2, 34+α
2 −ǫ + C. (7.5)

It is then straightforward to show (3.14), namely, that the mapsR̃{u,v} are Lipschitz in their second argument; we
omit the details.

To prove (7.5), we first need estimates onh1 = (h1,u, h1,v), h2, h3 = (h3,u, h3,v), andh4. We note that
u0 = (u0, v0) andu1 = (u1, v1) satisfy

‖u0‖1,0 + ‖u1‖1,0 + ‖Du0‖1, 12 + ‖Du1‖1, 12 ≤ C,

sup
t≥0

(1 + t)
3
2

(
|u0(±t, t)|+ |u1(±t, t)|

)
+ (1 + t)2

(
|Du0(±t, t)|+ |Du1(±t, t)|

)
≤ C

for some constantC; see Proposition 12. We thus find that

‖h1‖1,1−ǫ + ‖Dh1‖1, 32−ǫ + ‖h2‖1,1−ǫ + ‖Dh2‖1, 32−ǫ ≤ Cǫ0

1∑

α=0

‖Dα
R

N‖2, 34+α
2 −ǫ,

‖h3‖1,1 + ‖Dh3‖1, 32 + ‖h4‖1, 32 + ‖Dh4‖2,2 ≤ C.

(7.6)

The proof of (7.5) then follows from Proposition 21, which implies that

1∑

α=0

‖DαEσ[h1]‖2, 34+α
2 −ǫ + ‖DαEσ[h2]‖2, 34+α

2 −ǫ ≤ Cǫ0

1∑

α=0

‖Dα
R

N‖2, 34+α
2 −ǫ,

1∑

α=0

‖DαEσ[h3]‖2, 34+α
2

⋆ + ‖DαEσ[h4]‖2, 34+α
2

⋆ ≤ C

for anyσ ∈ {−2,−1, 0, 1, 2} if the estimates in (7.6) are satisfied.

Proposition 21 Let ǫ > 0 andσ ∈ {−2,−1, 0, 1, 2}. Then, there holds

1∑

α=0

‖DαEσ[h1]‖2, 34+α
2 −ǫ ≤ C

1∑

α=0

‖Dαh1‖1,1+α
2 −ǫ,

1∑

α=0

‖DαEσ[h2]‖2, 34+α
2

⋆ ≤ C

1∑

α=0

‖Dαh2‖1,1+α
2
.
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Proof. Let ui = Eσ[hi]. By taking the Fourier transform, we find that

ûi(k, t) = ik

∫ t

0

ds e−k2(t−s)+iσksĥi(k, s).

We can restrict ourselves to
∑1

α=0 ‖Dαh1‖1,1+α
2 −ǫ = 1 and

∑1
α=0 ‖Dαh2‖1,1+α

2
= 1. Then, it follows that

‖Dαu1‖2, 34+α
2 −ǫ ≤ C sup

t≥0
(1 + t)

3
4+

α
2 −ǫ B1

[ 3
4+

α
2 ,1−ǫ

3
4 ,1+

α
2 −ǫ

]
(t) ≤ C,

‖Dαu2‖2, 34+α
2

⋆ ≤ C sup
t≥0

(1+t)
3
4
+α

2

ln(2+t) B1

[ 3
4+

α
2 ,1

3
4 ,1+

α
2

]
(t) ≤ C

for α = 0, 1 as claimed.
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