The Dixmier-Moeglin equivalence for twisted homogeneous coordinate rings arxiv: 0812.3355; Isr. J. Math, to appear

Jason Bell, Dan Rogalski, Susan J. Sierra

AMS Special Session on Interactions Between Algebraic Geometry and Noncommutative Algebra, UC Riverside, November 2009 Goal: work out ideal theory of important class of NC algebras.

- We work over \mathbb{C} .
- Let X be a projective variety, let $\sigma \in Aut(X)$, and let \mathcal{L} be a σ -ample invertible sheaf on X.
 - σ -ample means: \mathcal{L} is appropriately positive and σ has reasonable action on homology.
 - Also a definition in terms of cohomology vanishing.

Let

$$\mathcal{L}_n := \mathcal{L} \otimes \sigma^* \mathcal{L} \otimes \cdots \otimes \sigma^{(n-1)*} \mathcal{L}.$$

 Define the *twisted homogeneous coordinate ring* B(X, L, σ) by

$$B = B(X, \mathcal{L}, \sigma) := \bigoplus_{n \ge 0} H^0(\mathcal{L}_n).$$

Multiplication given by

$$H^0(\mathcal{L}_n)\otimes H^0(\mathcal{L}_m) o H^0(\mathcal{L}_n)\otimes H^0(\sigma^{n*}\mathcal{L}_m) o H^0(\mathcal{L}_{n+m}).$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Example:

• Let $X = \mathbb{P}^n$. An element $\sigma \in \mathbb{P}GL_{n+1}$ acts on homogeneous forms via pullback. Then

$$B(\mathbb{P}^n, \mathcal{O}(1), \sigma) \cong \mathbb{C}[x_0, \ldots, x_n], \star.$$

New multiplication * induced by

$$x_i \star x_j := x_i x_j^{\sigma}.$$

프 🖌 🛪 프 🕨

Some facts about $B(X, \mathcal{L}, \sigma)$.

- *B* is a graded noetherian domain with dim X + 1 ≤ GKdim B < ∞.
- Can recover X, \mathcal{L}, σ from B
- Graded 2-sided ideals of B ↔ σ-invariant subschemes of X.

通 とくほ とくほ とう

Question

What are the primitive ideals of $B(X, \mathcal{L}, \sigma)$?

Recall: an ideal $I \subset R$ is *primitive* if $I = Ann_R(M)$ where M_R is simple.

• If (0) is primitive, say R itself is primitive

Question Let Spec $B = \{prime \ ideals \ of \ B\}$ in the Zariski topology. How are primitive ideals in Spec B distinguished?

ヘロン ヘアン ヘビン ヘビン

Question

What are the primitive ideals of $B(X, \mathcal{L}, \sigma)$?

Recall: an ideal $I \subset R$ is *primitive* if $I = Ann_R(M)$ where M_R is simple.

• If (0) is primitive, say R itself is primitive

Question Let Spec B = {prime ideals of B} in the Zariski topology. How are primitive ideals in Spec B distinguished?

ヘロト ヘアト ヘビト ヘビト

Primitive ideals in commutative rings

Primitive = maximal.

In fact, if an affine \mathbb{C} -algebra R is commutative then TFAE:

- $P \in \operatorname{Spec} R$ is primitive
- P is maximal
- **(a)** $\{P\}$ closed in Spec R
- $Q(R/P) \cong \mathbb{C}.$

(雪) (ヨ) (ヨ)

Definition

Let R be a noetherian ring. $P \in \text{Spec } R$ is rational if

 $Z(Q(R/P)) \cong \mathbb{C}$

Theorem (Dixmier-Moeglin)

Let \mathfrak{g} be a finite-dimensional Lie algebra. Let $R = U(\mathfrak{g})$ and let $P \in \text{Spec } R$. TFAE:

- P is primitive
- {P} is locally closed in Spec R
- P is rational.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Definition

We say the Dixmier-Moeglin equivalence holds for *R* if for all $P \in \text{Spec } R$ we have: *P* rational \iff *P* primitive \iff {*P*} locally closed.

NB:

- In our setting we always have locally closed \implies primitive \implies rational.
- Thus the DM-equivalence is equivalent to showing that rational ⇒ locally closed.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Main theorem:

Theorem 1

The Dixmier-Moeglin equivalence holds for

- twisted homogeneous coordinate rings of curves and surfaces;
- twisted homogeneous coordinate rings of Pⁿ.

Further, in these cases B is primitive $\iff \sigma$ has a dense orbit.

• We conjecture this holds for all THCR's.

(* E) * E)

An example on \mathbb{P}^1 :

• Let $\tau \in \mathbb{P}GL_2$ be defined by $\tau[x : y] = [x : x + y]$.

Let

$$B := B(\mathbb{P}^1, \mathcal{O}(1), \tau) \cong \mathbb{C}\{x, y\}/(xy - yx - x^2).$$

- Spec $B = \{(0), (x)\} \cup \{(x, y + \lambda) \mid \lambda \in \mathbb{C}\}$
- Rational ideals are (0) and $(x, y + \lambda)$.
- The maximal ideals are obviously locally closed.

Since

$$\operatorname{Spec} B \smallsetminus \{(0)\} = \{P \mid P \supseteq (x)\},\$$

(0) is locally closed.

- So *B* satisfies the DM-equivalence; in particular *B* is primitive.
- The point [1 : 0] has a dense orbit, since

$$\tau^n([1:0])=[1:n].$$

ヘロン 人間 とくほ とくほ とう

A geometric condition on σ :

Definition

The pair (X, σ) is ordinary if for all σ -invariant $Z \subseteq X$, the set

 $\{x \in Z \mid \{\sigma^n(x)\} \text{ is dense in } Z\}$

is an open subset of Z.

If G is an algebraic group acting on X and σ ∈ G, then (X, σ) is ordinary.

ヘロン 人間 とくほ とくほ とう

э.

Proposition

If (X, σ) is ordinary, then $B(X, \mathcal{L}, \sigma)$ satisfies the DM-equivalence.

Corollary

Suppose that $\sigma \in G$, G an algebraic group acting on X. Then $B(X, \mathcal{L}, \sigma)$ satisfies the DM-equivalence. In particular, if $X = \mathbb{P}^n$ or X is a curve, then $B(X, \mathcal{L}, \sigma)$ satisfies the DM-equivalence.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Proposition

If X is a surface, then $B(X, \mathcal{L}, \sigma)$ satisfies the DM-equivalence.

Proof:

- Key point: the existence of a σ -ample sheaf constrains σ .
- In particular, σ must be parabolic = not exponentially expanding.
- Can then use C dynamics and work of Gizatullin, Diller, Favre to reduce to a case-by-case analysis of automorphisms of surfaces.
- We show that if X is a surface and σ is parabolic, then
 (X, σ) is ordinary.

Theorem 2

Let *S* be a commutative ring of dimension 2, and let $\sigma \in Aut(S)$. Let

 $T := S[t, t^{-1}; \sigma]$

Then if GKdim $T < \infty$, then T satisfies the DM-equivalence. If $S = \mathbb{C}[u, v]$, then this is if and only if.

Example (David Jordan)

Let
$$S = \mathbb{C}[u^{\pm}, v^{\pm}]$$
. Let $\sigma(u) = uv$ and $\sigma(v) = u$. Then

$$T := S[t, t^{-1}; \sigma]$$

does not satisfy the DM-equivalence, since (0) is primitive but not locally closed.

ヘロト 人間 ト ヘヨト ヘヨト

• Jordan's example has $GKdim = \infty$.

Question

Does finite GKdim imply the DM-equivalence?

• Recall that THCR's have finite GKdim.

Theorem 3

If GKdim $B(X, \mathcal{L}, \sigma) = \dim X + 1$, then the DM-equivalence holds for B.

Proof:

- σ acts on the homology of X to give an integer matrix [σ], invariant with respect to the intersection form.
- Keeler: GKdim $B = \dim X + 1 \implies [\sigma]^n = 1$.
- De-Qi Zhang: $\{\sigma \mid [\sigma]^n = 1\}$ is an algebraic group.
- So (X, σ) is ordinary and the DM-equivalence holds for *B*.

• Jordan's example has $GKdim = \infty$.

Question

Does finite GKdim imply the DM-equivalence?

• Recall that THCR's have finite GKdim.

Theorem 3

If GKdim $B(X, \mathcal{L}, \sigma) = \dim X + 1$, then the DM-equivalence holds for B.

Proof:

- σ acts on the homology of X to give an integer matrix [σ], invariant with respect to the intersection form.
- Keeler: GKdim $B = \dim X + 1 \implies [\sigma]^n = 1$.
- De-Qi Zhang: $\{\sigma \mid [\sigma]^n = 1\}$ is an algebraic group.
- So (X, σ) is ordinary and the DM-equivalence holds for *B*.