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Goal: work out ideal theory of important class of NC algebras.
We work over C.
Let X be a projective variety, let σ ∈ Aut(X ), and let L be a
σ-ample invertible sheaf on X .

σ-ample means: L is appropriately positive and σ has
reasonable action on homology.
Also a definition in terms of cohomology vanishing.

Let
Ln := L ⊗ σ∗L ⊗ · · · ⊗ σ(n−1)∗L.

Define the twisted homogeneous coordinate ring
B(X ,L, σ) by

B = B(X ,L, σ) :=
⊕
n≥0

H0(Ln).

Multiplication given by

H0(Ln)⊗ H0(Lm)→ H0(Ln)⊗ H0(σn∗Lm)→ H0(Ln+m).

Jason Bell, Dan Rogalski, Susan J. Sierra The Dixmier-Moeglin equivalence for THCRS



Example:
Let X = Pn. An element σ ∈ PGLn+1 acts on
homogeneous forms via pullback. Then

B(Pn,O(1), σ) ∼= C[x0, . . . , xn], ?.

New multiplication ? induced by

xi ? xj := xixσ
j .
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Some facts about B(X ,L, σ).

B is a graded noetherian domain with
dim X + 1 ≤ GKdim B <∞.
Can recover X ,L, σ from B
Graded 2-sided ideals of B ↔ σ-invariant subschemes of
X .
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Question
What are the primitive ideals of B(X ,L, σ)?

Recall: an ideal I ⊂ R is primitive if I = AnnR(M) where MR is
simple.

If (0) is primitive, say R itself is primitive

Question
Let

Spec B = {prime ideals of B}

in the Zariski topology. How are primitive ideals in Spec B
distinguished?
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Primitive ideals in commutative rings
Primitive = maximal.

In fact, if an affine C-algebra R is commutative then TFAE:
1 P ∈ Spec R is primitive
2 P is maximal
3 {P} closed in Spec R
4 Q(R/P) ∼= C.

Jason Bell, Dan Rogalski, Susan J. Sierra The Dixmier-Moeglin equivalence for THCRS



Definition
Let R be a noetherian ring. P ∈ Spec R is rational if

Z (Q(R/P)) ∼= C

Theorem (Dixmier-Moeglin)

Let g be a finite-dimensional Lie algebra. Let R = U(g) and let
P ∈ Spec R. TFAE:

1 P is primitive
2 {P} is locally closed in Spec R
3 P is rational.
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Definition
We say the Dixmier-Moeglin equivalence holds for R if for all
P ∈ Spec R we have:
P rational ⇐⇒ P primitive ⇐⇒ {P} locally closed.

NB:
In our setting we always have locally closed =⇒ primitive
=⇒ rational.
Thus the DM-equivalence is equivalent to showing that
rational =⇒ locally closed.
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Main theorem:

Theorem 1
The Dixmier-Moeglin equivalence holds for

twisted homogeneous coordinate rings of curves and
surfaces;
twisted homogeneous coordinate rings of Pn.

Further, in these cases B is primitive ⇐⇒ σ has a dense orbit.

We conjecture this holds for all THCR’s.
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An example on P1:
Let τ ∈ PGL2 be defined by τ [x : y ] = [x : x + y ].
Let

B := B(P1,O(1), τ) ∼= C{x , y}/(xy − yx − x2).

Spec B = {(0), (x)} ∪ {(x , y + λ) | λ ∈ C}
Rational ideals are (0) and (x , y + λ).
The maximal ideals are obviously locally closed.
Since

Spec B r {(0)} = {P | P ⊇ (x)},

(0) is locally closed.
So B satisfies the DM-equivalence; in particular B is
primitive.
The point [1 : 0] has a dense orbit, since

τn([1 : 0]) = [1 : n].
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A geometric condition on σ:

Definition
The pair (X , σ) is ordinary if for all σ-invariant Z ⊆ X, the set

{x ∈ Z | {σn(x)} is dense in Z}

is an open subset of Z .

If G is an algebraic group acting on X and σ ∈ G, then
(X , σ) is ordinary.
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Proposition

If (X , σ) is ordinary, then B(X ,L, σ) satisfies the
DM-equivalence.

Corollary
Suppose that σ ∈ G, G an algebraic group acting on X. Then
B(X ,L, σ) satisfies the DM-equivalence. In particular, if X = Pn

or X is a curve, then B(X ,L, σ) satisfies the DM-equivalence.
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Proposition

If X is a surface, then B(X ,L, σ) satisfies the DM-equivalence.

Proof:
Key point: the existence of a σ-ample sheaf constrains σ.
In particular, σ must be parabolic = not exponentially
expanding.
Can then use C dynamics and work of Gizatullin, Diller,
Favre to reduce to a case-by-case analysis of
automorphisms of surfaces.
We show that if X is a surface and σ is parabolic, then
(X , σ) is ordinary.

Jason Bell, Dan Rogalski, Susan J. Sierra The Dixmier-Moeglin equivalence for THCRS



Theorem 2
Let S be a commutative ring of dimension 2, and let
σ ∈ Aut(S). Let

T := S[t , t−1;σ]

Then if GKdim T <∞, then T satisfies the DM-equivalence. If
S = C[u, v ], then this is if and only if.

Example (David Jordan)

Let S = C[u±, v±]. Let σ(u) = uv and σ(v) = u. Then

T := S[t , t−1;σ]

does not satisfy the DM-equivalence, since (0) is primitive but
not locally closed.
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Jordan’s example has GKdim =∞.

Question
Does finite GKdim imply the DM-equivalence?

Recall that THCR’s have finite GKdim.

Theorem 3
If GKdim B(X ,L, σ) = dim X + 1, then the DM-equivalence
holds for B.

Proof:
σ acts on the homology of X to give an integer matrix [σ],
invariant with respect to the intersection form.
Keeler: GKdim B = dim X + 1 =⇒ [σ]n = 1.
De-Qi Zhang: {σ | [σ]n = 1} is an algebraic group.
So (X , σ) is ordinary and the DM-equivalence holds for B.

Jason Bell, Dan Rogalski, Susan J. Sierra The Dixmier-Moeglin equivalence for THCRS



Jordan’s example has GKdim =∞.

Question
Does finite GKdim imply the DM-equivalence?

Recall that THCR’s have finite GKdim.

Theorem 3
If GKdim B(X ,L, σ) = dim X + 1, then the DM-equivalence
holds for B.

Proof:
σ acts on the homology of X to give an integer matrix [σ],
invariant with respect to the intersection form.
Keeler: GKdim B = dim X + 1 =⇒ [σ]n = 1.
De-Qi Zhang: {σ | [σ]n = 1} is an algebraic group.
So (X , σ) is ordinary and the DM-equivalence holds for B.

Jason Bell, Dan Rogalski, Susan J. Sierra The Dixmier-Moeglin equivalence for THCRS


