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Lay Abstract

In the pure mathematical field of noncommutative algebra we are interested in under-

standing systems of numbers where the rules that are true for the counting numbers

fail to hold. In particular, we examine abstract number systems where the order in

which you multiply can effect the final result. For example, although in the counting

numbers 3 × 6 = 6 × 3, there are more exotic mathematical settings in which this

equation fails to hold. We call these exotic number systems rings. One of the main

aims of noncommutative algebra is to classify all of the possible rings.

Unfortunately, this goal is currently unattainable. Indeed, this question of classifi-

cation is so hard that we do not even know what kinds of rings could possibly exist, let

alone how to categorise them. For this reason generating new examples of rings allows

us to test our preconceptions of what must or must not be true about them.

One method for generating new examples of rings is to ‘deform’ rings that are

already well understood. For example, the ring of polynomials is made up of elements

like xy + 1 and x2 + 1. In this ring, xy = yx is a rule that always holds. One can ask

however what happens if instead the rule was xy = 2yx. Amazingly, this simple change

to the rule has connections as far afield as quantum mechanics in physics.

In this thesis, we approach a well understood ring and deform it using a method

similar to the above. In our case we adopt a recipe for using symmetries of objects like

the sphere to determine deformations of this ring. In order to do so we develop new

ideas in one large class of rings of interest across mathematics. We then describe how

to apply these ideas in the specific case of this well understood ring.
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Abstract

Let K be the field of complex numbers. In this thesis we construct new examples of
noncommutative surfaces of GK-dimension 4 using the language of formal and infinites-
imal deformations as introduced by Gerstenhaber. Our approach is to find families of
deformations of a certain well known GK-dimension 4 birationally commutative surface
defined by Zhang and Smith in unpublished work cited in [YZ06], which we call A.

Let B∗ and K∗ be respectively the bar and Koszul complexes of a PBW algebra
C = K〈V 〉

(R) . We construct a graph whose vertices are elements of the free algebra K〈V 〉
and edges are relations in R. We define a map m2 : B2 → K2 that extends to a
chain map m∗ : B∗ → K∗. This map allows the Gerstenhaber bracket structure to be
transferred from the bar complex to the Koszul complex. In particular, m2 provides a
mechanism for algorithmically determining the set of infinitesimal deformations with
vanishing primary obstruction.

Using the computer algebra package ‘Sage’ [Dev15] and a Python package developed
by the author [Cam], we calculate the degree 2 component of the second Hochschild
cohomology of A. Furthermore, using the map m2 we describe the variety U ⊆ HH2

2(A)
of infinitesimal deformations with vanishing primary obstruction. We further show that
U decomposes as a union of 3 irreducible subvarieties Vg, Vq and Vu.

More generally, let C be a Koszul algebra with relations R, and let E be a local-
isation of C at some (left and right) Ore set. Since R is homogeneous in degree two,
there is an embedding R ↪→ C⊗C and in the following we identify R with its (nonzero)
image under this map. We construct an injective linear map Λ̃ : HH2(C) → HH2(E)
and prove that if f ∈ HH2(E) satisfies f(R) ⊆ C then f ∈ Im(Λ̃). In this way we
describe a relationship between infinitesimal deformations of C with those of E.

Rogalski and Sierra [RS12] have previously examined a family of deformations of
A arising from automorphism of the surface P1 × P1. By applying our understanding
of the map Λ̃ we show that these deformations correspond to the variety of infinites-
imal deformations Vg. Furthermore, we show that deformations defined similarly by
automorphisms of other minimal rational surfaces also correspond to infinitesimal de-
formations lying in Vg.

We introduce a new family of deformations of A, which we call Aq. We show that
elements of this family have families of deformations arising from certain quantum
analogues of geometric automorphisms of minimal rational surfaces, as defined by Alev
and Dumas [AD95]. Furthermore, we show that after taking the semi-classical limit
q → 1 we obtain a family of deformations of A whose infinitesimal deformation lies in
Vq.

Finally, we apply a heuristic search method in the space of Hochschild 2-cocycles of
A. This search yields another new family of deformations of A. We show that elements
of this family are non-noetherian PBW noncommutative surfaces with GK-dimension
4. We further show that elements of this family can have as function skew field the
division ring of the quantum plane Kq(u, v), the division ring of the first Weyl algebra
D1(K) or the commutative field K(u, v).
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Chapter 1

Introduction

In this thesis we study the infinitesimal deformation theory of certain noncommutative

algebras, with a view to applying this theory to find novel families of GK-dimension

4 noncommutative surfaces. We develop algorithmic tools to approach the problem

before applying these to one specific birationally commutative surface. As a result we

describe a new family of noncommutative surfaces, elements of which have either the

q-division ring or the division ring of the first Weyl algebra as their function skew fields.

1.1 Motivation

Throughout we will assume K is the field of complex numbers, although outside of

Chapter 6 all of the results hold over any algebraically closed field of characteristic

0. One of the aims of noncommutative projective geometry it to classify so-called

noncommutative surfaces. In this thesis, we mean by this finitely graded K-algebras

with function skew fields that are division rings of ‘transcendence degree’ 2 over K (see

Section 2.2). This classification problem is open and very difficult. A possible first step

is to find all the possible division rings of transcendence degree 2 that occur as the

function skew field for noncommutative surfaces.

This approach is known as the birational classification of noncommutative projective

surfaces, and is also very much an open problem. In [Art97], Artin made the bold

conjecture that these division rings fall into the following four classes.

1. a field of transcendence degree 2

2. a division ring finite-dimensional over a central field of transcendence degree 2

3. the full quotient division ring of an Ore extension K[x;σ, δ], where K is a field of

transcendence degree 1

4. the function skew field of a Sklyanin algebra. (We will not define Sklyanin algebras

here as they are not relevant for this thesis.)
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This conjecture remains unproven, but substantial progress has been made regarding

algebras within each class.

Amongst the strongest of these results are those concerning birationally commu-

tative surfaces. These are the noncommutative surfaces whose function skew field is

commutative. In [Rog09], Rogalski showed that if C is a birationally commutative

surface with finite GK-dimension, then its GK-dimension must be 3, 4 or 5. The bira-

tionally commutative surfaces in GK-dimension 3 are completely classified, whilst those

in GK-dimension 5 are very well understood.

Relatively little is known about birationally commutative surfaces with GK-dimension

4. For example, it was incorrectly conjectured by Rogalski and Stafford [RS09] that

these could never be noetherian. This was shown to be false by Rogalski and Sierra

[RS12]. Part of the problem is that we simply do not know of many examples of GK-

dimension 4 noncommutative surfaces. This paucity of examples is the main motivation

behind the research in this thesis. The approach is inspired by work of Rogalski and

Sierra [RS12] and can be be loosely summarised as ‘deform what you know’. We recall

an algebra central to [RS12] which is the main object of study in this thesis.

Definition 1.1.1. We define the algebra

A =
K〈x1, x2, x3, x4〉

(R)

where R is the set comprising six relations

R =

{
r1 := x3x1 − x1x3, r2 := x4x2 − x2x4, r3 := x4x1 − x2x3

r4 := x1x2 − x2x3, r5 := x3x2 − x1x4, r6 := x4x3 − x1x4

}
.

This algebra was shown by Zhang and Smith [YZ06] to be a birationally commuta-

tive surface of GK-dimension 4 that is neither left nor right noetherian.

Rogalski and Sierra found that A has a family of deformations whose generic element

is noetherian, disproving a conjecture of Rogalski and Stafford. We take this result as

a strong hint that the algebra A is interesting, and that it has families of deformations

with surprising properties. With that in mind, our aim is to deform the algebra A to

find new families of GK-dimension 4 noncommutative surfaces.

1.2 Summary of Approach

We provide here a brief narrative of the structure of the research in this thesis. We

assume for this section only that the reader is comfortable with all definitions from

Chapter 2. The main aim of the research was to find families of deformations of the

algebra A (see Definition 1.1.1). This algebra is therefore of central importance to the

entire document.

2



The approach we take is to apply the theory of formal deformations, first introduced

by Murray Gerstenhaber in the middle of the last century. Informally, this theory works

on the intuition of having a ‘moduli space’ of algebras and finding families of algebras

that lie on curves passing through a chosen algebra of interest. More formally, this

moduli space often does not exist, and one must work over the power series ring K[[s]].

However, the intuition is still useful to keep in mind.

The relevant notion for us is that of infinitesimal deformations. These can be

thought of as tangent vectors to the space of algebras at A, and provide a sense of

what ‘directions’ one can deform an algebra in. In his foundational papers [Ger63,

Ger64], Gerstenhaber showed that the space of isomorphism classes of infinitesimal

deformations is parametrised by the second Hochschild cohomology group HH2(A).

For this reason, we start the thesis by calculating the second Hochschild cohomology

of A. Since we are interested in graded deformations, we restrict our attention to the

degree two component of the cohomology space.

There is a slight wrinkle in the theory of infinitesimal deformations in that there

exist infinitesimal deformations that do not arise as tangent vectors to any formal defor-

mations. This fact is measured by the obstruction theory of the algebra. Obstructions

are also measured by Hochschild cohomology, in this case by the third Hochschild co-

homology group. In particular, the primary obstruction to the so-called integration

problem of finding formal deformations with a given infinitesimal deformation as tan-

gent is a cohomology class in HH3 (see Section 2.3 for a formal statement of this).

In general, determining the set U of infinitesimal deformations with vanishing pri-

mary obstruction is a difficult process. In the case of A there is a useful property

that we can leverage; Sierra and Rogalski established in [RS12] that A is PBW. The

relevance of this is that PBW algebras come equipped with a particularly nice locally

finite resolution called the Koszul complex. Since cohomology theories are independent

of the particular resolution used to define them, this allows us to reduce the general

problem considerably.

There are already known families of deformations of A discovered by Rogalski and

Sierra [RS12]. In order to avoid rediscovering these families we follow a four step

process:

1. Calculate HH2
2(A).

2. Find the set in HH2
2(A) of cohomology classes with vanishing primary obstruction.

3. Establish which tangent directions in HH2
2(A) correspond to families of deforma-

tions studied by Rogalski and Sierra.

4. ‘Follow’ the other tangent directions to discover new families of deformations of

A.

3



In terms of the thesis: step 1 is the content of Chapter 3, step 2 is the content of

Chapters 4 and 5, step 3 is the content of Chapter 6 and step 4 is the content of

Chapters 7 and 8.

Steps 1 and 2 are mostly computational. However, Chapter 4 details the techniques

used to reduce the generally difficult calculations of primary obstructions to a problem

in finite dimensional linear algebra. This work relies heavily on the work of Bergman

in his famous Diamond Lemma [Ber78].

We establish with these calculations that the variety of infinitesimal deformations

of A with vanishing primary obstructions decomposes as a union of three irreducible

subvarieties which we call Vg, Vq and Vu. We now explain the names of these varieties.

The following paragraph should be read as an informal discussion for intuition

purposes. Consider Qgr(A) = K(u, v)[t, t−1;σ]. There are two ways one might naively

attempt to deform Qgr(A):

(a) ‘Deform’ σ by composing it with some parametrised family of automorphisms of

K(u, v). We refer to these as geometric deformations.

(b) ‘Deform’ K(u, v) to some division ring D so that σ still defines an automorphism

of D. We call these quantum deformations.

Since there is a homomorphism of algebras A ↪→ Qgr(A), one may hope that the

Hochschild cohomology (and so the infinitesimal deformations) of A and Qgr(A) may

be related to one another. Since Hochschild cohomology is not functorial, this is not as

simple as one might at first expect. However, we establish in Section 6.2 that in this

case a comparison can be made because the embedding is in particular a localisation.

Applying this work, step 3 of our overview corresponds to taking tangent vectors

in Lie algebras of automorphism groups of minimal rational surfaces and deforming A

using these. We find that these deformations, which are infinitesimals of those studied

by Rogalski and Sierra, correspond precisely to the variety Vg. Therefore the g in Vg

stands for geometric, as these are deformations of type (a).

In contrast, we define in Chapter 3 a family of deformations of A whose function

skew field is the q-division ring. This family arises precisely as a quantum deformation

as defined above. This family has infinitesimal lying in Vq and the q in Vq therefore

stands for quantum as this family is of type (b). Unfortunately, we have been unable to

find any families corresponding to vectors lying in Vu, and therefore the u in Vu stands

for unknown.

Finally in step 4, we use a heuristic computer based search in order to discover

a new family of deformations of A whose associated infinitesimals lie in Vq. Unlike

those with infinitesimal lying in Vg, the members of this family are not birationally

commutative. Furthermore, we find that algebras in this family are noncommutative

surfaces of GK dimension 4 that are PBW but not noetherian.

4



1.3 Summary of General Results

Before discussing results specific to the algebra A, we explain the main theorems of the

thesis that hold for more general algebras. Note that Chapter 2 contains the necessary

background material that provides the foundation for the work in this thesis.

1.3.1 An Algorithmic Approach to Calculating Primary Obstructions

for PBW Algebras

If C is a K-algebra then there is a natural resolution of C as a C-bimodule called

the bar complex which is defined as B∗ = C⊗∗+2 (see Definition 2.1.2 for the full

definition). The bar complex is often used to define the Hochschild cohomology of C

as the cohomology of HomCe(B∗, C).

In [Ger63], Gerstenhaber showed that there exists a graded Lie algebra structure on

B∗ called the Gerstenhaber bracket. Moreover, this descends to a graded Lie algebra

on Hochschild cohomology HH∗(C). Gerstenhaber established that if an infinitesimal

deformation f integrates to a formal deformation then [f, f ] = 0 ∈ HH3. For this

reason we call the cohomology class of [f, f ] the primary obstruction of f .

The bar complex is unwieldy to say the least. Much effort has been spent trying to

move the Gerstenhaber bracket to other complexes in which calculations might be more

efficiently carried out. One particularly nice set of algebras is the Koszul algebras. For

a full definition of Koszul algebras please see Definition 2.1.4, but it suffices to say here

that these algebras come equipped with a resolution called the Koszul complex K∗.

It is known that for a Koszul algebra, there exists a chain map m∗ : B∗ → K∗

that would allow the bracket structure to be moved across to the (often locally finite)

Koszul complex K∗. An explicit map m∗ has not been found, but the existence of the

map m∗ has been used to establish strong theorems about the deformation theory of

Koszul algebras, most notably by Braverman and Gaitsgory in [BG96]. In Chapter 4,

our approach is to attack the problem head on, but in the restricted setting of PBW

algebras.

Let C = K〈V 〉
R be a PBW algebra with Koszul complex K∗. We define the Bergman

graph to be a certain weighted directed acyclic graph whose vertices correspond to

elements of the free algebra K〈V 〉 and whose edges are relations r ∈ R. This graph

builds upon the theory of reduction systems and the Diamond Lemma introduced by

Bergman [Ber78].

We write 〈V 〉 for the free monoid on the finite set of generators V . To every element

of 〈V 〉 we associate a certain set of paths in the Bergman graph called simplification

paths. The main result of Chapter 4 is the following:

Theorem 1.3.1 (Theorem 4.7.1). Let P = {px,y} be a choice of simplification path of

xy for every x, y ∈ 〈V 〉. Then P determines an explicitly constructable map m2 : B2 →

5



K2 that extends to a chain map m∗ : B∗ → K∗.

The details of the construction of m2 are too involved to discuss in this summary,

but are entirely algorithmic. In fact we implement this function in Python in Appendix

B. The utility of m2 is that it reduces the problem of calculating the cohomology class of

[f, f ] to an application ofm2 and finite dimensional linear algebra. Since this calculation

allows us to verify when primary obstructions of infinitesimal deformations vanish, this

map makes the calculations in the rest of the thesis possible and amenable to computer

calculation.

1.3.2 Relating Infinitesimal Deformations of an Algebra to those of a

Localisation

Let C be a Koszul domain with relations R. If S is a (left and right) Ore set in C then

we may consider the localisation E := CS and ask what relation the deformation theory

of C has to that of E. We pay particular attention to the infinitesimal deformations of

C and E.

Unlike Hochschild homology, Hochschild cohomology is not functorial. For this

reason, it is not enough that we have an algebra map C ↪→ E to deduce that there

exists a corresponding mapping of cohomology spaces HH2(C) → HH2(E). However,

in Chapter 6 we establish the existence of a map Λ̃ : HH2(C) → HH2(E) using the

assumption that E is a localisation of C. Therefore a more formal statement of the

question we address is how to determine which f ∈ HH2(E) lie in Im ˜(Λ).

For a Hochschild cocycle f we write [f ] for the Hochschild cohomology class of f . An

infinitesimal deformation of E is determined by a cocycle f ∈ Hom(E⊗4, E). Under the

canonical localisation map C ↪→ E we can consider the restriction f |1⊗C⊗2⊗1. It follows

from the definition of the bar complex that if f(1⊗ C⊗2 ⊗ 1) ⊆ C then [f ] ∈ Im(Λ̃).

In this way, we have a sufficient condition for f ∈ HH2(E) to lie in Im(Λ̃).

However, since f is nothing more than a linear map on an infinite dimensional space,

this condition does not provide a particularly useful test in practice. We address this

by utilising the Koszul complex and establish the following result which provides an

efficiently computable condition in the setting of Koszul algebras.

Theorem 1.3.2 (Theorem 6.2.9). If f ∈ Hom(E⊗4, E) is a cocycle and f(1⊗R⊗1) ⊆ C
then [f ] ∈ Im(Λ̃).

1.4 The Deformation Theory of A

We now discuss results that are specific to the algebra A and are built upon the general

results of the preceding section.
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1.4.1 The Second Hochschild Cohomology of A and Obstructions

In this section we elucidate the results that provide a road map for finding new defor-

mations of A. The first of these concerns the second Hochschild cohomology. Since we

are interested in families of deformations that are quadratic algebras, we only concern

ourselves with the degree 2 piece of HH2(A). The calculation of this space is the content

of Chapter 3.

Theorem 1.4.1 (Theorem 3.3.1). The vector space HH2
2(A) is 8-dimensional. Fur-

thermore, all infinitesimal deformations of A are defined by generators and relations

over the dual numbers S = K[ε]
(ε2)

as:

S〈x1, x2, x3, x4〉
(R)

where R is the set of relations

R =



r1 := x3x1 − (1 + aε)x1x3 − bεx2
3 − cεx2

1,

r2 := x4x2 − (1 + dε)x2x4 − eεx2
4 − fεx2

2,

r3 := x4x1 − x2x3 − bεx1x4

r4 := x1x2 − (1 + aε)x2x3 − cεx2x1 − gεx2
1 + hεx2

2,

r5 := x3x2 − (1 + aε+ dε)x1x4 − ε(c+ f)x2x3 − eεx3x4,

r6 := x4x3 − x1x4 − bεx3x4 + gεx1x3 − hεx2x4


for constants a, . . . , h ∈ K.

Our proof of this theorem is carried out using ‘Sage’ [Dev15] and a noncommutative

algebra software package written by the author called ‘Polygnome’ [Cam].

Following Theorem 1.4.1 and utilising the map m2 described in Theorem 1.3.1, in

Chapter 5 we establish which elements of HH2
2(A) have vanishing primary obstruction.

Let U be the set of f ∈ HH2
2(A) such that [f, f ] = 0 ∈ HH3.

Theorem 1.4.2 (Theorem 5.3.2). The variety U ⊆ HH2
2(A) decomposes as a union of

three irreducible subvarieties: Vg, Vq and Vu.

The three varieties Vg, Vq and Vu form the foundation of our approach to finding

deformations of A. We know that these varieties give us some information about what

families of deformations can possibly exist. We turn our attention first to the families of

deformations that we already know about, i.e. those discussed by Rogalski and Sierra

[RS12].
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1.4.2 Families of Deformations Arising from Automorphisms of Sur-

faces

The families of deformations discovered by Rogalski and Sierra are constructed by

deforming Qgr(A), the graded quotient ring of A. By work of Yekutieli and Zhang

[YZ06], Qgr(A) is isomorphic to K(u, v)[t, t−1;σ], where σ is a certain automorphism

of K(u, v). If we are to find new families of deformations, we certainly want to avoid

rediscovering those families that are already well understood. For this reason, we

establish which elements of HH2
2 appear as infinitesimals of these previously studied

families.

Rogalski and Sierra restricted their attention to deformations of Qgr(A) of the form

K(u, v)[t, t−1;σ ◦ τ ],

where τ is the pull back of some automorphism of the surface P1 × P1. In Chapter 6

we examine the more general case of τ being an automorphism of any minimal rational

surface, in the hopes of finding families with distinct infinitesimals.

Since Qgr(A) is a localisation of A, and A is a Koszul domain, we may apply

Theorem 1.3.2 in order to determine which infinitesimals are tangent to these families.

The combined result of this work is the following.

Theorem 1.4.3 (Theorems 6.4.1, 6.5.1 and 6.6.2). The deformations of A arising from

automorphisms of minimal rational surfaces correspond to the space of infinitesimal

deformations Vg. Furthermore, the set of deformations studied by Rogalski and Sierra

comprises all of Vg.

This result is a signal that in order to find new families of deformations of A, one

must concentrate on those families whose infinitesimals lie in Vq and Vu. The rest of

the results concern such deformations.

1.4.3 The Family Aq and its Infinitesimal Deformations

The archetypal example in deformation theory is the quantum plane Kq[u, v]. This is

the algebra

Kq[u, v] :=
K〈u, v〉

(vu− quv)
where q ∈ K∗.

The quantum plane specialises to the polynomial ring K[u, v] at the semi-classical limit

q → 1.

A is isomorphic to a subalgebra of Qgr(A) = K(u, v)[t, t−1;σ] generated by a set

E = {t, ut, vt, uvt}, where

σ(u) = uv and σ(v) = v. (1.1)
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Let Kq(u, v) be the full division ring of Kq[u, v]. The equations (1.1) also define an

automorphism of Kq(u, v). Therefore we may define a family of algebras generated by

Eq = {t, ut, vt, uvt} in the graded division ring

Kq(u, v)[t, t−1;σ].

We call this family of algebras Aq, and prove that the family Aq is a family that deforms

A in Corollary 3.4.2.

Using similar methods to those of Theorems 1.4.1 and 1.4.2, in Chapters 3 and 5

we find the following theorem.

Theorem 1.4.4 (Theorem 3.4.3 and Proposition 5.4.1).

1. HH2
2(Aq) is a four dimensional space.

2. All infinitesimal deformations of Aq have vanishing primary obstruction.

We use Aq to generate more families of A by mimicking the work of Rogalski and

Sierra. Since Kq(u, v) is noncommutative, it is not the function field of any projective

surface. However, there is work of Alev and Dumas [AD95] that describes subgroups

of Kq(u, v) that are quantum analogues to certain automorphism groups of projective

surfaces. We define families of deformations of Aq by taking appropriate subalgebras

of

Kq′(u, v)[t, t−1;σ ◦ τ ]

for τ an automorphism arising from these ‘quantum’ geometric automorphism groups.

Unlike in the case of A, these families have infinitesimals that comprise all of HH2
2(Aq).

Theorem 1.4.5 (Theorem 7.3.1). For every isomorphism class of infinitesimal de-

formations L of Aq there exists a family of deformations of Qgr(Aq) such that the

associated infinitesimal F1 satisfies:

[F1|Rq ] = L.

Once these families are described, we take the semi-classical limit q → 1 and find

that these families provide new families of deformations of the algebra A.

Proposition 1.4.6 (Proposition 7.3.2). The semi-classical limits of the families of

deformations of Aq arising from quantum geometric automorphisms correspond to a 2

dimensional subspace of infinitesimal deformations of A lying in Vq.

1.4.4 A Family of Deformations of A with the PBW Property

The final result in the thesis is that we define a new family of deformations of A all

of whose elements satisfy the PBW property. In order to find this family, we carried
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out a heuristic search of the space Vq for cocycles that would define such a family. The

details of this search are beyond the scope of this summary. The main result of Chapter

8 is the following.

Theorem 1.4.7 (Theorem 8.2.1, Corollary 8.2.8 and Corollary 8.2.3). Let

A(a, c, d, f) :=
K〈x1, x2, x3, x4〉

(Ra,c,d,f )

where a, c, d, f ∈ K and Ra,c,d,f is the set of relations

Ra,c,d,f =


r1 := x3x1 − (1 + a)x1x3 − cx2

1, r2 := x4x2 − (1 + d)x2x4 − fx2
2,

r3 := x4x1 − (1 + d)x2x3 − fx2x1, r4 := x1x2 − x2x3,

r5 := x3x2 − (1 + a)x1x4 − cx2x3, r6 := x4x3 − (1 + a)x1x4 − cx2x3

 .

If af − cd = 0 and a 6= −1 6= d then A(a, c, d, f) is a non-noetherian GK-dimension 4

domain that is PBW with respect to the lexicographic ordering induced by x2 < x1 <

x3 < x4.

In particular we establish that A(a, c, d, f) is a flat family of algebras deforming A.

Theorem 1.4.8 (Corollary 8.2.2). A(a, c, d, f) is a flat family of algebras deforming

A over the ring
K[a, c, d, f, 1

1+a ,
1

1+d ]

(af − cd)
.

We analyse this family further by describing the function skew field, and thereby

classifying these algebras up to birational equivalence. In particular, we demonstrate

that A(a, c, d, f) is a GK-dimension 4 noncommutative surface.

Theorem 1.4.9 (Corollary 8.2.7 and Proposition 8.2.9). The function skew field of

A(a, c, d, f) is isomorphic to

1. Kq(u, v) where q = 1+d
1+a if a 6= d.

2. D1(K), the division ring of the first Weyl algebra, if a = d = 0 and f 6= c.

3. K(u, v) if a = d and c = f .

The methods used to find this family are interesting in their own right, but fail

to yield results for infinitesimal deformations lying in the variety Vu. However, since

Vq ∩ Vu and Vu ∩ Vg are large subvarieties in Vu, we have already seen several families

of algebras whose infinitesimal lies in Vu. In conclusion, we have seen families whose

infinitesimals comprise all of Vg, a substantial portion of Vq and large subvarieties of

Vu.
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1.5 Further Work

1.5.1 The map m∗

In the setting of PBW algebras we may apply basic homological algebra and deduce that

there exist maps mn for all n ∈ N that extend m2 to the entire bar resolution. Although

we have not discussed this explicitly, our work in Chapter 4 implies an algorithm for

calculating a continuation to B3 of m2 by taking ‘paths’ of 2-cells in the Bergman graph.

It is a firm belief of the author that the maps mn may be defined algorithmically by

taking choices of sequences of n-cells in the Bergman graph that have as boundary

(n− 1)-cells that are specified by the choice of mn−1.

The more general problem of finding a map φ∗ : B∗ → K∗ for Koszul algebras is

interesting and known to be difficult. The map m2 provides an obvious starting point

for further study. The combinatorial theory underlying the Bergman Diamond Lemma

is well known in computer science, where an almost identical theorem known as the

Church-Rosser theorem is fundamental in the theory of λ-calculus. In the λ-calculus

theory there are situations where the diamond lemma only holds for certain subsets of

the ‘terms’ under study. This failure reflects somewhat the difference between a general

Koszul algebra and a PBW algebra and there may be already developed theory that

one may apply in the setting of noncommutative algebras.

1.5.2 Deformations of A

There are immediate questions for investigation in the family A(a, c, d, f). None of the

algebras in this family are noetherian, in contrast to those examined by Rogalski and

Sierra. It would be extremely surprising if they were AS-Gorenstein as none of those in

the Rogalski-Sierra family had this property. These algebras are an obvious launching

point for further work on GK-dimension 4 noncommutative surfaces.

Turning to A, we have not discussed the formal deformations of A for the most part

as our aims have been realising flat families over non-local rings. However, we have ev-

idence that many of the infinitesimal deformations with vanishing primary obstruction

integrate to formal deformations. An interesting property for algebras to have is that

infinitesimal deformations integrate if and only if they have vanishing primary obstruc-

tion. This would be worth investigating in A, and the classification of the infinitesimal

deformations in Chapter 5 would provide a useful starting point for such work.

As for other families of deformations over non-local rings, we conjecture that there

exist families of algebras that deform A with associated infinitesimals that cover all

of Vq. We have discussed in Chapter 8 that answering this question will require new

techniques as the resulting algebra cannot be PBW with the specified basis that we

have studied.
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Finally, are there any flat families of algebras whose associated infinitesimal lies in

Vu? We have been unable to answer this question, except in the case of the overlaps

with Vq and Vg. The author believes the answer to be positive, but this is not based

on anything but optimism. The main conjecture we make about any such algebras is

that they will have function skew field that is isomorphic Kq(u, v) for some q. This

reasoning behind this is that the generic element of all the families discussed in the

thesis has such a skew field. These algebras are worth investigation not least because

examples of transcendence degree 2 division rings ‘in the wild’ are of interest as testing

grounds for the theory of noncommutative surfaces and Artin’s conjecture.
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Chapter 2

Background

In this chapter we present the background material, theory and theorems upon which

the rest of the thesis is based. In particular we will provide an overview of the funda-

mentals of algebraic deformation theory, the theory of Koszul and PBW algebras, and

introduce the algebra A that will play a key role in the thesis.

Notation 2.0.1. We adopt the global convention that K is a field and unadorned

tensor products are to be considered as tensor products over K. Furthermore, we will

sometimes use the symbol | for the tensor product ⊗K.

2.1 Koszul Algebras

First introduced by Priddy [Pri70], Koszul algebras have proved fertile ground for

research. The motivation in studying them has been that whilst they are a large class

of quadratic algebras, their behaviour is considerably less wild than the general case.

The definitive text on Koszul algebras is by Polishchuk and Positelskei [PP05], although

we also take definitions from [BG96] as they are more suited to the work in this thesis.

Definition 2.1.1. For a K-algebra C we call the K-algebra Ce := C ⊗K Cop the

enveloping algebra of C.

The useful property of enveloping algebras is that the category of C-bimodules is

equivalent to the category of right Ce-modules.

Before considering Koszul algebras themselves, we define the bar resolution which

plays a central role in deformation theory and will appear throughout the thesis.

Definition 2.1.2. For a K-algebra C, let Bn(C) be the C-bimodule C⊗n+2, which we

often just write as Bn if the context is clear. We define the bar (or standard) resolution

of C to be the complex of right Ce-modules

B∗ → C,
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where the boundary map bn : Bn → Bn−1 is given by

bn(c0 ⊗ c1 ⊗ . . .⊗ cn ⊗ cn+1) = c0c1 ⊗ c2 ⊗ . . .⊗ cn+1

+
∑
i

(−1)ic0 ⊗ . . .⊗ cici+1 ⊗ . . .⊗ cn+1

+ (−1)n+1c0 ⊗ c1 ⊗ . . .⊗ cncn+1,

and the final map C ⊗ C → C is the multiplication map.

Note that the above definition is completely general and requires no assumptions

about the structure of C. From this point forwards however, we will be dealing only

with quadratic algebras.

Notation 2.1.3. If V is a finite set then we denote by T (V ) the tensor algebra on

spK(V ). Note that T (V ) =
⊕

i T (V )i is a graded algebra with each generator lying in

T (V )1.

Definition 2.1.4. For a set of relations R ⊆ spK(V )⊗ spK(V ) we consider an algebra

C :=
K〈V 〉
(R)

.

Since R ⊆ T (V )2, C is N-graded and we write this grading as

C =
⊕
i∈N

Ci.

The Koszul complex is given by Kn = C ⊗Kn ⊗ C, where Kn is defined as:

Kn =


K if n = 0

C1 if n = 1⋂n−2
j=0 C

⊗j
1 ⊗R⊗ C

⊗i−j−2
1 otherwise.

The inclusion of R into C1 ⊗ C1 gives a C-bimodule embedding in : Kn ↪→ Bn. The

differential of the Koszul complex is induced by restriction from that of the bar complex;

this is well defined since Im bn ◦ in ⊆ in−1(Kn−1).

An algebra is Koszul if the Koszul complex is a resolution of C as a right Ce-module.

Remark 2.1.5. There are many equivalent definitions of a Koszul algebra. We choose

a homological definition, since much of the work in the thesis is homological in nature.

For a comparison of other definitions of Koszul algebras we direct the reader to [BG96,

Appendix A].

14



2.1.1 PBW Algebras and the Diamond Lemma

A well studied sub-class of Koszul algebras, also introduced by Priddy [Pri70], are the

PBW algebras. Named for Poincaré, Birkhoff and Witt, these are algebras which admit

a specified basis of monomials, and first arose as the enveloping algebras of Lie algebras.

Our definition is somewhat restricted as we are only interested in the quadratic case,

and is that adopted in [PP05].

Definition 2.1.6. Let V := {v1, . . . , vγ} and R ⊆ spK(V ) ⊗ spK(V ) be a finite set of

relations of the form

vjvi −
∑

(r,s)≺(j,i)

crsvrvs,

where j > i and ≺ is the lexicographic ordering. The algebra C := T (V )
(R) is a PBW

algebra if it has a basis of all monomials of the form vi11 · · · v
iγ
γ . Consider an element

p ∈ T (V ). We say p is in PBW order (with respect to R) if it is a sum of monomials

of the form civ
i1
1 · · · v

iγ
γ for some constant ci ∈ K∗.

Example 2.1.7. The simplest example of a PBW algebra is the polynomial ring

K[x1, . . . , xn] with the ordering on the generators given by x1 < x2 < . . . < xn.

Theorem 2.1.8 ([Pri70, Theorem 5.3]). A PBW algebra is Koszul.

One of the most useful properties that PBW algebras have is that they generalise the

theory of Gröbner bases from commutative algebra. This fact is known as the Diamond

Lemma and is often used to prove that a given algebra is PBW. First explicitly proved

by Bergman [Ber78], the Diamond Lemma allows one to test the relations of an algebra

for the PBW property by finding the PBW form of a finite set of monomials. Before

stating the Diamond Lemma we require a few preliminaries.

In the following we adopt notation in keeping with that of Bergman’s original paper.

We have chosen a basis of R of the form {Wσ − fσ}, where Wσ is a monomial and fσ

is a polynomial in PBW order.

Definition 2.1.9. We define the reduction system of C to be the set of pairs {σ =

(Wσ, fσ)}. Furthermore, we define a reduction rBσD for monomials B,D ∈ T (V ) as

the linear map on T (V ) such that for a monomial M we have:

rBσD(M) =

{
BfσD if M = BWσD

M otherwise.

We call a composition of any number of reductions a reduction sequence.

If a relation is of the form

vjvi −
∑

(r,s)≺(j,i)

crsvrvs,
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then we label the associated element of the reduction system σj,i.

The idea of the Diamond Lemma is that in order to verify that a set of relations

defines a PBW algebra, one only needs to check that the PBW forms of a finite set of

monomials are unique.

Definition 2.1.10. If V and R are as in Definition 2.1.6 then an overlap ambiguity is

a degree 3 monomial of the form

vjvkvl with j > k > l.

By definition, for an overlap ambiguity w, there are two reductions one may apply

to w: rvjσk,l and rσj,kvl .

Definition 2.1.11. An overlap ambiguity w = vjvkvl is said to be resolvable if there

exist two reduction sequences rn · · · r1 and sm · · · s1 such that s1 = rvjσk,l , r1 = rσj,kvl
and

sm · · · s1(w) = rn · · · r1(w).

We are now ready to state the Diamond Lemma. Note that the version we use

is not as powerful as the original result as we are only interested in graded quadratic

algebras in this thesis. For this reason we have modified the theorem slightly.

Theorem 2.1.12 ([Ber78, Theorem 1.2]). If V and R are as in Definition 2.1.6, then

the algebra C = K〈V 〉
(R) is PBW if and only if all overlap ambiguities are resolvable.

Example 2.1.13. We show using the Diamond Lemma that the algebra A defined in

Definition 1.1.1 is PBW with respect to the ordering given by x2 < x1 < x3 < x4. Note

that this was previously established by Rogalski and Sierra [RS12, Proof of Lemma

5.7]. The overlaps of A are precisely the monomials

{x4x1x2, x3x1x2, x4x3x2, x4x3x1}.

We show the resolution in full for x4x1x2 but only give the two sequences for the other

three cases.

1.

rx2r6rr2x3rx4r4(x4x1x2) = rx2r6rr2x3(x4x2x3) = rx2r6(x2x4x3) = x2x1x4

= rx2r5(x2x3x2) = rx2r5rr3x2(x4x1x2)

2.

rx1r6rr5x3rx3r4(x3x1x2) = x2
1x4 = rx1r5rr1x2(x3x1x2)
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3.

rr3x4rx4r5(x4x3x2) = x2x3x4 = rr4x4rx1r2rr6x2(x4x3x2)

4.

rr3x3rx4r1(x4x3x1) = x2x
2
3 = rr4x3rx1r3rr6x1(x4x3x1)

Since all four overlaps are resolvable, we can apply the Diamond Lemma and conclude

that A is PBW with the basis {xi2x
j
1x
k
3x

l
4}.

2.2 The Algebra A

The main focus of this thesis is applying deformation theory to study algebras ‘close’

to the algebra A as defined in Definition 1.1.1. Before discussing A itself we provide

some context and definitions that will allow us to state fully the properties that A has

that we are particularly interested in.

2.2.1 Preliminary Definitions from Noncommutative Projective Ge-

ometry

In the field of noncommutative projective geometry the main idea is to generalise the

sheaf theoretic approach of modern algebraic geometry to noncommutative algebras.

We will not discuss the field in detail, as the technical heart of the thesis is Gersten-

haber’s deformation theory. However, many of the concepts are relevant. In particular,

the growth and dimension of a ring will be used throughout the thesis.

Gelfand-Kirillov Dimension

There are many definitions of dimension for noncommutative rings which go some way

to generalising commutative notions of dimension. The most relevant in this thesis is

Gelfand-Kirillov dimension.

Definition 2.2.1. The Gelfand-Kirillov dimension (hereafter GK-dimension) of an

algebra C is

GKdim(C) = sup
V

lim sup
n→∞

(logn(dimF(V n))),

where the supremum ranges over all finite dimensional subspaces V of C.

GK-dimension generalises Krull dimension in the sense that they agree for finitely

generated commutative domains. Unfortunately, GK-dimension has some bad proper-

ties in general. For example, for any real number r larger than 2, there is an algebra

with GK-dimension r [KL00, Theorem 2.9]. In the algebraic setting of this thesis the

GK-dimension of an algebra is strongly related to its Hilbert series.
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Definition 2.2.2. For a graded K-algebra C =
⊕

iCi the Hilbert series of C is the

power series

hC(p) =
∑
i

dim(Ci)p
i.

In other words, hC(p) is the generating function for dim(Ci).

Lemma 2.2.3 ([Rog, Lemma 2.7]). Suppose that C =
⊕

iCi is a graded algebra such

that C0 = K. If the Hilbert series of C is of the form hC(t) = 1/p(t), where p ∈ Z[t],

then C has finite GK-dimension if and only if all roots of p in the complex plane lie on

the unit circle. Moreover, in this case, the GK-dimension is an integer, and it is equal

to the multiplicity of vanishing of p(t) at t = 1.

Noncommutative Localisation

Localisation refers to the process of adding inverses to a ring. In the noncommutative

setting there are problems with naively inverting given sets of elements. the condition

required to avoid these issues is the Ore conditions.

Definition 2.2.4. A set S ⊆ C is a right Ore set with respect to a subset B ⊆ C if S

is a multiplicatively closed set such that for any a ∈ B and s ∈ S, there exist b ∈ B
and r ∈ S such that the following holds:

ar = sb.

S is a right Ore set if B is the whole ring C. A left Ore set is defined in the same way

mutatis mutandis.

If S is a right Ore set in a domain C then we can consider the localisation of C at

S, which we define with a universal property.

Definition 2.2.5. For S a right Ore set in a domain C then the localisation of C at S

is written CS and is a ring with a homomorphism θ : C ↪→ CS satisfying the following

universal property: if R is a ring and φ : C → R is a ring homomorphism so that φ(s)

is a unit for every element s ∈ S, then φ factors through CS under θ.

The existence of a ring satisfying this property is the content of [MR01, Theorem

2.1.12]. Noncommutative localisation is the tool that allows us to consider birational

geometry in a noncommutative setting.

Noncommutative Birational Equivalence

Noncommutative birational equivalence generalises the commutative notion of bira-

tional equivalence between two projective varieties to noncommutative graded domains.
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Definition 2.2.6. For C a graded domain of finite GK-dimension we define the graded

quotient ring

Qgr(C) := C〈h−1| 0 6= h ∈ C is homogeneous〉

It is not immediately obvious that such a ring is well defined, in that localisation

in noncommutative rings depends on the Ore condition being satisfied. This can be

verified by combining [NvO82, Theorem C.I.1.6] and [KL00, Theorem 4.12].

The utility of this construction arises from the following theorem.

Theorem 2.2.7 ([NvO82, Theorems A.I.5.8 and C.I.1.6]). For C a graded domain of

finite GK-dimension, there exists a division ring D and τ an automorphism of D such

that

Qgr(C) ∼= D[t, t−1; τ ].

Definition 2.2.8. We call the division ring D in Theorem 2.2.7 the function skew field

of C. We will often refer to this simply as the function field by abuse of language,

although we remind the reader that this is not intended to suggest D is commutative.

Two algebras are said to be birationally equivalent if they have isomorphic function

skew fields.

Definition 2.2.9. We call a finitely generated graded K-algebra C =
⊕

iCi with C0 =

K finitely graded . A finitely graded domain with a function skew field of transcendence

degree 2 over the ground field K is called a noncommutative projective surface or simply

a noncommutative surface.

Classifying noncommutative surfaces is an open and difficult problem, even up to

birational equivalence (see [SVdB01]). One particularly well understood class of non-

commutative surfaces are the birationally commutative surfaces.

Definition 2.2.10. If a finitely graded domain has a function field that is commutative

then we call it birationally commutative. We will refer to noncommutative projective

surfaces that are birationally commutative as birationally commutative surfaces.

2.2.2 Definition of A and Basic Properties

Although A was first defined by Yekutieli and Zhang in [YZ06, Section 7] as a subgroup

of a group algebra, we prefer to follow Rogalski and Sierra [RS12] and we have defined

A by a finite presentation in Definition 1.1.1.

The following result is due to Smith and Zhang, although the proof is not published,

and establishes many of the basic properties of A. Note that although due to Smith

and Zhang, the result was published in a paper of Yekutieli and Zhang.

Proposition 2.2.11 ([YZ06, Proposition 7.6]). A is a finitely graded K-algebra with

the following properties.
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(a) A is a Koszul algebra.

(b) A is a domain with Hilbert series

hA(p) =
1

(1− p)4
.

(c) A is neither left nor right noetherian.

Note that we have already established Part (a) of Proposition 2.2.11 in Example

2.1.13 since PBW algebras are Koszul by Theorem 2.1.8. Of particular interest from a

noncommutative geometry perspective is the following birational classification of A.

Notation 2.2.12. For a set X the symbol K〈X〉 is used to denote the subalgebra

generated by X if X is a subset of a K-algebra and the free algebra on X otherwise. It

will be clear from the context which is meant.

Proposition 2.2.13 ([YZ06, Proposition 7.8 and its proof]). A is a GK-dimension 4

birationally commutative surface. In particular, there exists a isomorphism:

Qgr(A) ∼= K(u, v)[t, t−1;σ]

where σ ∈ Aut(K(u, v)) is defined by

σ(u) = uv and σ(v) = v.

Indeed, A is embedded in Qgr(A) in the following manner:

Lemma 2.2.14 ([RS12, Lemma 5.7 (i)]). Let E := {t, ut, vt, uvt}. Then the map

φ : A→ K(u, v)[t, t−1;σ] given by

φ(x1) = t, φ(x2) = ut, φ(x3) = vt, φ(x4) = uvt

defines an isomorphism:

A ∼= K〈E〉.

This particular embedding of A into Qgr(A) is a useful tool that will appear through-

out the thesis. There are several properties of A that are best understood when con-

sidering A as a subalgebra of Qgr(A), whereas the presentation of A given in Definition

1.1.1 is often easier to make calculations with.

2.2.3 Deformations Of A

By basic theory from birational geometry [Har77, Theorem 4.4], the automorphism

σ ∈ Aut(K(u, v)) defined in Proposition 2.2.13 defines a birational self-map for any
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rational surface. Rogalski and Sierra consider one such birational self-map in [RS12].

In the following we abuse notation and write σ for both the automorphism of K(u, v)

and the birational map of P1 × P1.

Definition 2.2.15. Define the birational map σ : P1 × P1 99K P1 × P1 by

σ([x : y][z : w]) = [xz : yw][z : w].

Then choose the chart on P1 × P1 given by u = x/y and v = z/w.

It is immediate that this choice of chart on P1×P1 corresponds to the automorphism

of K(u, v) defined in Proposition 2.2.13. The paper [RS12] concerns families of algebras

that ‘deform’ A by certain a set of automorphisms {τ} ⊆ Aut(P1 × P1).

Definition 2.2.16. If τ ∈ Aut(P1 × P1) then consider the set

E(τ) := {t, ut, vt, uvt} ⊆ K(u, v)[t;σ ◦ τ ].

Then define A(τ) to be the algebra K〈E(τ)〉.

Intuitively, one expects A(τ) to be an algebra with similar properties to A. In

fact the main theorem of [RS12] is that whilst it is true that (for certain τ) A(τ) has

GK-dimension 4, almost all of these algebras are noetherian.

Theorem 2.2.17 ([RS12, Theorem 1.6]). There exists a subgroup of automorphisms

in Aut(P1 × P1) comprised of elements τ = τ(ρ, θ) parametrised by ρ, θ ∈ K, such that

if ρ and θ are algebraically independent over the prime subfield of K then A(τ) is a

GK-dimension 4 noetherian finitely graded domain which is Koszul.

This theorem was surprising since at the time no examples of noetherian birationally

commutative surfaces were known to exist in GK-dimension 4. The algebras A(τ) can

be considered as deformations of A in an obvious way. One goal of this thesis is to

discover whether or not there are other families of algebras that deform A.

2.3 Deformation Theory

The theory of formal deformations of algebras was first introduced by Gerstenhaber

[Ger64], and has had wide ranging impact in both mathematics and physics. Inspired

by ideas from analytic deformation theory [KNS58, KS58] and examples from quantum

mechanics [Moy49], Gerstenhaber defined families of algebras that can be thought of

as ‘close’ to a given algebra.

There are several readable surveys of Gerstenhaber’s deformation theory available.

Szendroi has written a very readable introduction with applications to Calabi-Yau
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manifolds in [Sze99]. However, for more detailed and algebraic considerations of the

theory the reader is directed to [Fox93] for an introduction and [Gia11] for a high level

historical survey. Furthermore, the original papers by Gerstenhaber [Ger63, Ger64] are

still extremely relevant and accessible.

2.3.1 Hochschild Cohomology

The main thrust of Gerstenhaber’s foundational papers [Ger63, Ger64] is that the

deformation theory of a K-algebra is intimately related to its Hochschild cohomology.

Furthermore, the Hochschild cohomology comes with a wealth of algebraic structures

defined upon it and these also have relation to the deformation theory of the algebra in

question. For that reason we first define Hochschild cohomology, which was introduced

by Hochschild in [Hoc45].

Definition 2.3.1. The Hochschild cohomology of a K-algebra C, written HH∗(C), is

the homology of the dual complex to the bar complex (see Definition 2.1.2). That is to

say that it is the cohomology of the bar complex under the contravariant functor

HomCe(−, C).

Example 2.3.2. 1. HH0(C) is the centre of the algebra C. To see this, note that

f ∈ HomCe(C
⊗2, C) is determined by f(1⊗1) = c ∈ C so that HomCe(C

⊗2, C) ∼=
CCe . Then f is a Hochschild 0-cocycle if and only if for every d ∈ C

b1(f)(1⊗ d⊗ 1) = f(d⊗ 1)− f(1⊗ d) = dc− cd = 0.

Therefore f is a cocycle if and only if c is central.

2. HH1(C) is the quotient of the group of derivations of C by the group of inner

derivations of C.

Of course, by the Comparison Theorem [Wei94, Theorem 2.2.6] the explicit depen-

dence on the bar complex in the definition of Hochschild cohomology is illusory, in

that HH∗(C) ∼= Ext∗Ce(C,C). One could replace this resolution with any other projec-

tive resolution of C as a right Ce-module and the resulting cohomology would be the

same. Indeed, much of the work in this thesis depends upon that fact. However, there

are several algebraic structures defined on the bar complex that have significance in

Gerstenhaber’s theory of formal deformations, as we shall shortly see.

2.3.2 Deformations

Definition 2.3.3. Let R be a K-algebra with an augmentation map R → K so that

K has a canonical R-module structure. For a K-algebra C we define a flat family of
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algebras that deforms C over R to be a flat R-algebra AR with an algebra isomorphism

AR ⊗R K ∼= A.

We define a formal deformation of C to be a flat family of algebras that deforms C

over R = K[[s]]. Equivalently, a formal deformation of C is an associative K[[s]]-algebra

structure on the K[[s]] vector space Cs := C⊗̂K[[s]] with an isomorphism of K-algebras

Cs
(s)
∼= C.

Intuitively, one can think of a formal deformation of an algebra as a one-parameter

family of algebras such that for any choice of q ∈ K one obtains a new algebra Cs
(s−q) .

Unfortunately, in general this raises issues of convergence that are best left aside. How-

ever, we can certainly write the algebra structure on Cs = C⊗̂K[[s]] as a power series

which proves useful.

Definition 2.3.4. A formal deformation of a K-algebra C is defined by an associative

K[[s]]-bilinear map F : Cs ⊗K[[s]] Cs → Cs which is given on elements of a, b ∈ C by

F (a, b) =
∑
i

Fi(a, b)s
i,

where each Fi is a bilinear map on C. By the definition of a formal deformation we

know that F0(a, b) = ab, i.e. F0 is the multiplication map of C. We call the first Fi

that is nonzero for i > 0 the infinitesimal of F . By an abuse of language, we will often

refer to the power series F as a formal deformation.

An infinitesimal is best thought of as a tangent vector lying in the tangent space

to some moduli space of algebras. Using noncommutative differentials one can make

this statement more formal and accurate [Art96, Section 9], but the intuition suffices

for this thesis.

Now we repeat the definition of formal deformation, but this time over the ring
K[[s]]
(si)

.

Definition 2.3.5. For any i ∈ N≥0, an ith level deformation of K-algebra C is an

associative K[[s]]
(si)

-algebra structure on C
(i)
s := C ⊗ K[[s]]

(si)
, given by a K[[s]]

(si)
-bilinear map

F ′, with an isomorphism

C
(i)
s

(s)
∼= C.

One can think of ith level deformations of an algebra C as approximations of formal

deformations for C. However, one should be aware that it is not always true that an

ith level deformation arises as Cs
(si)

for some formal deformation structure on Cs.

Definition 2.3.6. A homomorphism of formal (respectively ith level) deformations

from F to G is a K[[s]] (resp. K[[s]]
(si)

) bilinear map, Φ, on Cs (resp. C
(i)
s ) so that the
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following diagram commutes:

Cs Cs

C

Φ

With this definition of morphisms, formal deformations form a category E and ith

level deformations form a category Ei. We also naturally obtain functors E → Ei for all

i ∈ N and Ej → Ei for any pair i, j ∈ N with i < j arising from the canonical quotient

maps

K[[s]]→ K[[s]]

(si)
and

K[[s]]

(sj)
→ K[[s]]

(si)
.

The category E2 is of particular interest.

Definition 2.3.7. A 2nd level deformation F ′ is called an infinitesimal deformation.

Furthermore, let F ′1 : C ⊗ C → C be the linear map in the expansion of F ′ as a series,

so that for all a, b ∈ C
F ′(a, b) = ab+ F ′1(a, b)s ∈ C(2)

s .

Then by a further abuse of language we refer to F ′1 as an infinitesimal deformation.

Note that F ′1 ∈ B2, the space of Hochschild 2-cochains.

The following proposition is a reformulation of the fact that a functor E → E2 exists.

Proposition 2.3.8 ([Ger64, Section 1]). An infinitesimal of a formal deformation of

C is an infinitesimal deformation of C.

We now come to the first connection to Hoschshild cohomology. Recall that we

would like to think of infinitesimals of a formal deformation as tangent vectors to some

moduli space of algebras. The following fundamental theorem is a statement of the fact

that this tangent space is precisely the second Hochschild cohomology space.

Proposition 2.3.9 ([Ger64, Section 1]). An infinitesimal deformation is a Hochschild

2-cocycle. Furthermore, two infinitesimal deformations are isomorphic in the sense of

Definition 2.3.5 if and only if they are cohomologous in Hochschild cohomology.

2.3.3 Integrating Deformations

We turn to the question of whether something akin to a converse of Proposition 2.3.8

ever holds true. More generally, we ask when is an object in Ei the image of some

object in E under the functor E → Ei. Since

K[[s]] ∼= lim←−
K[[s]]

(si)
,
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this question can be approached by answering the weaker question of when does an

object in Ei lie in the image of some object in Ei+1.

Definition 2.3.10. If F (a, b) =
∑i

j Fj(a, b)s
j is an ith level deformation of C then we

say F integrates to an (i+1)st level deformation if there exists an Fi+1 ∈ HomK(C⊗2, C)

such that

F ′(a, b) =
i+1∑
j

Fj(a, b)s
j

is an (i+ 1)st level deformation.

We will see that the answer to this question is once again related to the Hochschild

cohomology of the algebra in question. However, we must first define some terms. The

following proposition is simply a reformulation of the fact that a formal deformation

defines an associative algebra structure. Note that in the case i = 1 this proposition is

a restatement of Proposition 2.3.8.

Proposition 2.3.11 ([Ger64, Section 1]). If F =
∑

i Fis
i is a formal deformation of

C then for each i ∈ N and every a, b, c ∈ C the following equation holds:∑
p+q=i

Fp(Fq(a, b), c)− Fp(a, Fq(b, c)) = 0. (νi)

We can rewrite this formula as:∑
p+q=i
p,q>0

Fp(Fq(a, b), c)− Fp(a, Fq(b, c)) = aFi(b, c)− Fi(ab, c) + Fi(a, bc)− Fi(a, b)c

= b2(Fi)(a, b, c). (ν ′i)

For this reason, the expression on the left hand side of equation (ν ′i) is of particular

interest as its value controls whether or not an Fi can exist that integrates a given

(i− 1)st level deformation.

Definition 2.3.12. For any i ∈ N≥1, we call the expression∑
p+q=i
p,q>0

Fp(Fq(a, b), c)− Fp(a, Fq(b, c))

the associator of the (i− 1)st level deformation F =
∑i−1

j Fjs
j .

The following proposition takes the problem of integration and places it firmly into

the realm of Hochschild cohomology.

Proposition 2.3.13 ([Ger64, Proposition 3]). The associator is a Hochschild 3-cocycle.
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Definition 2.3.14. For an ith level deformation F we call the cohomology class of

the associator the obstruction of F . In the case of an infinitesimal deformation, we

call the obstruction the primary obstruction. If G is the associator of an infinitesimal

deformation F1 then the primary obstruction is by definition the cohomology class of

G(a, b, c) = F1(F1(a, b), c)− F1(a, F1(b, c)).

From this it immediately follows from (ν ′i) that an ith level deformation integrates

to an (i + 1)st level deformation if and only if its associator is a coboundary (i.e. is

cohomologous to 0).

2.3.4 The Gerstenhaber Bracket

The final piece of technology we require is the Gerstenhaber bracket. Gerstenhaber

defined several interrelated functions on the bar complex, the full content of which is

beyond the scope of this overview. However, what is relevant here is that there is a

graded Lie algebra structure on the bar complex B∗ which is usefully connected to the

question of integration of ith level deformations.

Definition 2.3.15. For 0 ≤ i ≤ n let ◦i : Bn⊗Bm → Bn+m−1 be the map defined for

f ∈ Bn and g ∈ Bm by

f◦ig(c0⊗c1⊗. . .⊗cn+m) = f(c0⊗. . .⊗ci−1⊗g(1⊗ci⊗. . .⊗ci+m⊗1)⊗ci+m+1⊗. . .⊗cn+m).

Then f ◦g =
∑

i(−1)(m−1)if ◦i g defines a bilinear map on B∗, which in turn defines

the Gerstenhaber bracket given by:

[f, g] = f ◦ g − (−1)(n−1)(m−1)g ◦ f.

Proposition 2.3.16 ([Ger63, Theorems 1 and 4]). The Gerstenhaber bracket defines

a graded Lie algebra structure on the bar complex that descends to a graded Lie algebra

structure on Hochschild cohomology.

The main theorem regarding this bracket is the following, which relates the question

of integration of deformations to the cohomology of the Gerstenhaber bracket of certain

elements.

Proposition 2.3.17. An ith level deformation integrates to an (i+ 1)st level deforma-

tion if and only if ∑
p+q=i
p,q>0

[Fp, Fq]

is a coboundary in B3.
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In particular, an infinitesimal deformation f has vanishing primary obstruction if

and only if [f, f ] is a coboundary.
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Chapter 3

The Second Hochschild

Cohomology Space for Two

Algebras of Interest

3.1 Introduction

In this chapter we explain and carry out some calculations regarding the Hochschild

cohomology structure for two specific PBW algebras, A and Aq. Recall from Definition

2.3.1 that the Hochschild cohomology of an algebra C is ExtCe(C,C), where Ce is the

enveloping algebra of C as defined in Definition 2.1.1.

A classical result of Gerstenhaber (see Proposition 2.3.9) is that the second Hochschild

cohomology space HH2(C) parametrises the isomorphism classes of infinitesimal defor-

mations of C. In this thesis we study only graded deformations where the parameter

of deformation has degree 0. This means that we only need concern ourselves with

calculating the degree 2 component of the second cohomology space.

Throughout the chapter we make use of the PBW property of the algebras. Specif-

ically, since PBW algebras are Koszul we use the Koszul complex as the projective res-

olution of C in calculating ExtCe(C,C). The terms in the Koszul complex are finitely

generated and so make the calculations tractable by computer. Much of the leg work is

carried out using two symbolic algebra packages: for linear algebra calculations we use

‘Sage’ [Dev15] whereas for noncommutative algebra calculations we use ‘Polygnome’,

a Python [Ros95] package written by the author (see Appendix B). The code for these

calculations is included in Appendix A.1.

Throughout the discussion of computer calculations we will assume a basic un-

derstanding of object oriented programming concepts (objects, classes etc.) and will

not explain any Python syntax. For references on these topics we refer the reader to

[Ros95].
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3.2 Calculations of Hochschild Cohomology Spaces

We consider a PBW algebra C. The Hochschild cohomology is calculated by a routine

Ext calculation as described for example in [Wei94, Chapter 3]. We include the details

of the calculation for completeness here as they are carried out by computer. The

Koszul resolution (see Definition 2.1.4) is denoted by Kn = C ⊗ Kn ⊗ C, with maps

kn : Kn → Kn−1. The dual complex is denoted by

Kn = HomCe(Kn, C)

with the chain map written as kn.

We will repeatedly make use of the isomorphism

HomCe(Kn, C) ∼= HomK(Kn, C) (3.1)

which arises naturally from the adjunction between the free right Ce-module functor

and the corresponding forgetful functor.

The calculation then will proceed as follows. Firstly, we choose bases for Kn for

n = 1, 2 and 3. By the isomorphism (3.1) this is equivalent to choosing a free generating

set for each of these Kn’s.

Once these generating sets are chosen, we form the matrix of kn for n = 2 and

n = 3. We use this to calculate the kernel of k3 and the image of k2 in degree two.

From bases of these two vector spaces we calculate a basis for the quotient space, which

is the second Hochschild cohomology space in degree two.

Notation 3.2.1. Our convention is to write elements of Kn as column vectors. If

Z = {z1, . . . , zm} is the chosen ordered free generating set of Kn then the vector
Θ1

...

Θm


represents the unique function in Kn that sends each 1 ⊗ zi ⊗ 1 to Θi ∈ A. This

determines the function completely because of the isomorphism (3.1).

3.2.1 Implementation Details

A full discussion of the source code of ‘Polygnome’ is beyond the scope of this thesis.

However, we will discuss here the details of how the boundary maps in the Koszul

resolutions are defined. We have made the full source code freely available in an online

repository [Cam]. The defining code for the boundary maps k_1 and k_3 (and their
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corresponding dual maps) can be found in Appendix B.1. We discuss k_2 and its dual

map as examples here.

The following code uses a decorator bimoduleMapDecorator. A decorator is a Python

class that modifies a function defined by the user in a predetermined way, perhaps

depending on some variables. In this case bimoduleMapDecorator takes as variables

the domain and codomain of a function between two free bimodules over an algebra.

The decorator allows the user to define a function on a bimodule generating set of the

domain and the program will automatically extend the function to the entire bimodule,

thereby reducing the amount of repetition in the source code.

Let C be a PBW algebra with generating space V and relation space R. Recall that

k2 has domain C ⊗R⊗ C and codomain C ⊗ V ⊗ C. In ‘Polygnome’ this information

is stored as both the codomain and domain being the tensorAlgebra C⊗F ⊗C, where

F is merely a placeholder that is implemented as the algebra with no relations.

Relations in ‘Polygnome’ are implemented in a class relation that allows the storage

of expressions of the form:

leadingMonomial = xy and lowerOrderTerms =
∑

cif
1
i f

2
i .

See Section 4.1 for a discussion of the notation used here. Since K2 has a free bimodule

generating set of the form {1 ⊗ (xy −
∑
cif

1
i f

2
i ) ⊗ 1} we define k_2 on this set only,

recalling that

k2(1⊗ (xy −
∑

cif
1
i f

2
i )⊗ 1) = x⊗ y ⊗ 1−

∑
cif

1
i ⊗ f2

i ⊗ 1

+ 1⊗ x⊗ y −
∑

ci ⊗ f1
i ⊗ f2

i .
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1 def k_2(tens , alg):

2 freeAlgebra = algebra ()

3 K1 = K2 = tensorAlgebra ([alg , freeAlgebra , alg])

4

5 @bimoduleMapDecorator(K2, K1)

6 def k_2Inner(tens): #tens = 1 | relation | 1

7 assert isinstance(tens , pureTensor)

8 answer= tensor ()

9 rel =tens.monomials [1]

10 for i in rel.leadingMonomial:

11 answer = answer + i.coefficient \

12 * pureTensor ((i[0], i[1], 1))

13 answer = answer + i.coefficient \

14 * pureTensor ((1, i[0], i[1]))

15 for i in rel.lowerOrderTerms:

16 answer = answer - i.coefficient \

17 * pureTensor ((i[0], i[1], 1))

18 answer = answer - i.coefficient \

19 * pureTensor ((1, i[0], i[1]))

20 return answer

21 return k_2Inner(tens)

In order to dualise a map defined on the Koszul complex, we define a function that

takes as parameter a function, and returns a function. Python allows functions to be

passed and returned as variables in this manner. The following code makes use of

functionOnKn, a class that encapsulates the vector notation for functions on Kn and

which needs to be told the algebra and the chosen basis for Kn.

24 def koszulDualMap(inputMap ):

25 def functionFactory(func , knBasis ):

26 # func --> func o inputMap

27 images = [func(inputMap(i, func.algebra )) \

28 for i in knBasis]

29 return functionOnKn(func.algebra , knBasis , images)

30 return functionFactory

31

32 k_2Dual = koszulDualMap(k_2)

3.3 The Second Hochschild Cohomology of A

Recall the algebra A from Definition 1.1.1. The algebra A is a PBW algebra with the

PBW basis {xi2x
j
1x
k
3x

l
4} [RS12, Proof of Lemma 5.7]. By work in [RS12, Section 5], we
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know that the Koszul complex of A is isomorphic to:

0→ A[−4]→ A[−3]⊕4 → A[−2]⊕6 → A[−1]⊕4 → A→ 0.

With this in mind, to find the doubly defined relations (i.e. K3) we only need to give

four linearly independent elements of

V ⊗R ∩R⊗ V.

By observation one can see that the set

D :=

{
d1 := x3r4 + x1(r6 − r5) = r1x2 − r5x3, d2 := x4r1 − x1r3 = r6x1 + (r4 − r3)x3

d3 := x4r5 − x1r2 = r6x2 + (r4 − r3)x4 d4 := x4r4 + x2(r6 − r5) = r3x2 − r2x3

}

is linearly independent and therefore provides a basis of K3.

We walk through the Sage script that calculates first the basis of Ker(k3)2 followed

by the basis of Im(k2)2. After some manipulations this allows us to read off a basis of

HH2
2(A).

3.3.1 Explanation of Computer Calculations

At the start of the script the variable bases is a list so that bases[i] is the PBW basis

for Ai and KnBases is a list so that KnBases[i] is the chosen generating set for Ki. The

first step is to build the generating set for K2 and K1. We include the K2 case here

as the code is almost identical in either case. Recall that functionOnKn is a class that

encapsulates the vector notation for functions on Kn and which needs to be told the

algebra and the chosen basis for Kn.

1 K2DualBasis = []

2 for i in range (6):

3 for element in bases [2]:

4 vectorRepresentation = [0] * i \

5 + [element] \

6 + [0] * (6-i-1)

7 function = functionOnKn(A,

8 KnBases [2],

9 vectorRepresentation)

10 K2DualBasis.append(function)

Now to find the kernel of k3 we form the matrix of k3 and use Sage to calculate a

basis of the kernel. Note that we must convert the vector representations from those

used internally by ‘Polygnome’ to those used by ‘Sage’ and vice versa. This is done

using the helper functions polygnomeVectorToSage and sageVectorToPolygnome. K is

defined as the field Q since we assume that K has characteristic 0.
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13 matrixOfk_3Dual = [k_3Dual(vect , KnBasis [3])

14 for vect in K2DualBasis]

15 matrixOfk_3Dual = [polygnomeVectorToSage(vect , 3, 3)

16 for vect in matrixOfk_3Dual]

17 matrixOfk_3Dual= sage.Matrix(K, matrixOfk_3Dual)

Once we have k3 stored as a matrix, it is a simple matter to ask ‘Sage’ to calculate

the basis of Ker(k3). Of course, we must convert this basis into a more readable form

before printing it out.

19 kernelOfK_3Dual = matrixOfk_3Dual.left_kernel (). basis ()

20 kernelOfK_3Dual = [sageVectorToPolygnome(vect , 2)

21 for vect in kernelOfK_3Dual]

The output of this script can be found in Appendix A.1.1.

Now we repeat the above procedure, but instead we calculate the image of k2 instead

of the kernel of k3. Most of the script is identical with a few integers changed. The

salient portion of code is the following:

1 matrixOfk_2Dual = [k_2Dual(vect , KnBases [2])

2 for vect in K1DualBasis]

3 matrixOfk_2Dual = [polygnomeVectorToSage(vect ,2,2)

4 for vect in matrixOfk_2Dual]

5 matrixOfk_2Dual= sage.Matrix(K, matrixOfk_2Dual)

6 imageOfk_2Dual = matrixOfk_2Dual.row_space (). basis()

7 imageOfk_2Dual = [sageVectorToPolygnome(vect , 2)

8 for vect in imageOfk_2Dual]

The output of this script can be found in Appendix A.1.2. We gather the relevant in-

formation in the following theorem.

Theorem 3.3.1. Let kn be the chain map of the Koszul complex of A. Then

1. dim(Im(k2)2) = 14

2. dim(ker(k3)2) = 22

3. dim(HH2
2(A)) = 8

4. The images of the following cocycles are a basis of HH2
2(A):

x1x3

0

0

x2x3

x1x4

0





x2
3

0

x1x4

0

0

x3x4





x2
1

0

0

x2x1

x2x3

0





0

x2x4

0

0

x1x4

0





0

x2
4

0

0

x3x4

0





0

x2
2

0

0

x2x3

0





0

0

0

x2
1

0

−x1x3





0

0

0

−x2
2

0

x2x4


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The vector notation here is defined with reference to the chosen basis R above, as

discussed in Notation 3.2.1.

Proof. This follows directly from the preceding computer calculations. We have ordered

the output of the scripts discussed here in Appendices A.1.1 and A.1.2 so that the basis

of the cohomology space is easy to read off by eye.

3.4 A q-Deformation of A and its Second Hochschild Co-

homology

The central problem of the thesis is to find families of deformations of the algebra

A. We define here Aq, a one-parameter family of deformations of A that will be of

particular interest in Chapter 7. We shall see that the family Aq itself has families

of deformations which specialise to families of deformations of A in the semi-classical

limit q → 1. For that reason we record the details of the calculation of the degree two

component of the second Hochschild cohomology of Aq. Since the calculations of the

Hochschild cohomology of Aq are analogous to those for A we include them here.

3.4.1 Motivation

There are two methods of defining A that are both useful. The first, given in Section

3.3 is as a finitely presented algebra with four generators. However, another approach

is taken in [RS12], in which the authors start with the graded division ring

Qgr(A) = K(u, v)[t, t−1;σ]

where σ ∈ Aut(K(u, v)) is the map defined by

σ(u) = uv and σ(v) = v.

Then one may define A to be the subalgebra generated by

E := {x1 = t, x2 = ut, x3 = vt, x4 = uvt}.

We define Aq in two ways. Consider the quantum plane

kq[u, v] =
K〈u, v〉
vu− quv

for some q ∈ K∗

It is a basic fact in deformation theory that these algebras form a one-parameter family

of deformations of k[u, v]. One may define an automorphism σ′ of Kq(u, v) induced by
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setting

σ′(u) = uv and σ′(v) = v. (3.2)

Since this satisfies:

σ′(vu) = σ′(v)σ′(u) = vuv = quv2 = qσ′(u)σ′(v) = σ′(quv)

in Kq(u, v), we can deduce that σ′ does indeed define an automorphism of Kq(u, v).

Since the defining equations (3.2) of σ′ are the same for that of σ ∈ Aut(K(u, v)), we

abuse notation and refer to both maps as σ with the algebra on which σ acts clear

by the context. We define the algebra Aq to be the subalgebra of Kq(u, v)[t, t−1;σ]

generated by Eq, where

Eq := {t, ut, vt, uvt} .

We will show that Aq is a quantised version of A in the sense that kq[u, v] is a

quantised affine plane, in particular Aq is a family of deformations of A.

3.4.2 Presentation of Aq

For a parameter q ∈ K∗ consider the algebra

A′q =
K〈x1, x2, x3, x4〉

(Rq)

where Rq is the set consisting of the six relations

Rq =

{
r1 := x3x1 − x1x3, r2 := x4x2 − qx2x4, r3 := x4x1 − x2x3

r4 := x1x2 − x2x3, r5 := x3x2 − qx1x4, r6 := x4x3 − x1x4

}
.

By comparison with the definition of A it is clear that A′q is a PBW algebra with

the PBW basis {xi2x
j
1x
k
3x

l
4} (see Section 3.3). Our next result is that Aq and A′q are

isomorphic.

Proposition 3.4.1. The algebras Aq and A′q are isomorphic. Furthermore, if K3 =

K3(Aq) then dim(K3) = 4.

Proof. We first show that Aq ∼= A′q by establishing that the map φ : Aq → A′q defined

by

x1 7→ t, x2 7→ ut, x3 7→ vt, x4 7→ uvt

is in fact an isomorphism of algebras.

A simple calculation shows that the elements in Eq satisfy the relations in Rq, so

that φ is a surjective algebra homomorphism. As for injectivity, we compare the Hilbert

series of the two algebras.
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Since A′q is a PBW algebra with basis {xi2x
j
1x
k
3x

l
4}, we know that

hA′q(p) =
1

(1− p)4
.

An argument similar to the proof of [RS12, Lemma 4.12 (1)] shows that the degree

d component of K〈Eq〉 has the following set as a basis:{
uivjtd

∣∣∣ 0 ≤ i ≤ d, a(i) ≤ j ≤ b(i)
}
,

where

a(i) =

(
i

2

)
and b(i) =

(
d+ 1

2

)
−
(
d− i

2

)
.

Thus

dimK(〈Eq〉d) =
d∑
i=0

[(
d+ 1

2

)
−
(
d− i

2

)
−
(
i

2

)
+ 1

]
=

(
d+ 3

3

)
,

which implies

h〈Eq〉(p) =
1

(1− p)4
.

Let V = spK(x1, x2, x3, x4). Note that the canonical mapping T (V ) → Aq is a

graded homomorphism. We know that Rq ⊗ V and V ⊗ Rq are both (6 × 4 = 24)-

dimensional, and that (Aq)3 is (
(

6
3

)
= 20)-dimensional. Recall that by definition

K3 = Rq ⊗ V ∩ V ⊗Rq

Therefore we have the following equations:

dim((Aq)3) = 20 = dim(T (V )3)− dim(Rq ⊗ V )− dim(V ⊗Rq) + dim(K3)

= 64− 24 ∗ 2 + dim(K3).

This implies that dim(K3) = 4 as required.

Corollary 3.4.2. Aq is a flat family of algebras over K[q] that deforms A.

Proof. This is a standard consequence of the fact that the Hilbert series of Aq is inde-

pendent of q [Har77, Theorem III.9.9].

As before, we can see that the set

Dq :=

{
d1 := x3r4 + x1(qr6 − r5) = r1x2 − r5x3, d2 := x4r1 − x1r3 = r6x1 + (r4 − r3)x3

d3 := x4r5 − x1r2 = r6x2 + q(r4 − r3)x4 d4 := x4r4 + x2(qr6 − r5) = r3x2 − r2x3

}

is linearly independent and so provides a basis for K3.
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3.4.3 Explanation of Computer Calculations for Aq

As the form of the script is almost identical to that in Section 3.3.1 we will not go over

it in as much detail as in that section. The main difference is that now we have a field

Kq which is the field Q(q) since we are working in a field of characteristic zero with one

indeterminate q.

At the start of the script the variable bases is a list so that bases[i] is the PBW

basis for (Aq)i and qKnBases is a list so that qKnBases[i] is the chosen generating set

for Ki. As before we construct a list which is a basis of K2. The logic here is identical

to that in Section 3.3.1.

1 qK2DualBasis = []

2 for i in range (6):

3 for element in bases [2]:

4 vectorRepresentation = [0] * i \

5 + [element] \

6 + [0] * (6-i-1)

7 function = functionOnKn(A,

8 qKnBases [2],

9 vectorRepresentation)

10 qK2DualBasis.append(function)

The script now neatly divides into two pieces. The first calculates the kernel of k3,

and the output of this can be found in Appendix A.2.1.

13 matrixOfk_3Dual = [k_3Dual(vect , qKnBasis [3])

14 for vect in qK2DualBasis]

15 matrixOfk_3Dual = [polygnomeVectorToSage(vect , 3, 3)

16 for vect in matrixOfk_3Dual]

17 matrixOfk_3Dual= sage.Matrix(Kq, matrixOfk_3Dual)

18

19 kernelOfK_3Dual = matrixOfk_3Dual.left_kernel (). basis ()

20 kernelOfK_3Dual = [sageVectorToPolygnome(vect , 2)

21 for vect in kernelOfK_3Dual]

The second piece calculates the image of k2:

1 matrixOfk_2Dual = [k_2Dual(vect , qKnBases [2])

2 for vect in qK1DualBasis]

3 matrixOfk_2Dual = [polygnomeVectorToSage(vect ,2,2)

4 for vect in matrixOfk_2Dual]

5 matrixOfk_2Dual= sage.Matrix(Kq, matrixOfk_2Dual)

6 imageOfk_2Dual = matrixOfk_2Dual.row_space (). basis()

7 imageOfk_2Dual = [sageVectorToPolygnome(vect , 2)

8 for vect in imageOfk_2Dual]

The output of this script can be found in Appendix A.2.2. We gather the relevant
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information in the following theorem.

Theorem 3.4.3. Let kn be the chain map of the Koszul complex of Aq. Then

1. dim(Im(k2)2) = 18

2. dim(ker(k3)2) = 14

3. dim(HH2
2(Aq)) = 4

4. The images of the following cocycles form a basis of HH2
2(Aq)





x1x3

0

0

x2x3

qx1x4

0


,



0

x2x4

0

0

x1x4

0


,



0

x2
4

0

0

x3x4

0


,



0

x2
2

0

0

x2x3

0




The vector notation here is defined with reference to the chosen basis Rq above,

as discussed in Notation 3.2.1.

Proof. As with Theorem 3.3.1, this is a direct consequence of the calculations discussed

above. The particular bases are recorded in Appendices A.2.1 and A.2.2, ordered to

make the basis of HH2
2 easily read off by eye.

As a point of interest, we note that under the semi-classical limit q → 1 we can see

that these vectors have as limits elements of the chosen basis of HH2
2(A).
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Chapter 4

A Partial Chain Map from the

Bar Resolution to the Koszul

Resolution for a PBW-Algebra

In this chapter we define a section to the canonical inclusion i∗ : K∗ → B∗ of the Koszul

complex into the bar complex for a PBW algebra. We do this to reduce the generally

difficult problem of calculating Gerstenhaber brackets to a computer calculation. Our

main application of this work will be to calculate which infinitesimal deformations of

A and Aq have vanishing primary obstruction; for a detailed discussion of this please

see Section 5.2.

The work in this chapter is based mostly upon Bergman’s Diamond Lemma [Ber78,

Theorem 2.1] and the theory of reduction systems. Please see Section 2.1.1 for a

discussion of these.

4.1 Preliminaries

Take K to be a field of characteristic 0 and unadorned tensor products to be over K.

We will use both a⊗ b and a|b to represent elements of tensor structures and will freely

interchange between the two.

Recall the definitions from Section 2.1.1 relating to PBW algebras. Throughout this

chapter we assume that A is a PBW algebra generated by a finite set V = {v1, . . . , vγ}.
We choose a finite set R ⊆ spK(V )⊗ spK(V ) of relations, so that A = T (V )/(R) with

R chosen so that each relation is of the form

xy −
∑

cif
1
i f

2
i where ci ∈ K, x, y, f1

i , f
2
i ∈ V and f1

i f
2
i is in PBW order.

Note that since R is homogeneous, A =
⊕∞

0 Ai is a graded algebra.
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Notation 4.1.1. We adopt the notation that for an element v ∈ T (V ) we write
[
v
]

for

v in PBW reduced form with respect to the relations R. Note that
[
v
]

is an element

of T (V ); we write π(v) for the image of v under the canonical projection from T (V ) to

A.

We introduce a dot product on T (V ) for convenience, by extending the following

bilinearly:

(m1 •m2) = δm1,m2 for monomials m1,m2 ∈ T (V ).

Example 4.1.2. We recall the definition of the boundary map of the Koszul complex

in the specific degrees 1,2 and 3 since they will be used extensively throughout this

chapter.

1. The map k1 : A⊗V ⊗A→ A⊗A is defined on the free generating set {1⊗vi⊗1}γi=1

for K1 as :

k1(1⊗ vi ⊗ 1) = π(vi)⊗ 1− 1⊗ π(vi)

2. Let the chosen basis of R be written as {ρσ}σ where each

ρσ = Wσ − fσ = xy −
∑
i

cif
1
i f

2
i for ci ∈ K∗ and x, y, f ji ∈ V.

Then k2 : A⊗R⊗A→ A⊗ V ⊗A is defined on an element of the generating set

{1⊗ ρσ ⊗ 1}σ as:

k2(1⊗ρσ⊗1) = π(x)⊗y⊗1−
∑
i

ciπ
(
f1
i

)
⊗f2

i ⊗1+1⊗x⊗π(y)−
∑
i

ci⊗f1
i ⊗π

(
f2
i

)

3. Let a chosen basis of K3 be
{∑

i cixi ⊗ ri =
∑

j c
′
j ⊗ r′jzj

}
where ci, c

′
j ∈ K∗,

ri, r
′
j ∈ R and xi, zj ∈ V . Then k3 is defined on the corresponding generating set

for K3 as:

k3(1⊗
∑
i

cixiri ⊗ 1) =
∑
i

ciπ(xi)⊗ ri ⊗ 1−
∑
j

c′j ⊗ r′j ⊗ π(zj).

Definition 4.1.3. A partial ordering ≺ on a monoid N is a partial monoid ordering if

for every B,C,M1,M2 ∈ N :

M1 ≺M2 =⇒ BM1C ≺ BM2C.

We write the free monoid on V as 〈V 〉. A partial monoid ordering on 〈V 〉 is said to

be compatible with R if for every σ in the reduction system, each monomial M with

nonzero coefficient in fσ satisfies M ≺Wσ.

42



Example 4.1.4. Lexicographic ordering given by v1 ≺ v2 ≺ . . . ≺ vγ is a compat-

ible monoid ordering on 〈V 〉 satisfying the descending chain condition. This follows

immediately from the definition of a PBW-algebra.

Since B∗ and K∗ are both resolutions of A as an Ae-module we have by the compar-

ison theorem [Wei94, Theorem 2.2.6] that they are quasi-isomorphic. Van den Bergh

[VdB94, Proposition 3.3] showed that the map natural inclusion i∗ : K∗ → B∗ provides

such a quasi-isomorphism. Also, we know by work in [Ger64, Section 1.1] that the in-

finitesimal deformation structure of A can be studied by calculations on the Hochschild

cohomology groups Ext∗Ae(A,A). Since each K∗ is finitely generated, we wish to study

the Hochschild cohomology by using K∗ instead of B∗. However, since the Gersten-

haber bracket is defined with explicit reference to B∗, we require a map to transfer this

structure from B∗ to K∗.

Therefore the aim of this chapter is to (partially) define a chain map m∗ : B∗ → K∗

that is a section of i∗ for use in calculations. We only require this map to be defined in

positions 1 and 2, and so we concentrate on those positions in the following. A discussion

of some of the basic properties that m∗ must satisfy can be found in [HSSÁ14, Definition

1.4].

4.2 The Map in Position 1

We define m1 : B1 → K1 first on a bimodule generating set. Let x1 · · ·xn ∈ 〈V 〉 with

each xi ∈ V be in PBW order. Then

m1(1|x1 · · ·xn|1) =

n∑
i=1

x1 · · ·xi−1|xi|xi+1 · · ·xn.

We now extend m1 A-bilinearly to all of B1. That the square

B1 B0

K1 K0

b1

m1

k1
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commutes is easy to show:

b1(1|x1 · · ·xn|1) = x1 · · ·xn|1− 1|x1 · · ·xn
= x1 · · ·xn|1− x1 · · ·xn−1|xn + x1 · · ·xn−1|xn − x1 · · ·xn−2|xn−1xn

+ . . .+ x1|x2 · · ·xn − 1|x1 · · ·xn

= k1(
n∑
i=1

x1 · · ·xi−1|xi|xi+1 · · ·xn)

= k1 ◦m1(1|x1 · · ·xn|1).

We note that this map is also defined in [HSSÁ14, Definition 1.4].

4.3 The Bergman Graph

In order to define m2 we use the theory developed by Bergman in [Ber78] concerning

some of the combinatorial structures arising from a PBW algebra and its relations.

Although the following few sections deal with building a map which is described math-

ematically, it may be helpful to motivate the description from an algorithmic point of

view.

A common approach in algorithm design is to find or define a data structure that

models the important information for the problem at hand (see e.g. [Ski08, Section

4.3]). This not only improves the efficiency of algorithms, it also provides a starting

point for how to approach algorithmic problems. In this case a directed graph models

the relevant data very well because there is an implied partial order structure defined

by the relations as we shall see shortly. Therefore we introduce a directed acyclic graph

called the Bergman graph. Choosing certain paths through this graph will allow us to

define choices of the map m2.

Definition 4.3.1. We construct a weighted directed (n − 1)-coloured graph G that

has as vertices all elements of T (V ) in degree n. The edges of this graph correspond

to reductions rBσC for the algebra A. There is an arrow of colour i and weight w ∈ K∗

from a to b exactly when a 6= b and there exists some reduction r := rBσC such that

r(a) = b with deg(B) = i−1 and (BWσC •a) = w 6= 0. We call this graph the Bergman

graph (in degree n).

Note that the connected components of the Bergman graph correspond precisely to

elements of the algebra A, since two elements are connected by a path precisely when

one is some reduction of the other.

Notation 4.3.2. We define four functions, the head function h, tail function t, weight

function wt and colour function c which all return values as the names suggest when

applied to an arrow.
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Definition 4.3.3. A path in G from vertex v1 to vertex v2 is an ordered tuple of arrows

(a1, . . . , an) with the following holding for each: h(ai) = t(ai+1) for each 1 ≤ i < n,

t(a1) = v1 and h(an) = v2. We also allow the empty path, which can start and finish

at any vertex.

For a given element a in T (V ) we can consider the subgraph of the Bergman graph

generated by taking all arrows out of each vertex recursively starting from a. We call

this subgraph of the Bergman graph BG(a). The PBW condition then means that this

graph has a unique terminal node,
[
a
]
, that all paths will reach if extended enough.

We call any path from a to
[
a
]

a simplification path. Note that an empty path starting

at a monomial in PBW order is considered a simplification path. For any simplification

path (p1, . . . , pm) we get a corresponding reduction sequence for t(p1).

Definition 4.3.4. Let Path(G) be the free A-bimodule generated by the set of paths

in G. We define a function ν : Path(G) → K2 by extending the following map on a

path p = (p1, . . . , pm) A-bilinearly:

ν(p) =


0 if p is the empty path

wt(p1)π(B)⊗ ρσ ⊗ π(C) if m = 1 and p1 = rBσC

ν(p1) + ν(p2, . . . , pm) for m ≥ 2

Because the upcoming work can get quite complicated when the underlying pro-

cedure is actually very simple, we give a few examples of calculating these paths and

their images in K2. In the following we use red to represent the colour 1, blue for the

colour 2 and green for the colour 3.

Example 4.3.5. Consider the quantum plane

A = Kq[x, y] =
K〈x, y〉
yx− qxy

for q ∈ K∗

with the PBW basis
{
xiyj

∣∣ i, j ∈ N
}

. If we take the element a := yx2 then the Bergman

graph of a is:

yx2 qxyx q2x2y
1 q

where we have labelled the arrows with their weights. The unique path from a = yx2

to
[
a
]

has an image under ν of 1⊗ (yx− qxy)⊗ x+ qx⊗ (yx− qxy)⊗ 1.

Example 4.3.6. Consider the commutative algebra A = K[x, y, z] with the PBW basis{
xiyjzk

∣∣ i, j, k ∈ N
}

. If we take the element a := yxyz then the Bergman graph of a
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is:
yxyz

yzxy yxzy xy2z

xyzy

where all of the weights are 1 in this case. Let p be the top path and q be the bottom

path. Then:

ν(p) = ν(q) = y ⊗ [z, x]⊗ y + yx⊗ [z, y]⊗ 1 + 1⊗ [y, x]⊗ yz.

The fact that these two paths have the same image under ν is no accident and is

an example of a somewhat subtle phenomenon which will be investigated below.

Example 4.3.7. Consider the Jordan plane:

A =
K〈x, y〉

(yx− xy − y2)

with the PBW basis
{
xiyj

∣∣ i, j ∈ N
}

. Set r := xy − yx− y2 ∈ V ⊗ V .

If we take the element a := yx2 then the Bergman graph of a is:

x2y + xy2 + y2x

yx2 xyx+ y2x x2y + xy2 + yxy + y3

xyx+ yxy + y3 x2y + 2xy2 + 2y3

xyx+ xy2 + 2y3

where all of the weights are 1 in this case. The three different choices of path all have

the same image under ν, which is

1⊗ r ⊗ x+ x⊗ r ⊗ 1 + y ⊗ r ⊗ 1 + 1⊗ r ⊗ y.

4.4 The Minimal Partial Monoid Order on 〈V 〉

In this section we show that the definition of a compatible monoid order actually

suffices to define a compatible monoid order that is the minimal partial order with that

property. This minimal ordering provides a very useful tool for reasoning about paths

in the Bergman graph because, as we shall prove, a monomial x is related to another
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monomial y in this ordering precisely when x there is some vertex v of the Bergman

graph of y with (x • v) nonzero.

Proposition 4.4.1. In a PBW algebra A, for any infinite sequence of reductions

(r1, r2, . . .) and any element x ∈ T (V ) there exists some i ∈ N such that for all j ∈ N≥i

rjrj−1 · · · r1(x) = ri · · · r1(x).

Proof. Since A is PBW and Example 4.1.4 gives us a compatible monoid ordering with

the descending chain condition, this proposition is a simple application of Bergman’s

Diamond Lemma [Ber78, Theorem 1.2].

We define a partial monoid ordering on 〈V 〉. This order is defined with respect to

R in the chosen form Wσ − fσ. For monomials x, y ∈ 〈V 〉, we write:

x ≤′ y ⇐⇒ there exists a reduction r such that (r(y) • x) 6= 0.

Then we define the relation ≤ on 〈V 〉 to be the transitive closure of ≤′.

Definition 4.4.2. If x, y ∈ 〈V 〉 with y ≤ x then we say a sequence of monomials

{Nj}ij=0 connects x and y if

N0 = x ≤′ N1 ≤′ . . . ≤′ Ni = y.

Lemma 4.4.3. If y, x ∈ 〈V 〉 and y ≤ x then choose a sequence of monomials {Nj}ij
that connects x and y of minimal length. For each j ∈ {1, . . . i} choose a reduction rj

so that

(Nj • rj(Nj−1)) 6= 0.

Then the reduction sequence riri−1 · · · r1 satisfies

(y • riri−1 · · · r1(x)) 6= 0.

Proof. We argue by induction on i. If i = 1 then by the definition of ≤′

(y • r1(x)) 6= 0.

Assume the result holds if i = L − 1 and take any y, x as in the lemma with a

sequence of Nj of length L. Write rL(NL−1) = ay + Z where a ∈ K∗ and Z ∈ T (V )

such that (y • Z) = 0.

Since NL−1 ≤ x and we have a sequence of length L− 1 connecting x to NL−1, by

induction we deduce that:

(rL−1rL−2 · · · r1(x) •NL−1) 6= 0.
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In other words

rL−1rL−2 · · · r1(x) = bNL−1 + Θ

where b ∈ K∗ and Θ ∈ T (V ) satisfies (Θ • NL−1) = 0. In particular we know that

rL(Θ) = Θ. Of course, (Θ • y) must be 0 since otherwise L would not be the length of

a minimal path.

From this we obtain

rLrL−1 · · · r1(x) = aby + bZ + Θ,

which implies

(rLrL−1 · · · r1(x) • y) = ab+ b(Z • y) + (Θ • y) = ab 6= 0.

Lemma 4.4.4. For x, y ∈ 〈V 〉 we have that y ≤ x if and only if there exists a vertex

v in BG(x) such that

(v • y) 6= 0.

Proof. If y ≤ x then we obtain a reduction sequence ri · · · r1 by applying Lemma 4.4.3

such that ri · · · r1(x) is a vertex in BG(x) and

(ri · · · r1(x) • y) 6= 0.

As for the converse, this follows from the definition of the Bergman graph. If such a

vertex exists then there is a path from x to v which corresponds to a reduction sequence

ri · · · r1. Write rj = rAjσjBj . Then

y ≤′ Ai−1Wσi−1Bi−1 ≤′ . . . ≤′ A1Wσ1B1 ≤′ x.

Proposition 4.4.5. ≤ is the unique minimal partial monoid order on 〈V 〉 that is

compatible with R, in the sense that if ≺ is any other partial monoid order that is

compatible with R and a ≤ b then a ≺ b.

Proof. We first show that ≤ is a partial order, i.e. that it is reflexive, transitive and

antisymmetric. That ≤ is reflexive is trivial since we may take, for example, any

relation rBσC such that deg(B) > deg(y) and be sure that r(y) = y, so that y ≤′ y.

Of course, the transitive closure of a relation is transitive so this is also trivial. As for

antisymmetry, this does require some work.
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If x, y ∈ 〈V 〉 with x ≤ y and y ≤ x then we prove by contradiction that x = y. If

x 6= y then take a sequence M1, . . .Mj−1 ∈ 〈V 〉 of minimal length such that

x ≤′ Mj−1 . . . ≤′ M1 ≤′ y

and likewise a sequence N1 . . . Ni−1 ∈ 〈V 〉 of minimal length connecting y to x:

y ≤′ Ni−1 ≤′ . . . ≤′ N1 ≤′ x.

We induct on i+ j.

Base Case: If x ≤′ y and y ≤′ x then there are two reductions s, r such that s(y) = bx + B

and r(x) = cy + C where

(B • x) = (B • y) = (C • x) = (C • y) = 0.

Now we claim that (r, s, r, s, . . .) is an infinite sequence of reductions that never

stabilises when applied to x. Note that

sr(x) = bcx+ cB + C.

Therefore if d, e ∈ K satisfy:

(sr)n(x) = bicjx+ dB + eC,

then

r(sr)n(x) = bicj+1y + (bicj + e)C + dB

and

(sr)n+1(x) = bi+1cj+1x+ (bicj + e)C + (bicj+1 + d)B,

since B and C are orthogonal to both x and y. Therefore (r, s, r, s, r . . .) never

stabilises when applied to x. This contradicts Proposition 4.4.1.

Inductive case: We reduce to the case that j = 1 by noting that x ≤′ Mj−1 by definition and

Mj−1 ≤ x is given by considering the sequence Mj−2, . . . ,M1, y,Ni−1, . . . , N1. If

there is a shorter sequence connecting Mj−1 and x then by induction Mj−1 = x

and the original sequences were not minimal. Therefore we may pass to the case

that x ≤′ y and y ≤′ Ni−1 ≤′ . . . ≤′ N1 ≤′ x.

By Lemma 4.4.3 we obtain a reduction sequence riri−1 · · · r1 such that

riri−1 · · · r1(x) = by +B for some b ∈ K∗ and B ∈ T (V ) satisfying (B • y) = 0.
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We claim that furthermore (B •Nl) = 0 for all l. Indeed if there is some Nl for

which (Nl •B) 6= 0 then consider that there must be a smallest m > l such that

(rm+1rm · · · rl · · · r1(x) •Nl) 6= 0

which by definition would imply that (rm(Nm) •Nl) 6= 0 and so Nm ≤′ Nl.

But Nm ≤ Nl by definition, and so we have Nl = Nm by induction, contradicting

the minimality of i.

By the same argument, if s is a reduction such that s(y) = cx + C with c ∈ K∗

and C orthogonal to both of x and y, then

(Nj • C) = 0 for all j.

Therefore (r1, . . . , rn, s, . . .) forms an infinite sequence of reductions that never

stabilises when applied to x, since it must always pass through elements of the

form:

dx+ eB + fC and gy + hB + iC for some e, f, h, i ∈ K and d, g ∈ K∗.

This contradicts Proposition 4.4.1 and provides the inductive step.

Therefore ≤ is a partial order on 〈V 〉. That it is also a monoid order is trivial since for

any M,N ∈ 〈V 〉

rCσD(y) = ax+ Z for a ∈ K∗ and Z ∈ T (V ) orthogonal to x and y

implies

(rMCσDN (MyN) •MxN) = (M(ax+ Z)N •MxN) = a 6= 0.

That minimal orders are unique is obvious, and that ≤ is minimal is clear since the

definition of compatible is that if r(y) = bx + B for some r then x ≺ y. Since any

partial order must be transitive, then x ≤ y implies that x ≺ y.

As a simple corollary to Proposition 4.4.5 and Lemma 4.4.4, the Bergman graph

is a directed acyclic graph. Since there are a finite number of monomials of any given

degree, and the relations of A are homogeneous, we also know that ≤ satisfies the

descending chain condition. We also record the following useful fact.

Lemma 4.4.6. There is an upper limit for the length of a path in BG(a) that depends

only upon a ∈ T (V ).
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Proof. Call this limit U(a). We make an induction argument. If a is in PBW order

then this limit is zero. Otherwise, assume the result holds for all b such that there is a

reduction r with r(a) = b. Then the upper limit for a is

max {U(b) | a→r b}+ 1.

4.5 A Few Operations on Paths

We define some useful operations on edges in the Bergman graph. Since the Bergman

graph has vertices that are elements of T (V ), there is an obvious T (V )-bimodule struc-

ture on the free group of vertices. We shall see below that this defines a T (V )-bimodule

structure on the free group of edges as well and that ν ‘respects’ this structure in a

useful way.

Furthermore, one would expect there to be some relationship between BG(a) and

BG(a + X) for some a,X ∈ T (V ). Although a full description of this relationship

would be cumbersome (and unhelpful), we note a particular case in which BG(a) is a

subgraph of BG(a + X) and this fact is very useful in reasoning about paths in the

Bergman graph.

Definition 4.5.1. Let X ∈ T (V ) and a ∈ 〈V 〉. If for every v ∈ 〈V 〉 \ {a} such that

(X • v) 6= 0 we have that v ≤ a implies that v =
[
v
]
, then we say X doesn’t interfere

with a. In other words, if X =
∑

i cimi for constants ci ∈ K∗ and monomials mi ∈ 〈V 〉,
then either mi =

[
mi

]
or mi 6≤ a.

Otherwise, we say X interferes with a.

Note that non-interference is an inheritable property in the sense that if m ≤ a and

X ∈ T (V ) doesn’t interfere with a then X doesn’t interfere with m.

Definition 4.5.2. If p is a path in the Bergman graph starting from a ∈ 〈V 〉, and

X ∈ T (V ) doesn’t interfere with a, then we define the translation of p by X, written

pX , to be the path corresponding to the same reductions as p starting from a+X.

Lemma 4.5.3. 1. If x ≤ y then there exists a vertex v in BG(y) such that

v = ax+X

where a ∈ K∗ and X ∈ T (V ) doesn’t interfere with x.

2. If x ≤ y then BG(x) is isomorphic to a subgraph of BG(y) rooted at any vertex

ax+X in BG(y) where a ∈ K∗ and X ∈ T (V ) doesn’t interfere with x.
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Proof. 1. Since x ≤ y then by Proposition 4.4.5 there is a vertex v in BG(y) such

that

v = ax+ Z

where Z is orthogonal to x and a ∈ K∗. However, it is possible that Z does

interfere with x. With that in mind we decompose Z as

Z = Z1 + Z2

where Z1, Z2 ∈ T (V ). We choose Z2 so that it doesn’t interfere with x and every

monomial m such that (m • Z1) 6= 0 satisfies m < x and m is out of PBW order.

In this way Z1 contains all of the ‘interfering’ monomials in Z.

Then there is another vertex in BG(y)

v′ = ax+
[
Z1

]
+ Z2

with
[
Z1

]
orthogonal to x. Then X :=

[
Z1

]
+ Z2 doesn’t interfere with x.

2. Since X doesn’t interfere with x, we obtain an injective mapping BG(x) ↪→ BG(y)

defined by taking an edge e to eX .

Definition 4.5.4. If y ∈ 〈V 〉 and p is a path∑
xi

w1−−−−−→
rB1σ1C1

. . .
wn−−−−−−→

rBnσnCn

∑
zi

then we define the right stitch of p by y to be the path:∑
xiy

w1−−−−−−−→
rB1σ1(C1y)

. . .
wn−−−−−−−→

rBnσn(Cny)

∑
ziy.

We write this path as p 99
9y. The left stitch y 99
9p is defined analogously:

∑
yxi

w1−−−−−−−→
r(yB1)σ1C1

. . .
wn−−−−−−→

r(yBn)σnC

∑
yzi.

Remark 4.5.5. Although we will not use the full structure here, stitching provides a

T (V )-bimodule structure on the additive free group of paths in the Bergman graph.

Lemma 4.5.6. 1. For a path p and y ∈ 〈V 〉 the following holds:

ν(p 99
9y) = ν(p)π(y).

Likewise:

ν(y 99
9p) = π(y) ν(p).
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2. Let X ∈ T (V ) and a ∈ 〈V 〉 be such that X doesn’t interfere with a. If p is a path

starting from a then the following holds:

ν(pX) = ν(p).

Proof. 1. We prove the right hand case, as the left hand case is completely analogous.

From the definition of ν we only need check this on paths of length 1. Say the

edge has weight w and reduction rBσC . Then p 99
9y has weight w and reduction

rBσ(Cy). Therefore we have the equations:

ν(p 99
9y) = wπ(B)⊗ ρσ ⊗ π(Cy)

= (wπ(B)⊗ ρσ ⊗ π(C))π(y)

= ν(p)π(y).

2. Again, we only need to consider paths of length one by the definition of ν. Trans-

lating an edge e by X changes the tail and head but does not change the weight

or corresponding reduction of that edge because X doesn’t interfere with t(e).

However, the definition of ν depends only on the corresponding reduction and

the weight. Therefore ν(eX) = ν(e).

4.6 Diamonds in the Bergman Graph

We define a class of subgraphs of the Bergman graph that are precisely the structures

that Bergman’s Diamond Lemma refers to.

We would like it if every time a vertex a has two arrows emanating from it

r1 := rBσC and r2 := rDτE ,

these two arrows form the first two sides of a diamond. However, for reasons that will

become clear, this would introduce far too many special cases and make any proofs

laborious. With that in mind we make a slightly unnatural definition now, with the

promise that it saves a lot of work later on. Therefore we define a diamond to be one

of the subgraphs defined in the following four cases.

(1) DWτE 6= BWσC.

(1a) r2(r1(a)) = r1(r2(a))

(1b) r2(r1(a)) 6= r1(r2(a))

(2) DWτE = BWσC and a = bBWσC + Θ where b ∈ K∗ and Θ doesn’t interfere

with BWσC.

(2a) deg(B) = deg(D)± 1. This case is called an overlap ambiguity .
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(2b) deg(B) 6= deg(D)± 1.

We describe the subgraph that forms the diamond in each case.

(1) In both of these cases, a = bBWσC+ cDWτE+ Θ where Θ is orthogonal to both

BWσC and DWτE and b, c ∈ K∗. Let m1 = BWσC and m2 = DWτE. Since

m1,m2 ∈ 〈V 〉 and m1 6= m2, we know (m1 •m2) = 0.

(1a) The subgraph is precisely that formed by the edges corresponding to r1 and r2 in

the equality: r2(r1(a)) = r1(r2(a)). That is the subgraph:

r1

r2 r1

r2
bBWσC + cDWτE + Θ

bBWσC + cDfτE + Θ.

bBfσC + cDWτE + Θ

bBfσC + cDfτE + Θ

(1b) Since r2(r1(a)) 6= r1(r2(a)), we claim that either m2 ≤′ m1 or m1 ≤′ m2 (but

not both since m1 6= m2). Assume neither inequality holds for a contradiction.

Then as in the previous case r1(a) = br1(m1) + cm2 + Θ, and since m2 6≤′ m1, we

know that r2(r1(a)) = br1(m1) + cr2(m2) + Θ. But by symmetry we have that

r1(r2(a)) = br1(m1) + cr2(m2) + Θ = r2(r1(a)), which contradicts the definition

of case (1b).

Then without loss of generality we may assume m2 ≤′ m1. Let r1(m1) = dm2+Z,

where Z is orthogonal to both m1 and m2, and d ∈ K∗. Then the following holds:

r2(r1(a)) = r2(r1(bm1 + cm2 + Θ))

= r2(bdm2 + bZ + cm2 + Θ)

= (bd+ c)r2(m2) + bZ + Θ.

Alternatively, we also have:

r2(r1(r2(a))) = r2(r1(r2(bm1 + cm2 + Θ)))

= r2(r1(bm1 + cr2(m2) + Θ))

= r2(bdm2 + bZ + cr2(m2) + Θ) since m1 6≤′ m2

= (bd+ c)r2(m2) + bZ + Θ = r2(r1(a)).

The diamond is the subgraph corresponding to this identity:
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r1

r2

r1

r2

r2

a = bm1 + cm2 + Θ

bm1 + cr2(m2) + Θ bdm2 + bZ + cr2(m2) + Θ.

(bd+ c)m2 + bZ + Θ

(bd+ c)r2(m2) + bZ + Θ

We note that there is an special case here, where bd+ c is actually 0. This means

that

r1(a) = r2(r1(r2(a)))

and the graph is therefore slightly different:

r1

r2

r1

r2

bm1 + cm2 + Θ

bm1 + cr2(m2) + Θ bdm2 + bZ + cr2(m2) + Θ.

bZ + Θ

(2a) In this case we have a vertex of the form

a = ba1 · · · aixyzai+3 · · · ak + Θ,

where b ∈ K∗ and Θ ∈ T (V ) does not interfere with a − Θ. Further, r1 and r2

correspond to the first arrows in two simplification paths for xyz. Let these two

paths be p1 and p2. Then the diamond is the subgraph made up by the paths:

(ba1 · · · ai 99
9p1 99
9ai+3 · · · ak)Θ and (ba1 · · · ai 99
9p2 99
9ai+3 · · · ak)Θ.

These two paths converge at ba1 · · · ai
[
xyz

]
ai+3 · · · ak + Θ.

Example 4.6.1. Consider A = K[x, y, z] the commutative polynomial ring with

the PBW basis {xiyjzk}. An example of a diamond of case (2a) is:

z(yzx)x+ y5 z(yxz)x+ y5

z(zyx)x+ y5 z(xyz)x+ y5

z(zxy)x+ y5 z(xzy)x+ y5

where in this case a1 . . . ai := z, ai+3 . . . ak := x and Θ := y5.

(2b) Recall that BWσC = DWτE. The vertex in this case is of the form

a = ba1 · · · aiWσai+2 · · · ajWτaj+2 · · · ak + Θ
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for b ∈ K∗, where Θ ∈ T (V ) does not interfere with a − Θ. Let Di ∈ 〈V 〉 and

di ∈ K∗ for i ∈ I a finite index set be such that

a1 · · · aifσai+2 · · · aj =
∑
i∈I

diDi.

Likewise let Cj ∈ 〈V 〉 and cj ∈ K∗ for j ∈ J a finite index set be such that:

ai+2 · · · ajfτ · · · ak =
∑
j∈J

cjCj .

Note also that by definition, E = aj+2 · · · ak and B = a1 · · · ai. Then the diamond

is the subgraph made up of the paths:

r1 ∗
∏
i∈I

(Di 99
9rτ 99
9E) and r2 ∗

∏
j∈J

(B 99
9rσ 99
9Cj)

where we have used ∗ and
∏

to denote edge concatenation. Note that example

4.3.6 shows an example of this type of diamond.

These diamonds form (a subset of) the basic units about which authors such as

Bergman [Ber78] and Newman [New42] have previously developed the combinatorial

theory of reduction sequences. However, we do not have the extra case in which Wσ

is a subword of Wτ , as all of the relations are homogeneous of the same degree. The

condition that in case (2) the extra terms Θ do not interfere makes the reasoning

considerably simpler in our setting, but the word diamond as used by Bergman in

[Ber78] does not have this condition.

Definition 4.6.2. Two arrows e and f emanating from the same vertex are said to

start a diamond if they are the first two arrows in a diamond.

Definition 4.6.3. Two paths p and q in the Bergman graph are said to differ by a

diamond if all of their arrows are equal except for the sides of a diamond.

Two paths p0 and pm are said to differ by diamonds if there exists a sequence of

paths p1, . . . , pm−1 such that for each 1 ≤ i ≤ m, pi and pi−1 differ by a diamond.

Lemma 4.6.4. If two simplification paths p and q differ by a diamond then

ν(p)− ν(q) ∈ Ker(k2).

Proof. We carry out a case-by-case analysis for the four cases of diamond. In each case

we use the notation introduced whilst defining the diamonds above.

(1a) In this case a = bm1 + cm2 + Θ. The two paths around the diamond correspond

to r2r1 and r1r2. Since m1 6≤′ m2 and m2 6≤′ m1 we know that the weights
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associated with both edges corresponding to r1 are the same, and likewise for

those corresponding to r2. That is:

ν(p)− ν(q) = (bB ⊗ ρσ ⊗C + cD ⊗ ρτ ⊗E)− (cD ⊗ ρτ ⊗E + bB ⊗ ρτ ⊗E) = 0.

(1b) We have that a = bm1 + cm2 + Θ. Recall that we also let r1(m1) = dm2 +Z. We

show that ν(p− q) = 0 in either the general case or the case where bd+ c = 0.

In the general case recall that:

r2(r1(r2(a))) = (bd+ c)r2(m2) + bZ + Θ = r2(r1(a)),

corresponding to the graph:

r1

r2

r1

r2

r2

a = bm1 + cm2 + Θ

bm1 + cr2(m2) + Θ bdm2 + bZ + cr2(m2) + Θ.

(bd+ c)m2 + bZ + Θ

(bd+ c)r2(m2) + bZ + Θ

Recall that m1 = BWσC and m2 = DWτE. Now, if we set p and q to be the

bottom and top paths respectively we have that

ν(p) = c(D ⊗ ρτ ⊗ E) + b(B ⊗ ρσ ⊗ C) + bd(D ⊗ ρτ ⊗ E)

= b(B ⊗ ρσ ⊗ C) + (bd+ c)(D ⊗ ρτ ⊗ E)

= ν(q).

In the case where bd+ c = 0, then r2(r1(r2(a))) = r1(a) and

ν(p) = c(D ⊗ ρτ ⊗ E) + b(B ⊗ ρσ ⊗ C) + bd(D ⊗ ρτ ⊗ E)

= b(B ⊗ ρσ ⊗ C)

= ν(q).

(2a) Recall that we write
[
Z
]

for the PBW reduced form of an element Z ∈ T (V ). We

show that overlap ambiguities actually correspond to elements of K3. Observe

that the definition of the diamond in this case is a translation of a stitch of two

simplification paths for xyz. By Lemma 4.5.6, the difference ν(p− q) is the same

as the image under ν of the difference of these two simplification paths.

Thus it suffices to consider the following situation, where a red corresponds to
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the colour 0, blue corresponds with the colour 1 and a coloured dashed arrow

corresponds to zero or more arrows with the first one being the colour shown.

xyz
[
xyz

]

Let p be the top path and q be the bottom path. By the definition of a path, if

we take the sum
∑

e(t(e)− h(e)) over edges e in a path, we obtain an expression

equal to the beginning of the path minus the end. Applying this to p and q we

obtain two ways of writing the expression xyz −
[
xyz

]
. For p we obtain:∑

cixiri +
∑

c′jr
′
jx
′
j = xyz −

[
xyz

]
, (†)

where the ci, c
′
i ∈ K∗ and the ri, r

′
i are relations. Since p is of length at least one,

there is some c′j that is nonzero. By symmetry we get another expression for the

bottom path: ∑
diyisi +

∑
d′js
′
jy
′
j = xyz −

[
xyz

]
, (††)

where there is at least one di nonzero, all the di, d
′
j ∈ K∗ and si, s

′
j are relations.

Taking the difference of the right hand sides of (†) and (††), we get 0 = xyz −[
xyz

]
− (xyz−

[
xyz

]
). However, by grouping together like terms in the difference

of the left hand sides we get an expression of the form:

0 =
∑
j

ejzjtj −
∑
i

e′it
′
iz
′
i ∈ T (V ),

with both of the sums being nonzero, and the ei’s and e′i’s nonzero scalars. This

implies that ∑
j

ej |zj |tj |1 =
∑
i

e′i|t′i|z′i|1 ∈ K3

and so

ν(p− q) =
∑
i

e′i|t′i|z′i −
∑
j

ejzj |tj |1 = k3(
∑

ej |zj |tj |1)

by the definition of k3. Therefore k2(ν(p− q)) = 0.

(2b) To start we consider the case of a monomial of the form

a1 · · · aiWσai+2 · · · ajWτaj+2 · · · ak.

The graph in question will have the following appearance:
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If p and q are the top and bottom paths respectively then ν(p− q) is as follows,

recalling the definition of ci, Ci, bj and Bj :

ν(p)− ν(q) = π(B)⊗ ρσ ⊗ π(C) +
∑
i

diπ(Di)⊗ ρτ ⊗ π(E)

− π(D)⊗ ρτ ⊗ π(E)−
∑
j

cjπ(B)⊗ ρσ ⊗ π(Cj)

= π(B)⊗ ρσ ⊗ π(C)− π(B)⊗ ρσ ⊗ π

∑
j

cjCj


− π(D)⊗ ρτ ⊗ π(E) + π

(∑
i

diDi

)
⊗ ρτ ⊗ π(E)

= 0.

The last line follows since
[
C
]

=
[∑

j cjCj

]
and

[
D
]

=
[∑

i diDi

]
by definition.

To complete the proof observe that the general definition of the diamond is a trans-

lation of the above case, which by Lemma 4.5.6 has no effect on the image under ν.

Lemma 4.6.5. Let p and q be two simplification paths for some element w that first

branch from each other at a vertex a. Let e1 and e2 be respectively the arrows taken by

p and q emanating from a. Then either e1 and e2 start a diamond, or there is a third

arrow e3 emanating from a such that e1 and e3 start a diamond and e2 and e3 start a

diamond.

Proof. If e1 and e2 do not start a diamond, then by the definition of diamonds they are

in neither case (1) nor case (2). Therefore the vertex a := t(e1) at which the branching

happens must be of the form a = bm+ Θ where b ∈ K∗ and Θ ∈ T (V ) interferes with

m, whilst e1 and e2 correspond two reductions r1 and r2 that act nontrivially on m.

In this case, by definition there exists some monomial m′ such that (m′ • Θ) 6= 0,

m′ ≤ m, and m′ 6=
[
m′
]
. Therefore, there is a at least a third arrow emanating from a

corresponding to a reduction of m′, since this is not in PBW order. Choose any such

arrow and call it e3. Then e1 and e3 correspond to reductions on different monomials

and so start a diamond of case (1). The same reasoning applies to e2 and e3.

Lemma 4.6.6. Any two distinct simplification paths for some element w differ by

diamonds.
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Proof. Call the two paths p1 and pm. We reduce to the case that the first time p1 and

pm differ from each other, the arrows that they take start a diamond. If this is not the

case, call the arrows at which p1 and pm diverge e1 and e2 respectively. By Lemma

4.6.5 there is a third arrow e3 emanating from a so that e1 and e3 start a diamond

and e2 and e3 start a diamond. Choose any simplification path q for w which follows

e3. Then if we prove that p1 and q differ by diamonds, and that pm and q differ by

diamonds, then we have proved that p1 and pm differ by diamonds.

Therefore from here onwards we assume that the first branching of p1 and pm occurs

along two arrows that start a diamond. The total number of diamonds in BG(w) is

finite since the number of arrows emanating from each vertex is finite and the number

of vertices is finite. We induct on the number of diamonds appearing in BG(w), say n.

If n = 1 then we have a graph of the form:

w
[
w
]

where we use dashed lines to represent 0 or more arrows of any colour, and coloured

dashed arrows for those within a diamond. Note that there can be no other branchings

in the graph as this would imply the existence of another diamond by Lemma 4.6.5.

Clearly p1 and pm differ by diamonds in this case.

Now for the inductive step. In the following we use ∗ to denote path concatenation.

If we highlight the paths p1 in yellow and pm in green, the proof is very easy to visualise.

The two paths split at the beginning of a diamond, and then possibly some where along

this diamond the paths split off away from it, at w′ and w′′ say. Since the Bergman

graphs of w and w′ are nontrivial subgraphs of BG(w), we know that the number

of diamonds in BG(w) and BG(w′) must be smaller than that in BG(w). Therefore

we may use the inductive hypothesis to fix this second splitting off. Anything in the

following graphs highlighted in yellow is to be taken as a path that differ by diamonds

from p1, similarly for green highlighted paths and p2.

We firstly show the induction on w′:

w

w′

w′′

w′′′
[
w
]
Induction on w′

w

w′

w′′

w′′′
[
w
]

That is, if p is the path
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w′w

q is the path

w′
[
w
]

and q′ is the path

w′ w′′′
[
w
]

then by induction q and q′ differ by diamonds, so that p1 = p ∗ q and p ∗ q′ differ by

diamonds.

Likewise, we can also induct on w′′:

w

w′′

w′′′
[
w
]
Induction on w′′

w

w′′

w′′′
[
w
]

After these manipulations, we are left with two paths that differ only by the initial

diamond. This completes the proof.

4.7 The Main Theorem

We are now ready to define the map m2. We have seen that ν defines a map from

simplification paths to K2, and that different simplification paths differ by elements of

Im k3. It should be unsurprising then that m2 will be somehow built up out of ν and

a choice of simplification paths. Indeed, we shall see that if we choose a simplification

path for every pair of monomials x and y then this suffices to define a map m2 such

that the relevant square with m1 commutes. We introduce several pieces of notation

before stating the theorem precisely.

Let S ⊆ 〈V 〉 × 〈V 〉 be the set of pairs (x, y) such that x =
[
x
]

and y =
[
y
]
. Then

S is N-graded by Sd = {(x, y) ∈ S | deg(x) + deg(y) = d} so that:

S =

∞∐
d=0

Sd.
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Also let F : S → P(Path(G)) be the map that takes a pair (x, y) to the set of

simplification paths for xy. Then we define a set of bimodule maps:

Γ := {µ : B2 → Path(G) | µ(1⊗ π(x)⊗ π(y)⊗ 1) ∈ F (x, y) for any (x, y) ∈ S} .

In other words, an element of Γ corresponds to a choice of simplification path for xy

for each (x, y) ∈ S.

The aim of this section is to prove the following theorem.

Theorem 4.7.1. For any µ ∈ Γ, if m2 := ν ◦µ then the following diagram commutes:

B2 B1

K2 K1

b2

m2 m1

k2

We will approach this theorem in a slightly roundabout fashion. We will first prove

that if the theorem holds for any element of Γ, then it holds for all elements of Γ.

Then we will construct a (nonempty) subset of Γ for which the theorem holds. The

argument will be by induction using the N-grading of S. With that in mind we define

the following set of statements parametrised by d ∈ N.

(Qd) : If (x, y) ∈ Sd and q ∈ F (x, y) then k2 ◦ ν(q) = m1 ⊗ b2(1⊗ x⊗ y ⊗ 1).

We note that Theorem 4.7.1 is equivalent to Qd holding for all d ∈ N.

We define a grading of Sd so that S is N2-graded.

Sd,a = {(x, y) ∈ Sd | BG(xy) has a deg(x)-coloured arrows.} .

So that:

S =
∞∐
d=0

∞∐
a=0

Sd,a.

Then we define the following statement for any d, a ∈ N:

(Pd,a) : ∀(x, y) ∈ Sd,a ∃p ∈ F (x, y) such that k2 ◦ ν(p) = m1 ⊗ b2(1⊗ x⊗ y ⊗ 1).

Proposition 4.7.2. For any d ∈ N, Qd ⇐⇒ for all a ∈ N Pd,a.

Proof. =⇒ This direction is obvious as it is merely passing from the set of all simpli-

fication paths to an element of that set.
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⇐= If (x, y) ∈ S, we know that (x, y) ∈ Sd,a for some a. Therefore we take the

particular path p that exists by the assumption of Pd,a. Then for any path q ∈ F (x, y)

we know by Lemma 4.6.6 that p and q differ by diamonds, say by a sequence of paths

p1 := p, p2, . . . , pm := q. Then we have:

k2 ◦ ν(p− q) =
m−1∑
i=1

k2(ν(pi − pi+1)) = 0.

Where the final equality holds by Lemma 4.6.4.

Lemma 4.7.3.
1. Q0 holds.

2. ∀d0 ∈ N Pd0,0

Proof. Both of these statements hold because of the following fact: if x, y ∈ 〈V 〉 are

reduced monomials and xy =
[
xy
]

then

m1 ◦ b2(1|x|y|1) = m1(x|y|1− 1|xy|1 + 1|x|y)

= x

(∑
i

y1 · · · yi−1|yi|yi+1 · · · yn

)
+

(∑
i

x1 · · ·xi−1|xi|xi+1 · · ·xm

)
y

−m1(1⊗ xy ⊗ 1)

= 0.

Furthermore, if (x, y) ∈ S0 or (x, y) ∈ Sd0,0 then xy =
[
xy
]

and so any simplification

path p is the empty path. This implies that

k2 ◦ ν(p) = 0 = m1 ◦ b2(1⊗ x⊗ y ⊗ 1).

Proof of Theorem 4.7.1. It suffices to prove Qd for all d ∈ N, which we do by induction

on d. The base case of Q0 is the first half of Lemma 4.7.3. For the induction step we

assume Qd for all d < d0 and prove Pd0,a for all a ∈ N. This implies Qd0 by Proposition

4.7.2.

The rest of the proof is therefore taken up with proving Pd0,a for all a ∈ N. We do

this by an induction, whose base case of Pd0,0 is the second half of Lemma 4.7.3. We

thus assume the following inductive hypotheses:

(a) Qd holds for any d < d0.

(b) Pd0,a holds for any a < a0.
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The aim is to prove that Pd0,a0 holds.

With that in mind, take (x, y) = (x1 · · ·xn, y1 · · · ym) ∈ Sd0,a0 . We describe how to

construct a simplification path q for xy for which the equality

k2 ◦ ν(q) = m1 ◦ b2(1⊗ π(x)⊗ π(y)⊗ 1)

holds. Since ν is defined edgewise, we can calculate the image of this path under ν by

taking the sum of the image of each phase, which we do alongside the construction.

The construction follows three phases.

Phase 1. The first edge of q is of colour n by definition:

x1 · · ·xny1 · · · ym →
∑
i

cix1 · · ·xn−1f
i
1f

i
2y2 · · · ym,

where xny1 −
∑

i cif
i
1f

i
2 is a relation.

The image of this under ν is

π(x1 · · ·xn−1)⊗ (xny1 −
∑
i

cif
i
1f

i
2)⊗ π(y2 · · · ym). (∆)

Phase 2. In this phase the path will avoid following any arrows of colour n. We do this

by first reducing all of the words of the form x1 · · ·xn−1f
i
1, and then those of the

form f i2y2 · · · ym. With that in mind set X :=
∑

i cix1 · · ·xn−1f
i
1f

i
2y2 · · · ym.

Choose an i such that

X − cix1 · · · f i1f i2y2 · · · ym

doesn’t interfere with cix1 · · ·xn−1f
i
1f

i
2y2 · · · ym. This is possible since it is equiv-

alent to choosing a monomial that is minimal with respect to ≤ amongst the set

of those appearing in X with nonzero coefficient.

Choose a simplification path p for cix1 · · · f i1. Then extend q by

(p 99
9f i2y2 · · · ym)X−cix1···f

i
1f
i
2y2···ym .

This path ends at

Z := X − cix1 · · ·xn−1f
i
1f

i
2y2 · · · ym + ci

[
x1 · · ·xn−1f

i
1

]
f i2y2 · · · ym.

Iterate the above procedure on Z until there are no arrows of colour less than n

by which to extend q.
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Now we repeat this phase but for arrows of colour greater than n. In this way we

arrive at

Y :=
∑

ci
[
x1 · · ·xn−1f

i
1

][
f i2y2 · · · ym

]
.

The image of the path in this phase is calculated by taking pi a simplification

path for x1 · · · f i1 and qi is a simplification path for f i2 · · · ym. Then we have:∑
i

ci ν(pi)π
(
f i2y2 · · · ym

)
+ ciπ

([
x1 · · · f i1

])
ν(qi). (Ξ)

We have used Lemma 4.5.6 in order to evaluate the image of the stitched and

translated paths.

Phase 3. Set Mij and Nij to be monomials in PBW order and dij ∈ K∗ such that:

Y =
∑

ci(
[
x1 · · ·xn−1f

i
1

]
)(
[
f i2y2 · · · ym

]
) =

∑
i

ci
∑
j

dijMijNij .

We choose a monomial m such that (Y • m) 6= 0 and Y − m doesn’t interfere

with m. We know that m is of the form czw for a constant c ∈ K∗ and a pair

(z, w) ∈ Sd with deg(z) = n. Since m ≤ xy, by Lemma 4.5.3 we know that

BG(m) appears as a proper subgraph of BG(xy) rooted at Y . In particular, since

the first arrow of q was of colour n, we know that BG(m) must have has strictly

fewer n-coloured arrows than BG(xy). Therefore, (z, w) ∈ Sd,a with a < a0 so

that we can apply the inductive hypothesis (b) and obtain a simplification path

for m, say pm, for which

k2 ◦ ν(pm) = m1 ◦ b2(c⊗ z ⊗ w ⊗ 1).

Then extend q by pY−mm . Iterate this over all of the terms in Y until q terminates

at
[
xy
]
.

The image under ν of this phase is∑
m

ν(pm), (Ψ)

which by the induction hypothesis satisfies∑
m

k2 ◦ ν(pm) =
∑
i

ci(
∑
j

m1 ◦ b2(dij ⊗ π(Mij)⊗ π(Nij)⊗ 1)).

From here on we use labels in our equations to label the expression on the line that

the label appears, rather than the equation as a whole. Applying k2 to ν(q), we have
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the following equation:

k2 ◦ ν(q) = k2((∆) + (Ξ) + (Ψ))

= k2(π(x1 · · ·xn−1)⊗ (xny1 −
∑
i

cif
i
1f

i
2)⊗ π(y2 · · · ym)) (Phase 1 †)

+
∑
i

cik2 ◦ ν(pi)π
(
f i2y2 · · · ym

)
+ ciπ

([
x1 · · · f i1

])
k2 ◦ ν(qi) (Phase 2 ††)

+
∑
i

ci(
∑
j

m1 ◦ b2(dij ⊗ π(Mij)⊗ π(Nij)⊗ 1)). (Phase 3 †††)

Each path pi of qi that appears in the expression (††) is the simplification path for

an element of S of the form (x1 · · ·xn−1, f
i
1) or (f i2, y2 · · · ym). These have total degree

strictly less than n+m and so by induction hypothesis (a) we have the equality:

(††) =
∑
i

cim1 ◦ b2(1⊗ π(x1 · · ·xn−1)⊗ π
(
f i1
)
⊗ 1)π

(
f i2y2 · · · ym

)
(4.1)

+
∑
i

ciπ
(
x1 · · · f i1

)
m1 ◦ b2(1⊗ π

(
f i2
)
⊗ π(y2 · · · ym)⊗ 1). (4.2)

We can now use the definition of b2 to obtain:

(4.1) =
∑
i

cim1(π(x1 · · ·xn−1)⊗ π
(
f i1
)
⊗ 1)π

(
f i2y2 · · · ym

)
+
∑
i

cim1(1⊗ π(x1 · · ·xn−1)⊗ π
(
f i1
)
)π
(
f i2y2 · · · ym

)
−
∑
i

cim1(1⊗ π
(
x1 · · ·xn−1f

i
1

)
⊗ 1)π

(
f i2y2 · · · ym

)
. (4.3)

By definition of Mij , Nij :

(4.3) = −
∑
i

ci
∑
j

dijm1(1⊗ π(Mij)⊗ π(Nij)).

Whilst on the other hand:

(4.2) =
∑
i

ciπ
(
x1 · · · f i1

)
m1(π

(
f i2
)
⊗ π(y2 · · · ym)⊗ 1)

+
∑
i

ciπ
(
x1 · · · f i1

)
m1(1⊗ π

(
f i2
)
⊗ π(y2 · · · ym))

−
∑
i

ciπ
(
x1 · · · f i1

)
m1(1⊗ π

(
f i2y2 · · · ym

)
⊗ 1). (4.4)
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Now by definition:

(4.4) = −
∑
i

ci
∑
j

dijm1(π(Mij)⊗ π(Nij)⊗ 1).

We now consider (†††). By using the definition of b2 we obtain:

(†††) =
∑
i

ci
∑
j

m1(dij ⊗ π(Mij)⊗ π(Nij)) (4.5)

+
∑
i

ci
∑
j

m1(dijπ(Mij)⊗ π(Nij)⊗ 1) (4.6)

−
∑
i

ci
∑
j

m1(dij ⊗ π(MijNij)⊗ 1).

Note that:

(4.5) + (4.3) = 0 and (4.6) + (4.4) = 0.

After these calculations we can rewrite k2 ◦ ν(q) as:

k2 ◦ ν(q) = k2(π(x1 · · ·xn−1)⊗ (xny1 −
∑
i

cif
i
1f

i
2)⊗ π(y2 · · · ym))

+
∑
i

cim1(π(x1 · · ·xn−1)⊗ π
(
f i1
)
⊗ 1)π

(
f i2y2 · · · ym

)
+
∑
i

cim1(1⊗ π(x1 · · ·xn−1)⊗ π
(
f i1
)
)π
(
f i2y2 · · · ym

)
 (From (4.1))

+
∑
i

ciπ
(
x1 · · · f i1

)
m1(π

(
f i2
)
⊗ π(y2 · · · ym)⊗ 1)

+
∑
i

ciπ
(
x1 · · · f i1

)
m1(1⊗ π

(
f i2
)
⊗ π(y2 · · · ym))

 (From (4.2))

−
∑
i

ci
∑
j

m1(dij ⊗ π(MijNij)⊗ 1).

Call the right hand side of the above expression (∗).

We now calculate:

m1 ◦ b2(1⊗ π(x)⊗ π(y)⊗ 1) = m1(π(x)⊗ π(y)⊗ 1) (4.7)

−m1(1⊗ π(xy)⊗ 1) (4.8)

+m1(1⊗ π(x)⊗ π(y)). (4.9)
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Recall that by definition

π(xy) = π
([
xy
])

= π

∑
i

ci

∑
j

dijMijNij

,
so that:

(4.8) = −
∑
i

ci
∑
j

m1(dij ⊗ π(MijNij)⊗ 1).

Furthermore, by the definition of m1 we have:

(4.7) =
∑
i

(
ciπ
(
x1 · · · f i1

)
m1(π

(
f i2
)
⊗ π(y2 · · · ym)⊗ 1)

)
+ π(x1 · · ·xn)⊗ y1 ⊗ π(y2 · · · ym)

and

(4.9) =
∑
i

(
cim1(1⊗ π(x1 · · ·xn−1)⊗ π

(
f i1
)
)π
(
f i2y2 · · · ym

))
+ π(x1 · · ·xn−1)⊗ xn ⊗ π(y1 · · · ym).

We can therefore rewrite (∗) as:

k2 ◦ ν(q) = k2

(
π(x1 · · ·xn−1)⊗ (xny1 −

∑
i

cif
i
1f

i
2)⊗ π(y2 · · · ym)

)
+
∑
i

cim1

(
π(x1 · · ·xn−1)⊗ π

(
f i1
)
⊗ 1
)
π
(
f i2y2 · · · ym

)
+ (4.7)− π(x1 · · ·xn−1)⊗ xn ⊗ π(y1 · · · ym)

+ (4.9)− π(x1 · · ·xn)⊗ y1 ⊗ π(y2 · · · ym).

+
∑
i

ciπ
(
x1 · · · f i1

)
m1

(
1⊗ π

(
f i2
)
⊗ π(y2 · · · ym)

)
+ (4.8).
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Now finally we use the definition of k2 and so expand

(†) = k2

(
π(x1 · · ·xn−1)⊗ (xny1 −

∑
i

cif
i
1f

i
2)⊗ π(y2 · · · ym)

)

= π(x1 · · ·xn−1)

(
π(xn)⊗ y1 ⊗ 1−

∑
i

ciπ
(
f i1
)
m1(1⊗ π

(
f i2
)
⊗ 1)

+ 1⊗ xn ⊗ π(()y1)−
∑
i

cim1(1⊗ π
(
f i1
)
⊗ π(()f i2))

)
π(y2 · · · ym).

That is to say that (∗) may be rewritten:

k2 ◦ ν(q) = (4.7) + (4.8) + (4.9)

+ k2

(
π(x1 · · ·xn−1)⊗ (xny1 −

∑
i

cif
i
1f

i
2)⊗ π(y2 · · · ym)

)

− k2

(
π(x1 · · ·xn−1)⊗ (xny1 −

∑
i

cif
i
1f

i
2)⊗ π(y2 · · · ym)

)
= m1 ◦ b2(1⊗ π(x)⊗ π(y)⊗ 1)

This proves the induction step.
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Chapter 5

Primary Obstructions to

Infinitesimal Deformations

5.1 Introduction

In Chapter 3 we calculated the degree two component of the second Hochschild cohomol-

ogy of two algebras. As discussed in that chapter, this is equivalent to calculating the

set of isomorphism classes of infinitesimal deformations of these two algebras. However,

it is generally a much harder question to establish whether any of these infinitesimal

deformations integrate to formal deformations.

One possible first step in answering this question of integration is to calculate the

subset of infinitesimal deformations which have vanishing primary obstruction. By work

of Gerstenhaber (see Proposition 2.3.17), this is equivalent to calculating the subset of

HH2
2(C) of elements f such that [f, f ] is zero in cohomology. Recall from Definition

2.3.15 that for elements f, g ∈ B2 the Gerstenhaber bracket is defined on pure tensors

by

[f, g] (1|c1|c2|c3|1) = f(1|g(1|c1|c2|1)|c3|1)− f(1|c1|g(1|c2|c3|1)|1)+

g(1|f(1|c1|c2|1)|c3|1)− g(1|c1|f(1|c2|c3|1)|1)

In general, determing this set of infinitesimal deformations is difficult. Our method

relies upon the map m2 from Chapter 4 to reduce the problem to one that is amenable to

a computer script. We first give an overview of the theory behind the calculation, before

explaining the details of applying this theory to the two algebras discussed previously,

A and Aq. Note that the implementation details of m2 and the Gerstenhaber bracket

can be found in Appendix B.

71



5.2 Calculations of Obstruction-Free Infinitesimal Defor-

mations

Let C be a PBW algebra. Recall from Proposition 2.3.16 that the Gerstenhaber bracket

defines a graded Lie algebra structure on Bn which descends to a commutative Lie

bracket:

[−,−] : HH2
2⊗HH2

2 → HH3
3 .

Furthermore, by Proposition 2.3.17 an infinitesimal deformation f ∈ HH2
2 has vanishing

primary obstruction precisely when [f, f ] is a coboundary. The following lemma moves

the question of obstructions from the bar complex to the Koszul complex.

Lemma 5.2.1. Let φ∗ : B∗ → K∗ be a section of the inclusion i∗ : K∗ → B∗. Let

f ∈ K2 be a cocycle such that its cohomology class in HH2
2 is F . Then F has vanishing

primary obstruction if and only if i3
[
φ2(f), φ2(f)

]
is trivial in cohomology.

Proof. This is simply unwinding definitions. In particular, since i∗ and φ∗ are quasi-

isomorphisms they induce isomorphisms on the cohomology spaces and we may apply

Proposition 2.3.17.

The general question of finding a map φ∗ that is a section of i∗ is open and difficult.

Common approaches to this problem are to work around it by using only the existence

of the section (e.g. in [BG96]) or to find other bracket structures which induce the

same Lie algebra structure on HH∗ (see [NW14]).

Since the algebras A and Aq are not just Koszul but PBW, the problem of finding

a map φ∗ is more tractable. Our solution to this problem is the content of Chapter 4,

which (partially) provides a family of choices for such a map φ∗ in m∗.

From this point forwards we fix a choice of the map m2. By Theorem 4.7.1 this can

be done by choosing a simplification path of xy for every pair of monomials x, y.

Definition 5.2.2. Let Kn be Kn(C). We define

[−,−] : K2 ⊗K2 → K3 by [f, g] = i3
[
m2(f),m2(g)

]
.

With these preliminaries we turn our attention to the main question of the chapter.

Let ∆ = {b1, . . . , bn} ⊆ K2 be an ordered set of cocycles such that the cohomology

classes of the bi form a basis of HH2
2(C). We ask which elements of spK(∆) have

vanishing primary obstruction. Although this is a non-linear question, in the sense

that the set of solutions need not be a vector space, we use linear algebra so far as

possible in order to make the calculations tractable by computer. In the following Z3

and B3 are the spaces of Koszul 3-cocycles and 3-coboundaries respectively.
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We start with a high level overview of the calculation. Our aim is to describe the

set

Λ := {f ∈ spK ∆ | f has vanishing primary obstruction } .

Let π : Z3 → HH3 be the canonical projection map. It is a fundamental fact of Ger-

stenhaber’s deformation theory (see Proposition 2.3.13) that [f, f ] ∈ Z3. Furthermore,

by Proposition 2.3.17 we can write Λ in terms of the Gerstenhaber bracket:

Λ = {f ∈ spK ∆ | π([f, f ]) = 0} .

We describe in detail how to find this set.

To start we factor the map f 7→ [f, f ] into linear and non-linear factors. Let K(n+1
2 )

have a chosen basis of

{vi,j | 1 ≤ i ≤ j ≤ n} .

Furthermore, let wi,j = [bi, bj ]. We define the linear map λ : K(n+1
2 ) → Z3 by

λ(vi,j) = wi,j .

On the other hand, we define the polynomial map

p : spK ∆→ K(n+1
2 )

∑
i

aibi 7→
∑
i

a2
i vi,i +

∑
i<j

2aiajvi,j .

Lemma 5.2.3. For f ∈ spK ∆ we have

[f, f ] = λ ◦ p(f).

Proof. This follows from the commutativity and bilinearity properties of the Gersten-

haber bracket. In particular, if f =
∑

i aibi then

[f, f ] =

∑
i

aibi,
∑
j

ajbj

 =
∑
i 6=j

aiaj [bi, bj ] +
∑
i

a2
i [bi, bi]

=
∑
j>i

2aiaj [bi, bj ] +
∑
i

a2
i [bi, bi]

= λ ◦ p(f).
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Therefore, Λ has another description as

Λ =

{∑
i

aibi ∈ spK(∆)

∣∣∣∣∣ π ◦ λ ◦ p(∑
i

aibi) = 0

}

=

{∑
i

aibi ∈ spK(∆)

∣∣∣∣∣ p(∑
i

aibi) ∈ ker(π ◦ λ)

}
.

Since ker(π ◦λ) is the kernel of a linear map, we can calculate a basis of for it using

simple linear algebra. Let m := dim(B3) and Y := {y1, . . . , ym} be a basis for B3.

Then define M to be the matrix

M :=
(
w1,1

∣∣ . . . ∣∣ wn,n ∣∣ y1

∣∣ . . . ∣∣ ym) .
Note that ker(M) ⊆ K(n+1

2 )+m. Let µ : K(n+1
2 )+m → K(n+1

2 ) be the canonical projection

map onto the first
(
n+1

2

)
components.

Lemma 5.2.4. With π, λ, µ and M defined as above, we have the following equality

of vector spaces

ker(π ◦ λ) = µ(ker(M))

Proof. On the one hand, if
∑

i,j ci,jvi,j ∈ µ(ker(M)) with ci,j ∈ K, then there exist

d1, . . . , dm ∈ K such that ∑
i,j

ci,jwi,j +
∑
k

dkyk = 0 ∈ B3.

From this it follows that

π ◦ λ(
∑
i,j

ci,jvi,j) = π(
∑
i,j

ci,jwi,j) = −π(
∑
k

dkyk) = 0,

and so
∑

i,j ci,jvi,j ∈ ker(π ◦ λ).

On the other hand, if
∑

i,j ei,jvi,j ∈ ker(π ◦ λ) with ei,j ∈ K, then

λ(
∑
i,j

ei,jvi,j) =
∑
i,j

ei,jwi,j ∈ ker(π) = B3.

Therefore there exists f1, . . . , fm ∈ K such that∑
i,j

ei,jwi,j +
∑
k

fkyk = 0.

In other words
∑

i,j ei,jvi,j ∈ µ(ker(M)).
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Therefore we may finally describe Λ as

Λ =

{∑
i

aibi ∈ spK(∆)

∣∣∣∣∣ p(∑
i

aibi) ∈ µ(ker(M))

}
.

With this in mind, we calculate the space of f ∈ spK(∆) with vanishing primary

obstruction as follows.

1. For each pair
{

(i, j) ∈ N2
∣∣ 1 ≤ i ≤ j ≤ n

}
calculate wi,j = [bi, bj ].

2. Choose a basis {y1, . . . , ym} of B3 and form the matrix

M =
(
w1,1

∣∣ . . . ∣∣ wn,n ∣∣ y1

∣∣ . . . ∣∣ ym) .
3. Calculate the right kernel of M and choose a basis of µ(ker(M)) ⊆ K(n+1

2 ) ex-

pressed in terms of the basis {vi,j} of K(n+1
2 ).

4. Use the preceding step to deduce which f in spK(∆) have p(f) in µ(Ker(M)).

In the above calculation, steps 1-3 are entirely computer based. Most of the com-

puting time is concentrated in step 1 as this involves the long calculation of paths in

Bergman graphs in order to find the Gerstenhaber bracket using m2. The rest of the

computation consists mostly of Gaussian elimination which ‘Sage’ implements to be

relatively fast. The output of the computer calculations is a basis of µ(ker(M)). After

this basis is determined we reason by hand to compute the set Λ.

For example, we will see that in both of the cases of interest C = A or Aq that

v1,1 appears in the output basis of µ(ker(M)). From the definition of p it follows that

p(a1b1) ∈ µ(ker(M)), and therefore a1b1 ∈ Λ and has vanishing primary obstruction.

Note that in general determining elements of Λ is more complicated than this example.

In Section 5.3 we go through an example by hand in the context of the algebra A

to make the above more concrete before explaining the computer code and discussing

the output.

5.3 The Obstruction-Free Infinitesimal Deformations of A

We apply the calculations in Section 5.2 in the context of the algebra A. Recall that

from Section 3.3 we know that we can choose ∆ = {b1, . . . , b8} to be the ordered set:
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

x1x3

0

0

x2x3

x1x4

0





x2
3

0

x1x4

0

0

x3x4





x2
1

0

0

x2x1

x2x3

0





0

x2x4

0

0

x1x4

0





0

x2
4

0

0

x3x4

0





0

x2
2

0

0

x2x3

0





0

0

0

x2
1

0

−x1x3





0

0

0

−x2
2

0

x2x4



Example 5.3.1. To understand the following calculations an example worked through

by hand may be helpful. Recall that A has six relations

R =

{
r1 := x3x1 − x1x3, r2 := x4x2 − x2x4, r3 := x4x1 − x2x3

r4 := x1x2 − x2x3, r5 := x3x2 − x1x4, r6 := x4x3 − x1x4

}
,

and four doubly defined relations

D :=

{
d1 := x3r4 + x1(r6 − r5) = r1x2 − r5x3, d2 := x4r1 − x1r3 = r6x1 + (r4 − r3)x3

d3 := x4r5 − x1r2 = r6x2 + (r4 − r3)x4 d4 := x4r4 + x2(r6 − r5) = r3x2 − r2x3

}
.

We calculate [f, f ] for

f :=



x2
3

0

x1x4

0

0

x3x4


= b2 ∈ ∆.

Recall that under the vector notation, f is a function that maps r2, r4 and r5 to

zero and r1, r3 and r6 to x2
3, x1x4 and x3x4 respectively. Now, [f, f ] is a function

defined on K3 and so we write it as

[f, f ] = i3
[
m2(f),m2(f)

]
=


Θ1

Θ2

Θ3

Θ4


using the vector notation introduce in Notation 3.2.1, so that [f, f ] sends di to Θi. We
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now calculate Θ1. We remind the reader that we use the | symbol to represent ⊗K.

Θ1 =
[
m2(f),m2(f)

]
(d1) = 2(m2(f) ◦m2(f))(d1)

= 2m2(f)(1|m2(f)(1|r1|1)|x2|1− 1|m2(f)(1|r5|1)|x3|1)

− 2m2(f)(1|x3|m2(f)(1|r4|1)|1 + 1|x1|m2(f)(1|r6|1)|1− 1|x1|m2(f)(1|r5|1)|1).

Recall that m2 is a section of the inclusion map from K2 = A⊗R⊗A into B2, and so

acts trivially on relations. That is to say that for any relation ri we have

m2(f)(1|ri|1) = f(m2(1|ri|1)) = f(1|ri|1).

Therefore, the above continues as:

Θ1 = 2
(
m2(f)(1|x2

3|x2|1− 0)−m2(f)(0 + 1|x1|x3x4|1− 0)
)

= 2f
(
m2(1|x2

3|x2|1)−m2(1|x1|x3x4|1)
)
.

The map m2 is defined on a pure tensor 1|x|y|1 by choosing a simplification path

of xy in the graph BG(xy) and evaluating the function ν on this path (see Section 4.7

for details). In particular, since x1x3x4 is in PBW order we can apply the reasoning of

Lemma 4.7.3 and deduce that

m2(1|x1|x3x4|1) = 0.

As for x2
3x2, the Bergman graph is as follows:

x2
3x2 x3x1x4 x1x3x4.

rx3r5 rr1x4

Since there is a unique simplification path in this Bergman graph,

m2(1|x2
3|x2|1) = x3|r5|1 + 1|r1|x4,

and so

Θ1 = 2f(x3|r5|1 + 1|r1|x4) = 2x2
3x4.

The rest of the calculations of the Θi’s follows similarly and we obtain that

[f, f ] = 2


x2

3x4

−x1x3x4

0

0

 .
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By comparison with the basis of Im(k3)2 in Appendix A.1.3 we rewrite this as

[f, f ] = 2


x2

3x4

−x1x3x4

0

0

 = 2


x2

3x4

−x1x3x4

−x3x
2
4

x1x
2
4

+ 2


0

0

x3x
2
4

−x1x
2
4


where both of the vectors appearing on the right hand side are coboundaries. This

allows us to conclude that [f, f ] is a coboundary, and therefore that f is an infinitesimal

deformation with vanishing primary obstruction.

We have included all 36 of the Gerstenhaber brackets [bi, bj ] in Appendix A.1.4.

By comparing the above with the ninth vector in that appendix, we confirm that our

calculations agree with those of the computer.

5.3.1 Computer Script

We now step through the script and explain the computer calculations for Steps 1-3 in

the procedure to calculate Λ. The script begins by building the list W of vectors wi,j by

taking the Gerstenhaber bracket of pairs of elements in Delta.

1 W = []

2 for index1 , vec1 in enumerate(Delta):

3 for index2 , vec2 in enumerate(Delta):

4 if index2 < index1:

5 continue

6 else:

7 func = GerstenhaberBracket(vec1 , vec2 , KnBases [3])

8 W.append(func)

9 W = [polygnomeVectorToSage(vec , 3, 3) for vec in W]

The defining code for the Gerstenhaber bracket can be found in Appendix B.4 and

the Gerstenhaber brackets calculated in the preceding script are recorded in Appendix

A.1.4.

Next, we construct Y to be a basis of the image of k3. Since from Theorem 3.3.1

we know that dim(Im(k2)2) = 22 and dim((K2)2) = 60, Y is a list of 38 vectors and

can be found in Appendix A.1.3. This calculation is very similar to those in Section

3.3, so we don’t explain it in detail.

10 matrixOfk_3Dual = [k_3Dual(vec , KnBases [3])

11 for vec in K2DualBasis]

12 matrixOfk_3Dual = [polygnomeVectorToSage(vec , 3, 3)

13 for vec in matrixOfk_3Dual]

14 matrixOfk_3Dual = sage.matrix(K, matrixOfk_3Dual)

15 Y = matrixOfk_3Dual.row_space (). basis ()
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We now combine W and Y into a matrix and use ‘Sage’ to calculate a basis of the

kernel of that matrix. Note that in this context ‘+’ means concatenation of lists. Also,

we are using a list slice here to truncate a vector, which corresponds to taking the

projection under the map µ. Note that 36 =
(

8+1
2

)
here is the number of vectors [bi, bj ]

with i ≤ j.

17 M = sage.Matrix(K, W + Y)

18

19 output = matrix.left_kernel (). basis()

20 output = [vec [:36] for vec in output]

We present the output of this script which is a basis of the space µ(ker(M)).

v1,1, v1,2, v1,3, v1,4, v1,5 + v2,4,

v1,6 + v3,4, v1,7 + v6,7, v1,8 + v6,8, v2,2, v2,3,

v2,5, v2,6 + v3,5, v2,7 + v6,7, v2,8 + v6,8, v3,3,

v3,6, v3,7 + v6,7, v3,8 + v6,8, v4,4, v4,5,

v4,6, v4,7 − v6,7, v4,8 − v6,8, v5,5, v5,6,

v5,7 − v6,7, v5,8 − v6,8, v6,6, v7,7, v7,8, v8,8


It remains to carry out Step 4 to determine Λ. The result of this calculation is the

following theorem:

Theorem 5.3.2. An element
∑
aibi ∈ HH2

2(A) has a vanishing primary obstruction if

and only if both of the following conditions hold:

1.

rank

(
a1 a2 a3

a4 a5 a6

)
≤ 1.

2. Either

(a) a7 = a8 = 0,

(b) a1 = a4, a2 = a5 and a3 = a6 or

(c) a1 + a2 + a3 = 0.

Proof. Recalling the notation of Section 5.2, we need to find Λ := p−1(µ(ker(M))).

Therefore we need to find conditions on the vector
∑
aibi such that π ◦λ ◦ p(

∑
aibi) is

0.

In this case, by inspection

u1 = π ◦ λ(v1,5), u2 = π ◦ λ(v1,6), u3 = π ◦ λ(v1,7),

u4 = π ◦ λ(v1,8), u5 = π ◦ λ(v2,6)
(5.1)
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form a basis of Im(π ◦ λ). With that basis in mind, π sends any vi,j to zero except

those in (5.1) and:

π ◦ λ(v2,4) = −u1, π ◦ λ(v3,4) = −u2, π ◦ λ(v3,5) = −u5,

π ◦ λ(v2,7) = u3, π ◦ λ(v3,7) = u3, π ◦ λ(v4,7) = −u3,

π ◦ λ(v5,7) = −u3, π ◦ λ(v6,7) = −u3, π ◦ λ(v2,8) = u4,

π ◦ λ(v3,8) = u4, π ◦ λ(v4,8) = −u4, π ◦ λ(v5,8) = −u4, π ◦ λ(v6,8) = −u4.

Therefore we have that, with respect to the basis {ui}

π ◦ λ ◦ p(
∑

aibi) =


2(a1a5 − a2a4)

2(a1a6 − a3a4)

2(a1 + a2 + a3 − a4 − a5 − a6)a7

2(a1 + a2 + a3 − a4 − a5 − a6)a8

2(a2a6 − a3a5)

 .

This is zero precisely when the conditions in the statement of the proposition hold.

Therefore the set of infinitesimal deformations with vanishing primary obstructions

is a variety lying in HH2
2
∼= K8. The variety decomposes into the union of three

components, namely:

Vg :=
{

(a1, . . . , a8) ∈ K8
∣∣ a1 = a4, a2 = a5 and a3 = a6

}
,

Vq :=

{
(a1, . . . , a8) ∈ K8

∣∣∣∣∣ a7 = a8 = 0 and rank

(
a1 a2 a3

a4 a5 a6

)
≤ 1

}
and

Vu =

{
(a1, . . . , a8) ∈ K8

∣∣∣∣∣ a1 + a2 + a3 = 0 and rank

(
a1 a2 a3

a4 a5 a6

)
≤ 1

}
.

From these definitions it is clear that Vg is a five dimensional vector subspace of

K8, Vu is a five dimensional variety and Vq is a four dimensional determinental variety.

We also list the intersections of these three varieties, all of which lie in K8.

• Vg ∩ Vq is a three dimensional vector space

{
(a1, a2, a3, a1, a2, a3, 0, 0) ∈ K8

}
.
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• Vg ∩ Vu is a four dimensional vector space

{(a1, a2, a3, a1, a2, a3, a7, a8) | a1 + a2 + a3 = 0} .

• Vq ∩ Vu is a three dimensional (non-linear) variety

{(a1, a2, a3, a4, a5, a6, 0, 0) | a1 + a2 + a3 = a4 + a5 + a6 = a3a5 − a2a6 = 0} .

• Vq ∩ Vg ∩ Vu is a two dimensional vector space

{(a1, a2, a3, a1, a2, a3, 0, 0) | a1 + a2 + a3 = 0} .

We will see later that these varieties correspond to some very different deformations.

For example, Vg will be shown to be the space of infinitesimals arising from deformations

of A defined in terms of automorphisms of surfaces birational to P1 × P1, and that all

deformations in Vg integrate. Such examples of deformations were the topic of the

paper [RS12]. All of these deformations are birationally commutative.

In contrast to this, Vq will be shown to contain the infinitesimal associated to

the family of deformations Aq. None of these are birationally commutative, having

a noncommutative rational function field of Kq(u, v). We are able to integrate most

deformations in Vq. In contrast, we know little about those lying in Vu.

5.4 The Obstruction-Free Infinitesimal Deformations of

Aq

We now turn our attention to Aq. We repeat the procedure outlined in Section 5.3 for

Aq. By work in Section 3.4 we know that we can choose ∆ to be the following set.



x1x3

0

0

x2x3

qx1x4

0


,



0

x2x4

0

0

x1x4

0


,



0

x2
4

0

0

x3x4

0


,



0

x2
2

0

0

x2x3

0




The ‘Sage’ script is almost identical to that in the preceding section so we will not

go through it line by line. Note that since ∆ is of size 4, we have truncated the vectors

to the first 10 =
(

4+1
2

)
entries.
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1 W = []

2 for index1 , vec1 in enumerate(Delta):

3 for index2 , vec2 in enumerate(Delta):

4 if index2 < index1:

5 continue

6 else:

7 func = GerstenhaberBracket(vec1 , vec2 ,

8 qKnBases [3])

9 W.append(func)

10 W = [polygnomeVectorToSage(vec , 3, 3) for vec in W]

11

12

13 matrixOfk_3Dual = [k_3Dual(vec , qKnBases [3])

14 for vec in qK2DualBasis]

15 matrixOfk_3Dual = [polygnomeVectorToSage(vec , 3, 3)

16 for vec in matrixOfk_3Dual]

17 matrixOfk_3Dual = sage.matrix(K, matrixOfk_3Dual)

18 Y = matrixOfk_3Dual.row_space (). basis ()

19

20 M = sage.Matrix(K, W + Y)

21

22 output = matrix.left_kernel (). basis()

23 output = [vec [:10] for vec in output]

The output of this script is the basis of µ(ker(M).{
v1,1 v1,2 v1,3 v1,4 v2,2

v2,3 v2,4 v3,3 v3,4 v4,4

}

Notice that this is the standard basis of K10.

Proposition 5.4.1. All infinitesimal deformations of Aq have vanishing primary ob-

struction.

Proof. Since µ(ker(M)) = K10, the condition p(f) ∈ µ(ker(M)) is trivial. Therefore

the set Λ of infinitesimal deformations with vanishing primary obstruction is

p−1(K10) = HH2
2(Aq).

If HH3
3(Aq) were trivial then we could immediately deduce that all infinitesimal de-

formations integrate to formal deformations. However, we note briefly that HH3
3(Aq) 6=

0 by calculations similar to those in Section 3.3 so that this result is not a priori obvious.

We shall return to this question in Chapter 7.
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Chapter 6

Infinitesimal Deformations

Arising From Automorphisms of

Minimal Rational Surfaces

6.1 Introduction

In this chapter we discuss some of the infinitesimal deformations of the algebra A.

Recall that if

E = {t, ut, vt, uvt} ⊆ K(u, v)[t;σ]

then A ∼= K〈E〉. In [RS12] it is shown that for a certain family {τ} ⊆ Aut(K(u, v)) the

set

E′ = {t, ut, vt, uvt} ⊆ K(u, v)[t;σ ◦ τ ]

generates a family of deformations of A. The aim of this chapter is to investigate the

infinitesimal structure of such deformations but generalised in two directions: firstly

to the whole Lie algebra of the automorphism group of P1 × P1 and secondly to Lie

algebras of automorphism groups of other surfaces entirely.

In particular, we answer two questions.

1. What infinitesimal deformations arise due to the deformations of Qgr(A) discussed

in [RS12]?

2. Does expanding the set of automorphisms considered to those of other minimal

rational surfaces increase the space of infinitesimal deformations that occur?

We show in Theorem 6.4.1 that the answer to the first question is precisely the set

Vg. In Theorems 6.5.1 and 6.6.2 we show that the answer to the second question is no.

This is a strong signal that in order to find new families of deformations of A, we need

to concentrate on rings that are not birationally commutative.
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Notation 6.1.1. In this chapter we change notation slightly to agree better with that

in [RS12]. From this point onwards, in this chapter only, we write σ for the birational

self map of P1 × P1 given by

[x : y][z : w] 799K [xz : yw][z : w]

On the other hand, the automorphism of K(u, v) previously referred to by σ will now be

written σ∗. That is to say that σ∗ is the automorphism of K(u, v) induced by choosing

coordinates on P1 × P1 of

u =
x

y
and v =

z

w
,

so that

σ∗(u) = uv and σ∗(v) = v.

We hope this does not cause confusion.

Consider D := K(u, v)[t, t−1;σ∗], the graded quotient ring of A. If G is a Lie group

acting faithfully on K(u, v) and τ∗s is a one-parameter subgroup inside G, i.e. τ∗s is the

exponential of a one-dimensional subspace of Lie(G), then D(s) := K(u, v)[t, t−1;σ∗◦τ∗s ]

is a one-parameter family of deformations of D. In particular, in a formal neighbour-

hood of s = 0, we obtain an associative multiplication F on the vector space D⊗KK[[s]]

given by the K[[s]]-linear extension of

F (c, d) = cd+

∞∑
i=1

Fi(c, d)si

for any c, d in D. In this case F1 defines an infinitesimal deformation of D (see Section

2.3). In this chapter our aim is to examine the relationship of such deformations with

infinitesimal deformations of A.

In particular, we define a linear map Φ : Lie(G)→ HH2
2(D). Furthermore, we shall

construct a linear map Λ̃ : HH2
2(A) → HH2

2(D). In Section 6.2 we prove that there is

a tractable method for testing if a given L ∈ Lie(G) satisfies Φ(L) ∈ Im Λ̃: evaluating

Φ(L) on R ⊆ D ⊗D, where R is the set of relations of A, and testing if this lies in A.

That is to say we develop a method for taking certain elements of Lie(G) and producing

from them infinitesimal deformations of A.

Definition 6.1.2. If a vector L in Lie(G) satisfies Φ(L) ∈ Im(Λ̃) then we refer to it as

an admissible direction.

We then apply this test in the following natural situation. If Y is a minimal surface

birational to P1 × P1, then Y is P2 or Fn for n 6= 1 [Bea96, Theorem V.10]. In each

case, Aut(Y ) is a Lie group which we can regard as subgroup of the plane Cremona

group [DI09, Section 4], and we can consider the associated Lie algebra. Following a
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calculation detailed below, we determine which infinitesimal deformations of A arise

from these Lie algebras.

6.2 Infinitesimal Deformations of a Localisation

In this section we construct a map Λ̃ : HH2
2(A) → HH2

2(D) and show that there is a

simple test for whether a given f ∈ HH2
2(D) lies in Im(Λ̃): check that f(R) ⊆ A. This

is the foundation for the rest of this chapter, in which we apply this test in several

related situations. The results of this section do not depend on the PBW property of

A, nor on the fact that D is the graded quotient ring of A. For that reason we work

with more general algebras C and E.

Let C be a Koszul K-algebra that is a domain. Recall the definition of Ore sets and

localisation from Section 2.2.1. Recall further that the category of right modules over

the enveloping algebra Ce = C ⊗ Cop is equivalent to the category of C-bimodules.

Notation 6.2.1. For elements in r, s ∈ Cop we will always write r ∗op s to be the

opposite multiplication and rs to be the element of the underlying vector space C, i.e.

under the usual multiplication. As previously stated, we write tensor products over K
as unadorned tensor products ⊗.

Let E be a localisation of C with respect to some (left and right) Ore set S. We want

to compare the infinitesimal deformations of C with those of E. This is equivalent to

making a comparison between second Hochschild cohomology groups, i.e. second Ext

groups. In fact we find that in the case of Koszul algebras, there is a finite dimensional

test on infinitesimal deformations of E to determine if they correspond to deformations

of C.

First we need some basic module theoretic facts regarding the enveloping algebra.

In the following we set T to be the set S ⊗ S.

Proposition 6.2.2. (i) If C is a K-algebra and X a right (resp. left) Ore set with

respect to some spanning set B of C with X ⊆ B, then X is a right (resp. left)

Ore set for R.

(ii) T is a right and left Ore set for Ce.

(iii) Ee is the localisation of Ce with respect to T on the right (or left). In particular,

Ee is flat as a right or left Ce-module.

Before we prove Proposition 6.2.2 we state a useful lemma on localisation.

Lemma 6.2.3 ([MR01, Lemma 2.1.6]). Ee ∼= (Ce)T if and only if Ee satisfies the

following universal property: if Z is a ring and φ : Ce → Z is a ring homomorphism

such that all elements of φ(T ) are invertible in Z, then φ factors through Ee.
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Proof of Proposition 6.2.2. We prove each statement in the right hand case, the left

hand case follows mutatis mutandis and it is clear due to the symmetry in the definitions

that there are no special considerations depending on handedness.

(i) In order to prove the Ore condition, take x ∈ X and a finite sum r :=
∑

i cibi ∈ C
for some bi ∈ B and ci ∈ K. By hypothesis we know that for all i there exists an

xi ∈ X and ai ∈ B such that bixi = xai.

Also, the set x1B ∩ . . . xnB ∩X is nonempty for any x1, . . . , xn ∈ X. This fact is

a very slight modification of the first part of [GW04, Lemma 4.21 (a)] where, in

this case, we do not know that X is an Ore set for the whole ring. However the

proof requires no changes. Therefore we may take t ∈ x1B ∩ . . . ∩ xnB ∩X, and

choose ri ∈ B for each i such that xiri = t ∈ X.

Then the following holds:(∑
i

cibi

)
t =

∑
i

cibixiri =
∑
i

cixairi = x

(∑
i

ciairi

)
∈ rX ∩ xR.

Since B is a spanning set we know that any r ∈ C can be written as such a finite

sum and so this completes the proof.

(ii) To prove the right Ore condition we take pure tensors a⊗ b ∈ Ce and s⊗ t ∈ T .

Then there exist m,n ∈ C and q, r ∈ S such that aq = sm and rb = nt by the

two Ore conditions on S. Then the following holds:

(a⊗ b)(q ⊗ r) = aq ⊗ (b ∗op r) = aq ⊗ rb = sm⊗ nt = (s⊗ t)(m⊗ n).

This proves that T is a right Ore set with respect to the pure tensors. But T is

itself a set of pure tensors, and the pure tensors span Ce, so we can apply part

(i) and conclude that T is a right Ore set for Ce.

(iii) The second part of this statement is a well known consequence of the first part

(see e.g. [MR01, Proposition 2.1.16 (ii)]), so it suffices to show the first part.

Since S is both a left and a right Ore set we can localise with respect to it on

either side and get the same ring [MR01, Corollary 2.1.6 (ii)]. So the following

holds:

Eop = (CS)op ∼= (SC)op.

This allows us to write elements of Eop as s−1a which makes the following con-

siderably neater.

Let Z be a ring and φ : Ce → Z be a map as in Lemma 6.2.3. Then we may
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define ψ : Ee → Z by extending the following K-linearly:

ψ(as−1 ⊗ t−1b) = φ(a⊗ b)φ(s⊗ t)−1.

We must show that ψ is a ring homomorphism. It suffices to check that ψ is

multiplicative on pure tensors. To that aim, take two pure tensors in Ee, as−1 ⊗
t−1b and cq−1⊗ r−1d. We know there exists some x⊗ y ∈ T and e⊗ f ∈ Ce such

that:

(c⊗ d)(x⊗ y) = (s⊗ t)(e⊗ f) (6.1)

by the Ore condition (ii). Furthermore by the definition of ψ the following holds:

ψ(as−1 ⊗ t−1b)ψ(cq−1 ⊗ r−1d) = φ(a⊗ b)φ(s⊗ t)−1φ(c⊗ d)φ(q ⊗ r)−1. (6.2)

Whereas, in Ee we have:

(as−1 ⊗ t−1b)(cq−1 ⊗ r−1d) = (a⊗ b)(s−1 ⊗ t−1)(c⊗ d)(q−1 ⊗ r−1)

= (a⊗ b)(e⊗ f)(x−1 ⊗ y−1)(q−1 ⊗ r−1)

= ae(qx)−1 ⊗ (yr)−1fb. (6.3)

Acting on this by ψ and then using the fact that φ is a ring homomorphism gives

us:

ψ(ae(qx)−1 ⊗ (yr)−1fb) = φ(ae⊗ fb)φ(qx⊗ yr)−1

= φ(a⊗ b)φ(e⊗ f)φ(x⊗ y)−1φ(q ⊗ r)−1. (6.4)

Finally using equation (6.1) we get that:

φ(c⊗ d)φ(x⊗ y) = φ(s⊗ t)φ(e⊗ f)

=⇒ φ(e⊗ f)φ(x⊗ y)−1 = φ(s⊗ t)−1φ(c⊗ d). (6.5)

So that:

ψ(as−1 ⊗ t−1b)ψ(cq−1 ⊗ r−1d) = φ(a⊗ b)φ(s⊗ t)−1φ(c⊗ d)φ(q ⊗ r)−1 by (6.2)

= φ(a⊗ b)φ(e⊗ f)φ(x⊗ y)−1φ(q ⊗ r)−1 by (6.5)

= ψ(ae(qx)−1 ⊗ (yr)−1fb) by (6.4)

= ψ
(
(as−1 ⊗ t−1b)(cq−1 ⊗ r−1d)

)
by (6.3).
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This is the statement that ψ is multiplicative on pure tensors and is therefore a

ring homomorphism as required.

If we set ψ′ : Ce → Ee to be the obvious inclusion homomorphism it is immediate

that φ = ψ ◦ ψ′. By Lemma 6.2.3,

Ee ∼= (Ce)T .

Lemma 6.2.4. As right Ee modules, C ⊗Ce Ee is isomorphic to E.

Proof. We adopt the convention for writing pure tensor elements of C⊗CeEe as a|b⊗d,

so that the bar represents the tensor over Ce.

We define a map λ : C ⊗Ce Ee → E of Ee-modules by extending the following

Ee-linearly:

a|c−1 ⊗ e−1 7→ e−1ac−1.

Of course, since the | is a tensor over Ce, any pure tensor is of this form since:

a|bs−1 ⊗ t−1c = cab|s−1 ⊗ t−1.

In order to show that λ is an isomorphism, we define its inverse. Take d = ab−1 ∈ E
and set: δ(d) = a|b−1 ⊗ 1 ∈ C ⊗Ce Ee. If ab−1 = st−1 there are some x, y ∈ C such

that ay = sx and by = tx by the definition of localisation, so that

s|t−1 ⊗ 1 = s|xx−1t−1 ⊗ 1 = sx|x−1t−1 ⊗ 1

= ay|y−1b−1 ⊗ 1 = a|b−1 ⊗ 1

so δ is well defined.

We check that indeed δ = λ−1. Firstly, consider a|b−1 ⊗ t−1 ∈ C ⊗Ce Ee and note

that by the Ore condition we have elements m ∈ C, n ∈ S such that:

tm = an =⇒ mn−1 = t−1a,

where the second equality is in E. Then the following shows δλ is equal to idC⊗CeEe :

a|b−1 ⊗ t−1 λ7−→ t−1ab−1 = mn−1b−1

δ7−→ m|n−1b−1 ⊗ 1 = m|n−1b−1 ⊗ t−1t

= tm|n−1b−1 ⊗ t−1 = an|n−1b−1 ⊗ t−1

= a|b−1 ⊗ t−1.
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It is also the case that λδ is equal to idE since the following holds, for d = ab−1 ∈ E:

λδ(d) = λδ(ab−1) = λ(a|b−1 ⊗ 1) = ab−1 = d.

Therefore λ = δ−1, and λ is an isomorphism.

Lemma 6.2.5. For X a vector space, the free right Ce-module C ⊗X ⊗ C satisfies:

(C ⊗X ⊗ C)⊗Ce Ee is naturally isomorphic to E ⊗X ⊗ E as right Ee-modules.

Here the right hand side module has multiplication

1⊗ z ⊗ 1(e⊗ e′) = e′ ⊗ z ⊗ e.

Proof. For a K-algebra ∆ and a vector space Γ, the equivalence of categories of C-

bimodules and right Ce-modules is given by the following isomorphism of right ∆e-

modules:

Γ⊗∆e ∼= ∆⊗ Γ⊗∆,

where the right hand side has module multiplication for γ ∈ Γ and δ, δ′ ∈ ∆:

(1⊗ γ ⊗ 1)(δ ⊗ δ′) = δ′ ⊗ γ ⊗ δ.

By definition, the free right Ce-module on X is X⊗Ce. This lemma is simply then

a reformulation of the fact that X ⊗Ce⊗Ce Ee is naturally isomorphic to X ⊗Ee.

Notation 6.2.6. Recall that C is a Koszul K-algebra which is a domain and E =

SC = CS is the localisation of C at a left and right Ore set S. Let K∗ = C⊗K∗⊗C be

the Koszul complex of C, B∗ be the bar resolution of C and i∗ : K∗ → B∗ the natural

inclusion (see Section 2.1 for definitions). Further, let

φ∗ : B∗ → K∗

be any section of i∗. Then let

I∗ : E ⊗K∗ ⊗ E → E ⊗ C⊗∗ ⊗ E

be the value of the functor −⊗Ce Ee at i∗, taking into account the isomorphism from

Lemma 6.2.5. Likewise, let

Φ∗ : E ⊗ C⊗∗ ⊗ E → E ⊗K∗ ⊗ E

be the value of −⊗Ce Ee at φ∗.
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For any n ∈ N, let

ψn : C⊗n+2 ↪→ C ⊗ E⊗n ⊗ C

be the map induced by the canonical localisation map C ↪→ E. Then we write Ψ∗ for

the value of the functor −⊗Ce Ee at ψ∗.

In the result below we will repeatedly make use of the Comparison Theorem [Wei94,

Theorem 2.2.6].

Lemma 6.2.7. The following is a commutative diagram in which the rows are resolu-

tions of E as a right Ee-module:

E⊗∗+2 E

E ⊗ C⊗∗ ⊗ E E

E ⊗K∗ ⊗ E E.

Ψ∗

I∗

Proof. We have two free resolutions of C as a Ce-module, the bar and Koszul res-

olutions. These are quasi-isomorphic under i∗ by the Comparison Theorem and the

following diagram commutes

C⊗∗+2 C

K∗ C.

i∗

Part (iii) of proposition 6.2.2 implies that − ⊗Ce Ee is an exact functor from the

category of right Ce-modules to the category of right Ee modules. Therefore we obtain

two free resolutions of C ⊗Ce Ee:

C⊗∗+2 ⊗Ce Ee C ⊗Ce Ee

K∗ ⊗Ce Ee C ⊗Ce Ee.

By Lemma 6.2.4, C ⊗Ce Ee is isomorphic to E as an Ee module. Furthermore,

we may apply Lemma 6.2.5 twice and obtain the following commutative diagram with
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exact rows:

E ⊗ C⊗∗ ⊗ E E

E ⊗K∗ ⊗ E E.

I∗

Finally, by the Comparison Theorem the bar resolution of E itself is quasi-isomorphic

to both of these resolutions. The chain map realising this is precisely Ψ∗, and so we

obtain the diagram in the lemma.

Notation 6.2.8. Let Λn : HomCe(C
⊗n+2, C)→ HomEe(E ⊗C⊗n ⊗E,E) be the map

taking f ∈ HomCe(C
⊗n+2, C) to the map defined on pure tensors by

Λn(f)(e⊗ c1 ⊗ . . .⊗ cn ⊗ e′) = ef(1⊗ c1 ⊗ . . .⊗ cn ⊗ 1)e′.

We note that each Λn is an injection whose image is

{
g ∈ Hom(E ⊗ C⊗n ⊗ E,E)

∣∣ g(1⊗ C⊗n ⊗ 1) ⊆ C
}
,

Furthermore, by the definition of the boundary map δ∗ on E ⊗ C⊗n ⊗ E and the

boundary map b∗ on C⊗n+2, it follows that δ∗(Λ(f)) = Λ(δ∗f), and so each Λn descends

to map Λ̃ : HHn(A)→ HHn(D).

If ∆ is a K-vector space and Γ is a K-algebra, we use without further comment the

adjunction isomorphism

HomK(∆,Γ) ∼= HomΓe(Γ⊗∆⊗ Γ,Γ).

Theorem 6.2.9. Let C be Koszul and E a localisation of C with respect to a left

and right Ore set. If f ∈ Z2(E) is a Hochschild 2-cocycle then its cohomology class

[f ] ∈ HH2(E) is determined by its restriction to R, the relations of C. In particular, if

f(1⊗ R ⊗ 1) ⊆ C then [f ] ∈ Im(Λ̃). Thus f is cohomologous to some g ∈ Z2(E) such

that g(1 ⊗ C ⊗ C ⊗ 1) ⊆ C, i.e. f determines an isomorphism class of infinitesimal

deformations of C.

We do not expect a converse to Theorem 6.2.9 to hold true in general. We make an

intuitive argument for this before proving the theorem itself. Let C ′ be a subalgebra

of E with relations R′, distinct from but isomorphic to C. Then it is entirely plausible

that there will be a Hochschild 2-cocycle f ∈ Z2(E) satisfying f(1 ⊗ R′ ⊗ 1) ⊆ C ′

but f(1 ⊗ R ⊗ 1) 6⊆ C. In this way we know by Theorem 6.2.9 that f determines an

isomorphism class of infinitesimal deformations of C ′ ∼= C but f(1⊗R⊗ 1) 6⊆ C.
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Proof of Theorem 6.2.9. Consider the dual of the commutative diagram from Lemma

6.2.7. In the following diagram we write Hom for HomEe .

Hom(E⊗∗+2, E) E

Hom(E ⊗ C⊗∗ ⊗ E,E) E

Hom(E ⊗K∗ ⊗ E,E) E.

Ψ∗

I∗

Let f ∈ HomEe(E
⊗4, E) be a cocycle in the (dual) bar complex of E, i.e. f is in the

top row of the diagram. We may consider the restriction to R, f |(1⊗R⊗1). Note that

since I∗ and Ψ∗ are inclusion morphisms, their duals are restriction morphisms so that

f |(1⊗R⊗1) = I2(Ψ2(f)).

If two functions have cohomologous restrictions then they must be cohomologous to

each other since the maps I∗ and Ψ∗ are quasi-isomorphisms. This establishes the first

part of the theorem.

Furthermore, the map

Φ∗ : Hom(E ⊗K∗ ⊗ E,E)→ Hom(E ⊗ C⊗∗ ⊗ E,E)

has the property that if f ∈ Hom(E⊗4, E) is a cocycle such that

I∗ ◦Ψ∗(f)(1⊗R⊗ 1) ⊆ C

then G = Φ∗ ◦ I∗ ◦Ψ∗(f) satisfies

G(1⊗ C⊗2 ⊗ 1) ⊆ C.

Additionally, by the Comparison Theorem there exists a section to Ψ∗ and so there ex-

ists some cocycle g ∈ Hom(E⊗4, E) such that Ψ∗(g) = G with g being cohomologous to

f . Finally, since G ∈ Im Λ there is some h ∈ B2(C) satisfying Λ(h) = G. Furthermore,

since G is a cocycle it must be the case that δ∗(Λ(h)) = Λ(δ∗(h)) = 0 and since Λ is

injective we can conclude that h is a Hochschild cocycle. In this way, f determines [h]

which is an isomorphism class of infinitesimal deformations of C.
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6.3 Overview of Calculations

In this section we describe a general procedure for applying Theorem 6.2.9 in the

context of families of deformations of Qgr(A) induced by automorphisms of minimal

rational surfaces. Since the procedure can be described in the abstract, we do so here.

In addition, we carry out some preliminary calculations that will be used in every case

considered in the rest of the chapter.

Recall from Section 6.1 the definition of σ : P1×P1 99K P1×P1. Recall further that

A is the subalgebra of D := K(u, v)[t : σ∗] generated by

E := {x1 := t, x2 := ut, x3 := vt, x4 := uvt}.

For any surface Y birational to P1 × P1, under b say, we get an induced birational self

map of Y given by σY := b ◦ σ ◦ b−1.

Since b is a birational map, we know by basic birational geometry (see [Har77,

Theorem 4.4]) that K(Y ) and K(P1 × P1) are isomorphic fields, with the pullback of b

defining an isomorphism, b∗, between them. Under this identification, σ∗Y is equal to

σ∗ as automorphisms of K(u, v).

Since we are interested in infinitesimal deformations of A, we consider a vector L

in the Lie algebra associated with Aut(Y ), which is a Lie group [DI09, Section 4]. By

considering a one-dimensional subspace of vectors {sL} we can apply the exponential

map and obtain a one-parameter subgroup of automorphisms τs = exp(sL).

As discussed in Section 6.1, such a τs defines a deformation of D and so we can

use Theorem 6.2.9 in order to test whether it actually corresponds to an infinitesimal

deformation of A. Write the deformed multiplication on D induced by τs as:

F (a, b) = ab+ F1(a, b)s+O(s2).

Recall that F1 is the infinitesimal of this deformation, and that it therefore satisfies

F1(a, b) =
∂(F (a, b))

∂s

∣∣∣∣
s=0

.

Theorem 6.2.9 implies that F induces an infinitesimal deformation of A if F1(R) ⊆
A, where R = spK{ri|1 ≤ i ≤ 6} is given by the six relations:

r1 = x3x1 − x1x3, r2 = x2x4 − x4x2, r3 = x4x1 − x2x3,

r4 = x1x2 − x2x3, r5 = x3x2 − x1x4, r6 = x4x3 − x1x4.

As in Notation 3.2.1 we write a function f ∈ HH2
2(A) as a vector, with the ith compo-

nent being the image of ri under f . Since our algebra A is Koszul, the bar resolution

is quasi-isomorphic to the Koszul resolution and so these 6 images determine the coho-
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mology class of the map f .

For any Y and L ∈ Lie(Aut(Y )), we can calculate the associated F1. We start by

setting τs := exp(sL) and defining U(s) := σ∗ ◦ τ∗s (u) and V (s) := σ∗ ◦ τ∗s (v), so that

in K(u, v)[[s]][t;σ∗ ◦ τ∗s ] we can write:

tv = V (s)t and tu = U(s)t.

Since τ0 = id we must have that U(0) = uv and V (0) = v. Then we calculate U ′(0) and

V ′(0). Once we have these derivatives we can use basic differentiation rules to calculate

F1. Since the following calculations are simple applications of the product rule we show

only the first in detail and record the rest in Appendix C.1.

F1(r1) =
∂(F (r1))

∂s

∣∣∣∣
s=0

=
∂(F (x3x1 − x1x3))

∂s

∣∣∣∣
s=0

=
∂(vt2 − tvt)

∂s

∣∣∣∣
s=0

=
∂(vt2 − V (s)t2)

∂s

∣∣∣∣
s=0

= −∂(V (s)t2)

∂s

∣∣∣∣
s=0

= −V ′(0)t2.

The other calculations proceed along similar lines. We record the results in Table

6.1.

Relation r F1(r)

x3x1 − x1x3 −V ′(0)t2

x4x2 − x2x4 −u2vV ′(0)t2

x4x1 − x2x3 −uV ′(0)t2

x1x2 − x2x3 (U ′(0)− uV ′(0))t2

x3x2 − x1x4 −uvV ′(0)t2

x4x3 − x1x4 −vU ′(0)t2

Table 6.1: F1 Applied to the Relations of A

Now that this leg work is done, all it takes is to calculate the different values of

the functions in these formulae, and we get the relevant infinitesimals. So by Theorem

6.2.9, a sufficient condition for L to correspond to an infinitesimal deformation is for

each of the above six expressions to lie in A2. For example in the final row in Table 6.1

one must check that −vU ′(0)t2 is in the span of degree two monomials in the generators

of A.

Finally, we label the ordered basis of HH2
2(A) chosen in Section 3.3 by b1, . . . , b8.

Recall that this basis is
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

x1x3

0

0

x2x3

x1x4

0





x2
3

0

x1x4

0

0

x3x4





x2
1

0

0

x2x1

x2x3

0





0

x2x4

0

0

x1x4

0





0

x2
4

0

0

x3x4

0





0

x2
2

0

0

x2x3

0





0

0

0

x2
1

0

−x1x3





0

0

0

−x2
2

0

x2x4



6.4 Infinitesimals Arising from Automorphisms of P1× P1

In this case we have Y := X = P1 × P1 and b : X 99K X is the identity automorphism,

so that σY = σ. The automorphism group Aut(P1 × P1) is isomorphic to the wreath

product PGL2(K) oS2 [DI09, Section 4.3], however we only need to consider the identity

component. This component of Aut(P1 × P1) is isomorphic to PGL2×PGL2 which

means the associated Lie algebra is isomorphic to sl2× sl2. So for L we take M ×
N ∈ sl2× sl2. This case is studied using very different methods in [RS12], where

the deformed algebras are analysed in their own right, rather than in terms of formal

deformation theory.

Take a matrix M ∈ sl2 and a formal deformation parameter s and consider

sM = s

(
a b

c −a

)
.

Then clearly:

exp(sM) =

(
1 + as bs

cs 1− as

)
+O(s2),

and we get a similar formula for

N :=

(
d e

f −d

)
.

In the following we omit all terms which have power of s greater than 1, since

this has no impact on the first order deformations and no impact on any derivatives

appearing.

Define τs = exp(sM, sN) so that:

τs([x : y][z : w]) = [(1 + as)x+ bsy : csx+ (1− as)y][(1 + ds)z+ esw : fsz+ (1− ds)w].
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We have the formula

τs ◦ σ([x : y][z : w]) =

[(1 + as)xz + bsyw : csxz + (1− as)yw][(1 + ds)z + esw : fsz + (1− ds)w].

From this we can calculate U ′(0) by the following method:

U(s) = σ∗ ◦ τ∗s (u)

=
(1 + as)xz + bsyw

csxz + (1− as)yw
=

(1 + as)uv + bs

csuv + (1− as)
.

As a quick check on these calculations we note that U(0) = uv as required. In order to

calculate the derivative, let F be the numerator and G be the denominator. We have

the following:

F (0) = uv, F ′(0) = auv + b

G(0) = 1, G′(0) = cuv − a.

So that

U ′(0) =
G(0)F ′(0)− F (0)G′(0)

G(0)2

= auv + b− uv(cuv − a)

= b− cu2v2 + 2auv

Likewise:

V (s) = σ∗ ◦ τ∗s (v) =
(1 + ds)z + esw

fsz + (1− ds)w

=
(1 + ds)v + es

fsv + (1− ds)
.

Note again this still makes some sense since V (0) = v. The derivative is somewhat

simpler to calculate in this case:

V ′(0) =
∂

∂s

(
(1 + ds)v + es

vfs+ (1− ds)

)∣∣∣∣
s=0

=
(vfs+ (1− ds))(dv + e)− ((1 + ds)v + es)(vf − d)

(vfs+ (1− ds))2

∣∣∣∣
s=0

= 2dv + e− fv2.

So putting this together with the calculations before, Table 6.2 records the images
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of the relations under F1.

Relation Formula Image Under F1

r1 = x3x1 − x1x3 −V ′(0) (fv2 − 2dv − e)t2
r2 = x2x4 − x4x2 −u2vV ′(0) (fu2v3 − eu2v − 2du2v2)t2

r3 = x4x1 − x2x3 −uV ′(0) (fuv2 − 2duv − eu)t2

r4 = x1x2 − x2x3 U ′(0)− uV ′(0) (b+ 2auv − cu2v2 − eu− 2duv + fuv2)t2

r5 = x3x2 − x1x4 −uvV ′(0) (fuv3 − euv − 2duv2)t2

r6 = x4x3 − x1x4 −vU ′(0) (cu2v3 − bv − 2auv2)t2

Table 6.2: Images of the Six Relations of A Under F1

Now we have the information necessary to check the admissibility of L. Recall that

this means we must check if each of the terms in the right hand column of this table

lies in

A2 = spK
({
uivjt2

∣∣0 ≤ i ≤ 2, 0 ≤ j ≤ 3
}
\ {v3t2, u2t2}

)
(6.6)

= spK{x2x1, x
2
2, x2x3, x2x4, x

2
1, x1x3, x1x4, x

2
3, x3x4, x

2
4}.

It is immediate by comparing the right hand column of Table 6.2 with (6.6) that

F1(ri) is always an element of A2. Therefore we can conclude that all of the directions

are admissible and so we do in fact get infinitesimal deformations of A with any choice

of L. In fact, the image of sl2× sl2 in HH2(A) coincides precisely with the unobstructed

component Vg from Theorem 5.3.2.

Theorem 6.4.1. All elements in sl2× sl2 are admissible. Furthermore, for any in-

finitesimal f ∈ Vg ⊆ HH2
2(A) there exists a one-parameter subgroup {τs} ⊆ Aut(P1×P1)

such that the associated infinitesimal deformation of A is isomorphic to f .

Proof. We have already shown that all elements are admissible. Identify sl2× sl2 with

K6 under the map :

((
a b

c −a

)
,

(
d e

f −d

))
↔



a

b

c

d

e

f


.

From the right hand column of Table 6.2 we obtain a linear map Φ : sl2× sl2 → HH2
2(A)
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represented by left multiplication by the matrix

A :=



0 0 0 −2x1x3 −x2
1 x2

3

0 0 0 −2x2x4 −x2
2 x2

4

0 0 0 −2x2x3 −x2x1 x1x4

2x2x3 x2
1 −x2x4 −2x2x3 −x2x1 x1x4

0 0 0 −2x1x4 −x2x3 x3x4

−2x1x4 −x1x3 x2
4 0 0 0


.

By referring to the basis of HH2
2(A) calculated in Chapter 3 (see Theorem 3.3.1) we

write the image of this map as an element of the vector space spanned by {b1, . . . , b8}.

Φ

((
a b

c −a

)
,

(
d e

f −d

))
=

− 2d(b1 + b4) + f(b2 + b5)− e(b3 + b6) + bb7 + cb8 ∈ HH2
2(A). (6.7)

Note that in (6.7) we have written the cohomology classes of the columns of the matrix

A, which therefore may differ from the columns up to a coboundary. This is a vector

of the form
∑
aibi satisfying a1 = a4, a2 = a5 and a3 = a6. By Theorem 5.3.2 this is

precisely the defining equations of Vg. Furthermore, Φ is clearly surjective onto Vg.

Of course one notices that a is not present on the right hand side of equation (6.7),

which corresponds to the fact that this direction induces a trivial deformation. As a

check on our calculations we show this is indeed the case.

Lemma 6.4.2. Let

τ =

((
a 0

0 a−1

)
,

(
1 0

0 1

))
∈ PGL2×PGL2,

then the subalgebra B of K(u, v)[t, t−1;σ∗ ◦ τ∗] generated by E is isomorphic to A.

Proof. We prove this be defining an explicit isomorphism φ : A→ B, given by

x1 7→ x1

x2 7→ x2

x3 7→ a2x3

x4 7→ a2x4

To see that φ is an isomorphism we note a few facts. Firstly, since σ∗ ◦τ∗(u) = a2uv
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and σ∗ ◦ τ∗(v) = v, B has the following as a basis for its space of relations:

s1 = x3x1 − x1x3, s2 = x2x4 − x4x2, s3 = x4x1 − x2x3,

s4 = x1x2 − a2x2x3, s5 = x3x2 − x1x4, s6 = a2x4x3 − x1x4.

From this it is clear that B has the same PBW-basis as A with respect to the lexico-

graphic ordering x2 < x1 < x3 < x4. One must simply check that φ is well defined and

is bijective. Once we have checked it is well defined, then it is clear that φ is bijective

since it is a bijection on the PBW-basis (up to a scalar multiple). Therefore we show

φ is well defined.

With that aim, we evaluate φ on the relations of A and show that they are in the

kernel:

φ(r1) = φ(x3x1 − x1x3) = a2x3x1 − a2x1x3 = a2s1 = 0

φ(r2) = φ(x2x4 − x4x2) = a2x2x4 − a2x4x2 = a2s2

φ(r3) = φ(x4x1 − x2x3) = a2x4x1 − a2x2x3 = a2s3

φ(r4) = φ(x1x2 − x2x3) = x1x2 − a2x2 = s4

φ(r5) = φ(x3x2 − x1x4) = a2x3x2 − a2x1x4 = a2s5

φ(r6) = φ(x4x3 − x1x4) = a4x4x3 − a2x1x4 = a2s6.

This concludes the proof, and so B is a trivial deformation of A.

The infinitesimal associated to B is therefore also trivial; this infinitesimal is pre-

cisely the image in HH2
2 of

L =

((
a 0

0 −a

)
,

(
0 0

0 0

))
.

Remark 6.4.3. In [RS12], an automorphism τ ∈ Aut(P1 × P1) is discussed which

defines an algebra A(τ) that has GK-dimension 3. For this reason we do not expect

a flat family of deformations of A to be parameterised by the entire group Aut(P1 ×
P1). However, the family discussed by Rogalski and Sierra are parameterised by a

complement of the plane by a countable union of varieties which, in particular, contains

the identity. Therefore we expect the associated infinitesimals to integrate to a formal

deformation. This reasoning leads us to suspect that all elements of Vg integrate to

formal deformations although we do not prove this in this thesis. Instead we concentrate

on flat families with infinitesimals lying outside of Vg.
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6.5 Infinitesimals Arising from Automorphisms of P2

We have seen that for every vector v in the variety Vg ⊂ HH2
2(A) we can find an

admissible direction L ∈ sl2× sl2 whose image under Φ is v. One might hope that

by considering automorphisms of other surfaces one might find admissible directions

whose images comprise Vu and Vq. In the following sections we show that this is not

the case, and that all admissible directions have images lying in Vg.

6.5.1 Calculating σP2

We recall some basic facts about P1×P1. Under the Segre embedding (see e.g. [EH00,

Section III.2.3]), we get an embedding of P1×P1 in P3. However, we change coordinates

slightly from the usual definition of the Segre embedding to ensure the formulae work

out nicely. We note here that this has no effect on the properties of the map, it is

purely a coordinate change. We define then:

S : P1 × P1 → P3, [x : y][z : w] 7→ [xw : xz : yw : yz].

This is an embedding of P1 × P1 into P3 as the quadric surface

Q := {[α : β : γ : δ] | αδ − βγ = 0},

where our rational coordinates are now u = α/γ and v = β/α. Now, if we take the

projection from [0 : 0 : 0 : 1] of this surface, we get dominant rational map, b−1, to

Y := P2. This map is given by

[α : β : γ : δ] 7→ [α : β : γ],

with birational inverse, b,

[α : β : γ] 7→ [α2 : αβ : αγ : βγ].

Now to transfer σ across to P2. Firstly we transfer it to Q, where it is simply the

composition:

[xw : xz : yw : yz] 7→ [x : y][z : w]

799K [xz : yw][z : w]

7→ [xwz : xz2 : yw2 : ywz] = [vxw : vxz : yw : yz],

which can be more neatly written as [α : β : γ : δ] 799K [βα : β2 : γα : δα].
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Then if [α : β : γ] is in P2, σP2 acts as the following composition:

[α : β : γ] 799K [α2 : αβ : αγ : βγ] 799K [βα : β2 : αγ : βγ] 799K [βα : β2 : αγ].

As a quick check that this is still the same σ∗ on function fields, we note that σ∗

sends u = α/γ and v = β/α to uv and v respectively, as required.

Now the automorphism group of P2 is of course PGL3 which has Lie algebra sl3.

Take a matrix L ∈ sl3 and a formal deformation parameter s and consider

sL = s

 a b c

d e f

g h −a− e

 .

Then we have

τs := exp(sL) =

 (1 + as) bs cs

ds (1 + es) fs

gs hs (1− as− es)

+O(s2).

This acts on P2 by the following formula, where we drop the O(s2) terms as before:

[α : β : γ] 7→ [(1+as)α+ bsβ+ csγ : dsα+(1+es)β+fsγ : gsα+hsβ+(1−as−es)γ].

So using the coordinates u = α/γ and v = β/α, we note that β/γ = uv, and calculate

the action of σ∗ ◦ τ∗s on u and v. Firstly, we calculate the composition:

τs ◦ σ([α, β, γ]) = τs([βα : β2 : αγ])

= [(1 + as)βα+ bsβ2 + csαγ :dsαβ + (1 + es)β2 + fsαγ :

gsαβ + hsβ2 + (1− as− es)αγ].

We can easily check that indeed U(0) = uv and V (0) = v, and then calculate the

derivatives:

∂(U(s))

∂s

∣∣∣∣
s=0

=

(
∂

∂s

)(
[(1 + as)βα+ bsβ2 + csαγ

gsαβ + hsβ2 + (1− as− es)αγ

)∣∣∣∣
s=0

=

(
∂

∂s

)(
(1 + as)uv + bsuv2 + cs

gsuv + hsuv2 + (1− as− es)

)∣∣∣∣
s=0

= 2auv + euv + buv2 − gu2v2 − hu2v3 + c.

Similarly, we have that:
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∂(V (s))

∂s

∣∣∣∣
s=0

=

(
∂

∂s

)(
dsαβ + (1 + es)β2 + fsαγ

(1 + as)βα+ bsβ2 + csαγ

)∣∣∣∣
s=0

=

(
∂

∂s

)(
dsuv + (1 + es)uv2 + fs

(1 + as)uv + bsuv2 + cs

)∣∣∣∣
s=0

= d+ ev + fu−1v−1 − av − bv2 − cu−1.

We can see already that to be able to apply Theorem 6.2.9, f and c will both have to

be 0. This is because F1(r1) = −V ′(0) and if these are not zero then V ′(0)t2 will not

be an element of A2 as required. Likewise, h must be 0 since −vU ′(0)t2 must be in

A2 (equation 6 in Section 6.3) and this would contain the term hu2v4t2, which has a

power of v that is too high for this to lie in A2.

After setting f = c = h = 0, we record this data in Table 6.3 for ease of reading.

Relation Formula Image Under F1

x3x1 − x1x3 −V ′(0) (bv2 + av − ev − d)t2

x2x4 − x4x2 −u2vV ′(0) (bu2v3 + au2v2 − eu2v2 − du2v)t2

x4x1 − x2x3 −uV ′(0) (buv2 + auv − euv − du)t2

x1x2 − x2x3 U ′(0)− uV ′(0) (−gu2v2 + 2buv2 + 3auv − du)t2

x3x2 − x1x4 −uvV ′(0) (buv3 + auv2 − euv2 − duv)t2

x4x3 − x1x4 −vU ′(0) (gu2v3 − 2auv2 − euv2 − buv3)t2

Table 6.3: Images of the Six Relations of A under F1

Theorem 6.5.1. Let Φ be the map from admissible directions to HH2
2(A) determined

by the deformations induced by τs. Every admissible direction in sl3 is sent under Φ to

an infinitesimal deformation lying in Vg. Furthermore, the image of these directions is

a four dimensional subspace of Vg.

Proof. We embed the space of admissible directions in sl3 into K5 using the mapping

 a b 0

d e 0

g 0 −a− e

↔


a

b

d

e

g

 .
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The map Φ on admissible directions can be written in the form of a matrix:

A :=



x1x3 x2
3 −x2

1 −x1x3 0

x2x4 x2
4 −x2

2 −x2x4 0

x2x3 x1x4 −x2x1 −x2x3 0

3x2x3 2x1x4 −x2x1 0 −x2x4

x1x4 x3x4 −x2x3 −x1x4 0

−x1x4 x3x4 0 −x1x4 x2
4


.

We can write this map in terms of the chosen basis {b1, . . . , b8} as:

Φ

 a b 0

d e 0

g 0 −a− e

 = (a−e)(b1 + b4)+ b(b2 + b5)−d(b3 + b6)+gb8 ∈ HH2
2(A). (6.8)

Note that in (6.8) we have written the cohomology classes of the columns of the

matrix A, which therefore may differ from the columns up to a coboundary. By Theorem

5.3.2, this image always lies in Vg and is a four dimensional space.

From equation (6.8) one can observe that the kernel is spanned by the vector: 1 0 0

0 1 0

0 0 −2

 .

We note that the image under Φ in this case is one dimension smaller than that in the

case of P1 × P1.

6.5.2 Other Choices for the Map b

In the above calculation we have chosen a specific map b corresponding to blowing up

the point F = [0 : 1][1 : 0] on P1 × P1 and blowing down images of the two rulings

through F . For any choice of point p ∈ P1×P1 we obtain a set of such birational maps

Mp. Mp is a well understood set (see e.g. [Gat14, Remark 9.29]). The elements in this

set differ from each other only by composition with an automorphism of P2. That is

to say if m1,m2 ∈ Mp then there exists β ∈ Aut(P2) such that m1 = βm2. For each

p ∈ P1 × P1 pick such a birational map bp. We investigate the effect of each different

possible choice of such a p on the image of admissible directions in HH2
2.

Notation 6.5.2. We establish some notation for σ and P1 × P1; this notation is in
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keeping with that introduced in [RS12]. For [x : y][z : w] coordinates on P1×P1 we let

X := V(x) = [0 : 1]× P1, Y := V(y) = [1 : 0]× P1,

Z := V(z) = P1 × [0 : 1], W := V(w) = P1 × [1 : 0].

We also name the four points of intersection:

P := Z ∩X = [0 : 1][0 : 1], Q := Z ∩ Y = [1 : 0][0 : 1],

F := W ∩X = [0 : 1][1 : 0] G := W ∩ Y = [1 : 0][1 : 0].

Note then that the fundamental points of σ are precisely Q and F whilst G and P

are the fundamental points of σ−1.

To make the calculations easier to follow we distinguish the following cases of choice

for investigation:

1. p = Q the other fundamental point of σ.

2. p = G or p = P the two fundamental points of σ−1.

3. p ∈ X \ {P, F} or p ∈ Y \ {G,Q}.

4. p ∈ Z \ {P,Q} or p ∈W \ {F,G}.

5. p ∈ P1 × P1 \ (X ∪ Y ∪ Z ∪W ), i.e. p is a point off the “axes”.

Proposition 6.5.3. Let α : P1 × P1 → P1 × P1 be the automorphism defined by

α ([x : y][z : w]) = [y : x][w : z].

Then if α(p) = q then the image of the admissible directions arising from automor-

phisms of P2 under the map bp is equal to that under bq.

Before proving this proposition we state a useful lemma for Ore extensions.

Lemma 6.5.4 ([GW04, Lemma 1.11 and Exercise 1N]). If R is a ring, f and g auto-

morphisms of R then we have the following isomorphism of Ore extensions:

R[t, t−1; g] ∼= R[t, t−1; f ◦ g ◦ f−1].

Proof of Proposition 6.5.3. Each choice of map bp ∈ P1 × P1 defines an injection

ιp : Aut(P2) ↪→ Aut(K(u, v)).

We claim that if α(p) = q then

ιp(Aut(P2)) = α∗ιq(Aut(P2))α∗.
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Since α(p) = q, we know that bpα is a birational map with unique fundamental

point q. It follows that bpα ∈ Mq, and so there exists an automorphism β ∈ Aut(P2)

satisfying

βbq = bpα.

In particular bpαb
−1
q = β is an automorphism of P2 and for f ∈ Aut(P2) we have

ιp(β
−1fβ) = α∗ιq(f)α∗.

The claim follows immediately.

Therefore, if τ∗s is some family of automorphisms arising from the choice of coordi-

nates from bp, then there exists some family ρ∗s arising from the choice of coordinates

from bq such that:

τ∗s = α∗ρ∗sα
∗.

Note that since α is an involution, (α∗)−1 = α∗. Furthermore,

α∗σ∗α∗ = σ∗.

Therefore, applying Lemma 6.5.4 we have the isomorphism

K(u, v)[t, t−1;σ∗ ◦ τ∗s ] = K(u, v)[t, t−1;σ∗ ◦ α∗ ◦ ρ∗s ◦ α∗]

= K(u, v)[t, t−1;α∗ ◦ σ∗ ◦ ρ∗s ◦ α∗]
∼= K(u, v)[t, t−1;σ∗ ◦ ρ∗s].

In other words any infinitesimal deformation arising from studying bq will also arise

from studying bp, and so the associated spaces of infinitesimal deformations will are

equal.

By Proposition 6.5.3, in Cases 2, 3 and 4 we only need consider one of the two

possible options. Furthermore, this proposition means that we have already considered

Case 1 in the preceding work of Section 6.5.1.

We elaborate here on the final case in detail. The details of the calculations for the

other cases can be found in Appendix C.2, whereas the results are recorded in Table

6.4 at the end of this section.

Case 5

In this case p ∈ P1 × P1 \ (X ∪ Y ∪ Z ∪W ), i.e. p is a point away from the four ‘axes’.

Choosing a point to blow up is equivalent to choosing a point on Q to project from.

We use the coordinates [A : B : C] on P2, [α : β : γ : δ] for coordinates on P3 (in which
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Q is embedded) and [x : y][z : w] as coordinates for P1 × P1. We will use the same τs

as before, defined by:

τs :=

 (1 + as) bs cs

ds (1 + es) fs

gs hs (1− as− es)

+O(s2).

We also point out that in order for an element of the Lie algebra to be inadmissible

we need to find terms that do not lie in A. We can determine these terms simply by

observing the powers of u and v appearing in U ′(0) and V ′(0).

If p ∈ P1×P1 \ (X ∪Y ∪Z ∪W ) then we can write it as p = [1 : M ][1 : N ] for some

M,N ∈ K∗. This corresponds to the point [N : 1 : MN : M ] on Q and so we project

from this point.

This is then the map [α : β : γ : δ] 799K [α−Nβ : γ −MNβ : δ −Mβ]. Composing

this with the Segre embedding gives us the map:

bp : [x : y][z : w] 799K [xw −Nxz : yw −MNxz : yz −Mxz].

Note that since

b−1
p : [A,B,C] 799K [A : B −NC][C : B −MA],

this map induces u = A
B−NC and v = C

B−MA as coordinates on P2. Therefore σP2 is the

following composition:

σP2 : [A : B;C] 799K [A : B −NC][C : B −MA]

7 σ99K [AC : (B −NC)(B −MA)][C : B −MA]

799K [AC(B −MA)−NAC2 : (B −NC)(B −MA)2 −MNAC2 :

(B −NC)(B −MA)C −MAC2].

We note that

u 7→ AC(B −MA)−NAC2

(B −NC)(B −MA)2 −MNAC2 −N(B −NC)(B −MA)C +MNAC2

= (
A

B −NC
)(

C

B −MA
) = uv,

and

v 7→ (B −NC)(B −MA)C −MAC2

(B −NC)(B −MA)2 −MNAC2 −MAC(B −MA) +MNAC2

=
C

B −MA
= v.
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We record the following formulae which are easily derivable from the above:

C

B
=

Muv − v
MNuv − i

,
A

B
=

Nuv − u
MNuv − 1

.

Then σ∗ ◦ τ∗s has the following effect (up to degree 1) on v:

u
τ∗s7−→ (1 + as)A+ bsB + csC

dsA+ (1 + es)B + fsC −N(gsA+ hsB + (1− as− es)C)

=
(1 + as)(Nuv − u) + bs(MNuv − 1) + cs(Muv − v)

χ(s)

where

χ(s) = ds(Nuv − u) + (1 + es)(MNuv − 1) + fs(Muv − v)−

N(gs(Nuv − u) + hs(MNuv − 1) + (1− as− es)(Muv − v)).

Under σ this is sent to F (s)/G(s) where:

F (s) = (1 + as)(Nuv2 − uv) + bs(MNuv2 − 1) + cs(Muv2 − v),

and

G(s) = ds(Nuv2 − uv) + (1 + es)(MNuv2 − 1) + fs(Muv2 − v)−

N(gs(Nuv2 − uv) + hs(MNuv2 − 1) + (1− as− es)(Muv2 − v)).

In preparation for using the quotient rule to differentiate this we calculate some inter-

mediate values.

F (0) = Nuv2 − uv, F ′(0) = a(Nuv2 − uv) + b(MNuv2 − 1) + c(Muv2 − v),

G(0) = NV − 1, G′(0) = d(Nuv2 − uv) + e(MNuv2 − 1) + f(Muv2 − v)−

N(g(Nuv2 − uv)− h(MNuv2 − 1) + (a+ e)M(uv2 − v).
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Applying these formula gives us the following result:

∂s(σ
∗ ◦ τ∗s (u))|s=0 = auv + aNuv

Muv2 − v
Nv − 1

+ b
MNuv − 1

Nv − 1
+ c

Muv2 − v
Nv − 1

− du2v2

− fuvMuv − v
Nv − 1

−Nguv −NhuvMNuv2 − 1

Nv − 1

+ eNuv
Muv2 − v
Nv − 1

− euvMNuv2 − 1

Nv − 1
.

Then because of the denominators appearing above, we must have that a = b =

c = f = h = 0 in order for this to be admissible.

Turning then to the calculation with respect to v:

v
τ∗s7−→ gsA+ hsB + (1− as− es)C

dsA+ (1 + es)B + fsC −M((1 + as)A+ bsB + csC)

=
gsA+ (1− es)C

dsA+ (1 + es)B −MA

=
gs(Nuv − u) + (1− es)(Muv − v)

ds(Nuv − u) + (1 + es)(MNuv − 1)−M(Nuv − u)

σ7−→ gs(Nuv2 − uv) + (1− es)(Muv2 − v)

ds(Nuv2 − uv) + (1 + es)(MNuv2 − 1)−M(Nuv2 − uv)

Which has the following derivative:

∂s(σ
∗ ◦ τ∗s (v))|s=0 = g

Nuv2 − uv
Muv − 1

− e(Muv − v)(Muv +MNuv2 − 1)

(Muv − 1)2

− d(Muv − v)(Nuv2 − uv)

(Muv − 1)2

Similarly to above, just by looking at the denominators one can see that no cancellation

will occur here and indeed it is required that e, d and g are all 0 for this to be an

admissible direction. Therefore in this case the image of the admissible direction is the

trivial deformation.

Conclusion

The results of the calculations above (and those in Appendix C.2) are recorded in Table

6.4.
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Case Dimension of Image in HH2
2

1) p = Q 4

2) p := G or p = P 4

3) p ∈ X \ {P, F} or p ∈ Y \ {G,Q} 0

4)p ∈ Z \ {P,Q} or p ∈W \ {F,G} 1

5)p ∈ P1 × P1 \ (X ∪ Y ∪ Z ∪W ) 0

Table 6.4: Dimension of the Image of the Admissible Directions for other choices of b

We can summarise the results in the following proposition.

Proposition 6.5.5. For any choice of point p ∈ P1×P1 and birational map bp, the set

of admissible directions in sl3 is sent under Φ to infinitesimal deformations of A lying

in Vg.

6.6 Infinitesimals Arising from Automorphisms of Fn

In this section we turn to the higher Hirzebruch surfaces. We follow the procedure of

Section 6.3 and choose a birational map b : P1×P1 → Fn. Since we found in Proposition

6.5.5 and Table 6.4 that the best choice of b was one that blows one of the fundamental

points of σ we only consider one such map in this section. We take Proposition 6.5.5

as evidence that this will not reduce the space of infinitesimals we come across.

6.6.1 Calculating σFn

In what follows we assume n ≥ 2.

Recall that a Hirzebruch surface, denoted Fn, is the projective variety given as a

subvariety of Pn+3 by:

Fn =

{
[x0 : x1 : . . . : xn+1 : y0 : y1]

∣∣∣∣∣ rank

(
x0 x1 . . . xn y0

x1 x2 . . . xn+1 y1

)
= 1

}
.

We first wish to calculate σFn . There is a natural map from Fn to Q, the embedding

of P1 × P1 into P3 as a quadric surface. Since rank

(
x0 x1 . . . xn y0

x1 x2 . . . xn+1 y1

)
= 1,

this implies that the minor

(
x0 y0

x1 y1

)
has determinant 0. This means that:

[x0 : x1 : . . . : y1] 799K [x0 : x1 : y0 : y1].

is a birational map Fn 99K Q, and so we can use this to transfer σ. We note that the

requirement on the rank of the matrix is equivalent to the fact that the ratio from x0

to x1 is the same as the ratio from xi to xi+1. This allows us to define the inverse
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birational map as:

[x0 : x1 : y0 : y1] 799K [x0 : x1 : x2
1/x0 : x3

1/x
2
0 : . . . : y0 : y1].

We can now calculate σFn as the following composition:

[x0 : x1 : . . . : y1] 799K [x0 : x1 : y0 : y1] 799K [x1 : x2
1/x0 : y0 : y1] 799K [x1 : x2

1/x0 : x3
1/x

2
0 . . . : y1],

or more simply:

[x0 : x1 : . . . : y1] 799K [x1 : x2 : . . . : xn+1 : xn+1
x1

x0
: y0 : y1].

As a check on these calculations we verify that v = x1/x0 gets sent to (
x21
x0

) 1
x1

= v and

that u = x0/y0 gets sent to x1
y0

= x1
x0

x0
y0

= uv as required.

6.6.2 Automorphisms of Fn for n ≥ 2

Firstly we recall some definitions, and then relate these to the Hirzebruch surfaces. The

weighted projective space P(1, 1, n) is defined similarly to P2, in that it is a quotient

of K3. However, the equivalence relation is slightly different, in that for any nonzero

λ ∈ K
(x, y, z) ∼ (λx, λy, λnz).

In order to make it clear what kind of space a point is in, we write [a, b, c] for a point

in P(1, 1, n) and [a : b : c] for a point in P2. It is well known (e.g. [Dol82, Section

1.2.3]) that Fn is the blow up of P(1, 1, n) at the unique singular point p := [0, 0, 1].

The following is well known to experts but we have not found a reference for it so we

prove it here.

Lemma 6.6.1. Let X be a projective surface with a unique singular point, p, and X̃

the blow up at this point, such that X̃ has a unique divisor of self-intersection −n whose

image under the blow up map is p. Then there is an isomorphism between Aut(X) and

Aut(X̃) induced by the blow up map.

Proof. Let π : X̃ → X be the blow up map and consider α ∈ Aut(X). Since p is

the unique singular point of X, it must be the case that α fixes p. By the universal

property of blow ups [Har77, Proposition 7.14] we know that there is a unique morphism

α̃ : X̃ → X̃ such that π ◦ α̃ = α ◦ π. The same reasoning applies to α−1, which means

we have a morphism α̃ ◦ (̃α−1) which satisfies:

π ◦ α̃ ◦ (̃α−1) = α ◦ α−1 ◦ π = 1 ◦ π.

The universal property means that α̃ ◦ (̃α−1) is unique, so that it must be the identity.
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Therefore α̃ is an automorphism of X̃.

On the other hand, any automorphism of X̃ must fix the unique divisor of self-

intersection −n. Therefore it also defines an automorphism of the blow down of this

divisor, which is X. Therefore Aut(X̃) ∼= Aut(X).

In our setting, this lemma means that the group of automorphisms of P(1, 1, n) is

isomorphic to the group of automorphisms of Fn. We need to describe the blow up

explicitly though, which is much easier if we embed P(1, 1, n) in projective space Pn+1,

which can be achieved by using a Veronese-type embedding:

[x, y, z] 7→ [xn : xn−1y : . . . : yn : z].

Explicitly, this blow up is given by the following map: π : Fn 99K P(1, 1, n) where a

point [x0 : x1 : . . . : xn+1 : y0 : y1] is taken to the equivalence class of any nonzero vector

in the row space of

(
x0 x1 . . . xn y0

x1 x2 . . . xn+1 y1

)
, which has rank one by definition. Now,

at a generic point in Fn this map will be,

[x0 : x1 : . . . : xn+1 : y0 : y1] 7→ [xn : xn−1y : . . . : yn : z] where xn−iyi = x0

(
x1

x0

)i
,

and this image then is isomorphic to P(1, 1, n) by using the Veronese embedding of P1

in Pn which is well defined since:

[λx, λy, λnz] 7→ [λnxn : λnxn−1y : . . . : λnyn : λnz] = [xn : xn−1y : . . . : yn : z].

The fact that this morphism is an isomorphism follows from the fact that if w is an nth

root of unity, then [x, y, z] = [wx,wy, z] and so this map has an inverse represented by

choosing an nth root of unity.

From [DI09, Theorem 4.10] we have that automorphisms of P(1, 1, n) are given by

ρ : [x, y, z] 7→ [ax+ by, cx+ dy, ez +

n∑
i=0

fix
n−iyi],

where a, b, c, d, e, fi ∈ K for every i, with the restrictions that e is nonzero and(
a b

c d

)

is invertible. We need to transfer such a map, τ say, up to Fn. To do so we firstly

take it across to Pn+1 via the Veronese map above. This is calculated as the following

composition:
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[xn : xn−1y : . . . : yn : z] 7→ [x, y, z] 7→ [ax+ by, cx+ dy, ez +

n∑
i=0

fix
n−iyi]

7→ [(ax+ by)n : (cx+ dy)(ax+ by)n−1 : . . . : (cx+ dy)n : ez +
∑
i

fix
n−iyi].

For ease of reading we set Ai := (cx + dy)i(ax + by)n−i for i from 1 to n and

An+1 := ey0 +
∑
fix

n−iyi. Then we can transfer this back up to Fn by using the blow

up map. If we take a point [x0 : . . . : xn+1 : y0 : y1] and act on it by σ then we get

the point [x1 : x2 . . . : xn+1
x1
x0

: y0 : y1]. We assume we are in the open set where x0 is

nonzero, then in the above equations we choose x and y so that

xn−iyi = x0

(
x1

x0

)i+1

.

This means that under τ this point is sent to:

τ ◦ σ[x0 : . . . : xn+1 : y0 : y1] = [A0 : A1 : . . . : An
A1

A0
: An+1 : An+1

A1

A0
].

Now, the identity automorphism in this situation corresponds to setting

(a, b, c, d, e, f0, . . . , fn) := (1, 0, 0, 1, 1, 0, . . . , 0),

so that perturbing in one direction with parameter s corresponds to a choice of auto-

morphism given by (1+as, bs, cs, 1+ds, 1+es, sf0, . . . , sfn). This gives us the following

formulae for U(s) and V (s):

U(s) =
A0

An+1

=
((1 + as)x+ bsy)n

(1 + es)y0 +
∑n

i fix
n−iyi

and

V (s) =
A1

A0

=
(csx+ (1 + ds)y)((1 + as)x+ bsy)n−1

((1 + as)x+ bsy)n
.
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Taking each in turn, we have the following:

V (0) =
yxn−1

xn

=
uv2

uv
= v.

As for the derivative, we start by multiplying top and bottom by 1/y0 so that everything

is in terms of u’s and v’s. The numerator has a derivative at zero of:

cuv + duv2 + (n− 1)auv2 + (n− 1)buv3,

whereas the denominator has derivative:

nauv + nbuv2.

This then implies a derivative of:

V ′(0) =
uv(cuv + duv2 + (n− 1)auv2 + (n− 1)buv3)− uv2(nauv + nbuv2)

(uv)2

= c+ dv − av − bv2.

Likewise we can calculate U ′(0) in a similar fashion. The derivative of the numerator

at zero is

nauv + nbuv2

and of the denominator is:

e+
∑

fiuv
i+1,

which gives a derivative of:

nauv + nbuv2 − euv −
n∑
i

fiu
2vi+2.

We can now consider the admissibility of L. Since −vU ′(0)t2 will contain the terms∑
i fiu

2vi+3t2, for this to be admissible we certainly need fi = 0 for any i greater than

0, since no powers of v higher than 3 appear in A2. These are the only restrictions on

admissibility. For this reason we write f for f0 and record the results in Table 6.5.
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Relation Image Under F1

x3x1 − x1x3 (av + bv2 − dv − c)t2
x2x4 − x4x2 (bu2v3 + au2v2 − du2v2 − cu2v)t2

x4x1 − x2x3 (buv2 + auv − duv − cu)t2

x1x2 − x2x3 ((n+ 1)buv2 + (n+ 1)auv − fu2v2 − duv − euv − cu)t2

x3x2 − x1x4 (buv3 + auv2 − duv2 − cuv)t2

x4x3 − x1x4 (−nbuv3 + fu2v3 − nauv2 + euv2)t2

Table 6.5: Images of the Six Relations of A under F1

Theorem 6.6.2. Let Φ be the map from admissible directions to HH2
2(A) determined

by the deformations induced by τs. All admissible directions of Lie(Aut(Fn)) are sent

under to Φ to infinitesimal deformations lying in Vg. Furthermore, the image of the

space of admissible directions is a four dimensional subspace of Vg which is independent

of n.

In fact we shall see that the image of the space of admissible directions is precisely

the same four dimensional subspace as arose in the case of P2 in Theorem 6.5.1.

Proof. The Lie algebra of admissible vectors is spanned by vectors of the following form

which we embed in K6:

((
a b

c d

)
,

(
e

f

))
↔



a

b

c

d

e

f


Then the map Φ can be written as the following matrix:

A :=



x1x3 x2
3 −x2

1 −x1x3 0 0

x2x4 x2
4 −x2

2 −x2x4 0 0

x2x3 x1x4 −x2x1 −x2x3 0 0

(n+ 1)x2x3 (n+ 1)x1x4 −x2x1 −x2x3 −x2x3 −x2x4

x1x4 x3x4 −x2x3 −x1x4 0 0

−nx1x4 −nx3x4 0 0 x1x4 x2
4


.

We can write this in terms of the chosen basis of HH2
2(A) as:

Φ

((
a b

c d

)
,

(
e

f

))
= (a− d)(b1 + b4) + b(b2 + b5)− c(b3 + b6) + fb8 ∈ HH2

2(A).

We can see by reference to Theorem 5.3.2 that the image of Φ lies in Vg, and it is
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obviously four dimensional.

As one can see, the kernel of this map is spanned by{((
1 0

0 1

)
,

(
0

0

))
,

((
0 0

0 0

)
,

(
1

0

))}
.

In this case then, the admissible space is just as large as in the P1 × P1 case, but the

kernel is one dimension larger. Again we find that the P1 × P1 case includes all of the

infinitesimal deformations that we find in this case.

6.7 Closing Remarks

The results of this chapter can be summarised in the following table:

Surface Y Dimension of admissible space Dimension of image in HH2
2

P1 × P1 6 5

P2 5 4

Fn, n ≥ 2 6 4

Interestingly, we have found that all of the infinitesimal deformations that are in-

duced by Lie algebras of automorphisms of surfaces lie in the same variety in HH2
2.

This is not a priori obvious and may hint at some underlying structure. We have also

seen the utility of Theorem 6.2.9 in reducing an otherwise difficult infinite dimensional

problem to a tractable, finite dimensional one.

The takeaway result is that although we have considered a much larger set of de-

formations than in [RS12], we have found no new infinitesimal deformations of A. In

order to find new deformations of A one must look away from the automorphisms of

surfaces birational to P1 × P1, and also away from Vg. We turn our attention to such

deformations now.
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Chapter 7

Deformations of Aq Arising from

Quantum Analogues of

Geometric Automorphisms

7.1 Introduction

In this chapter we examine the infinitesimal deformations of the algebra Aq and relate

these back to deformations of A. We do this by mimicking the work on geometric

automorphisms of K(u, v) (see Chapter 6) but in the context of Aq. Recall from Section

3.4 that σ ∈ Aut(Kq(u, v)) is the automorphism defined by

σ(u) = uv and σ(v) = v.

Then in this chapter we wish to study deformations of

Qgr(Aq) = Kq(u, v)[t, t−1;σ]

which arise from quantum analogues of geometric automorphisms of K(u, v).

The automorphism group of Kq(u, v) is in general not well understood (see e.g.

[AC99] or [Fry14]). However, Alev and Dumas [AD95] have carried out a study of

subgroups of automorphisms of Kq(u, v) that correspond precisely to ‘quantised’ auto-

morphisms of K(u, v). For this reason we discuss this paper at length in Section 7.2

before applying their work in Section 7.3.

We find that these deformations correspond to a four dimensional space of infinites-

imal deformations of Aq. Since by Theorem 3.4.3 HH2
2(Aq) is four dimensional, these

deformations have infinitesimals that comprises all of HH2
2(Aq). Furthermore, taking

the semi-classical limit q → 1 we obtain a 2 dimensional space of infinitesimal defor-

mations of the algebra A which lies in the set Vq (see Section 5.3).

117



7.2 A Discussion of a Paper of Alev and Dumas

Any definitions and propositions from this section are taken directly from [AD95]. This

paper is written in French and we have translated any quoted material here. For this

reason we do not include citations for every proposition and definition for this section.

7.2.1 Overview

The paper [AD95] is an examination of the automorphism group of a few skew fields of

interest. The relevant portions of the paper concern Kq(u, v), the division ring of the

quantum plane Kq[u, v]. We discuss their results here as we wish to apply them in the

context of the algebra Aq.

The main idea of the work is to quantise the structure of the Cremona group. Two

subgroups of the Cremona group are singled out in particular. Following from this,

quantum analogues of those subgroups are identified in the quantum Cremona group.

Definition 7.2.1. The quantum Cremona group is the group of automorphisms of the

division ring Kq(u, v).

7.2.2 Subgroups of the Classical Cremona Group

We have already come across several subgroups of the Cremona group in Chapter

6. Alev and Dumas bring particular attention to one of the subgroups appearing in

Chapter 6: the automorphism group of P2.

Definition 7.2.2. We define Z to be the subgroup of Aut(K(u, v)) isomorphic to

PGL3(K) where a matrix

M :=

 a b c

d e f

g h i


acts by

M(u) =
au+ bv + c

gu+ hv + i
and M(v) =

du+ ev + f

gu+ hv + i
.

Alev and Dumas also draw attention to a second subgroup of the Cremona group,

which we have not considered before, although it contains the identity component of

Aut(P1 × P1).

Definition 7.2.3. For any

(
α γ

β δ

)
∈ GL2(K) and

(
a(u) c(u)

b(u) d(u)

)
∈ GL2(K(u))

we define an automorphism θ ∈ Aut(K(u, v)) by

θ(v) =
a(u)v + b(u)

c(u)v + d(u)
and θ(u) =

αu+ β

γu+ δ
.
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These automorphisms form a subgroup of Aut(K(u, v)) which we refer to as Y . Note

that Y is precisely the subgroup of automorphisms θ of K(u, v) that satisfy

θ(K(u)) = K(u).

7.2.3 Subgroups of the Quantum Cremona Group

We now turn our attention to the quantum analogues of the above groups.

Definition 7.2.4. For any

(
a c

b d

)
∈ SL(2,Z) and (α, β) ∈ (K∗)2 we define an

automorphism ψ of Kq(u, v) by

ψ(v) = αubva and ψ(u) = βudvc.

Automorphisms defined in this manner form a subgroup of Aut(Kq(u, v)), which we

call H.

Note that by Proposition 1.6 of [AD96], this group is precisely the extension to

Kq(u, v) of the automorphism group of the quantum torus Kq[u
±1, v±1].

Alev and Dumas show that there is a subgroup of H which is the quantum analogue

of Z ∼= PGL3(K).

Proposition 7.2.5. [AD95, Proposition 1.5] Let C ≤ H be the subgroup of those

automorphisms whose defining matrix

(
a c

b d

)
∈ SL(2,Z) lies in the cyclic subgroup

generated by

(
0 1

−1 −1

)
. Then C is the subgroup of Aut(Kq(u, v)) of elements θ

such that

θ(v) = UW−1 and θ(u) = VW−1,

with U, V,W ∈ Kq[u, v] nonzero elements of degree at most one.

Definition 7.2.6. For α ∈ K∗ and f ∈ K(u)∗ we define an automorphism µ ∈
Aut(Kq(u, v)) by

µ(u) = αu and µ(v) = f(u)v.

These automorphisms form a group which we call B+. Likewise we define B− to be

the group of automorphisms of the form

λ(u) = ug(v) and λ(v) = βv

for some β ∈ K∗ and g ∈ K(v)∗.

Let ω be the involution defined by ω(u) = u−1 and ω(v) = v−1. Then we define B

to be the subgroup generated by the elements of B+ along with ω.
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The following proposition is the statement that B is a quantum analogue of Y .

Proposition 7.2.7. [AD95, Proposition 1.4] B is equal to the subgroup of Aut(Kq(u, v))

consisting of θ such that the restriction of θ to K(u) is an automorphism of K(u).

7.3 Infinitesimal Deformations of Aq Arising from the Quan-

tum Cremona Group

We consider deformations of Kq(u, v)[t, t−1;σ] that arise by composing σ with a one-

parameter subgroup {τs} ⊆ Aut(Kq(u, v)). For examples of this kind of deformation

in the birationally commutative setting see Chapter 6. By Theorem 6.2.9 we can test

whether a deformation of Kq(u, v)[t, t−1;σ] corresponds to an infinitesimal deformation

of Aq by verifying that the image under the infinitesimal of the relations Rq lies in Aq.

The τs we consider will also define automorphisms of Kq′(u, v) for any q′ 6= 0 ∈ K.

For that reason we consider a general case of deformation to a family of the form

Kq′(u, v)[t, t−1;σ ◦ τs],

where by an abuse of notation we write σ and τs for automorphisms of Kq′(u, v) with

q′ varying. In this family we write q′ = qeλs for some λ ∈ K, so that up to first order

we have the following equation:

vu = q(1 + λs)uv.

In this way we allow both q′ and τs to vary with s and we will have a formal deformation

in the variable s.

Taking a lead from Alev and Dumas, we consider τs as lying in one of the subgroups

discussed in Section 7.2. We first consider the quantum analogue of Aut(P2) and find

that τs in this case must be a map that scales u and v. The second case of the group

B+ is more complicated and we find every element of HH2
2 occurs as an infinitesimal

of such a deformation.

7.3.1 The Quantum Analogue of Y

We first note that if τs ∈ H is a one-parameter subgroup of automorphisms of Kq(u, v)

then since τ0 is the identity the corresponding matrix

(
a c

b d

)
∈ SL(2,Z) must be

the identity matrix. Therefore, τs must be a family of automorphisms of the form:

τs(v) = αsv and τs(u) = βsu.
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Automorphisms of this type also lie in B+ and so we move to the more general case of

τs ∈ B+.

From here onwards, we consider τs ∈ Aut(Kq(u, v)) to be a one-parameter subgroup

of automorphisms lying in the group B+. That is to say that

τs(u) = ufs(v) and τs(v) = αsv,

where fs(v) ∈ K(v)[[s]]∗ and αs ∈ K[[s]]∗ where ∗ is used to denote the invertible

elements in the rings. Note that this defines an automorphism of Kq′(u, v) where

q′ = qeλs.

There exist X ∈ K(v) and a ∈ K such that the following holds up to first order in

s:

σ ◦ τs(u) = σ(ufs(v)) = uvfs(v) = u(v +Xs) and σ ◦ τs(v) = σ(αsv) = (1 + as)v.

In particular, up to first order:

tu = u(v +Xs)t and tv = (1 + as)vt.

We therefore look for conditions on X, λ and a for Kq′(u, v)[t, t−1;σ ◦ τs] to define an

infinitesimal deformation of Aq.

Recall that the relations of Aq are:

Rq =

{
r1 := x3x1 − x1x3, r2 := x4x2 − qx2x4, r3 := x4x1 − x2x3

r4 := x1x2 − x2x3, r5 := x3x2 − qx1x4, r6 := x4x3 − x1x4

}
.

The deformed multiplication is determined by a sequence of bilinear functions Fi so

that

F (a, b) =
∑
i

Fi(a, b)s
i.

We need to calculate F1(Rq) and determine if this lies in Aq.

Firstly, consider r4 = x1x2 − x2x3. Then we obtain the following:

F1(r4) = F1(tut− utvt) =
σ ◦ τs(u)t2 − uσ ◦ τs(v)t2

s

=
u(v +Xs)t2 − uv(1 + as)t2

s

= uXt2 − auvt2. (7.1)

Recall that if uvjt2 is an element of (Aq)2 then j must satisfy 0 ≤ j ≤ 3. For this
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reason, since we require that (7.1) lies in (Aq)2 it must be true that

X = b+ cv + dv2 + ev3 for some b, c, d, e ∈ K.

Furthermore, if we now consider r6 = x4x3 − x1x4 we have the following equations

up to first order in s:

sF1(r6) = uvt ∗ vt− t ∗ uvt = uvσ ◦ τs(v)t2 − σ ◦ τs(uv)t2

= uv2(1 + as)t2 − u(v + sX)(1 + as)vt2

= − suvXt2 up to first order in s. (7.2)

For (7.2) to lie in s(Aq)2 it must be that e = 0, and so

X = b+ cv + dv2, (7.3)

for some b, c, d ∈ K.

We omit here the remaining calculations of applying F1 to the relations as they

continue without further complication. They can be found in full in Appendix D.1, in

which we have assumed (7.3). The results of these calculations are collected in Table

7.1.

Relation Image Under F1 Image as element of Aq
x3x1 − x1x3 −avt2 −ax1x3

x2x4 − qx4x2 (qλu2v2 − qau2v2)t2 q(λ− a)x2x4

x4x1 − x2x3 −auvt2 −ax2x3

x1x2 − x2x3 (bu+ cuv + duv2 − auv)t2 bx2x1 + (c− a)x2x3 + dx1x4

x3x2 − qx1x4 (qλuv2 − qauv2)t2 q(λ− a)x1x4

x4x3 − x1x4 (−buv − cuv2 − duv3)t2 −bx2x3 − cx1x4 − d
qx3x4

Table 7.1: Images of the Six Relations of Aq Under F1

Recall the chosen basis for HH2
2(Aq) which we print here.



x1x3

0

0

x2x3

qx1x4

0


,



0

x2x4

0

0

x1x4

0


,



0

x2
4

0

0

x3x4

0


,



0

x2
2

0

0

x2x3

0




We label this basis in order as e1, . . . , e4. In Appendix D.2 we have written the

infinitesimal F1 in terms of our chosen basis of HH2
2(Aq) and coboundaries. From this

expansion we can conclude that the cohomology class of the infinitesimal F1 of Aq
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associated to the deformation Kq′(u, v)[t, t−1;σ ◦ τs] is

[F1] = a(−e1 − qe2) + (1− q)be4 −
(1− q)
q

de3 + qλe2. (7.4)

Note that the parameter c does not appear here, since in the expansion in Appendix

D.2 c is a coefficient of a coboundary. This is analogous to behaviour we saw in Lemma

6.4.2 where functions that scaled u had trivial associated infinitesimals.

From Equation (7.4) it is clear that by varying a, b, d and λ we can find a deformation

that corresponds to any chosen direction in HH2
2(Aq). Thus we have proved:

Theorem 7.3.1. For every isomorphism class of infinitesimal deformations L of Aq

there exists a family of deformations of Qgr(Aq) such that the associated infinitesimal

F1 satisfies:

[F1|Rq ] = L.

7.3.2 Semi-classical Limits as Deformations of A

The preceding calculations have shown that for a general q 6∈ {0, 1} we can find defor-

mations of Qgr(Aq) that correspond to any infinitesimal deformation of Aq. The work

can be split into three steps.

(1) Choose a one-parameter subgroup {τs} ⊆ Aut(Kq(u, v)), with each τs also defin-

ing an automorphism of Kq′(u, v).

(2) Calculate the infinitesimal deformation of Aq associated to the deformation

Kq′(u, v)[t, t−1;σ ◦ τs] of Qgr(Aq)

(3) Find the cohomology class associated to the infinitesimal calculated in Step (2).

Firstly, we note that the subgroup chosen in Section 7.3 also defines a one-parameter

subgroup of Aut(K(u, v)). Secondly, the calculations in Section 7.3 corresponding to

Step (2) were independent of the value of q so long as q 6= 0. Therefore, we can move

to the semi-classical limit q → 1 without changing the validity of the results in the first

two steps.

In Step (3) however, we cannot simply substitute q = 1 into all of the equations

as the cocycles and coboundaries of A and Aq are different. Therefore, we expand the

infinitesimal associated to the deformation in this case in Appendix D.3. We obtain
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the fact that

[F1] = a





x1x3

0

0

x2x3

x1x4

0


−



0

x2x4

0

0

x1x4

0




+ λ



0

x2x4

0

0

x1x4

0


Therefore we have as kind of ‘semi-classical analogue’ of Theorem 7.3.1:

Proposition 7.3.2. For every isomorphism class of infinitesimal deformations L of A

lying in the space spanned by:



x1x3

0

0

x2x3

x1x4

0


,



0

x2x4

0

0

x1x4

0




there exists a family of deformations of Qgr(A) whose infinitesimal deformation F1

satisfies:

[F1|R ] = L.

Note that these infinitesimals lie in the set Vq (see Section 5.3 for definition), unlike

those discussed in Chapter 6 which lie in Vg. In particular, Aq itself corresponds to

varying λ but having the automorphism be the identity. In this way the family of

deformations Aq of A corresponds to the infinitesimal

0

x2x4

0

0

x1x4

0


∈ HH2

2(A).
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Chapter 8

A Family of Deformations of A

with the PBW Property

In this chapter we define a new family of algebras that are deformations of the algebra

A. This family gives rise to a 3 dimensional space of infinitesimal deformations that

lie in the unobstructed component of HH2
2(A) we have called Vq. The main theorem

is Theorem 8.2.1, which states that algebras in this family are PBW. We also classify

elements of this family up to birational equivalence. In particular, in Corollary 8.2.7 we

show that these algebras can have the function skew field Kq(u, v), K(u, v) or D1(K)

depending on the parameters.

The methods used to discover this family are described in Section 8.1. Since the

Hochschild 2-cocycle space is large (22-dimensional), we applied a heuristic search strat-

egy. If the reader prefers they may skip to Section 8.2 for the mathematical content of

the chapter.

8.1 A Heuristic Search Approach to Finding Deforma-

tions

8.1.1 Overview

Our aim is to find families of deformations of A by deforming the set of relations R.

Recall from Definition 1.1.1 that this set is

R =

{
r1 := x3x1 − x1x3, r2 := x4x2 − x2x4, r3 := x4x1 − x2x3

r4 := x1x2 − x2x3, r5 := x3x2 − x1x4, r6 := x4x3 − x1x4

}
.

Instead of approaching the completely general problem, we will restrict attention to

deformations which satisfy the PBW property with respect to the deformed relations

and the lexicographic ordering given by x2 < x1 < x3 < x4. We call this property P .
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In order to do this we will use two tools. The first is Bergman’s Diamond Lemma,

which allows us to automate testing a set of relations for the PBW property. The

second is the basis of the Koszul 2-cocycles calculated in Section 3.3, which will reduce

our search space considerably.

Consider the set of PBW reduced monomials in A of degree 2:

Z =

{
z1 = x2x2, z2 = x2x1, z3 = x2x3, z4 = x2x4, z5 = x1x1,

z6 = x1x3, z7 = x1x4, z8 = x3x3, z9 = x3x4, z10 = x4x4

}
.

We wish to choose elements {
∑

i ai,jzi}6j=1 ⊆ spK(Z) so that if we choose deformed

relations by setting for each j ∈ [1, 6]

r′j = rj −
∑
i

ai,jzi

we obtain an algebra

A′ :=
K〈V 〉

({r′1, . . . , r′6})

with property P . One can make small deductions, for example that a8,1 = 0 since

x2
3 6< x3x1. However, this leaves us with a nearly 60 dimensional problem. We make

some arguments to reduce this.

Each choice of such an ai,j will define a family of algebras. If this is to be a

deformation of A then certainly we expect the vector
∑

i ai,1zi
...∑

i ai,6zi


to define a Koszul 2-cocycle, since this will be the restriction of the associated infinites-

imal to R. This reduces the search space to a twenty-two dimensional vector space by

Theorem 3.3.1.

Since we wish to study nontrivial deformations, we restrict our attention further to

those elements of this space with nonzero cohomology class. If we label the 22 vectors

of the basis recorded in Appendix A.1.1 as v1, . . . , v22, then in particular the following

are labelled v1, . . . , v8:
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

x1x3

0

0

x2x3

x1x4

0





x2
3

0

x1x4

0

0

x3x4





x2
1

0

0

x2x1

x2x3

0





0

x2x4

0

0

x1x4

0





0

x2
4

0

0

x3x4

0





0

x2
2

0

0

x2x3

0





0

0

0

x2
1

0

−x1x3





0

0

0

−x2
2

0

x2x4


By inspection we can conclude that the coefficients of v2 and v5 must be zero because

in the ordering we have chosen x2
3 6< x3x1 and x2

4 6< x4x2. For example, if the coefficient

of v2 is b 6= 0 then we have a relation

x3x1 − x1x3 − bx3x3.

But x2
3 6< x3x1 and so this algebra cannot have property P .

We consider each vi in turn. Since it is not at all clear that by chance the choice of

basis of HH2
2 we have made is a particularly good one, we make an educated guess as to

a set Ξi of coboundaries that will ‘interact well’ with vi. That is to say that although

v1 itself may not yield an algebra with property P , perhaps if x ∈ Ξ1 then v1 ± x will.

This is a heuristic process; the justification is that it works.

For example, for the vector v1 we choose the following coboundaries as Ξ1 as those

we expect to yield deformations.
v10 =



0

0

x2x3

x2x3

−x1x4

−x1x4


, v13 =



0

0

−x2x3

0

x1x4

0




.

We make the assertion that if there is a deformation arising from property P with

associated cohomology class of v1 then it will probably arise using a cocycle of the form

v1 + c1v10 + c2v13 where each ci ∈ {0, 1,−1}. To be clear, this is a heuristic argument,

not a statement of fact.

Once we have found all of the cocycles of this form which define algebras with the

property P we try adding them together. For example, we would try a(v1 + v10) + cv3.

In doing so we can reduce the number of cases to test substantially. We will see that this

process does lead to a new family of algebras corresponding to a choice of infinitesimal

lying in Vq (see Section 5.3).
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8.1.2 Implementation

We describe the implementation of a program to find deformations of A with property

P by applying the reasoning from Section 8.1.1. First we need some functionality to

test if a cocycle generates an algebra with property P .

We firstly define two functions that reduce an overlap with respect to a set of

relations in two different ways. If we have a degree 3 monomial xyz then reduceRight

will firstly reduce the monomial yz whilst reduceLeft will start by reducing xy.

1 def reduceRight(mono , alg):

2 firstStep = alg.reduce(mono [1] * mono [2])

3 return alg.reduce(mono [0] * firstStep)

4

5 def reduceLeft(mono , alg):

6 firstStep = alg.reduce(mono [0] * mono [1])

7 return alg.reduce(firstStep * mono [2])

Given the PBW basis that we are searching for, there are four overlaps that must

be tested in order to apply Bergman’s Diamond Lemma:

{x4x1x2, x4x3x1, x4x3x2, x3x1x2}.

The following function differenceOfOverlaps reduces the overlaps in two separate ways

and stores the difference in a list which it returns. In order to make this function more

general we have an optional parameter substitutionFunction which can be used to give

relations between the coefficients of the vectors. For example, we will use this to record

the fact that we are looking for relations in which the four coefficients a, c, d and f

satisfy

af − cd = 0,

since this is a defining equation of Vq. If no function is given as a substitutionFunction

then it is set to be the identity function.
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9 def differenceOfOverlaps(alg , substitutionFunction=None):

10 if substitutionFunction is None:

11 def substitutionFunction(x): return x

12

13 overlaps = [x4 * x1 * x2,

14 x4 * x3 * x1 ,

15 x4 * x3 * x2 ,

16 x3 * x1 * x2]

17 answer = []

18 for overlap in overlaps:

19 right = reduceRight(overlap , alg)

20 left = reduceLeft(overlap , alg)

21 difference =substitutionFunction(right - left)

22 answer.append(difference)

23 return answer

We now give the example of testing for cocycles with nonzero coefficient of v1. To

start we build the list of guesses for cocycles that will lead to deformations with the

property P .

1 guesses = [v1 ,

2 v1 + v10 ,

3 v1 - v10 ,

4 v1 + v13 ,

5 v1 - v13 ,

6 v1 + v10 + v13 ,

7 v1 + v10 - v13 ,

8 v1 - v10 + v13 ,

9 v1 - v10 - v13]

10

11 guesses = [vec * a for vec in guesses]

We now test each of these cocycles in turn and store those that pass the test. The

result of the following script is a list, each element of which corresponds to a family of

deformations of A that is PBW.

129



14 goodCocycles = []

15 for cocycle in guesses:

16 deformedAlgebra = makeAlgebra(cocycle)

17 differences = differenceOfOverlaps(deformedAlgebra)

18 guessWorks = True

19 for difference in differences:

20 if difference != 0:

21 guessWorks = False

22 break

23

24 if guessWorks:

25 goodCocycles.append(cocycle)

The output of this script is the following set:



ax1x3

0

0

ax2x3

ax1x4

0


,



ax1x3

0

ax2x3

ax2x3

0

0


,



ax1x3

0

0

0

ax1x4

ax1x4




.

We have written scripts that do the same as the preceding scripts but for v2, v3 and

v6 which are almost identical. The choices of guesses of Ξi are recorded in Appendix

E.1. Combining these results leads to the following cocycle as defining an algebra with

property P as long as af − cd = 0:

cx2
1 + ax1x3

fx2
2 + dx2x4

fx2x1 + dx2x3

0

cx2x3 + ax1x4

cx2x3 + ax1x4


That is to say that the script implies this cocycle will define a PBW algebra with PBW

basis {xi2x
j
1x
k
3x

l
4}. We verify this fact in Theorem 8.2.1. If one sets a = d and c = f

then this family has an infinitesimal lying in Vg and we obtain algebras which integrate

some of the deformations discussed in Chapter 6. If instead, one sets c = f = 0 then

one recovers the family discussed in Chapter 7. We note that this cocycle is an element

of Vq for any values of a, c, d and f satisfying af − cd = 0.
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8.2 A Family of Deformations of A

In this section we discuss a new family of algebras which deform A and have associated

infinitesimal deformations that lie in the unobstructed component Vq of HH2
2(A). Let

V = {x1, x2, x3, x4}.
Consider the algebra

A(a, c, d, f) :=
K〈V 〉

(Ra,c,d,f )

where Ra,c,d,f is the set of relations

Ra,c,d,f =


r1 := x3x1 − (1 + a)x1x3 − cx2

1, r2 := x4x2 − (1 + d)x2x4 − fx2
2,

r3 := x4x1 − (1 + d)x2x3 − fx2x1, r4 := x1x2 − x2x3,

r5 := x3x2 − (1 + a)x1x4 − cx2x3, r6 := x4x3 − (1 + a)x1x4 − cx2x3

 .

We note that there that the cases a = −1 and d = −1 are degenerate in the sense that

the properties of the algebras in these cases will be very different to the general case.

For example, if a = −1 then the algebra is not a domain since

(x3 − cx1)x1 = 0.

Theorem 8.2.1. If a 6= −1 6= d then A(a, c, d, f) is a PBW algebra with basis

{xi2x
j
1x
k
3x

l
4} if and only if af − cd = 0. In this case A(a, c, d, f) has the Hilbert se-

ries of a commutative polynomial ring with four generators and specialises to A when

a = c = d = f = 0.

Proof. It is obvious that this algebra specialises to A by inspection of the relations.

We show that A(a, c, d, f) is PBW with the stated basis, which establishes the Hilbert

series to be
1

(1− p)4

as required.

We show that this algebra is PBW by using the Diamond Lemma (Theorem 2.1.12).

With the ordering x2 < x1 < x3 < x4 we observe that the relations are all of the form

xy −
∑
i

cif
1
i f

2
i

where x, y, f1
i , f

2
i ∈ V and f1

i f
2
i < xy. Therefore we need only check overlap ambiguities

are resolvable in order to establish the claimed basis. There are four overlap ambiguities:

{x4x1x2, x3x1x2, x4x3x2, x4x3x1}.

By repeatedly applying the relations, we obtain two distinct simplification paths for
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each overlap. Since these calculations are quite long, we include only the first and final

vertices here; the full calculations can be found in Appendix E.2.

x4x1x2 (c + f + cd)x2
2x3 + (1 + a + d + ad)x2x1x4

x3x1x2 (2c + ac)x2x
2
3 + (1 + a)2x2

1x4

(c2 + cf + acf)x2
2x3 + (c + a2f + 2af + ac + f)x2x1x4 + (1 + a)(1 + d)x2x3x4

x4x3x2

(c2 + c2d + cf)x2
2x3 + (c + f + af + acd + ac + cd)x2x1x4 + (1 + a)(1 + d)x2x3x4

(c2 + cf + acf)x2x
2
1 + (c + a2f + 2af + ac + f)x2x1x3 + (1 + a)(1 + d)x2x

2
3

x4x3x1

(c2 + c2d + cf)x2x
2
1 + (c + f + af + acd + ac + cd)x2x1x3 + (1 + a)(1 + d)x2x

2
3

In the first two cases we see that the overlaps are always resolvable for any values

of a, c, d or f . However, in the second two cases the overlap is not resolvable unless the

following holds:

(c2d − acf)x2
2x3 + (cd− af + acd− a2f)x2x1x4 = 0

and

(c2d − acf)x2x
2
1 + (cd− af + acd− a2f)x2x1x3 = 0.

Both of these hold if and only if cd− af = 0.

Corollary 8.2.2. A(a, c, d, f) is a flat family of algebras which deforms A over

K[a, c, d, f, 1
1+a ,

1
1+d ]

(af − cd)
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Proof. This is a standard consequence of the Hilbert series being the same for each

element of the family [Har77, Theorem III.9.9].

Corollary 8.2.3. For any a, c, d, f ∈ K with af − cd = 0 and a 6= −1 6= d, the algebra

A(a, c, d, f) is not noetherian.

Proof. Note that none of the relations of A(a, c, d, f) have x3x4 or x2
3 appearing with

nonzero coefficient. For this reason we may deduce that for any n ∈ N0 there is no

monomial a ∈ A that has PBW order
[
a
]

satisfy (
[
a
]
• xn3x4) 6= 0, except xn3x4 for

itself. We may deduce from this that the equation

n−1∑
i=0

xi3x4ai = xn3x4

has no solutions a0, . . . , an−1 ∈ A. Therefore the right ideal generated by {xn3x4}∞n=0 is

not finitely generated.

8.2.1 The Function Skew Field of A(a, c, d, f)

One of the basic properties of a noncommutative projective surface is its function skew

field (see Definition 2.2.8). In this section we find the function skew field of each algebra

in the family of A(a, c, d, f). From here onwards we assume a 6= −1 6= d and af−cd = 0.

Notation 8.2.4. Our convention for Ore extensions is that for a ring R and an auto-

morphism f ∈ Aut(R), then for every r ∈ R we have the following equality in the Ore

extension R[t; f ]:

tr = f(r)t.

Let D be the division ring of the Ore extension K[z][w;α], where α ∈ Aut(K(z)) is

defined by

α(z) =
(1 + a)

(1 + d)
z − (1 + a)

(1 + d)
f + c.

Lemma 8.2.5. The equations

β(z) =
z − c
1 + a

and β(w) =
(z − f)

(1 + d)
w

define an automorphism β : D → D.

Proof. It suffices to confirm that β(r) = 0 for r the defining relation of D. By definition

of an Ore extension,

r = wz − α(z)w.
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We evaluate β on each term of r in turn. Firstly,

β (w)β (z) =
(z − f)

(1 + d)
w

(z − c)
(1 + a)

=
(z − f)

(1 + a) (1 + d)
(wz − wc)

=
(z − f)

(1 + a) (1 + d)

(
(1 + a)

(1 + d)
z − (1 + a)

(1 + d)
f + c− c

)
w

=
(z − f)2

(1 + d)2w.

On the other hand,

β (α (z))β (w) =

(
(1 + a)

(1 + d)
β (z)− (1 + a)

(1 + d)
f + c

)
β (w)

=

(
(z − c)
(1 + d)

− (1 + a)

(1 + d)
f + c

)
(z − f)

(1 + d)
w

=
1

(1 + d)2
(z − c− f − af + c+ cd)(z − f)w

=
(z − f)2

(1 + d)2
w since af = cd.

Therefore β extends to an automorphism of D.

Proposition 8.2.6. Consider the set

F = {y1 := t, y2 := wt, y3 := zt, y4 := zwt} ⊆ D[t;β],

and let T := K〈F 〉. If a 6= −1 6= d and af − cd = 0 then we have an isomorphism of

algebras

A(a, c, d, f) ∼= T

Proof. We prove this with an explicit isomorphism defined by

φ : A(a, c, d, f)→ T xi 7→ yi.

We establish firstly that this defines an algebra homomorphism, which immediately

implies that it is surjective. This is done by checking that the yi satisfy the defining

relations of A(a, c, d, f). These calculations are recorded in Appendix E.3, but we

include the simplest case here being r4 = x1x2 − x2x3.

Firstly, we note that

w(z − c) =

((
(1 + a)

(1 + d)
z − (1 + a)

(1 + d)
f + c

)
w − cw

)
=

(1 + a)

(1 + d)
(z − f)w (8.1)
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In particular this implies that

wβ(z) = β(w). (8.2)

Now we can check that whilst

y1y2 = twt = β(w)t2,

we also have that

y2y3 = wtzt = wβ(z)t2 = β(w)t2 by (8.2).

From this calculation, and those contained in Appendix E.3, we may conclude φ

is a surjective algebra homomorphism. Therefore it remains only to verify that φ is

injective. This is done by showing that the Hilbert series of T is the same as that of

A(a, c, d, f). Note that since φ is a surjective (graded) homomorphism, it must be the

case that

dim(A(a, c, d, f)n) ≥ dim(Tn).

We establish that dim(Tn) ≥ dim(An). Since dim(An) = dim(A(a, c, d, f)n by

Theorem 8.2.1, this implies that the Hilbert series of T and A(a, c, d, f) are equal.

Recall that

E = {e1 := t, e2 := ut, e3 := vt, e4 := uvt} ⊆ K(u, v)[t;σ]

generates an algebra isomorphic to A.

We define ∂1 on monomials of A of the form uivjtn by

∂1(uivjtn) = (i, j) ∈ N2.

Then by [RS12, Lemma 4.12 (1)] we know that we have the following equality:

|{∂1(ei1 · · · ein) | i1, . . . , in ∈ [1, 4]}| =
(
n+ 3

3

)
= dim(An).

Likewise, we define ∂2 on polynomials in T of the form g(z)witk, where g(z) ∈ K[z],

by

∂2(g(z)witk) = (i,deg(g)).

We claim for any n ≥ 1 and i1, . . . , in ∈ [1, 4], that

∂1(ei1 · · · ein) = ∂2(yi1 · · · yin).

We prove this by induction on n. The base case of n = 1 is trivial, and so we move to

the inductive step.

Let R = K[z][w;α][t;β]. Then by [BGTV03, Corollary 3.3], R has a basis of the
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form {ziwjtk}. Furthermore, by [BGTV03, Corollary 2.10 (2)], we have that if X ∈ R∗

and ∂2(X) = (α, β) then if y ∈ F

∂2(Xy) = ∂2(zβwαtky). (8.3)

The following are immediate consequences of the facts that ∂2(α(z)) = (0, 1) =

∂2(β(z)) and ∂2(β(w)) = (1, 1):

∂2(wszr) = (s, r), ∂2(tkzr) = (0, r) and ∂2(tkws) = (s, ks).

Together these imply that for X ∈ T ∗

∂2(zβwαX) = (α, β) + ∂2(X), (8.4)

and that

∂2(tkzc2wc1t) = ∂2(tkzc2) + ∂2(tkwc1) = (c1, c2 + kc1). (8.5)

For the induction then we assume that

(α, β) = ∂1(ei1 · · · eik) = ∂2(yi1 · · · yik)

and that eik+1
= uc1vc2t whilst yik+1

= zc2wc1t . On the one hand:

∂1(ei1 · · · eik+1
) = ∂1(uαvβtkuc1vc2t)

= ∂1(uα+c1vβ+c2+kc1tk+1) = (α+ c1, β + c2 + kc1).

On the other hand,

∂2(yi1 · · · yik+1
) = ∂2(zβwαtkzc2wc1t) by (8.3)

= (α, β) + ∂2(tkzc2wc1t) by (8.4)

= (α, β) + (c1, c2 + kc1) by (8.5)

= ∂1(ei1 · · · eik+1
).

This proves the claim. Therefore we have an injection of sets from

{∂1(ei1 · · · ein) | i1, . . . , in ∈ [1, 4]}

into

S := {∂2(yi1 · · · yin) | i1, . . . , in ∈ [1, 4]} .

By definition of Tn, we have that dim(Tn) ≥ |S|, and this injection implies that |S| ≥
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dim(An). This establishes that

dim(Tn) ≥ dim(An) =

(
n+ 3

3

)
and so Tn ∼= A(a, c, d, f).

We have as an immediate corollary:

Corollary 8.2.7. The graded quotient ring Qgr(A(a, c, d, f)) is D[t, t−1;β] and D is

the function skew field of A(a, c, d, f).

Proof. This follows since z = y3y
−1
1 and w = y2y

−1
1 .

This classifies A(a, c, d, f) up to birational equivalence. Furthermore, we obtain:

Corollary 8.2.8. A(a, c, d, f) is a domain.

Proof. Since R = K[z][w;α][t;β] is an iterated Ore extension of a domain, where both

α and β are injective, [GW04, Excercise 2O] implies that R is a domain. Proposition

8.2.6 shows that A(a, c, d, f) is isomorphic to a subalgebra of R and so must also be a

domain.

We further show that, depending on the values of a, c, d and f , the function skew

field D is isomorphic to the division ring of one of three algebras: the polynomial ring

K[u, v], the quantum plane Kq[u, v] or the Weyl algebra

A1(K) =
K〈u, v〉

(vu− uv + 1)
.

The division ring of A1(K) is written D1(K).

Proposition 8.2.9. D is isomorphic to

(a) K(u, v) if a = d and c = f .

(b) D1(K) if a = d = 0 and c 6= f .

(c) Kq(u, v) where q = (1+d)
(1+a) if a 6= d.

Proof. (a) This follows immediately from the definition of α since if a = d and c = f

then α(z) = z.

(b) Let u = zw
f−c and v = w−1. Note that since α(z) = z − (f − c) we have

w

(
z

f − c

)
=

(
z

f − c
− 1

)
w.
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It follows that in the division ring

z

f − c
= w−1 zw

f − c
− 1. (8.6)

Therefore we have that

vu =
w−1zw

f − c
=

z

f − c
+ 1 = uv + 1,

where the second equality follows from (8.6). By [GW04, Corollary 2.2], the

Weyl algebra A1(K) is simple, and therefore u and v generate a subalgebra of

D isomorphic to A1(K). Furthermore, the division ring of this subalgebra is the

entire quotient ring D, which implies that D is the division ring D1(K).

(c) If q = (1+d)
(1+a) then let u := w and v := (q−1 − 1)z − q−1f + c. Then a calculation

shows that

uv = w
(
(q−1 − 1)z − q−1f + c

)
= (q−1 − 1)(q−1z − q−1f + c)w + (c− q−1f)w

= q−1((q−1 − 1)z − q−1f + c)w = q−1vu.

Therefore we may define a ring homomorphism φ : Kq[x, y]→ D by φ(x) = u and

φ(y) = v.

The set {uivj} is linearly independent because its set of leading terms is {ziwj}
which is linearly independent. Therefore, φ is an isomorphism onto its image.

Finally, it follows from the definitions of u and v that the division ring that

contains both of them must contain all of D and so D ∼= Kq(u, v).

8.2.2 Closing Remarks

This chapter has shown that in spite of a large search space, a few small steps of in-

formed guesswork allow new families of algebras to be discovered with some interesting

properties. The family discussed here accounts for 3 out of 4 of the dimensions of Vq,

and it seems plausible that this family is a specialisation of one that accounts for all of

Vq. Since this hypothetical family could not be PBW, other techniques will have to be

applied to answer this question.

We have established some of the basic properties of the new algebra A(a, c, d, f)

that we have discovered: it is a non-noetherian PBW domain of GK-dimension 4.

Furthermore we have shown that it has K(u, v), Kq(u, v) or D1(K) as its function skew

field, and given conditions on a, c, d and f for each case. There are now several questions
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which would be very interesting for further investigation. The most interesting of these

are whether A(a, c, d, f) is ever AS-Gorenstein, since none of the previously studied

deformations of A have this property. It would also be fascinating if there are families

of deformations of A that specialise to A(a, c, d, f) for which the generic element has

the noetherian property.

139



140



Appendices

141





Appendix A

Bases Relevant to Calculations

on Hochschild Cohomology

Recall that both A and Aq are PBW algebras with respect to the lexicographic ordering

on monomials induced by the ordering of generators

x2 < x1 < x3 < x4.

With this in mind we choose a basis for Kn in degree m. We start by taking monomials

of degree m in order

m1 := xm2 < m2 := xm−1
2 x1 < m3 . . . < mz := xm4

where z =
(
m+3

3

)
. Then the if Kn is k dimensional the basis is the following ordered

set of vectors with k components (using notation as in Notation 3.2.1).


m1

0
...

0

 ,


m2

0
...

0

 , . . . ,


mz

0
...

0

 ,


0

m1

...

0

 , . . . ,


0

0
...

mz




A.1 Calculations For A

A.1.1 Basis of the Kernel of k3

The content of this section is calculated using the ‘Sage’ script discussed in Section 3.3,

being a basis for the space Ker(k3). This space is 22 dimensional and is written using

the vector notation defined in Notation 3.2.1. We have reordered the output so that

the first eight vectors have cohomology classes that are a basis of the cohomology space

(compare the following with the basis presented in Section A.1.2).
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

x1x3

0

0

x2x3

x1x4

0





x2
3

0

x1x4

0

0

x3x4





x2
1

0

0

x2x1

x2x3

0





0

x2x4

0

0

x1x4

0





0

x2
4

0

0

x3x4

0





0

x2
2

0

0

x2x3

0





0

0

0

x2
1

0

−x1x3





0

0

0

−x2
2

0

x2x4





−x2x3 + x1x4

0

x2x4

x2
2

−x2x4

−x2x4





0

0

x2x3

x2x3

−x1x4

−x1x4





0

0

x1x4

x1x4

−x3x4

−x3x4





−x1x4 + x3x4

0

x2
4

x2x4

−x2
4

−x2
4





0

0

−x2x3

0

x1x4

0




0

x2x3 +−x1x4

−x1x3

x2
1 +−x1x3

x1x3

0





0

x1x4 +−x3x4

−x2
3

x1x3 +−x2
3

x2
3

0





0

0

−x1x4

0

x3x4

0





x2x1 +−x2x3

0

−x2
2

−x2
2

x2
2

x2x4




0

0

−x2x1

−x2x1

x2x3

x2x3





x2x3 +−x1x4

0

−x2x4

−x2x4

x2x4

x2
4





0

0

x2x1

0

−x2x3

0





0

−x2x1 + x2x3

x2
1

0

−x2
1

−x2
1 + x1x3





0

−x2x3 + x1x4

x1x3

0

−x1x3

−x1x3 + x2
3



A.1.2 Basis of the Image of k2

The ‘Sage’ script discussed in Section 3.3 output a basis for the space Im(k2). This

space is 14 dimensional, which combined with the basis in Section A.1.1 implies that

HH2
2(A) is an eight dimensional vector space.
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

−x2x3 + x1x4

0

x2x4

x2
2

−x2x4

−x2x4





0

0

x2x3

x2x3

−x1x4

−x1x4





0

0

x1x4

x1x4

−x3x4

−x3x4





−x1x4 + x3x4

0

x2
4

x2x4

−x2
4

−x2
4





0

0

−x2x3

0

x1x4

0




0

x2x3 +−x1x4

−x1x3

x2
1 +−x1x3

x1x3

0





0

x1x4 +−x3x4

−x2
3

x1x3 +−x2
3

x2
3

0





0

0

−x1x4

0

x3x4

0





x2x1 +−x2x3

0

−x2
2

−x2
2

x2
2

x2x4




0

0

−x2x1

−x2x1

x2x3

x2x3





x2x3 +−x1x4

0

−x2x4

−x2x4

x2x4

x2
4





0

0

x2x1

0

−x2x3

0





0

−x2x1 + x2x3

x2
1

0

−x2
1

−x2
1 + x1x3





0

−x2x3 + x1x4

x1x3

0

−x1x3

−x1x3 + x2
3



A.1.3 Basis of the Image of k3

The content of this section is a basis for Im(k3), output using a ‘Sage’ script that is

nearly identical to that discussed in Section 3.3. The relevance of this space is that it

is used to detect when a Gerstenhaber bracket is a coboundary, which is discussed in

detail in Section 5.3. Im(k3) is a 38 dimensional vector space, which agrees with the

result in Section A.1.1 since we know that

dim(Im(k3)) = dim(K2)− dim(Ker(k3)) = 60− 22.


0

−x2
1x3 + x1x

2
3

x1x3x4

−x2
1x4




0

−x1x
2
3 + x3

3

x2
3x4

−x1x3x4



−x3

2

x2
2x4

0

0



−x2

2x3

x2
2x3

0

0



−x2x1x4

x2x1x4

0

0


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
−x2

2x4

x2x
2
4

0

0



−x2x

2
3

x2x1x3

0

0



−x2

1x4

x2x
2
3

0

0



−x2x3x4

x2x3x4

0

0



−x1x3x4

x2
1x4

0

0



−x1x

2
4

x1x
2
4

0

0




−x2x

2
4

x3
4

0

0




0

0

−x2x1x4

x2
2x3




0

0

−x2x1x3

x2x1x3




0

0

−x2x
2
3

x2x
2
3




0

0

−x2x3x4

x2x1x4




0

0

−x3
1

x2
1x3




0

0

−x2
1x4

x2
1x4




0

0

−x1x
2
3

x3
3




0

0

−x1x3x4

x1x3x4




0

0

−x1x
2
4

x2x3x4




0

x2x3x4 +−x1x
2
4

x3
4

−x2x
2
4




0

0

−x2
1x3

x1x
2
3




0

x2x1x4 +−x2x3x4

x2x
2
4

−x2
2x4




0

−x3
1 + x2

1x3

x2
1x4

−x2x
2
3




0

0

x3x
2
4

−x1x
2
4




0

0

x2
2x3

−x2
2x1




x2x3x4

−x2
2x3

−x2
2x4

x2
2x4




x1x
2
4

−x2x1x4

−x2x
2
4

x2x
2
4




x2
1x3

−x2
1x3

−x2
1x4

x2x1x3




x1x
2
3

−x1x
2
3

−x1x3x4

x2x
2
3




x3
3

−x3
3

−x2
3x4

x2
1x4




x2
3x4

−x1x3x4

−x3x
2
4

x1x
2
4




x3x

2
4

−x2x3x4

−x3
4

x3
4



−x3

1 + x2
1x3

0

x2x1x3

−x2x
2
1




x2x1x4

−x2
2x1

−x3
2

x3
2




x2x1x3

−x2x
2
1

−x2
2x3

x2
2x1




0

x2
2x3 +−x2x1x4

x2
2x4

−x3
2


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A.1.4 Gerstenhaber Brackets of the Basis of HH2
2(A)

The content of this section is the set of vectors [bi, bj ] calculated in the script discussed

in Section 5.3. Note the vectors lie in K3(A).

[b1, b1] =


0

0

0

0

 , [b1, b2] =


0

0

0

0

 , [b1, b3] =


x2x

2
3

−x2x1x3

0

0

 , [b1, b4] =


0

0

x2x3x4

−x2x1x4

 ,

[b1, b5] =


−x1x3x4

0

0

−x2x3x4

 , [b1, b6] =


x2x

2
3

0

2x2x1x4

−x2
2x3

 , [b1, b7] =


0

−x2
1x3

−x2
1x4

0

 ,

[b1, b8] =


−x2x3x4

0

0

−x2
2x4

 , [b2, b2] =


2x2

3x4

−2x1x3x4

0

0

 , [b2, b3] =


x2

1x4

−x2x
2
3

0

0

 ,

[b2, b4] =


0

x2
1x4

x1x
2
4

0

 , [b2, b5] =


−x2

3x4

x1x3x4

x3x
2
4

−x1x
2
4

 , [b2, b6] =


x2

1x4

x2x
2
3

x2x3x4

x2x1x4

 ,

[b2, b7] =


−2x1x

2
3

x2
1x3

0

−2x2x
2
3 + x2

1x4

 , [b2, b8] =


0

−x2x3x4

0

−x2
2x4

 , [b3, b3] =


2x2x1x3

−2x2x
2
1

0

0

 ,

[b3, b4] =


−x2x

2
3

0

0

−x2
2x3

 , [b3, b5] =


−2x2

1x4

0

−x2x3x4

−x2x1x4

 , [b3, b6] =


0

0

x2
2x3

−x2
2x1

 ,

[b3, b7] =


−x3

1 + x2
1x3

−x3
1

−x2x
2
3 + x2x1x3

−x2x
2
1

 , [b3, b8] =


−x2

2x3

0

−x2
2x4

0

 , [b4, b4] =


0

0

0

0

 ,
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[b4, b5] =


0

0

0

0

 , [b4, b6] =


0

0

0

0

 , [b4, b7] =


x2

1x3

0

0

x2x1x3

 , [b4, b8] =


x2x3x4

0

0

x2
2x4

 ,

[b5, b5] =


0

0

0

0

 , [b5, b6] =


0

0

0

0

 , [b5, b7] =


x1x

2
3

0

0

x2x
2
3

 , [b5, b8] =


x1x

2
4

0

0

x2x
2
4

 ,

[b6, b6] =


0

0

0

0

 , [b6, b7] =


x2

1x3

0

x2x1x3

0

 , [b6, b8] =


2x2x1x4 +−x2

2x3

0

−x2
2x4

2x3
2

 ,

[b7, b7] =


0

0

0

0

 , [b7, b8] =


0

0

0

0

 , [b8, b8] =


0

0

0

0



A.2 Calculations For Aq

A.2.1 Basis of the Kernel of k3

The content of this section is calculated using the ‘Sage’ script discussed in Section 3.4,

which gives a basis for the space Ker(k3). This space is 18-dimensional and is written

using the vector notation defined in Notation 3.2.1. We have reordered the output so

that the first four vectors have cohomology classes that are a basis of the cohomology

space. In order to see this please compare the following with the basis presented in

Section A.2.2.



x1x3

0

0

x2x3

qx1x4

0





0

x2
2

0

0

x2x3

0





0

x2x4

0

0

x1x4

0





0

x2
4

0

0

x3x4

0



148





−x2x3 + qx1x4

0

qx2x4

x2
2

−qx2x4

−x2x4





0

−qx2x3 + qx1x4

x1x3

0

−qx1x3

−x1x3 + x2
3





0

x2x3 − qx1x4

−x1x3

x2
1 − x1x3

x1x3

0




0

x2x3 − qx2x1

x2
1

0

−qx2
1

−x2
1 + x1x3





0

x1x4 − qx3x4

−x2
3

x1x3 − x2
3

x2
3

0





0

(1− q)x2
4

−x1x4

0

x3x4

0




0

0

x1x4

qx1x4

−qx3x4

−x3x4





0

(1− q)x2
2

x2x1

0

−qx2x3

0





0

0

−x2x1

−x2x1

x2x3

x2x3





x2x3 − x1x4

0

−x2x4

−x2x4

qx2x4

x2
4




x2x1 − x2x3

0

−x2
d

−x2
2

x2
d

qx2x4





0

0

x2x3

0

−qx1x4

0





0

0

x2x3

x2x3

−qx1x4

−x1x4





x3x4 − x1x4

0

x2
4

qx2x4

−qx2
4

−x2
4



A.2.2 Basis of the Image of k2

We include the output of the ‘Sage’ script discussed in Section 3.4, being a basis for the

space Im(k2). This space is 14 dimensional, which combined with the basis in Section

A.2.1 implies that HH2
2(Aq) is an four dimensional vector space.

−x2x3 + qx1x4

0

qx2x4

x2
2

−qx2x4

−x2x4





0

−qx2x3 + qx1x4

x1x3

0

−qx1x3

−x1x3 + x2
3





0

x2x3 − qx1x4

−x1x3

x2
1 − x1x3

x1x3

0


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

0

x2x3 − qx2x1

x2
1

0

−qx2
1

−x2
1 + x1x3





0

x1x4 − qx3x4

−x2
3

x1x3 − x2
3

x2
3

0





0

(1− q)x2
4

−x1x4

0

x3x4

0




0

0

x1x4

qx1x4

−qx3x4

−x3x4





0

(1− q)x2
2

x2x1

0

−qx2x3

0





0

0

−x2x1

−x2x1

x2x3

x2x3





x2x3 − x1x4

0

−x2x4

−x2x4

qx2x4

x2
4




x2x1 − x2x3

0

−x2
d

−x2
2

x2
d

qx2x4





0

0

x2x3

0

−qx1x4

0





0

0

x2x3

x2x3

−qx1x4

−x1x4





x3x4 − x1x4

0

x2
4

qx2x4

−qx2
4

−x2
4



A.2.3 Basis of the Image of k3

The content of this section is a basis for Im(k3), output using a ‘Sage’ script that is

nearly identical to that discussed in Section 3.4. The relevance of this space is that it

is used to detect when a Gerstenhaber bracket is a coboundary, which is discussed in

detail in Section 5.4. Im(k3) is a 42 dimensional vector space, which agrees with the

result in Section A.2.1 since we know that

dim(Im(k3)) = dim(K2)− dim(Ker(k3)) = 60− 18.


x3

2

−q2x2
2x4

0

0




x2
2x3

0

q2x2
2x4

0




x2
2x4

−x2x
2
4

0

0




q2x2x1x3

−qx2x
2
1

0

(−1 + q2)x2
2x1




qx2x1x4

0

0

x3
2


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
x2x

2
3

0

0

x2
2x3




x2x3x4

0

0

x2
2x4




0

0

x3x
2
4

−qx1x
2
4



−q2x2x

2
4

x3
4

0

0




x3
1

0

0

x2x
2
1




x2
1x3

0

0

x2x1x3




0

0

x3
4

−x2
2x4



−qx2

1x4

x2x
2
3

0

0




x1x
2
3

0

0

x2x
2
3




x1x3x4

0

0

x2x3x4




x1x
2
4

0

0

x2x
2
4




x3
3

0

0

x2
1x4




x2
3x4

−x1x3x4

0

(1− q2)x1x
2
4




x3x
2
4

0

0

x3
4




0

x2
2x1

x3
2

0




0

x2
2x3

qx2
2x4

0




0

x2x1x3

0

x2
2x3




0

−qx2x1x4

0

−x3
2




0

x2x3x4

0

qx2
2x4




0

x3
1

0

x2x
2
3




0

x2
1x3

0

qx2
1x4




0

x2
1x4

0

qx2x3x4




0

x1x
2
3

0

qx1x3x4




0

x1x
2
4

0

q2x2x
2
4




0

x3
3

qx2
3x4

0




0

0

qx2
2x3

−x2
2x1




0

0

x2x1x3

−x2x1x3




0

0

−qx2x1x4

x2
2x3




0

0

x2x
2
3

−x2x
2
3




0

0

x2x3x4

−x2x1x4




0

0

q2x2x
2
4

−x3
2




0

0

x3
1

−x2
1x3




0

0

x2
1x3

−x1x
2
3




0

0

x2
1x4

−x2
1x4




0

0

x1x
2
3

−x3
3




0

0

x1x3x4

−x1x3x4




0

0

x1x
2
4

−x2x3x4


A.2.4 Gerstenhaber Brackets of the Basis of HH2

2(Aq)

The content of this section is the set of vectors [bi, bj ] calculated in the script discussed

in Section 5.4.
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[b1, b1] =


0

0

0

0

 , [b1, b2] =


0

0

x2x3x4

−x2x1x4

 , [b1, b3] =


−x1x3x4

0

0

−x2x3x4

 ,

[b1, b4] =


x2x

2
3

0

2qx2x1x4

−x2
2x3

 , [b2, b2] =


0

0

0

0

 , [b2, b3] =


0

0

0

0

 ,

[b2, b4] =


0

0

0

0

 , [b3, b3] =


0

0

0

0

 , [b3, b4] =


0

0

0

0

 , [b4, b4] =


0

0

0

0

 ,
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Appendix B

Polygnome Source Code

In this appendix we gather together relevant pieces of source code from ‘Polygnome’

and explain any particularly opaque segments. Polygnome is a Python software package

written by the author and freely available online [Cam]. The package was designed for

manipulating elements of PBW algebras and was specifically tailored to allow the map

m2 to be defined in it. After a review of the software at the time, none was found that

would the allow low level interaction with reduction sequences that was required for

this task.

Note that in this code a ‘Decorator’ called bimoduleMapDecorator is used. A decora-

tor in Python modifies a function so that the same code does not have to be rewritten

multiple times. In this case, the decorator takes a function defined on a generating set

for a free bimodule over an algebra and modifies it to be defined on the whole bimodule.

Note that the decorator takes as arguments the domain and codomain of the bimodule

map.

B.1 Koszul Boundary Maps

The following code defines the boundary maps k_1 and k_3. It also defines the dual

map k_3Dual. For a in depth discussion of the following code and the definition of k_2

please see Section 3.2.1.
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The Map k1

1 def k_1(tens , alg):

2 freeAlgebra = algebra ()

3 K1 = tensorAlgebra ([alg , freeAlgebra , alg])

4 K0 = tensorAlgebra ([alg , alg])

5

6 @bimoduleMapDecorator(K1, K0)

7 def k_1Inner(pT):

8 assert isinstance(pT , pureTensor)

9 generator = pT[1]

10 return pureTensor ([generator , 1])\

11 - pureTensor ([1, generator ])

12 return k_1Inner(tens)

The Maps k3 and k3

1 def k_3(tens , alg):

2 freeAlgebra = algebra ()

3 K3 = K2 = tensorAlgebra ([alg , freeAlgebra , alg])

4

5 @bimoduleMapDecorator(K3, K2)

6 def k_3Inner(pT):

7 answer= tensor ()

8 dd = pT[1] #dd stands for doubly defined

9 for generator , rel in dd.leftHandRepresentation:

10 answer = answer + \

11 pureTensor ((generator , rel , 1)). clean ()

12 for rel , generator in dd.rightHandRepresentation:

13 answer = answer \

14 -pureTensor ((1, rel , generator )). clean()

15 return answer

16 return k_3Inner(tens)

17

18 k_3Dual = koszulDualMap(k_3)

In this code segment we have used the function koszulDualMap which is defined in

Section 3.2.1.

B.2 The Map m2

We define a map m2 : B2 → K2 (as in Section 4.7) in the following code. We print here

the code in full before discussing a few of the details.
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1 def m_2(abcd , alg):

2 B2 = tensorAlgebra ([alg ]*4)

3 freeAlgebra = algebra ()

4 K2 = tensorAlgebra ([alg , freeAlgebra , alg])

5

6 @bimoduleMapDecorator(B2, K2)

7 def m_2Inner(PT):

8 assert isinstance(PT, pureTensor)

9 assert len(PT) == 4

10 PT = PT.clean()

11 xy = PT[1] * PT[2]

12 answer = tensor ()

13 sequence = alg.makeReductionSequence(xy)

14 for reductionFunction , weight in sequence:

15 answer += PT.coefficient * weight * PT[0] \

16 * pureTensor (\

17 [reductionFunction.leftMonomial ,

18 reductionFunction.relation ,

19 reductionFunction.rightMonomial ])\

20 * PT[3]

21 return answer

22

23 return m_2Inner(abcd)

Most of the above code is self-explanatory. However, we draw attention to a few

key features. Firstly, makeReductionSequence is a method defined for an algebra in

‘Polygnome’ that generates reduction sequences for any polynomial. Currently, the

strategy for generating such a sequence is to iterate arbitrarily through the monomials

and for each monomial find the left most pair of out of order generators. By Theorem

4.7.1, any choice of reduction sequence will define a chain map m2 that is a section of

the canonical inclusion i2 : K2 → B2.

Secondly, reductionFunction is a class that encapsulates a reduction function rAσB

for monomialsA,B and σ a reduction (see Section 4.1). This class has fields leftMonomial

and rightMonomial that store A and B respectively. This class also has a field relation

that stores ρσ, the relation associated with σ. The lines 15-20 above correspond to

applying the function ν (see Definition 4.3.4).

The Map m2

Since most of the work in this thesis is in the setting of Hochschild cohomology, the

map m2 is rarely used directly, but instead we use its dual form. Therefore we include

the defining code for m_2Dual which sends f : K2 → A to the function f ◦m2 : B2 → A.
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1 def m_2Dual(func):

2 def newFunc(tensor ):

3 return func(m_2(tensor , func.algebra ))

4 return newFunc

B.3 The Map i∗

The following code defines the injection in : Kn → Bn in the cases n = 2 and n = 3.

The dual map i3 is also defined below.

The Map i2

1 def i_2(tens , alg):

2 freeAlgebra = algebra ()

3 B2 = tensorAlgebra ([alg] * 4)

4 K2 = tensorAlgebra ([alg , freeAlgebra , alg])

5

6 @bimoduleMapDecorator(K2, B2)

7 def i_2Inner(pT):

8 answer = tensor ()

9 rel = pT[1]

10 for term in rel.leadingMonomial:

11 answer = answer \

12 + term.coefficient \

13 * pureTensor ((1, term[0], term[1], 1))

14 for term in rel.lowerOrderTerms:

15 answer = answer \

16 - term.coefficient \

17 * pureTensor ((1, term[0], term[1], 1))

18 return answer

19 return i_2Inner(tens)
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The Map i3

1 def i_3(tens , alg):

2 freeAlgebra = algebra ()

3 B3 = tensorAlgebra ([alg] * 5)

4 K3 = tensorAlgebra ([alg , freeAlgebra , alg])

5

6 @bimoduleMapDecorator(K3, B3)

7 def i_3Inner(pT):

8 answer = tensor ()

9 dd = pT[1] # dd stands for doubly defined

10 for generator , rel in dd.leftHandRepresentation:

11 rightHandSide = generator \

12 * i_2(pureTensor ([1, rel , 1]), alg)

13

14 answer = answer \

15 + pureTensor (1). tensorProduct(rightHandSide)

16 return answer

17 return i_3Inner(tens)

The Map i3

1 def i_3Dual(func , alg , basisOfK3 ):

2 images= []

3 for i in basisOfK3:

4 images.append(func(i_3(i, alg )))

5 return functionOnKn(alg , basisOfK3 , images)

B.4 Gerstenhaber Bracket

We present the defining code for the Gerstenhaber bracket from HH2
2×HH2

2 to HH3
3.

Firstly, we define the circle products ◦i on B2. Note that as in Definition 5.2.2 we

define the Gerstenhaber bracket on f, g ∈ Kn by

[f, g,=] i3
([
m2(f),m2(g)

])
.
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1 def o0(f, g, alg):

2 B3 = tensorAlgebra ([alg] * 5)

3

4 @bimoduleMapDecorator(B3, alg)

5 def localO(abcde):

6 retVal = g(pureTensor ([1, abcde[1], abcde[2], 1]))

7 retVal = pureTensor(abcde [0]). tensorProduct(retVal)

8 retVal = retVal.tensorProduct(abcde [3:])

9 return f(retVal)

10 return localO

11

12 def o1(f, g, alg):

13 B3 = tensorAlgebra ([alg] * 5)

14

15 @bimoduleMapDecorator(B3, alg)

16 def localO(abcde):

17 retVal = g(pureTensor ([1, abcde[2], abcde[3], 1]))

18 retVal = abcde [:2]. tensorProduct(retVal)

19 retVal = retVal.tensorProduct(abcde [4])

20 return f(retVal)

21 return localO

In order to define the Gerstenhaber bracket we also need both m_2Dual (see Appendix

B.2) and i_3Dual (see Appendix B.3.

With these preliminaries completed, the Gerstenhaber bracket is simple to define.

24 def o(f, g, alg):

25 def localO(abcde):

26 return o0(f, g, alg)( abcde)-o1(f, g, alg)( abcde)

27 return localO

28

29 def GerstenhaberBracket(f, g, basisOfK3 ):

30 alg = f.algebra

31 f = m_2Dual(f)

32 g = m_2Dual(g)

33

34 def localBracket(abcde):

35 return o(f, g, alg)( abcde)+o(g, f, alg)( abcde)

36

37 return i_3Dual(localBracket , alg , basisOfK3)
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Appendix C

Calculations Relevant to

Deformations of A Arising from

Geometric Automorphisms of

K(u, v)

C.1 Calculation of F1 Applied to the Relations of A

We include here the full derivations of F1(r) for each relation of the algebra A. These

are recorded in Section 6.3 in Table 6.1. Recall that in the following calculations U(s)

and V (s) satisfy:

U(0) = uv and V (0) = v.

1.

F1(r1) =
∂(F (r1))

∂s

∣∣∣∣
s=0

=
∂(F (x3x1 − x1x3))

∂s

∣∣∣∣
s=0

=
∂(vt2 − tvt)

∂s

∣∣∣∣
s=0

=
∂(vt2 − V (s)t2)

∂s

∣∣∣∣
s=0

= −∂(V (s)t2)

∂s

∣∣∣∣
s=0

= −V ′(0)t2
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2.

F1(r2) =
∂(F (x4x2 − x2x4)))

∂s

∣∣∣∣
s=0

=
∂(uvtut− utuvt)

∂s

∣∣∣∣
s=0

=
∂(uvU(s)t2 − uU(s)V (s)t2)

∂s

∣∣∣∣
s=0

= (uvU ′(0)− uU ′(0)V (0)− uU(0)V ′(0))t2

= −u2vV ′(0)t2 where we have used the fact that V (0) = v.

3.

F1(r3) =
∂(F (x4x1 − x2x3))

∂s

∣∣∣∣
s=0

=
∂(uvt2 − utvt)

∂s

∣∣∣∣
s=0

=
∂(uvt2 − uV (s)t2)

∂s

∣∣∣∣
s=0

= −uV ′(0)t2

4.

F1(r4) =
∂(F (x1x2 − x2x3))

∂s

∣∣∣∣
s=0

=
∂(tut− utvt)

∂s

∣∣∣∣
s=0

=
∂(U(s)t2 − uV (s)t2)

∂s

∣∣∣∣
s=0

= (U ′(0)− uV ′(0))t2

5.

F1(r5) =
∂(F (x3x2 − x1x4))

∂s

∣∣∣∣
s=0

=
∂(vtut− tuvt)

∂s

∣∣∣∣
s=0

=
∂(vU(s)t2 − U(s)V (s)t2)

∂s

∣∣∣∣
s=0

= (vU ′(0)− U(0)V ′(0)− U ′(0)V (0))t2

= −uvV ′(0)t2

6.

F1(r6) =
∂(F (x4x3 − x1x4))

∂s

∣∣∣∣
s=0

=
∂(uvtvt− tuvt)

∂s

∣∣∣∣
s=0

=
∂(uvV (s)t2 − U(s)V (s)t2)

∂s

∣∣∣∣
s=0

= (uvV ′(0)− U ′(0)V (0)− U(0)V ′(0)))t2

= −vU ′(0)t2

160



C.2 Investigation of Other Choices for the Map b in the

Case of P2

We include here the details of calculating the image of the admissible directions in

the case of P2. See Section 6.5.2 background and in particular Notation 6.5.2 for the

notation we use here. In each case, choosing a point to blow up is equivalent to choosing

a point on Q to project from. In all cases we use the coordinates [A : B : C] on P2,

[α : β : γ : δ] for coordinates on P3 (in which Q lives) and [x : y][z : w] as coordinates

for P1 × P1. Of course, in every case we will use the same τs defined by:

τs :=

 (1 + as) bs cs

ds (1 + es) fs

gs hs (1− as− es)

+O(s2).

We also point out that in order for an element of the Lie algebra to be inadmissible

we need to find terms that do not lie in A. We can determine these terms simply by

observing the powers of u and v appearing in U ′(0) and V ′(0). In Cases 2,3 and 4 we

only carry out the calculations in one of two possible sub-cases since by Proposition

6.5.3 the answers in the two sub-cases are always equal.

Case 2) p := G or p = P

P = [0 : 1][0 : 1] is sent to [0 : 0 : 1 : 0] on Q so we project from this point, which gives

the map [α : β : γ : δ] 799K [α : β : δ]. Composing this with the Segre embedding gives

us the map:

[x : y][z : w] 799K [xw : xz : yz].

We note then that u = B/C and v = B/A in these coordinates, so that σP2 is the

following composition:

σP2 : [A : B : C] 799K [B : C][B : A]

7 σ99K [B2 : AC][B : A]

799K [B2A : B3 : BAC] = [BA : B2 : AC]

We note that u 7→ B2

AC = uv and v 7→ B2

BA = v as required. Then σ∗ ◦ τ∗s has the
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following effect (up to degree 1) on u:

u
τ∗s7−→ dsA+ (1 + es)B + fsC

gsA+ hsB + (1− as− es)C

=
dsuv−1 + (1 + es)u+ fs

gsuv−1 + hsu+ (1− as− es)
σ7−→ dsu+ (1 + es)uv + fs

gsu+ hsv + (1− as− es)
.

This has the following derivative:

∂s(σ
∗ ◦ τ∗s (u))|s=0 = (du+ euv + f)− uv(gu+ huv − a− e)

= du+ f − gu2v − hu2v2 − auv

As for v we find instead:

v
τ∗s7−→ dsA+ (1 + es)B + fsC

(1 + as)A+ bsB + csC

=
dsuv−1 + (1 + es)u+ fs

(1 + as)uv−1 + bsu+ cs

σ7−→ dsu+ (1 + es)uv + fs

(1 + as)u+ bsuv + cs

Which has the following derivative:

∂s(σ
∗ ◦ τ∗s (v))|s=0 =

u(du+ euv + f)− uv(au+ buv + c)

u2

= d+ ev + fu−1 − av − bv2 − cu−1v

It is clear from these two, by comparison with Table 6.1 that for the direction

in question to be admissible one must require f = 0 = c. Therefore the size of the

admissible space one dimension bigger than for the fundamental points of σ. We note

however that the obtained image in HH2
2 is the same size and still lies in Vg.

Relation Formula Image Under F1

r1 = x3x1 − x1x3 −V ′(0) (bv2 + av − ev − d)t2

r2 = x2x4 − x4x2 −u2vV ′(0) (bu2v3 + au2v2 − eu2v2 − du2v)t2

r3 = x4x1 − x2x3 −uV ′(0) (buv2 + auv − euv − du)t2

r4 = x1x2 − x2x3 U ′(0)− uV ′(0) (−hu2v2 − gu2v + buv2 − euv)t2

r5 = x3x2 − x1x4 −uvV ′(0) (buv3 + auv2 − euv2 − duv)t2

r6 = x4x3 − x1x4 −vU ′(0) (hu2v3 + gu2v2 + auv2 − duv)t2
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Case 3) p ∈ X \ {P, F} or p ∈ Y \ {G,Q}

Let p = [0 : 1][1 : M ] ∈ X \ {P, F}, where M ∈ K∗. The point [0 : 1][1 : M ]

corresponds to [0 : 0 : M : 1] on Q so we project from this point. This is then the map

[α : β : γ : δ] 799K [α : β : γ −Mδ]. Composing this with the Segre embedding gives us

the map:

[x : y][z : w] 799K [xw : xz : yw −Myz].

Then u = A−MB
C and v = B/A in these coordinates, so that σP2 is the following

composition:

σP2 : [A : B;C] 799K [A−MB : C][B : A]

7 σ99K [AB −MB2 : AC][B : A]

799K [A2B −MB2A : AB2 −MB3 : A2C −MBAC]

= [A2B : AB2 : A2C]

We note that

u 7→ A2B −MAB2

A2C
= (

A2 −MAB

AC
)(
B

A
) = uv

and

v 7→ AB2

BA2
= v

as required. Also, the following formula is very helpful in simplifying the following

expression and is easily derivable from the above:

C

A
= (1−Mv)u−1

Then σ∗ ◦ τ∗s has the following effect (up to degree 1) on v:

v
τ∗s7−→ dsA+ (1 + es)B + fsC

(1 + as)A+ bsB + csC

=
ds+ (1 + es)v + fs(1−Mv)u−1

(1 + as) + bsv + cs(1−Mv)u−1

=
dsu+ (1 + es)uv + fs(1−Mv)

(1 + as)u+ bsuv + cs(1−Mv)

σ7−→ dsuv + (1 + es)uv2 + fs(1−Mv)

(1 + as)uv + bsuv2 + cs(1−Mv)
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Which has the following derivative:

∂s(σ
∗ ◦ τ∗s (v))|s=0 =

uv(duv + euv2 + f(1−Mv))− uv2(auv + buv2 + c(1−Mv))

u2v2

= d+ ev + f(1−Mv)u−1v−1 − av + buv2 + c(1−Mv)u−1

From this formula we can deduce immediately that for this to be admissible we require

f, c and b to be 0. As for u,

u
τ∗s7−→ (1 + as)A−M(dsA+ (1 + es)B)

gsA+ hsB + (1− as− es)C

=
(1 + as)−M(ds+ (1 + es)v)

gs+ hsv + (1− as− es)(1−Mv)u−1

σ7−→ (1 + as)−M(ds+ (1 + es)v)

gs+ hsv + (1− as− es)(1−Mv)u−1v−1

In the following we set:

χ = (a−Md−Mev − (1−Mv)(g + hv + (−a− e)(1−Mv)u−1v−1)).

Then the derivative is as follows:

∂s(σ
∗ ◦ τ∗s (u))|s=0 =

(1−Mv)u−1v−1χ

((1−Mv)u−1v−1)2

=
a−Md−Mev − guv − huv2 + (−a− e)(1−Mv)

(1−Mv)u−1v−1

Now from this formula we can see that in fact all of the terms must be zero, since

they will be multiplied by the term (1−Mv)−1 and no such term lies in A.

Case 4) p ∈ Z \ {P,Q} or p ∈W \ {F,G}

If p ∈ Z \ {P,Q} then we can write it as p = [1 : M ][0 : 1] for some M ∈ K∗.
[1 : M ][0 : 1] is sent to [1 : 0 : M : 0] on Q so we project from this point. This is then

the map [α : β : γ : δ] 799K [β : γ −Mα : δ]. Composing this with the Segre embedding

gives us the map:

[x : y][z : w] 799K [xz : yw −Mxw : yz].
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Then that u = A
C and v = C−MA

B in these coordinates, so that σP2 is the following

composition:

σP2 : [A : B;C] 799K [A : C][C −MA : B]

7 σ99K [A(C −MA) : CB][C −MA : B]

799K [A(C −MA)2 : CB2 −MAB(C −MA) : CB(C −MA)]

We note that

u 7→ A(C −MA)2

CB(C −MA)
= (

A

C
)(
C −MA

B
) = uv

and

v 7→ CB(C −MA)−MA(C −MA)2

CB2 −MAB(C −MA)
=

(CB −MA(C −MA))(C −MA)

B(CB −MA(C −MA))
v

as required. Also, the following formula is very helpful in simplifying the following

expression and is easily derivable from the above:

B

C
= (1−Mu)v−1

Then σ∗ ◦ τ∗s has the following effect (up to degree 1) on v:

v
τ∗s7−→ gsA+ hsB + (1− as− es)C −M((1 + as)A+ bsB + csC)

dsA+ (1 + es)B + fsC

=
gsu+ hs(1−Mu)v−1 + (1− as− es)−M((1 + as)u+ bs(1−Mu)v−1 + cs)

dsu+ (1 + es)(1−Mu)v−1 + fs

=
gsuv + hs(1−Mu) + (1− as− es)v −M((1 + as)uv + bs(1−Mu) + csv)

dsuv + (1 + es)(1−Mu) + fsv

σ7−→ gsuv2 + hs(1−Muv) + (1− as− es)v −M((1 + as)uv2 + bs(1−Muv) + csv)

dsuv2 + (1 + es)(1−Muv) + fsv

We let F (s) and G(s) represent the numerator and denominator respectively. Then

the following intermediate values will expedite the calculation of the derivative:

F (0) = v(1−Muv),

F ′(0) = guv2 + h(1−Muv)− av − ev −Mauv2 − bM(Muv) + cvM

G(0) = 1−Muv, G′(0) = duv2 + e(1−Muv) + fv
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So the derivative is as follows:

∂s(σ
∗ ◦ τ∗s (v))|s=0 =

(1−Muv)F ′(0)− v(1−Muv)G′(0)

(1−Muv)2

=
1

1−Muv
(F ′(0)− vG′(0))

= g
uv2

1−Muv
+ h− ev(−2 +Muv)

1−Muv
− av(1 +Muv)

1−Muv

− bM + c
vM

1−Muv
− d uv3

1−Muv
− f v2

1−Muv

From this formula we can deduce immediately that for this to be admissible we require

all of the parameters to be 0 except perhaps b and h.

As for the calculation on u,

u
τ∗s7−→ (1 + as)A+ bsB + csC

gsA+ hsB + (1− as− es)C

=
A+ bsB

hsB + C

=
u+ bs(1−Mu)v−1

hs(1−Mu)v−1 + 1

σ7−→ uv + bs(1−Muv)v−1

hs(1−Muv)v−1 + 1

Which has the following derivative:

∂s(σ
∗ ◦ τ∗s (u))|s=0 = b(1−Muv)v−1 − h(1−Muv)u

Since we require that F1(x1x2−x2x3) = (U ′(0)−uV ′(0)t2) ∈ A (see Table 6.1), we

can see that this implies that b = 0 as well. However, h is free to be set as one wishes.

Whatever the value of h however, the infinitesimal deformations obtained lie in Vg.

Case 5)

See Section 6.5.2 for the calculations in this case.
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Appendix D

Calculations Relevant to

Deformations of Aq Arising from

Quantised Geometric

Automorphisms of Kq(u, v)

D.1 Calculation of F1 applied to the Relations of Aq

We include here the full derivations of F1 applied to the relations of Aq. This supple-

ments the work in Section 7.3.1, and the results are collected in Table 7.1.

1. Recall that r1 = x3x1 − x1x3. Therefore we have the following:

F1(r1) = F1(vt2 − tvt) = vt2 − v(1 + as)t2

=− svat2

2. Recall that r2 = x4x2 − qx2x4 and that σ ◦ τs(u) = uvfs(v). Therefore we have

the following:

F1(r2) = F1(uvtut− qutuvt)

=
uvuvfs(v)t2 − qu2vfs(v)(1 + as)vt2

s

∣∣∣∣
s=0

=
u2q(1 + λs)v2fs(v)t2 − qu2(1 + as)v2fs(v)t2

s

∣∣∣∣
s=0

= (qλu2v2 − qau2v2)t2
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3. Recall that r3 = x4x1 − x2x3. Therefore we have the following:

F1(r3) = F1(uvt2 − utvt) =
uvt2 − uv(1 + as)t2

s

= − auvt2

4. See Section 7.3.1 for this case.

5. Recall that r5 = x3x2 − qx1x4. Therefore we have the following:

F1(r5) = F1(vtut− qtuvt) =
vuvfs(v)t2 − quvfs(v)v(1 + as)t2

s

∣∣∣∣
s=0

=
q(1 + λs)uv2fs(v)− q(1 + as)uv2fs(v)t2

s

∣∣∣∣
s=0

= (qλuv2 − qauv2)t2

6. See Section 7.3.1 for this case.

D.2 Calculation of the Cohomology Class of F1 for Aq

We include here the infinitesimal F1 corresponding to the deformations discussed in

Section 7.3, using the vector notation defined in Notation 3.2.1. We have also expanded

this vector to be written in the chosen basis of 2-cocycles from Appendix A.2.1; we have

underlined vectors that are coboundaries.
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a



−x1x3

−qx2x4

−x2x3

−x2x3

−qx1x4

0


+ b



0

0

0

x2x1

0

−x2x3


+ c



0

0

0

x2x3

0

−x1x4


+
d

q



0

0

0

qx1x4

0

−x3x4


+ qλ



0

x2x4

0

0

x1x4

0



= a


−



x1x3

0

0

x2x3

qx1x4

0


− q



0

x2x4

0

0

x1x4

0


−



0

0

x2x3

0

−qx1x4

0





+ b


−



0

0

−x2x1

−x2x1

x2x3

x2x3


−



0

(1− q)x2
2

x2x1

0

−qx2x3

0


+ (1− q)



0

x2
2

0

0

x2x3

0





+ qλ



0

x2x4

0

0

x1x4

0


+ c





0

0

x2x3

x2x3

−qx1x4

−x1x4


−



0

0

x2x3

0

−qx1x4

0





+
d

q





0

0

x1x4

qx1x4

−qx3x4

−x3x4


+



0

(1− q)x2
4

−x1x4

0

x3x4

0


− (1− q)



0

x2
4

0

0

x3x4

0





D.3 Calculation of the Cohomology Class of F1 for A

We include here the infinitesimal F1 corresponding to the deformations discussed in

Section 7.3.2, using the vector notation defined in Notation 3.2.1. We have also ex-

panded this vector to be written in the chosen basis of 2-cocycles from Appendix A.1.1;
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we have underlined vectors that are coboundaries.

a



−x1x3

−x2x4

−x2x3

−x2x3

−x1x4

0


+ b



0

0

0

x2x1

0

−x2x3


+ c



0

0

0

x2x3

0

−x1x4


+ d



0

0

0

x1x4

0

−x3x4


+ λ



0

x2x4

0

0

x1x4

0



= a


−



x1x3

0

0

x2x3

x1x4

0


−



0

x2x4

0

0

x1x4

0


−



0

0

x2x3

0

−x1x4

0





+ λ



0

x2x4

0

0

x1x4

0


+ c





0

0

x2x3

x2x3

−x1x4

−x1x4


−



0

0

x2x3

0

−x1x4

0





+ d





0

0

x1x4

x1x4

−x3x4

−x3x4


+



0

0

−x1x4

0

x3x4

0




+ b


−



0

0

−x2x1

−x2x1

x2x3

x2x3


−



0

0

x2x1

0

−x2x3

0




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Appendix E

Calculations Relevant to a Family

of PBW Deformations of A

E.1 Choices of the Sets Ξi

In this section we print our guesses for sets Ξi that will ‘interact well’ with the chosen

basis elements of HH2
2. For a discussion of the background to this please see Section

8.1.

Ξ1 =


v10 =



0

0

x2x3

x2x3

−x1x4

−x1x4


, v13 =



0

0

−x2x3

0

x1x4

0




= Ξ4

Ξ3 =


v18 =



0

0

−x2x1

−x2x1

x2x3

x2x3


, v20 =



0

0

x2x1

0

−x2x3

0




= Ξ6

E.2 Resolving Overlap Ambiguities for A(a, c, d, f)

In this section we include for each overlap ambiguity the two simplification paths that

lead to their resolution. See Section 8.2 for the background and notation.

Ra,c,d,f =


r1 := x3x1 − (1 + a)x1x3 − cx2

1, r2 := x4x2 − (1 + d)x2x4 − fx2
2,

r3 := x4x1 − (1 + d)x2x3 − fx2x1, r4 := x1x2 − x2x3,

r5 := x3x2 − (1 + a)x1x4 − cx2x3, r6 := x4x3 − (1 + a)x1x4 − cx2x3

 .
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Overlap 1) The overlap in this case is x4x1x2. The right hand simplification path is:

x4x1x2 x4x2x3 fx2
2x3 + (1 + d)x2x4x3

(c+ f + cd)x2
2x3 + (1 + a+ d+ ad)x2x1x4

rx4r4 rr2x3

rx2r6

The left hand simplification path is:

x4x1x2 fx2x1x2 + (1 + d)x2x3x2 fx2
2x3 + (1 + d)x2x3x2

(c+ f + cd)x2
2x3 + (1 + a+ d+ ad)x2x1x4

rr3x2 rx2r4

rx2r5

Overlap 2) The overlap in this case is x3x1x2. The right hand simplification path is:

x3x1x2 x3x2x3 cx2x
2
3 + (1 + a)x1x4x3

cx2x
2
3 + (c+ ac)x1x2x3 + (1 + 2a+ a2)x2

1x4

(2c+ ac)x2x
2
3 + (1 + 2a+ a2)x2

1x4

rx3r4 rr5x3

rx1r6

rr4x3

The left hand simplification path is:

x3x1x2 cx2
1x2 + (1 + a)x1x3x2 cx1x2x3 + (1 + a)x1x3x2

cx2x
2
3 + (1 + a)x1x3x2

cx2x
2
3 + (c+ ac)x1x2x3 + (1 + 2a+ a2)x2

1x4

(2c+ ac)x2x
2
3 + (1 + 2a+ a2)x2

1x4

rr1x2 rx1r4

rr4x3

rx1r5

rr4x3
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Overlap 3) The overlap in this case is x4x3x1. The right hand simplification path is:

x4x3x1

cx4x
2
1 + (1 + a)x4x1x3

cfx2x
2
1 + (c+ cd)x2x3x1 + (1 + a)x4x1x3

(c2 + c2d+ cf)x2x
2
1 + (c+ cd+ ac+ acd)x2x1x3 + (1 + a)x4x1x3

(c2 + c2d+ cf)x2x
2
1 + (c+ f + af + acd+ ac+ cd)x2x1x3 + (1 + a+ d+ ad)x2x

2
3

rx4r1

rr3x1

rx2r1

rr3x3

The left hand simplification path is:

x4x3x1

cx2x3x1 + (1 + a)x1x4x1

c2x2x
2
1 + (c+ ac)x2x1x3 + (1 + a)x1x4x1

c2x2x
2
1 + (c+ ac)x2x1x3 + (f + af)x1x2x1 + (1 + a+ d+ ad)x1x2x3

c2x2x
2
1 + (c+ ac)x2x1x3 + (af + f)x2x3x1 + (1 + a+ d+ ad)x1x2x3

(c2 + cf + acf)x2x
2
1 + (c+ a2f + 2af + ac+ f)x2x1x3 + (1 + a+ d+ ad)x1x2x3

(c2 + cf + acf)x2x
2
1 + (c+ a2f + 2af + ac+ f)x2x1x3 + (1 + a+ d+ ad)x2x

2
3

rr6x1

rx2r1

rx1r3

rr4x1

rx2r1

rr4x3
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Overlap 4) The overlap in this case is x4x3x2. The right hand simplification path is:

x4x3x2

cx4x2x3 + (1 + a)x4x1x4

cfx2
2x3 + (c+ cd)x2x4x3 + (1 + a)x4x1x4

(c2 + c2d+ cf)x2
2x3 + (c+ cd+ ac+ acd)x2x1x4 + (1 + a)x4x1x4

(c2 + c2d+ cf)x2
2x3 + (c+ f + af + acd+ ac+ cd)x2x1x4 + (1 + a+ d+ ad)x2x3x4

rx4r5

rr2x3

rx2r6

rr3x4

The left hand simplification path is:

x4x3x2

cx2x3x2 + (1 + a)x1x4x2

c2x2
2x3 + (c+ ac)x2x1x4 + (1 + a)x1x4x2

c2x2
2x3 + (c+ ac)x2x1x4 + (f + af)x1x

2
2 + (1 + a+ d+ ad)x1x2x4

c2x2
2x3 + (c+ ac)x2x1x4 + (af + f)x2x3x2 + (1 + a+ d+ ad)x1x2x4

(c2 + cf + acf)x2
2x3 + (c+ a2f + 2af + ac+ f)x2x1x4 + (1 + a+ d+ ad)x1x2x4

(c2 + cf + acf)x2
2x3 + (c+ a2f + 2af + ac+ f)x2x1x4 + (1 + a+ d+ ad)x2x3x4

rr6x2

rx2r5

rx1r2

rr4x2

rx2r5

rr4x4

For an interpretation of these results please see the proof of Theorem 8.2.1.
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E.3 Verifying that F Satisfies the Relations of A(a, c, d, f)

We include here the confirmation that the set F defined in Proposition 8.2.6 does satisfy

the relations of A(a, c, d, f). Recall that these relations are:

Ra,c,d,f =


r1 := x3x1 − (1 + a)x1x3 − cx2

1, r2 := x4x2 − (1 + d)x2x4 − fx2
2,

r3 := x4x1 − (1 + d)x2x3 − fx2x1, r4 := x1x2 − x2x3,

r5 := x3x2 − (1 + a)x1x4 − cx2x3, r6 := x4x3 − (1 + a)x1x4 − cx2x3

 .

1. Firstly,

y3y1 = zt2.

On the other hand, we have:

(1 + a)y1y3 + cy2
1 = (1 + a)tzt+ ct2

= (1 + a)
(z − c)
(1 + a)

t2 + ct2 = zt2.

2. On the one hand:

y4y2 = zwtwt = zwβ(w)t2.

Whereas,

(1 + d)y2y4 + fy2
2 = (1 + d)wtzwt+ fwtwt

= (1 + d)w
(z − c)
(1 + a)

β(w)t2 + fwβ(w)t2

=
(1 + d)

(1 + a)

(1 + a)

(1 + d)
(z − f)wβ(w)t2 + fwβ(w)t2 by (8.1)

= zwβ(w)t2

3. Firstly,

y4y1 = zwt2.

On the other hand:

(1 + d)y2y3 + fy2y1 = (1 + d)wtzt+ fwt2

= (1 + d)w
(z − c)
(1 + a)

t2 + fwt2

=
(1 + d)

(1 + a)

(1 + a)

(1 + d)
(z − f)wt2 by (8.1)

= zwt2.

4. Please see the proof of Proposition 8.2.6 for this relation.
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5. Firstly,

y3y2 = ztwt = zβ(w)t2.

Whereas,

(1 + a)y1y4 + cy2y3 = (1 + a)ztwt+ cwtzt

= (1 + a)
(z − c)
(1 + a)

β(w)t2 + cw
(z − c)
(1 + a)

t2

= (z − c)β(w)t2 + cβ(w)t2 by (8.2)

= zβ(w)t2. (E.1)

6.

y4y3 = zwtzt = zwβ(z)t2 = zβ(w)t2 by (8.2).

By (E.1) this equals (1 + a)y1y4 + cy2y3 as required.

Therefore we may conclude that the yi satisfy the defining relations of A(a, c, d, f).
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Vq, 80, 131
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BG, see Bergman graph
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m1, 43

m2, 62, 72

Admissible, see Admissible direction

Admissible direction, 84

Associator, 25

Bar complex, 13, 26, 41

Bar resolution, see Bar complex

Bergman graph, 44, 45, 77

Birationally commutative, 19

Birationally equivalent, 19

Compatible ordering, 42

Cremona group, 84, 118

Diamond, 53

Enveloping algebra, 13

Finitely graded, 19

Flat family, 22, 37, 132

Formal deformation, 21, 23

Function field, see Function skew field

Function skew field, 19, 137

Gelfand-Kirillov dimension, 17, 20, 138

Gerstenhaber bracket, 26, 72

GK-dimension, see Gelfand-Kirillov dimen-

sion

Graded quotient ring, 19, 137

Hilbert series, 18

Hochschild cohomology, 22

Infinitesimal, see Infinitesimal deformation

Infinitesimal deformation, 23, 83, 91, 120

Interfere, 51

Koszul algebra, 13, 20, 85, 91

Koszul complex, 14, 41, 91, 153

Koszul resolution, see Koszul complex

Left Stitch, see Stitch

Noncommutative projective surface, see Non-

commutative surface

Noncommutative surface, 19, 133

Obstruction, 26

Overlap ambiguity, 16, 53, 131

Partial monoid ordering, 42

PBW algebra, 15, 72, 131

PBW order, 41

PBW reduced, see PBW order

Polygnome, 30, 153

Primary obstruction, 26

Quantum Cremona group, 118
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Reduction sequence, 15

Reduction system, 15

Resolvable, 16

Right stitch, see Stitch

Sage, 29, 30, 33

Simplification path, 45, 131

Stitch, 52

Translation, 51

182


	Contents
	Introduction
	Motivation
	Summary of Approach
	Summary of General Results
	The Deformation Theory of A
	Further Work

	Background
	Koszul Algebras
	The Algebra A
	Deformation Theory

	The Second Hochschild Cohomology Space for Two Algebras of Interest
	Introduction
	Calculations of Hochschild Cohomology Spaces
	The Second Hochschild Cohomology of A
	A q-Deformation of A and its Second Hochschild Cohomology

	A Partial Chain Map from the Bar Resolution to the Koszul Resolution for a PBW-Algebra
	Preliminaries
	The Map in Position 1
	The Bergman Graph
	The Minimal Partial Monoid Order on <V>
	A Few Operations on Paths
	Diamonds in the Bergman Graph
	The Main Theorem

	Primary Obstructions to Infinitesimal Deformations
	Introduction
	Calculations of Obstruction-Free Infinitesimal Deformations
	The Obstruction-Free Infinitesimal Deformations of A
	The Obstruction-Free Infinitesimal Deformations of Aq

	Infinitesimal Deformations Arising From Automorphisms of Minimal Rational Surfaces
	Introduction
	Infinitesimal Deformations of a Localisation
	Overview of Calculations
	Infinitesimals Arising from Automorphisms of P1 x P1
	Infinitesimals Arising from Automorphisms of P2
	Infinitesimals Arising from Automorphisms of Fn
	Closing Remarks

	Deformations of Aq Arising from Quantum Analogues of Geometric Automorphisms
	Introduction
	A Discussion of a Paper of Alev and Dumas
	Infinitesimal Deformations of Aq Arising from the Quantum Cremona Group

	A Family of Deformations of A with the PBW Property
	A Heuristic Search Approach to Finding Deformations
	A Family of Deformations of A

	Appendices
	Bases Relevant to Calculations on Hochschild Cohomology
	Calculations For A
	Calculations For Aq

	Polygnome Source Code
	Koszul Boundary Maps
	The Map m2
	The Map i*
	Gerstenhaber Bracket

	Calculations Relevant to Deformations of A Arising from Geometric Automorphisms of kuv
	Calculation of F1 Applied to the Relations of A
	Investigation of Other Choices for the Map b in the Case of P2

	Calculations Relevant to Deformations of Aq Arising from Quantised Geometric Automorphisms of kquv
	Calculation of F1 applied to the Relations of Aq
	Calculation of the Cohomology Class of F1 for Aq
	Calculation of the Cohomology Class of F1 for A

	Calculations Relevant to a Family of PBW Deformations of A
	Choices of the Sets Xii
	Resolving Overlap Ambiguities for A(a,c,d,f)
	Verifying that F Satisfies the Relations of A(a,c,d,f)

	References
	Index

