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The problem

Question
What are the graded noetherian domains of GK-dimension 3,
i.e. “noncommutative projective surfaces”?

Answer: Nobody knows!
We give a partial answer: we classify those rings that are
birational to a commutative surface.
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Definitions

We work over an algebraically closed field k of
characteristic 0. (Makes some theorem statements
simpler, but our results also work in positive characteristic.)
A graded ring R is connected graded if R0 = k .

Definition
Let R be an N-graded noetherian domain. The graded quotient
ring of R is of the form

Qgr(R) = D[z, z−1;σ]

for some division ring D and automorphism σ of D.
D is the function field of R.
R is birationally commutative if its function field is
commutative.
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Main result

Definition
A birationally commutative projective surface is a k-algebra that
is:

a connected N-graded domain;
noetherian;
birationally commutative;
GK-dimension 3.

Theorem (S.)
R is a birationally commutative projective surface if and only if
R falls into one of four infinite families. In particular, any such R
is defined by geometric data and is canonically associated to a
(unique) projective surface X.

Generalizes work of Rogalski and Stafford for rings generated
in degree 1 (2 families).
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Review: curves

Definition
A (noncommutative) projective curve is a k-algebra that is:

a connected N-graded domain;
noetherian;
GK-dimension 2.

Theorem (Artin-Stafford, 1995)
R is a projective curve if and only if R falls into one of two
infinite families. In particular, any such R is birationally
commutative and canonically associated to a (unique)
projective curve.
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Family (1): Twisted homogeneous coordinate rings

Let X be a projective variety.
Let σ be an automorphism of X .
Let L be an invertible sheaf on X . As usual, let Lσ = σ∗L
and let Ln denote the product L ⊗ Lσ ⊗ · · · ⊗ Lσn−1

.
The twisted homogeneous coordinate ring B = B(X ,L, σ)
is defined by

B = B(X ,L, σ) =
⊕
n≥0

H0(X ,Ln)

Multiplication on B is induced by σ.
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Ampleness

We say that L is σ-ample if {Ln} has the same good
properties as the tensor powers of an ample invertible
sheaf.

Theorem (Artin-Van den Bergh 90)

If L is σ-ample, then B(X ,L, σ) is noetherian.

Example: Let

σ =

[
1 0
1 1

]
∈ PGL2.

Then

B(P1,O(1), σ) ∼= k〈x , y〉/(xy − yx − x2).
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Family (1a): Geometric idealizers

Let X ,L, σ as before. Assume L is σ-ample. Let
B = B(X ,L, σ).
Let Z be a closed subscheme of X , of infinite order under
σ.
Let I ⊆ B be the right ideal generated by sections
vanishing on Z .
Let

R(X ,L, σ,Z ) = k + I ⊂ B.

In nice situations R is the idealizer of I in B: maximal
subring in which I is a 2-sided ideal.
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Idealizing on P1

Example: Assume char k = 0. Let

B = B(P1,O(1), σ) ∼= k〈x , y〉/(xy − yx − x2)

and
R = R(P1,O(1), σ, [1 : 0]) ∼= k + yB

(Stafford-Zhang 94)
R is noetherian.
In general k + yB is noetherian if and only if char k = 0.

Need [1 : 0] to have infinite order under σ.
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The classification of noncommutative curves

Theorem (Artin-Stafford 95)
R is a projective curve if and only if (up to replacing R by a
Veronese subring), R is either
(1) A twisted homogeneous coordinate ring B(X ,L, σ) where

X is a (commutative) projective curve and L is σ-ample; or
(1a) An idealizer R(X ,L, σ,Z ) on a projective curve X at points

of infinite order.

All noncommutative curves are (birationally) commutative:
all division rings of transcendence degree 1 are fields.
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Artin’s conjecture

Not many division rings of transcendence degree 2 are known.

Conjecture (Artin 95)
Let R be a (noncommutative) projective surface. Then the
function field of R is either:

a field of transcendence degree 2;
a division ring finite-dimensional over a central field of
transcendence degree 2;
the full quotient division ring of a skew polynomial
extension of a field of transcendence degree 1 (a “quantum
ruled surface”); or
S(E , σ), the function field of the Sklyanin algebra A(E , σ)
for some elliptic curve E and automorphism σ of E (a
“quantum rational surface”).
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Some birationally commutative projective surfaces

Twisted homogeneous coordinate rings of surfaces;
GK 3 puts restrictions on the automorphism

Geometric idealizers on surfaces

Theorem (S.)

A geometric idealizer R(X ,L, σ,Z ) of GK-dimension 3 is
noetherian if and only if Z is “transverse” to all σ-invariant
subschemes.

Very weak definition of transverse: no component of Z can
contain or be contained in any nontrivial invariant
subscheme.
In positive characteristic need “critically transverse.”
(Also understand higher-dimensional idealizers.)
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Naïve blowups

Let X be a projective surface (variety of dimension ≥ 2).
Let σ ∈ Aut(X ) and let L be a σ-ample invertible sheaf.
Let P ∈ X of infinite order; let m be the ideal sheaf defining
P.
The naïve blowup of X at P is the ring

S(X ,L, σ,P) =
⊕
n≥0

H0(X ,mmσ · · ·mσn−1 · Ln).

A noncommutative Rees ring; first studied by Keeler,
Rogalski, and Stafford.
Can also form S(X ,L, σ,Z ) for any 0-dimensional
subscheme Z ⊂ X .

Theorem (Rogalski-Stafford 06; S.; Bell 08)

S(X ,L, σ,Z ) is noetherian if and only if Z is supported at points
with (critically) dense orbits.
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ADC rings

A more general naïve blowup.
Example: Let X ,L, σ,P as above.
Let a, d, c be ideal sheaves cosupported at P satisfying
ac ⊆ d. Let

S =
⊕
n≥0

H0(X , adσ · · · dσn−1
cσn · Ln)

Recall the naïve blowup is⊕
n≥0

H0(X ,mmσ · · ·mσn−1 · Ln).

If ac = d the ADC ring is the naïve blowup at the scheme
defined by acσ.
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Properties of ADC rings

Proposition (S.)
S is noetherian if and only if the orbit of P is (critically) dense.

An ADC ring may be a maximal order (“integrally closed”).
No Veronese is ever generated in degree 1 unless ac = d.
Question: other properties that distinguish naïve blowups
from ADC rings?
Proj looks like Proj of a naïve blowup.
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BC surfaces generated in degree 1

Theorem (Rogalski-Stafford 06)

R is a birationally commutative projective surface that is
generated in degree 1 if and only if (up to replacing R by a
Veronese subring), R is either
(1) a twisted homogeneous coordinate ring B(X ,L, σ) where

X is a projective surface (and L is σ-ample); or
(2) a naïve blowup B(X ,L, σ,Z ) on a projective surface X at a

0-dimensional subscheme Z supported at points with
(critically) dense orbits.

Susan J. Sierra Classifying birationally commutative surfaces



General birationally commutative surfaces

Theorem
R is a birationally commutative projective surface if and only if
(up to a finite dimensional vector space and/or a Veronese ring,
as always) R is either:
(1) the twisted homogeneous coordinate ring of a projective

surface;
(2) an ADC ring on a projective surface;

(1a) a geometric idealizer on a projective surface; or
(2a) an idealizer in a ring of type (2).
Furthermore, all defining data is (critically) transverse.

(This also gives a new proof of Rogalski-Stafford.)
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Proof techniques

Difficult part: construct the surface X on which R lives.

Rogalski-Stafford: X is a subscheme of a proscheme (a
projective limit of schemes) that “tries to parameterize”
point modules over R.
Our technique: We are given the function field K and σ and
so the birational equivalence class of X . Choose any
smooth model Y for K and modify.
Key result (Rogalski 07): There is some Y such that σ
induces an automorphism of Y .
Philosophy: method of successive approximation. Work on
Y ; if Y is not correct, modify to get closer. This terminates
after finitely many steps.
Constructs X more directly but less functorially.
Then show other defining data is of the form claimed.
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Consequences

Any birationally commutative surface is contained in a
twisted homogeneous coordinate ring and has geometric
data canonically associated to it.

Definition
A connected graded N-graded ring R satisfies χ if for any
finitely generated left (or right) R-module M and for all j ≥ 0
ExtjR(k ,M) is finite-dimensional.

If R is a birationally commutative surface then R satisfies χ
if and only if (some Veronese of) R is a twisted
homogeneous coordinate ring. (In fact: R satisfies right (or
left) χ2 is sufficient.)
All birationally commutative surfaces have cohomological
dimension 2.
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Future work

Remove restrictions on σ. What are the birationally
commutative surfaces of GK-dimension 5?

Eg: X = E × E , σ : (x , y) 7→ (x + y , y).
Look at B(X ,L, σ) and subrings. Are all surfaces of GK 5 of
this form?
Rogalski-Stafford’s result holds in GK 5 case.

What about BC surfaces of GK-dimension 4? Do any
exist?

Rogalski: Here σ is not an automorphism of any model of
the function field.
No twisted homogeneous coordinate rings are noetherian.

Conjecture
Let R be a birationally commutative noetherian connected
N-graded domain of GK-dimension d. Suppose also that σ is
geometric (excludes GK 4 surfaces). Then R falls into one of
the families (1), (1a), (2), (2a) and is associated to a projective
variety of dimension ≤ d.
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