Geometric idealizers and critical transversality

Susan J. Sierra

ssierra@umich.edu

http://www-personal.umich.edu/~ssierra/

University of Michigan

AMS Special Session on Noncommutative Algebraic Geometry March 2007

・回り くうり くうり

Idealizers given by geometric data

3 The geometry of critical transversality

・ 回 ト ・ ヨ ト ・ ヨ ト

The underlying geometric data

We start with the following data:

- Let X be a projective variety defined over an algebraically closed field k.
- Let ϕ be an automorphism of X.
- Let *L* be an invertible sheaf on *X*; as usual, we denote the product (φⁿ⁻¹)**L* ⊗ · · · ⊗ φ**L* ⊗ *L* by *L_n*.
- We require that *L* is *φ*-ample: this is a technical condition that means that {*L_n*} has the same good properties as the tensor powers of an ample invertible sheaf.
- Let $Z \subset X$ be an irreducible subvariety.
- Standing assumption: No power of ϕ fixes Z.

ヘロト ヘアト ヘヨト ヘヨト

Constructing a ring

We define a ring $R = R(X, \mathcal{L}, \phi, Z)$ as follows:

- Form the twisted homogeneous coordinate ring B = B(X, L, φ) defined by B_n = H⁰(X, L_n).
- Recall that B is a ring via the maps

$$H^{0}(X, \mathcal{L}_{n}) \otimes H^{0}(X, \mathcal{L}_{m}) \xrightarrow{1 \otimes \phi^{n}} H^{0}(X, \mathcal{L}_{n}) \otimes H^{0}(X, (\phi^{n})^{*}\mathcal{L}_{m}) \longrightarrow H^{0}(X, \mathcal{L}_{m+n}).$$

- Let *I* be the right ideal of *B* of sections vanishing on *Z*.
- Let $R = \{g \in B \mid gI \subseteq I\}$. *R* is the *idealizer* in *B* of *I*; we write $R = \mathbb{I}_B(I)$.
- Notice that R = k + I, since Z is of infinite order under ϕ .

ヘロト 人間 ト くほ ト くほ トー

Technical properties

What are the properties of $R = R(X, \mathcal{L}, \phi, Z)$? How do they depend on the underlying geometry?

Definition

R is *strongly right Noetherian* if for any commutative Noetherian ring *C*, the ring $R \otimes_k C$ is right Noetherian.

Definition

We say that *R* satisfies (*right*) χ_r if (roughly speaking) $\underline{\operatorname{Ext}}_R^r(k, M)$ is finite dimensional for all finitely generated right *R*-modules *M*.

ヘロト 人間 ト くほ ト くほ トー

Rogalski's result

Rogalski studied the case where $X = \mathbb{P}^d$, $\mathcal{L} = \mathcal{O}(1)$, and $Z = \{c\}$, a point. He found that *R* has unusual properties.

Definition

The set $\{\phi^n(c)\}$ is *critically dense* if any infinite subset of $\{\phi^n(c)\}$ is Zariski dense in \mathbb{P}^d .

Theorem (Rogalski)

 $R = R(\mathbb{P}^d, \mathcal{O}(1), \phi, c)$ is strongly right Noetherian. If $\{\phi^n(c)\}$ is critically dense then R is left Noetherian but not strongly left Noetherian, and satisfies right χ_{d-1} but not right χ_d . R always fails left χ_1 .

This generalizes an example of Stafford and Zhang of an idealizer given by a point in \mathbb{P}^1 .

Critical transversality

We seek to understand *R* for more general *X*, \mathcal{L} , ϕ , and *Z*. In particular, is there an appropriate analogue of critical density for subschemes that are not just points?

Definition

We say the set $\{\phi^n Z\}$ is *critically transverse* if for any *Y*, for $|n| \gg 0$, we have that $\mathcal{T}or_i^X(\mathcal{O}_{\phi^n Z}, \mathcal{O}_Y) = 0$ for $j \ge 1$

Algebraic motivation: a result of Rogalski that says R is left Noetherian if and only if Tor₁^B(B/I, B/J) is finite dimensional for all left ideals J in _BB. (Recall that I is the right ideal of Bcorresponding to Z.)

• $\operatorname{Tor}_{1}^{B}(B/I, B/J) = (I \cap J)/IJ$. This governs extensions and contractions of left ideals between *R* and *B*.

ヘロト ヘヨト ヘヨト

Critical transversality

We seek to understand *R* for more general *X*, \mathcal{L} , ϕ , and *Z*. In particular, is there an appropriate analogue of critical density for subschemes that are not just points?

Definition

We say the set $\{\phi^n Z\}$ is *critically transverse* if for any *Y*, for $|n| \gg 0$, we have that $\mathcal{T}or_i^X(\mathcal{O}_{\phi^n Z}, \mathcal{O}_Y) = 0$ for $j \ge 1$

Algebraic motivation: a result of Rogalski that says R is left Noetherian if and only if $\operatorname{Tor}_{1}^{B}(B/I, B/J)$ is finite dimensional for all left ideals J in $_{B}B$. (Recall that I is the right ideal of Bcorresponding to Z.)

• $\operatorname{Tor}_{1}^{B}(B/I, B/J) = (I \cap J)/IJ$. This governs extensions and contractions of left ideals between *R* and *B*.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

Critical transversality

We seek to understand *R* for more general *X*, \mathcal{L} , ϕ , and *Z*. In particular, is there an appropriate analogue of critical density for subschemes that are not just points?

Definition

We say the set $\{\phi^n Z\}$ is *critically transverse* if for any *Y*, for $|n| \gg 0$, we have that $\mathcal{T}or_j^X(\mathcal{O}_{\phi^n Z}, \mathcal{O}_Y) = 0$ for $j \ge 1$

Algebraic motivation: a result of Rogalski that says R is left Noetherian if and only if $\operatorname{Tor}_{1}^{B}(B/I, B/J)$ is finite dimensional for all left ideals J in $_{B}B$. (Recall that I is the right ideal of Bcorresponding to Z.)

• $\operatorname{Tor}_{1}^{B}(B/I, B/J) = (I \cap J)/IJ$. This governs extensions and contractions of left ideals between *R* and *B*.

ヘロア 人間 アメヨア 人口 ア

Geometric motivation

Definition

Two closed subschemes *Y* and *Z* of *X* are *homologically transverse* if for all $j \ge 1$, we have $Tor_i^X(\mathcal{O}_Z, \mathcal{O}_Y) = 0$.

Homological transversality says that intersection formulae are simple. Recall Serre's definition of the intersection multiplicity of Y and Z along a component P of their intersection:

$$i(Y, Z; P) = \sum (-1)^i \operatorname{len} \operatorname{Tor}_i^X(\mathcal{O}_Y, \mathcal{O}_Z)_P$$

where the length is taken over the local ring at *P*. Thus if *Y* and *Z* are homologically transverse, then $i(Y, Z; P) = \text{len}(\mathcal{O}_Y \otimes_X \mathcal{O}_Z)_P$; that is, the intersection multiplicity is given by the length of the scheme-theoretic intersection of *Y* and *Z*.

Understanding homological transversality

 Two distinct irreducible curves on a smooth surface are always homologically transverse. Thus "transverse" is really not the right word, but it gives a flavour of what we're after.

More examples

- A point P is homologically transverse to a subscheme Z exactly when P ∉ Z.
- More generally: *Y* and *Z* are not homologically transverse if their intersection has unexpectedly high codimension or if *Z* meets the non-Cohen-Macaulay locus of *Y* badly.
- The standard example involves the intersection of three 2-planes meeting at a point in P⁴, which is hard to draw.

・ 同 ト ・ ヨ ト ・ ヨ ト

First main theorem

Theorem

Let *Z* be an irreducible proper subvariety of *X* of codimension d > 1. Let $R = R(X, \mathcal{L}, \phi, Z)$.

- If Z intersects all orbits only finitely many times, then R is strongly right Noetherian.
- R always fails left χ_1 .

If $\{\phi^n Z\}$ is critically transverse in X, then:

- R is left Noetherian but not strongly left Noetherian.
- If X and Z are smooth, then R satisfies right χ_{d-1} and fails right χ_d .

In particular, if $X = \mathbb{P}^d$, $\mathcal{L} = \mathcal{O}(1)$, and $Z = \{c\}$, we obtain Rogalski's result.

ヘロン 人間 とくほ とくほ とう

1

Definition

• Recall the definition of the category

qgr- $R = \{ \text{ graded right } R \text{-modules } \}/\text{torsion.}$

- There is a canonical functor $\pi : \text{gr-}R \to \text{qgr-}R$.
- Consider the functor $\operatorname{Hom}_{\operatorname{qgr}-R}(\pi R, _)$.
- The *right cohomological dimension* of *R* is the cohomological dimension of the functor Hom_{qgr-R}(πR, __).

Example: Let T be commutative, Y = Proj T.

- Then qgr- $T \simeq \mathcal{O}_Y$ -mod, and $\pi T \cong \mathcal{O}_Y$.
- Thus Hom_{qgr-T}(πT, _) = Hom_{OY}(O_Y, _) = H⁰(Y, _), the global section functor.
- So the cohomological dimension of *T* is the cohomological dimension of *Y* = Proj *T*.

Finite cohomological dimension

Stafford and van den Bergh ask: Do all Noetherian connected graded rings have finite cohomological dimension?

- No known counterexample.
- A (finitely generated) commutative graded ring has finite cohomological dimension.
- Proof:
 - We are really working with local cohomology, which is the same as Čech cohomology. So $H^n = 0$ for $n > \dim Y$.
 - Induct directly on dim Y.
- These proofs both depend on the geometry of the underlying space of *Y*. Thus they fail for noncommutative rings, where there is no "space" to work with.

くロン (調) (目) (目)

A right Noetherian counterexample

- Let C be the cuspidal cubic in P² and let X = C × P¹.
- Let P be the singular point of C and let Z = P × [0 : 1].

ヘロト 人間 とくほ とくほ とう

• Let $\phi : X \to X$ be the automorphism defined by $\phi(x, [s:t]) = (x, [s+t:t]).$

Then if \mathcal{L} is any ϕ -ample invertible sheaf on X, the ring $R = R(X, \mathcal{L}, \phi, Z)$ is right (but not left) Noetherian, and the right cohomological dimension of R is infinite.

Understanding the counterexample

- Z meets orbits at most once, so R is right Noetherian.
- Since all locally free resolutions of *O_Z* are infinite, the right cohomological dimension of *R* is infinite. (Here qgr-*R* ≃ *O_X*-mod, with *πR* corresponding to *I*.)
- All φⁿ(Z) are in P × ℙ¹, so critical transversality fails. Thus R is not left Noetherian.

Theorem

For a general X, \mathcal{L}, ϕ, Z , if $R = R(X, \mathcal{L}, \phi, Z)$ is left Noetherian (technically, if the corresponding "sheafified" object \mathcal{R} is left Noetherian), then R has finite right cohomological dimension.

 This suggests the answer to Stafford and van den Bergh's question is "yes" and no Noetherian connected graded ring of infinite cohomological dimension exists.

Understanding the counterexample

- Z meets orbits at most once, so R is right Noetherian.
- Since all locally free resolutions of *O_Z* are infinite, the right cohomological dimension of *R* is infinite. (Here qgr-*R* ≃ *O_X*-mod, with *πR* corresponding to *I*.)
- All φⁿ(Z) are in P × ℙ¹, so critical transversality fails. Thus R is not left Noetherian.

Theorem

For a general X, \mathcal{L}, ϕ, Z , if $R = R(X, \mathcal{L}, \phi, Z)$ is left Noetherian (technically, if the corresponding "sheafified" object \mathcal{R} is left Noetherian), then R has finite right cohomological dimension.

 This suggests the answer to Stafford and van den Bergh's question is "yes" and no Noetherian connected graded ring of infinite cohomological dimension exists.

Understanding the theorem

Theorem

For a general X, \mathcal{L}, ϕ, Z , if $R = R(X, \mathcal{L}, \phi, Z)$ is left Noetherian then R has finite right cohomological dimension.

- Recall that *R* being left Noetherian is controlled by the critical transversality of {\$\phi^n Z\$}.
- A counterexample would require Z to have infinite homological dimension and to satisfy critical transversality.
- It turns out (Hochster) that none such exist.

イロト イポト イヨト イヨト

What does critical transversality mean, geometrically?

Theorem

Assume characteristic 0 and that Aut(X) is an algebraic group. Then $\{\phi^n Z\}$ is critically transverse if and only if Z is homologically transverse to all ϕ -fixed subschemes of X.

 A generalization of the result of Keeler, Rogalski, and Stafford that in this situation {φⁿ(c)} is critically dense exactly when {φⁿ(c)} is (Zariski) dense.

Example: $X = \mathbb{P}^d$ and ϕ a diagonal automorphism with algebraically independent eigenvalues. If *Z* is homologically transverse to the coordinate subspaces, then $\{\phi^n(Z)\}$ is critically transverse.

ヘロト ヘアト ヘヨト ヘヨト

Second main theorem

A corollary of the following purely geometric result:

Theorem

Let G be an algebraic group acting on a variety X. Let Z be a closed subscheme that is homologically transverse to the orbits of G.

- Then for any closed subscheme Y, the generic translate of Z is homologically transverse to Y.
- That is, there is a dense open subset U ⊆ G such that, if g ∈ U, then gZ is homologically transverse to Y.

This generalizes a result of Miller and Speyer that says that homological transversality is generic for transitive group actions, and ultimately goes back to the Kleiman-Bertini theorem.