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The underlying geometric data

We start with the following data:
Let X be a projective variety defined over an algebraically
closed field k .
Let φ be an automorphism of X .
Let L be an invertible sheaf on X ; as usual, we denote the
product (φn−1)∗L ⊗ · · · ⊗ φ∗L ⊗ L by Ln.
We require that L is φ-ample: this is a technical condition
that means that {Ln} has the same good properties as the
tensor powers of an ample invertible sheaf.
Let Z ⊂ X be an irreducible subvariety.
Standing assumption: No power of φ fixes Z .
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Constructing a ring

We define a ring R = R(X ,L, φ, Z ) as follows:
Form the twisted homogeneous coordinate ring
B = B(X ,L, φ) defined by Bn = H0(X ,Ln).
Recall that B is a ring via the maps

H0(X ,Ln)⊗ H0(X ,Lm)
1⊗φn

!!

H0(X ,Ln)⊗ H0(X , (φn)∗Lm) !! H0(X ,Lm+n).

Let I be the right ideal of B of sections vanishing on Z .
Let R = {g ∈ B | gI ⊆ I}. R is the idealizer in B of I; we
write R = IB(I).
Notice that R = k + I, since Z is of infinite order under φ.
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Technical properties

What are the properties of R = R(X ,L, φ, Z )? How do they
depend on the underlying geometry?

Definition
R is strongly right Noetherian if for any commutative Noetherian
ring C, the ring R ⊗k C is right Noetherian.

Definition
We say that R satisfies (right) χr if (roughly speaking)
ExtrR(k , M) is finite dimensional for all finitely generated right
R-modules M.
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Rogalski’s result

Rogalski studied the case where X = Pd , L = O(1), and
Z = {c}, a point. He found that R has unusual properties.

Definition
The set {φn(c)} is critically dense if any infinite subset of
{φn(c)} is Zariski dense in Pd .

Theorem (Rogalski)

R = R(Pd ,O(1), φ, c) is strongly right Noetherian. If {φn(c)} is
critically dense then R is left Noetherian but not strongly left
Noetherian, and satisfies right χd−1 but not right χd . R always
fails left χ1.

This generalizes an example of Stafford and Zhang of an
idealizer given by a point in P1.
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Critical transversality

We seek to understand R for more general X , L, φ, and Z . In
particular, is there an appropriate analogue of critical density
for subschemes that are not just points?

Definition
We say the set {φnZ} is critically transverse if for any Y , for
|n| % 0, we have that TorX

j (OφnZ ,OY ) = 0 for j ≥ 1

Algebraic motivation: a result of Rogalski that says R is left
Noetherian if and only if TorB

1 (B/I, B/J) is finite dimensional for
all left ideals J in BB. (Recall that I is the right ideal of B
corresponding to Z .)

TorB
1 (B/I, B/J) = (I ∩ J)/IJ. This governs extensions and

contractions of left ideals between R and B.
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Geometric motivation

Definition
Two closed subschemes Y and Z of X are homologically
transverse if for all j ≥ 1, we have TorX

j (OZ ,OY ) = 0.

Homological transversality says that intersection formulae are
simple. Recall Serre’s definition of the intersection multiplicity of
Y and Z along a component P of their intersection:

i(Y , Z ; P) =
∑

(−1)i len TorX
i (OY ,OZ )P

where the length is taken over the local ring at P.
Thus if Y and Z are homologically transverse, then
i(Y , Z ; P) = len(OY ⊗X OZ )P ; that is, the intersection
multiplicity is given by the length of the scheme-theoretic
intersection of Y and Z .

Susan J. Sierra Geometric idealizers and critical transversality



Idealizers given by geometric data
Cohomological dimension

The geometry of critical transversality
11

Understanding homological transversality

Two distinct irreducible curves
on a smooth surface are always
homologically transverse. Thus
"transverse" is really not the
right word, but it gives a flavour
of what we’re after.
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More examples

A point P is homologically transverse to a subscheme Z
exactly when P )∈ Z .
More generally: Y and Z are not homologically transverse
if their intersection has unexpectedly high codimension or if
Z meets the non-Cohen-Macaulay locus of Y badly.
The standard example involves the intersection of three
2-planes meeting at a point in P4, which is hard to draw.
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First main theorem

Theorem
Let Z be an irreducible proper subvariety of X of codimension
d > 1. Let R = R(X ,L, φ, Z ).

If Z intersects all orbits only finitely many times, then R is
strongly right Noetherian.
R always fails left χ1.

If {φnZ} is critically transverse in X, then:
R is left Noetherian but not strongly left Noetherian.
If X and Z are smooth, then R satisfies right χd−1 and fails
right χd .

In particular, if X = Pd , L = O(1), and Z = {c}, we obtain
Rogalski’s result.
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Definition

Recall the definition of the category

qgr-R = { graded right R-modules }/torsion.

There is a canonical functor π : gr-R → qgr-R.
Consider the functor Homqgr-R(πR, ).
The right cohomological dimension of R is the
cohomological dimension of the functor Homqgr-R(πR, ).

Example: Let T be commutative, Y = Proj T .
Then qgr-T + OY -mod, and πT ∼= OY .
Thus Homqgr-T (πT , ) = HomOY (OY , ) = H0(Y , ), the
global section functor.
So the cohomological dimension of T is the cohomological
dimension of Y = Proj T .
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Finite cohomological dimension

Stafford and van den Bergh ask: Do all Noetherian connected
graded rings have finite cohomological dimension?

No known counterexample.
A (finitely generated) commutative graded ring has finite
cohomological dimension.
Proof:

1 We are really working with local cohomology, which is the
same as Čech cohomology. So Hn = 0 for n > dim Y .

2 Induct directly on dim Y .

These proofs both depend on the geometry of the
underlying space of Y . Thus they fail for noncommutative
rings, where there is no “space” to work with.

Susan J. Sierra Geometric idealizers and critical transversality



Idealizers given by geometric data
Cohomological dimension

The geometry of critical transversality
16

A right Noetherian counterexample

Let C be the cuspidal cubic in P2

and let X = C × P1.
Let P be the singular point of C
and let Z = P × [0 : 1].
Let φ : X → X be the
automorphism defined by
φ(x , [s : t ]) = (x , [s + t : t ]).

Then if L is any φ-ample invertible sheaf on X , the ring
R = R(X ,L, φ, Z ) is right (but not left) Noetherian, and the right
cohomological dimension of R is infinite.
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Understanding the counterexample

Z meets orbits at most once, so R is right Noetherian.
Since all locally free resolutions of OZ are infinite, the right
cohomological dimension of R is infinite. (Here
qgr-R + OX -mod, with πR corresponding to I.)
All φn(Z ) are in P × P1, so critical transversality fails. Thus
R is not left Noetherian.

Theorem
For a general X ,L, φ, Z, if R = R(X ,L, φ, Z ) is left Noetherian
(technically, if the corresponding “sheafified” object R is left
Noetherian), then R has finite right cohomological dimension.

This suggests the answer to Stafford and van den Bergh’s
question is "yes" and no Noetherian connected graded ring
of infinite cohomological dimension exists.
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Understanding the theorem

Theorem
For a general X ,L, φ, Z, if R = R(X ,L, φ, Z ) is left Noetherian
then R has finite right cohomological dimension.

Recall that R being left Noetherian is controlled by the
critical transversality of {φnZ}.
A counterexample would require Z to have infinite
homological dimension and to satisfy critical transversality.
It turns out (Hochster) that none such exist.
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What does critical transversality mean, geometrically?

Theorem
Assume characteristic 0 and that Aut(X ) is an algebraic group.
Then {φnZ} is critically transverse if and only if Z is
homologically transverse to all φ-fixed subschemes of X.

A generalization of the result of Keeler, Rogalski, and
Stafford that in this situation {φn(c)} is critically dense
exactly when {φn(c)} is (Zariski) dense.

Example: X = Pd and φ a diagonal automorphism with
algebraically independent eigenvalues. If Z is homologically
transverse to the coordinate subspaces, then {φn(Z )} is
critically transverse.
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Second main theorem

A corollary of the following purely geometric result:

Theorem
Let G be an algebraic group acting on a variety X. Let Z be a
closed subscheme that is homologically transverse to the orbits
of G.

Then for any closed subscheme Y , the generic translate of
Z is homologically transverse to Y .
That is, there is a dense open subset U ⊆ G such that, if
g ∈ U, then gZ is homologically transverse to Y .

This generalizes a result of Miller and Speyer that says that
homological transversality is generic for transitive group
actions, and ultimately goes back to the Kleiman-Bertini
theorem.

Susan J. Sierra Geometric idealizers and critical transversality


