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Algebraic D-modules and Representation
Theory of Semisimple Lie Groups

Dragan Miličić

Abstract. This expository paper represents an introduction to some aspects
of the current research in representation theory of semisimple Lie groups. In
particular, we discuss the theory of “localization” of modules over the envelop-

ing algebra of a semisimple Lie algebra due to Alexander Beilinson and Joseph
Bernstein [1], [2], and the work of Henryk Hecht, Wilfried Schmid, Joseph

A. Wolf and the author on the localization of Harish-Chandra modules [7],
[8], [13], [17], [18]. These results can be viewed as a vast generalization of
the classical theorem of Armand Borel and André Weil on geometric realiza-

tion of irreducible finite-dimensional representations of compact semisimple
Lie groups [3].

1. Introduction

Let G0 be a connected semisimple Lie group with finite center. Fix a maximal
compact subgroup K0 of G0. Let g be the complexified Lie algebra of G0 and
k its subalgebra which is the complexified Lie algebra of K0. Denote by σ the
corresponding Cartan involution, i.e., σ is the involution of g such that k is the
set of its fixed points. Let K be the complexification of K0. The group K has a
natural structure of a complex reductive algebraic group.

Let π be an admissible representation of G0 of finite length. Then, the submod-
ule V of all K0-finite vectors in this representation is a finitely generated module
over the enveloping algebra U(g) of g, and also a direct sum of finite-dimensional
irreducible representations of K0. The representation of K0 extends uniquely to
a representation of the complexification K of K0, and it is also a direct sum of
finite-dimensional representations.

We say that a representation of a complex algebraic group K in a linear space
V is algebraic if V is a union of finite-dimensional K-invariant subspaces Vi, i ∈ I,
and for each i ∈ I the action of K on Vi induces a morphism of algebraic groups
K −→ GL(Vi).

This leads us to the definition of a Harish-Chandra module V :
(i) V is a finitely generated U(g)-module;
(ii) V is an algebraic representation of K;
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(iii) the actions of g and K are compatible, i.e.,
(1) (a) the action of k as the subalgebra of g agrees with the differential of

the action of K;
(2) (b) the action map U(g) ⊗ V −→ V is K-equivariant (here K acts on

U(g) by the adjoint action).
A morphism of Harish-Chandra modules is a linear map which intertwines the U(g)-
and K-actions. Harish-Chandra modules and their morphisms form an abelian
category. We denote it by M(g,K).

Let Z(g) be the center of the enveloping algebra of U(g). If V is an irreducible
Harish-Chandra module, the center Z(g) acts on V by multiples of the identity
operator, i.e., Z(g) 3 ξ −→ χV (ξ) 1V , where χV : Z(g) −→ C is the infinitesimal
character of V . In general, if a Harish-Chandra module V is annihilated by an
ideal of finite codimension in Z(g), it is of finite length.

Since the functor attaching to admissible representations of G0 their Harish-
Chandra modules maps irreducibles into irreducibles, the problem of classification
of irreducible admissible representations is equivalent to the problem of classifi-
cation of irreducible Harish-Chandra modules. This problem was solved in the
work of R. Langlands [11], Harish-Chandra, A.W. Knapp and G. Zuckerman [10],
and D. Vogan [19]. Their proofs were based on a blend of algebraic and analytic
techniques and depended heavily on the work of Harish-Chandra.

In this paper we give an exposition of the classification using entirely the meth-
ods of algebraic geometry [8], [14]. In §2, we recall the Borel-Weil theorem. In §3,
we introduce the localization functor of Beilinson and Bernstein, and sketch a proof
of the equivalence of the category of U(g)-modules with an infinitesimal character
with a category of D-modules on the flag variety of g. This equivalence induces
an equivalence of the category of Harish-Chandra modules with an infinitesimal
character with a category of “Harish-Chandra sheaves” on the flag variety. In §4,
we recall the basic notions and constructions of the algebraic theory of D-modules.
After discussing the structure of K-orbits in the flag variety of g in §5, we classify all
irreducible Harish-Chandra sheaves in §6. In §7, we describe a necessary and suffi-
cient condition for vanishing of cohomology of irreducible Harish-Chandra sheaves
and complete the geometric classification of irreducible Harish-Chandra modules.
The final section 8, contains a discussion of the relationship of this classification
with the Langlands classification, and a detailed discussion of the case of the group
SU(2, 1).

2. The Borel-Weil theorem

First we discuss the case of a connected compact semisimple Lie group. In
this situation G0 = K0, and we denote by G the complexification of G0. In this
case, the irreducible Harish-Chandra modules are just irreducible finite-dimensional
representations of G.

For simplicity, we assume that G0 (and G) is simply connected. Denote by X
the flag variety of g, i.e., the space of all Borel subalgebras of g. It has a natural
structure of a smooth algebraic variety. Since all Borel subalgebras are mutually
conjugate, the group G acts transitively on X. For any x ∈ X, the differential of
the orbit map g 7−→ g · x defines a projection of the Lie algebra g onto the tangent
space Tx(X) of X at x. Therefore, we have a natural vector bundle morphism
from the trivial bundle X × g over X into the tangent bundle T (X) of X. If we
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consider the adjoint action of G on g, the trivial bundle X × g is G-homogeneous
and the morphism X×g −→ T (X) is G-equivariant. The kernel of this morphism is
a G-homogeneous vector bundle B over X. The fiber of B over x ∈ X is the Borel
subalgebra bx which corresponds to the point x. Therefore, we can view B as the
“tautological” vector bundle of Borel subalgebras over X. For any x ∈ X, denote
by nx = [bx, bx] the nilpotent radical of bx. Then N = {(x, ξ) | ξ ∈ nx} ⊂ B is a
G-homogeneous vector subbundle of B. We denote the quotient vector bundle B/N
by H. If Bx is the stabilizer of x in G, it acts trivially on the fiber Hx of H at x.
Therefore, H is a trivial vector bundle on X. Since X is a projective variety, the
only global sections of H are constants. Let h be the space of global sections of H.
We can view it as an abelian Lie algebra. The Lie algebra h is called the (abstract)
Cartan algebra of g. Let c be any Cartan subalgebra of g, R the root system of the
pair (g, c) in the dual space c∗ of c, and R+ a set of positive roots in R. Then c and
the root subspaces of g corresponding to the roots in R+ span a Borel subalgebra
bx for some point x ∈ X. We have the sequence c −→ bx −→ bx/nx = Hx of linear
maps, and their composition is an isomorphism. On the other hand, the evaluation
map h −→ Hx is also an isomorphism, and by composing the previous map with the
inverse of the evaluation map, we get the canonical isomorphism c −→ h. Its dual
map is an isomorphism h∗ −→ c∗ which we call a specialization at x. It identifies
an (abstract) root system Σ in h∗, and a set of positive roots Σ+, with R and R+.
One can check that Σ and Σ+ do not depend on the choice of c and x. Therefore,
we constructed the (abstract) Cartan triple (h∗,Σ,Σ+) of g. The dual root system
in h is denoted by Σ .̌

Let P (Σ) be the weight lattice in h∗. Then to each λ ∈ P (Σ) we attach
a G-homogeneous invertible OX -module O(λ) on X. We say that a weight λ is
antidominant if α (̌λ) ≤ 0 for any α ∈ Σ+. The following result is the celebrated
Borel-Weil theorem. We include a proof inspired by the localization theory.

2.1. Theorem (Borel-Weil). Let λ be an antidominant weight. Then
(i) Hi(X,O(λ)) vanish for i > 0.
(ii) Γ(X,O(λ)) is the irreducible finite-dimensional G-module with lowest weight

λ.

Proof. Denote by Fλ the irreducible finite-dimensional G-module with lowest
weight λ. Let Fλ be the sheaf of local sections of the trivial vector bundle with
fibre Fλ over X. Clearly we have

Hi(X,Fλ) = Hi(X,OX )⊗C Fλ for i ∈ Z+.

Since X is a projective variety, the cohomology groups Hi(X,OX) are finite dimen-
sional.

Let Ω be the Casimir element in the center of the enveloping algebra U(g)
of g. Then for any local section s of O(µ), Ωs is proportional to s. In fact, if
we denote by 〈·, ·〉 the natural bilinear form on h∗ induced by the Killing form of
g, by a simple calculation using Harish-Chandra homomorphism we have Ωs =
〈µ,µ − 2ρ〉s for any section s of O(µ). In particular, Ω annihilates OX , hence it
also annihilates finite-dimensional g-modules Hi(X,OX). Since finite-dimensional
g-modules are semisimple, and Ω acts trivially only on the trivial irreducible g-
module, we conclude that the action of g on Hi(X,OX) is trivial. Therefore, Ω−
〈λ,λ− 2ρ〉 annihilates Hi(X,Fλ). On the other hand, the Jordan-Hölder filtration
of Fλ, considered as a B-module, induces a filtration of Fλ by G-homogeneous
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locally free OX -modules such that Fp Fλ/Fp−1 Fλ is a G-homogeneous invertible
OX -module O(νp) for a weight νp of Fλ. This implies that

∏dim Fλ

0 (Ω−〈νp, νp−2ρ〉)
annihilates Fλ.

Assume that 〈νp, νp − 2ρ〉 = 〈λ,λ − 2ρ〉 for some weight νp. It leads to 〈νp −
ρ, νp − ρ〉 = 〈λ − ρ, λ − ρ〉, and, since λ is the lowest weight, we finally see that
νp = λ. Therefore, Fλ splits into the direct sum of the Ω-eigensheaf O(λ) for
eigenvalue 〈λ,λ−2ρ〉 and its Ω-invariant complement. Since cohomology commutes
with direct sums, we conclude that

Hi(X,O(λ)) = Hi(X,OX)⊗C Fλ

for i ∈ Z+. Clearly, Γ(X,OX) = C and (ii) follows immediately. This implies that
invertible OX -modules O(λ), for regular antidominant λ, are very ample. By a
theorem of Serre, (i) follows for geometrically “very positive” λ (i.e., far from the
walls in the negative chamber). Hence Hi(X,OX) = 0 for i > 0, which in turn
implies (i) in general. �

3. Beilinson-Bernstein equivalence of categories

Now we want to describe a generalization of the Borel-Weil theorem established
by A. Beilinson and J. Bernstein.

First we have to construct a family of sheaves of algebras on the flag variety X.
Let g◦ = OX⊗Cg be the sheaf of local sections of the trivial bundleX×g. Denote by
b◦ and n◦ the corresponding subsheaves of local sections of B and N , respectively.
The differential of the action of G on X defines a natural homomorphism τ of the
Lie algebra g into the Lie algebra of vector fields on X. We define a structure of a
sheaf of complex Lie algebras on g◦ by putting

[f ⊗ ξ, g ⊗ η] = fτ(ξ)g ⊗ η − gτ(η)f ⊗ ξ + fg ⊗ [ξ, η]

for f, g ∈ OX and ξ, η ∈ g. If we extend τ to the natural homomorphism of g◦ into
the sheaf of Lie algebras of local vector fields on X, ker τ is exactly b◦. In addition,
the sheaves b◦ and n◦ are sheaves of ideals in g◦.

Similarly, we define a multiplication in the sheaf U◦ = OX ⊗C U(g) by

(f ⊗ ξ)(g ⊗ η) = fτ(ξ)g ⊗ η + fg ⊗ ξη

where f, g ∈ OX and ξ ∈ g, η ∈ U(g). In this way U◦ becomes a sheaf of complex
associative algebras on X. Evidently, g◦ is a subsheaf of U◦, and the natural
commutator in U◦ induces the bracket operation on g◦. It follows that the sheaf
of right ideals n◦U◦ generated by n◦ in U◦ is a sheaf of two-sided ideals in U◦.
Therefore, the quotient Dh = U◦/n◦U◦ is a sheaf of complex associative algebras
on X.

The natural morphism of g◦ into Dh induces a morphism of the sheaf of Lie
subalgebras b◦ into Dh which vanishes on n◦. Hence there is a natural homomor-
phism φ of the enveloping algebra U(h) of h into the global sections Γ(X,Dh) of Dh.
The action of the group G on the structure sheaf OX and U(g) induces a natural
G-action on U◦ and Dh. On the other hand, triviality of H and constancy of its
global sections imply that the induced G-action on h is trivial. It follows that φ
maps U(h) into the G-invariants of Γ(X,Dh). This implies that the image of φ is in
the center of Dh(U) for any open set U in X. One can show that φ is actually an
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isomorphism of U(h) onto the subalgebra of all G-invariants in Γ(X,Dh). In addi-
tion, the natural homomorphism of U(g) into Γ(X,Dh) induces a homomorphism of
the center Z(g) of U(g) into Γ(X,Dh). Its image is also contained in the subalgebra
of G-invariants of Γ(X,Dh). Hence, it is in φ(U(h)). Finally, we have the canonical
Harish-Chandra homomorphism γ : Z(g) −→ U(h), defined in the following way.
First, for any x ∈ X, the center Z(g) is contained in the sum of the subalgebra
U(bx) and the right ideal nxU(g) of U(g). Therefore, we have the natural projection
of Z(g) into

U(bx)/(nxU(g) ∩ U(bx)) = U(bx)/nxU(bx) = U(bx/nx).

Its composition with the natural isomorphism of U(bx/nx) with U(h) is independent
of x and, by definition, equal to γ. The diagram

Z(g)
γ−−−−→ U(h)∥∥∥ φ

y
Z(g) −−−−→ Γ(X,Dh)

of natural algebra homomorphisms is commutative. We can form U(g)⊗Z(g) U(h),
which has a natural structure of an associative algebra. There exists a natural
algebra homomorphism

Ψ : U(g)⊗Z(g) U(h) −→ Γ(X,Dh)

given by the tensor product of the natural homomorphism of U(g) into Γ(X,Dh)
and φ. The next result describes the cohomology of the sheaf of algebras Dh. Its
proof is an unpublished argument due to Joseph Taylor and the author.

3.1. Lemma.
(i) The morphism

Ψ : U(g)⊗Z(g) U(h) −→ Γ(X,Dh)

is an isomorphism of algebras.
(ii) Hi(X,Dh) = 0 for i > 0.

Sketch of the proof. First we construct a left resolution

. . . −→ U◦ ⊗OX

∧p
n◦ −→ . . . −→ U◦ ⊗OX

n◦ −→ U◦ −→ Dh −→ 0

of Dh (here
∧p

n◦ is the pth exterior power of n◦). The cohomology of each com-
ponent in this complex is given by

Hq(X,U◦ ⊗OX

∧p
n◦) = Hq(X,U(g)⊗C

∧p
n◦) = U(g)⊗C Hq(X,

∧p
n◦).

Let ` : W −→ Z+ be the length function on the Weyl group W of Σ with respect to
the set of reflections corresponding to simple roots Π in Σ+. Let W (p) = {w ∈W |
`(w) = p} and n(p) = CardW (p). By a lemma of Bott [5] (which follows easily
from the Borel-Weil-Bott theorem),

Hq(X,
∧p

n◦) = 0 if p 6= q;

and Hp(X,
∧p

n◦) is a linear space of dimension n(p) with trivial action of G. Now,
a standard spectral sequence argument implies that (ii) holds, and that Γ(X,Dh)
has a finite filtration such that the corresponding graded algebra is isomorphic to
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a direct sum of CardW copies of U(g). Taking the G-invariants of this spectral
sequence we see that the induced finite filtration of Γ(X,Dh)G = U(h) is such that
the corresponding graded algebra is isomorphic to a direct sum of CardW copies
of Z(g). This implies (i). �

Denote by ρ the half-sum of all positive roots in Σ. The enveloping algebra
U(h) of h is naturally isomorphic to the algebra of polynomials on h∗, and therefore
any λ ∈ h∗ determines a homomorphism of U(h) into C. Let Iλ be the kernel of the
homomorphism ϕλ : U(h) −→ C determined by λ+ ρ. Then γ−1(Iλ) is a maximal
ideal in Z(g), and, by a result of Harish-Chandra, for λ,µ ∈ h∗,

γ−1(Iλ) = γ−1(Iµ) if and only if wλ = µ

for some w in the Weyl group W of Σ. For any λ ∈ h∗, the sheaf IλDh is a
sheaf of two-sided ideals in Dh; therefore Dλ = Dh/IλDh is a sheaf of complex
associative algebras on X. In the case when λ = −ρ, we have I−ρ = hU(h), hence
D−ρ = U◦/b◦U◦, i.e., it is the sheaf of local differential operators onX. If λ ∈ P (Σ),
Dλ is the sheaf of differential operators on the invertible OX -module O(λ+ ρ).

Let Y be a smooth complex algebraic variety. Denote by OY its structure sheaf.
Let DY be the sheaf of local differential operators on Y . Denote by iY the natural
homomorphism of the sheaf of rings OY into DY . We can consider the category of
pairs (A, iA) where A is a sheaf of rings on Y and iA : OY −→ A a homomorphism
of sheaves of rings. The morphisms are homomorphisms α : A −→ B of sheaves of
algebras such that α ◦ iA = iB. A pair (D, i) is called a twisted sheaf of differential
operators if Y has a cover by open sets U such that (D|U, i|U) is isomorphic to
(DU , iU ).

In general, the sheaves of algebras Dλ, λ ∈ h∗, are twisted sheaves of differential
operators on X.

Let θ be a Weyl group orbit in h∗ and λ ∈ θ. Denote by Jθ = γ−1(Iλ) the
maximal ideal in Z(g) determined by θ. We denote by χλ the homomorphism of
Z(g) into C with kerχλ = Jθ (as we remarked before, χλ depends only on the Weyl
group orbit θ of λ). The elements of Jθ map into the zero section of Dλ. Therefore,
we have a canonical morphism of Uθ = U(g)/JθU(g) into Γ(X,Dλ).

3.2. Theorem.
(i) The morphism

Uθ −→ Γ(X,Dλ)

is an isomorphism of algebras.
(ii) Hi(X,Dλ) = 0 for i > 0.

Proof. Let Cλ+ρ be a one-dimensional h-module defined by λ+ ρ. Let

· · · −→ F−p −→ · · · −→ F−1 −→ F 0 −→ Cλ+ρ −→ 0

be a left free U(h)-module resolution of Cλ+ρ. By tensoring with Dh over U(h) we
get

· · · −→ Dh ⊗U(h) F
−p −→ · · · −→ Dh ⊗U(h) F

0 −→ Dh ⊗U(h) Cλ+ρ −→ 0.

Since Dh is locally U(h)-free, this is an exact sequence. Therefore, by 1.(ii), it is
a left resolution of Dh ⊗U(h) Cλ+ρ = Dλ by Γ(X,−)-acyclic sheaves. This implies
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first that all higher cohomologies of Dλ vanish. Also, it gives, using 1.(i), the exact
sequence

· · · −→ U(g)⊗Z(g) F
−p −→ · · · −→ U(g)⊗Z(g) F

0 −→ Γ(X,Dλ) −→ 0,

which yields Uθ = U(g)⊗Z(g) Cλ+ρ = Γ(X,Dλ). �

Therefore, the twisted sheaves of differential operators Dλ on X can be viewed
as “sheafified” versions of the quotients Uθ of the enveloping algebra U(g). This
allows us to “localize” the modules over Uθ.

First, denote by M(Uθ) the category of Uθ-modules. Also, let Mqc(Dλ) be the
category of quasi-coherent Dλ-modules on X. If V is a quasi-coherent Dλ-module,
its global sections (and higher cohomology groups) are modules over Γ(X,Dλ) = Uθ.
Therefore, we can consider the functors:

Hp(X,−) : Mqc(Dλ) −→M(Uθ)

for p ∈ Z+.
The next two results can be viewed as a vast generalization of the Borel-Weil

theorem. In idea, their proof is very similar to our proof of the Borel-Weil theorem.
It is also based on the theorems of Serre on cohomology of invertible O-modules on
projective varieties, and a splitting argument for the action of Z(g) [1].

The first result corresponds to 2.1.(i). We say that λ ∈ h∗ is antidominant
if α (̌λ) is not a positive integer for any α ∈ Σ+. This generalizes the notion of
antidominance for weights in P (Σ) introduced in §2.

3.3. Vanishing Theorem. Let λ ∈ h∗ be antidominant. Let V be a quasi-
coherent Dλ-module on the flag variety X. Then the cohomology groups Hi(X,V)
vanish for i > 0.

In particular, the functor

Γ : Mqc(Dλ) −→M(Uθ)

is exact. The second result corresponds to 2.1.(ii).

3.4. Nonvanishing Theorem. Let λ ∈ h∗ be regular and antidominant and
V ∈Mqc(Dλ) such that Γ(X,V) = 0. Then V = 0.

This has the following consequence:

3.5. Corollary. Let λ ∈ h∗ be antidominant and regular. Then any V ∈
Mqc(Dλ) is generated by its global sections.

Proof. Denote by W the Dλ-submodule of V generated by all global sections.
Then, we have an exact sequence

0 −→ Γ(X,W) −→ Γ(X,V) −→ Γ(X,V/W) −→ 0,

of Uθ-modules, and therefore Γ(X,V/W) = 0. Hence, V/W = 0, and V is generated
by its global sections. �

Let λ ∈ h∗ and let θ be the corresponding Weyl group orbit. Then we can
define a right exact covariant functor ∆λ from M(Uθ) into Mqc(Dλ) by

∆λ(V ) = Dλ ⊗Uθ
V
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for any V ∈M(Uθ). It is called the localization functor. Since

Γ(X,W) = HomDλ
(Dλ,W)

for any W ∈Mqc(Dλ), it follows that ∆λ is a left adjoint functor to the functor of
global sections Γ, i.e.,

HomDλ
(∆λ(V ),W) = HomUθ

(V,Γ(X,W)),

for any V ∈ M(Uθ) and W ∈ Mqc(Dλ). In particular, there exists a functorial
morphism ϕ from the identity functor into Γ ◦∆λ. For any V ∈M(Uθ), it is given
by the natural morphism ϕV : V −→ Γ(X,∆λ(V )).

3.6. Lemma. Let λ ∈ h∗ be antidominant. Then the natural map ϕV of V
into Γ(X,∆λ(V )) is an isomorphism of g-modules.

Proof. If V = Uθ this follows from 2. Also, by 3, we know that Γ is exact in
this situation. This implies that Γ ◦∆λ is a right exact functor. Let

(Uθ)(J) −→ (Uθ)(I) −→ V −→ 0

be an exact sequence of g-modules. Then we have the commutative diagram

(Uθ)(J) −−−−→ (Uθ)(I) −−−−→ V −−−−→ 0y y y
Γ(X,∆λ(Uθ))(J) −−−−→ Γ(X,∆λ(Uθ))(I) −−−−→ Γ(X,∆λ(V )) −−−−→ 0

with exact rows, and the first two vertical arrows are isomorphisms. This implies
that the third one is also an isomorphism. �

On the other hand, the adjointness gives also a functorial morphism ψ from
∆λ ◦ Γ into the identity functor. For any V ∈ Mqc(Dλ), it is given by the natural
morphism ψV of ∆λ(Γ(X,V)) = Dλ ⊗Uθ

Γ(X,V) into V . Assume that λ is also
regular. Then, by 5, ψV is an epimorphism. Let K be the kernel of ψV . Then we
have the exact sequence of quasi-coherent Dλ-modules

0 −→ K −→ ∆λ(Γ(X,V)) −→ V −→ 0

and by applying Γ and using 3. we get the exact sequence

0 −→ Γ(X,K) −→ Γ(X,∆λ(Γ(X,V))) −→ Γ(X,V) −→ 0.

By 6. we see that Γ(X,K) = 0. By 4, K = 0 and ψV is an isomorphism. This
implies the following result, which is known as the Beilinson-Bernstein equivalence
of categories.

3.7. Theorem (Beilinson-Bernstein). Let λ ∈ h∗ be antidominant and
regular. Then the functor ∆λ from M(Uθ) into Mqc(Dλ) is an equivalence of
categories. Its inverse is Γ.
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3.8. Remark. In general, if we assume only that λ is antidominant, we denote
by QMqc(Dλ) the quotient category of Mqc(Dλ) with respect to the subcategory
of all quasi-coherent Dλ-modules with no global sections. Clearly, Γ induces an
exact functor from QMqc(Dλ) into M(Uθ) which we denote also by Γ. Then we
have an equivalence of categories

QMqc(Dλ) Γ−→M(Uθ).

The equivalence of categories allows one to transfer problems about Uθ-modules
into problems about Dλ-modules. The latter problems can be attacked by “local”
methods. To make this approach useful we need to introduce a “sheafified” version
of Harish-Chandra modules.1 A Harish-Chandra sheaf is

(i) a coherent Dλ-module V
(ii) with an algebraic action of K;
(iii) the actions of Dλ and K on V are compatible, i.e.,

(1) (a) the action of k as a subalgebra of g ⊂ Uθ = Γ(X,Dλ) agrees with
the differential of the action of K;

(2) (b) the action Dλ ⊗OX
V −→ V is K-equivariant.

Morphisms of Harish-Chandra sheaves are K-equivariant Dλ-module morphisms.
Harish-Chandra sheaves form an abelian category denoted by Mcoh(Dλ,K). Be-
cause of completely formal reasons, the equivalence of categories has the following
consequence, which is a K-equivariant version of 7.

3.9. Theorem. Let λ ∈ h∗ be antidominant and regular. Then the functor
∆λ from M(Uθ,K) into Mcoh(Dλ,K) is an equivalence of categories. Its inverse
is Γ.

Therefore, by 9. and its analogue in the singular case, the classification of all
irreducible Harish-Chandra modules is equivalent to the following two problems:

(a) the classification of all irreducible Harish-Chandra sheaves;
(b) determination of all irreducible Harish-Chandra sheaves V with Γ(X,V) 6= 0

for antidominant λ ∈ h∗.
In next sections we shall explain how to solve these two problems.

3.10. Remark. Although the setting of 7. is adequate for the formulation of
our results, the proofs require a more general setup. The difference between 7. and
the general setup is analogous to the difference between the Borel-Weil theorem
and its generalization, the Borel-Weil-Bott theorem. To explain this we have to use
the language of derived categories.

Let Db(Dλ) be the bounded derived category of the category of quasi-coherent
Dλ-modules. Let Db(Uθ) be the bounded derived category of the category of Uθ-
modules. Then, we have the following result:

3.11. Theorem. For a regular λ, the derived functors RΓ : Db(Dλ) −→ Db(Uθ)
and L∆λ : Db(Uθ) −→ Db(Dλ) are mutually inverse equivalences of categories.

1This requires some technical machinery beyond the scope of this paper, so we shall be rather
vague in this definition.
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4. Algebraic D-modules

In this section we review some basic notions and results from the algebraic
theory of D-modules. They will allow us to study the structure of Harish-Chandra
sheaves. Interested readers can find details in [4].

Let X be a smooth algebraic variety and D a twisted sheaf of differential op-
erators on X. Then the opposite sheaf of rings Dopp is again a twisted sheaf of
differential operators on X. We can therefore view left D-modules as right Dopp-
modules and vice versa. Formally, the category ML

qc(D) of quasi-coherent left
D-modules on X is isomorphic to the category MR

qc(Dopp) of quasi-coherent right
Dopp-modules on X. Hence one can freely use right and left modules depending on
the particular situation.

For a categoryMqc(D) of D-modules we denote by Mcoh(D) the corresponding
subcategory of coherent D-modules.

The sheaf of algebras D has a natural filtration (Dp; p ∈ Z) by the degree. If
we take a sufficiently small open set U in X such that D|U ∼= DU , this filtration
agrees with the standard degree filtration on DU . If we denote by π the canonical
projection of the cotangent bundle T ∗(X) onto X, we have GrD = π∗(OT∗(X)).

For any coherent D-module V we can construct a good filtration FV of V as a
D-module:

(a) The filtration FV is increasing, exhaustive and Fp V = 0 for “very negative”
p ∈ Z;

(b) Fp V are coherent OX -modules;
(c) Dp Fq V = Fp+q V for large q ∈ Z and all p ∈ Z+.

The annihilator of GrV is a sheaf of ideals in π∗(OT∗(X)). Therefore, we can attach
to it its zero set in T ∗(X). This variety is called the characteristic variety Char(V)
of V . One can show that it is independent of the choice of the good filtration of V .

A subvariety Z of T ∗(X) is called conical if (x, ω) ∈ Z, with x ∈ X and
ω ∈ T ∗x (X), implies (x, λω) ∈ Z for all λ ∈ C.

4.1. Lemma. Let V be a coherent D-module on X. Then
(i) The characteristic variety Char(V) is conical.
(ii) π(Char(V)) = supp(V).

The characteristic variety of a coherent D-module cannot be “too small”. More
precisely, we have the following result.

4.2. Theorem. Let V be a nonzero coherent D-module on X. Then

dimChar(V) ≥ dimX.

If dim Char(V) = dimX or V = 0, we say that V is a holonomic D-module.
Holonomic modules form an abelian subcategory of Mcoh(D). Any holonomic D-
module is of finite length.

Modules inMcoh(D) which are coherent as OX -modules are called connections.
Connections are locally free as OX -modules. Therefore, the support of a connection
τ is a union of connected components ofX. If supp(τ) = X, its characteristic variety
is the zero section of T ∗(X); in particular τ is holonomic. On the other hand, a
coherent D-module with characteristic variety equal to the zero section of T ∗(X)
is a connection supported on X.

Assume that V is a holonomic module with support equal to X. Since the char-
acteristic variety of a holonomic module V is conical, and has the same dimension
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as X, there exists an open and dense subset U in X such that the characteristic
variety of V|U is the zero section of T ∗(U). Therefore, V|U is a connection.

Now we define several functors between various categories of D-modules.
Let V be a quasi-coherent OX -module. An endomorphism D of the sheaf of

linear spaces V is called a differential endomorphism of V of degree ≤ n, n ∈ Z+, if
we have

[. . . [[D,f0], f1], . . . , fn] = 0
for any (n+ 1)-tuple (f0, f1, . . . , fn) of regular functions on any open set U in X.

First, let L be an invertible OX -module on X. Then L ⊗OX
D has a natural

structure of a right D-module by right multiplication in the second factor. Let
DL be the sheaf of differential endomorphisms of the OX -module L ⊗OX

D (for
the OX -module structure given by the left multiplication) which commute with the
right D-module structure. Then DL is a twisted sheaf of differential operators on
X. We can define the twist functor from ML

qc(D) into ML
qc(DL) by

V 7−→ (L⊗OX
D)⊗D V

for V in ML
qc(D). As an OX -module,

(L⊗OX
D)⊗D V = L ⊗OX

V .

The operation of twist is visibly an equivalence of categories. It preserves coher-
ence of D-modules and their characteristic varieties. Therefore, the twist preserves
holonomicity.

Let f : Y −→ X be a morphism of smooth algebraic varieties. Put

DY−→X = f∗(D) = OY ⊗f−1OX
f−1D.

Then DY−→X is a right f−1D-module for the right multiplication in the second
factor. Denote by Df the sheaf of differential endomorphisms of the OY -module
DY−→X which are also f−1D-module endomorphisms. Then Df is a twisted sheaf
of differential operators on Y .

Let V be in ML
qc(D). Put

f+(V) = DY−→X ⊗f−1D f−1V .

Then f+(V) is the inverse image of V (in the category of D-modules), and f+

is a right exact covariant functor from ML
qc(D) into ML

qc(Df). Considered as an
OY -module,

f+(V) = OY ⊗f−1OX
f−1V = f∗(V),

where f∗(V) is the inverse image in the category of O-modules. The left derived
functors Lpf+ : ML

qc(D) −→ ML
qc(Df) of f+ have analogous properties. One can

show that derived inverse images preserve holonomicity.
Let Y be a smooth subvariety of X and D a twisted sheaf of differential op-

erators on X. Then Di is a twisted sheaf of differential operators on Y and
Lpi+ : ML

qc(D) −→ML
qc(Di) vanish for p < − codimY . Therefore, i! = L− codimY i+

is a left exact functor.
To define the direct image functors for D-modules one has to use derived

categories. In addition, it is simpler to define them for right D-modules. Let
Db(MR

qc(Df)) be the bounded derived category of quasi-coherent rightDf -modules.
Then we define

Rf+(V ·) = Rf∗(V ·
L
⊗DfDY−→X)
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for any complex V · in Db(MR
qc(Df)) (here we denote by Rf∗ and

L
⊗ the derived func-

tors of direct image f∗ and tensor product). Let V · be the complex in Db(MR
qc(Df))

which is zero in all degrees except 0, where it is equal to a quasi-coherent right Df -
module V . Then we put

Rpf+(V) = Hp(Rf+(V ·)) for p ∈ Z,

i.e., we get a family Rpf+, p ∈ Z, of functors from MR
qc(Df) into MR

qc(D). We call
Rpf+ the pth direct image functor. Direct image functors also preserve holonomicity.

If i : Y −→ X is an immersion, DY−→X is a locally free Di-module. This implies
that

Rpi+(V) = Rpi∗(V ⊗Di DY−→X)
for V in MR

qc(Di). Therefore, i+ = R0i+ is left exact and Rpi+ are its right derived
functors. In addition, if Y is a closed in X, the functor i+ : MR

qc(Di) −→ MR
qc(D)

is exact.
Let i : Y −→ X be a closed immersion. The support of i+(V) is equal to the

support of V considered as a subset of Y ⊂ X.

4.3. Theorem (Kashiwara’s equivalence of categories). Let i : Y −→
X be a closed immersion. Then the direct image functor i+ is an equivalence of
MR

qc(Di) with the full subcategory of MR
qc(D) consisting of modules with support in

Y .
This equivalence preserves coherence and holonomicity.

The inverse functor is given by i! (up to a twist caused by our use of right
D-modules in the discussion of i+).

5. K-orbits in the flag variety

In this section we study K-orbits in the flag variety X in more detail. As
before, let σ be the Cartan involution of g such that k is its fixed point set.

We first establish that the number of K-orbits in X is finite.

5.1. Proposition. The group K acts on X with finitely many orbits.

To prove this result we can assume that G = Int(g). Also, by abuse of notation,
denote by σ the involution of G with differential equal to the Cartan involution σ.
The key step in the proof is the following lemma. First, define an action of G on
X ×X by

g(x, y) = (gx, σ(g)y)
for any g ∈ G, x, y ∈ X.

5.2. Lemma. The group G acts on X ×X with finitely many orbits.

Proof. We fix a point v ∈ X. Let Bv be the Borel subgroup of G correspond-
ing to v, and put B = σ(Bv). Every G-orbit in X × X intersects X × {v}. Let
u ∈ X. Then the intersection of the G-orbit Q through (u, v) with X × {v} is
equal to Bu× {v}. By the Bruhat decomposition, this implies the finiteness of the
number of G-orbits in X ×X. �

Now we show that 1. is a consequence of 2. Let ∆ be the diagonal in X ×X.
By 2, the orbit stratification of X×X induces a stratification of ∆ by finitely many
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irreducible subvarieties which are the irreducible components of the intersections
of the G-orbits with ∆. These strata are K-invariant, and therefore unions of K-
orbits. Let V be one of these subvarieties, (x, x) ∈ V and Q the K-orbit of (x, x).
If we let bx denote the Borel subalgebra of g corresponding to x, the tangent space
Tx(X) of X at x can be identified with g/bx. Let px be the projection of g onto
g/bx. The tangent space T(x,x)(X ×X) to X × X at (x, x) can be identified with
g/bx × g/bx. If the orbit map f : G −→ X × X is defined by f(g) = g(x, x), its
differential at the identity in G is the linear map ξ −→ (px(ξ), px(σ(ξ))) of g into
g/bx×g/bx. Then the tangent space to V at (x, x) is contained in the intersection of
the image of this differential with the diagonal in the tangent space T(x,x)(X ×X),
i.e.

T(x,x)(V ) ⊂ {(px(ξ), px(ξ)) | ξ ∈ g such that px(ξ) = px(σ(ξ))}
= {(px(ξ), px(ξ)) | ξ ∈ k} = T(x,x)(Q).

Consequently the tangent space to V at (x, x) agrees with the tangent space to Q,
and Q is open in V . By the irreducibility of V , this implies that V is a K-orbit,
and therefore our stratification of the diagonal ∆ is the stratification induced via
the diagonal map by the K-orbit stratification of X. Hence, 1. follows.

5.3. Lemma. Let b be a Borel subalgebra of g, n = [b, b] and N the connected
subgroup of G determined by n. Then:

(i) b contains a σ-stable Cartan subalgebra c.
(ii) any two such Cartan subalgebras are K ∩N-conjugate.

Proof. Clearly, σ(b) is another Borel subalgebra of g. Therefore, b ∩ σ(b)
contains a Cartan subalgebra d of g. Now, σ(d) is also a Cartan subalgebra of g and
both d and σ(d) are Cartan subalgebras of b ∩ σ(b). Hence, they are conjugate by
n = exp(ξ) with ξ ∈ [b∩σ(b), b∩σ(b)] ⊂ n∩σ(n). By applying σ to σ(d) = Ad(n)d,
we get d = Ad(σ(n))σ(d). It follows that

d = Ad(σ(n)) Ad(n)d = Ad(σ(n)n)d.

This implies that the element σ(n)n ∈ N ∩ σ(N) normalizes d. Hence, it is equal
to 1, i.e. σ(n) = n−1. Then

exp(σ(ξ)) = σ(n) = n−1 = exp(−ξ).

Since the exponential map on n ∩ σ(n) is injective, we conclude that σ(ξ) = −ξ.
Hence, the element

n
1
2 = exp

(
1
2ξ
)

satisfies

σ(n
1
2 ) = σ

(
exp

(
1
2ξ
))

= exp
(
σ
(

1
2ξ
))

= exp
(
− 1

2ξ
)

= (n
1
2 )−1.

Put c = Ad(n
1
2 )d. Then c ⊂ b and

σ(c) = σ(Ad(n
1
2 )d) = Ad(σ(n

1
2 ))σ(d) = Ad((n

1
2 )−1) Ad(n)d = Ad(n

1
2 )d = c

and c is σ-stable. This proves (i).
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(ii) Assume that c and c′ are σ-stable Cartan subalgebras of g and c ⊂ b, c′ ⊂ b.
Then, as before, there exists n ∈ N ∩ σ(N) such that c′ = Ad(n)c. Therefore, by
applying σ we get c′ = Ad(σ(n))c, and

Ad(n−1σ(n))c = c.

As before, we conclude that n−1σ(n) = 1, i.e. σ(n) = n. If n = exp(ξ), ξ ∈ n, we
get σ(ξ) = ξ and ξ ∈ k ∩ n. Hence, n ∈ K ∩N . �

Let c be a σ-stable Cartan subalgebra in g and k ∈ K. Then Ad(k)(c) is also
a σ-stable Cartan subalgebra. Therefore, K acts on the set of all σ-stable Cartan
subalgebras.

The preceding result implies that to every Borel subalgebra b we can attach
a K-conjugacy class of σ-stable Cartan subalgebras, i.e., we have a natural map
from the flag variety X onto the set of K-conjugacy classes of σ-stable Cartan
subalgebras. Clearly, this map is constant on K-orbits, hence to each K-orbit in
X we attach a unique K-conjugacy class of σ-stable Cartan subalgebras. Since the
set of K-orbits in X is finite by 1, this immediately implies the following classical
result.

5.4. Lemma. The set of K-conjugacy classes of σ-stable Cartan subalgebras
in g is finite.

Let Q be a K-orbit in X, x a point of Q, and c a σ-stable Cartan subalgebra
contained in bx. Then σ induces an involution on the root system R in c∗. Let
R+ be the set of positive roots determined by bx. The specialization map from the
Cartan triple (h∗,Σ,Σ+) into the triple (c∗, R,R+) allows us to pull back σ to an
involution of Σ. From the construction, one sees that this involution on Σ depends
only on the orbit Q, so we denote it by σQ. Let h = tQ ⊕ aQ be the decomposition
of h into σQ-eigenspaces for the eigenvalue 1 and -1. Under the specialization map
this corresponds to the decomposition c = t ⊕ a of c into σ-eigenspaces for the
eigenvalue 1 and -1. We call t the toroidal part and a the split part of c. The
difference dim t − dim a is called the signature of c. Clearly, it is constant on a
K-conjugacy class of σ-stable Cartan subalgebras.

We say that a σ-stable Cartan subalgebra is maximally toroidal (resp. maxi-
mally split) if its signature is maximal (resp. minimal) among all σ-stable Cartan
subalgebras in g. It is well-known that all maximally toroidal σ-stable Cartan
subalgebras and all maximally split σ-stable Cartan subalgebras are K-conjugate.

A root α ∈ Σ is called Q-imaginary if σQα = α, Q-real if σQα = −α and
Q-complex otherwise. This division depends on the orbit Q, hence we have

ΣQ,I = Q-imaginary roots,
ΣQ,R = Q-real roots,
ΣQ,C = Q-complex roots.

Via specialization, these roots correspond to imaginary, real and complex roots in
the root system R in c∗.

Put
D+(Q) = {α ∈ Σ+ | σQα ∈ Σ+, σQα 6= α};

then D+(Q) is σQ-invariant and consists of Q-complex roots. Each σQ-orbit in
D+(Q) consists of two roots, hence d(Q) = CardD+(Q) is even. The complement
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of the set D+(Q) in the set of all positive Q-complex roots is

D−(Q) = {α ∈ Σ+| − σQα ∈ Σ+, σQα 6= −α}.

In addition, for an imaginary α ∈ R, σα = α and the root subspace gα is σ-
invariant. Therefore, σ acts on it either as 1 or as -1. In the first case gα ⊂ k and
α is a compact imaginary root, in the second case gα 6⊂ k and α is a noncompact
imaginary root. We denote by RCI and RNI the sets of compact, resp. noncompact,
imaginary roots in R. Also, we denote the corresponding sets of roots in Σ by ΣQ,CI

and ΣQ,NI .

5.5. Lemma.
(i) The Lie algebra k is the direct sum of t, the root subspaces gα for compact

imaginary roots α, and the σ-eigenspaces of gα ⊕ gσα for the eigenvalue 1
for real and complex roots α.

(ii) The Lie algebra k ∩ bx is spanned by t, gα for positive compact imaginary
roots α, and the σ-eigenspaces of gα ⊕ gσα for the eigenvalue 1 for complex
roots α ∈ R+ with σα ∈ R+.

5.6. Lemma. Let Q be a K-orbit in X. Then

dimQ = 1
2(Card ΣQ,CI + CardΣQ,R + Card ΣQ,C − d(Q)).

Proof. The tangent space to Q at bx can be identified with k/(k∩ bx). By 5,

dimQ = dim k− dim(k ∩ bx)

= CardΣQ,CI + 1
2
(Card ΣQ,R + CardΣQ,C)− 1

2
CardΣQ,CI − 1

2
d(Q). �

By 6, sinceD+(Q) consists of at most half of all Q-complex roots, the dimension
of K-orbits attached to c lies between

1
2 (Card ΣQ,CI + CardΣQ,R + 1

2 Card ΣQ,C)

and
1
2(Card ΣQ,CI + CardΣQ,R + Card ΣQ,C).

The first, minimal, value corresponds to the orbits we call Zuckerman orbits at-
tached to c. The second, maximal, value is attained on the K-orbits we call Lang-
lands orbits attached to c. It can be shown that both types of orbits exist for any
σ-stable Cartan subalgebra c. They clearly depend only on the K-conjugacy class
of c.

Since X is connected, it has a unique open K-orbit. Its dimension is obviously
1
2 CardΣ, hence by the preceding formulas, it corresponds to the Langlands orbit
attached to the conjugacy class of σ-stable Cartan subalgebras with no noncompact
imaginary roots. This immediately implies the following remark.

5.7. Corollary. The open K-orbit in X is the Langlands orbit attached to
the conjugacy class of maximally split σ-stable Cartan subalgebras in g.

On the other hand, we have the following characterization of closed K-orbits
in X.

5.8. Lemma. A K-orbit in the flag variety X is closed if and only if it consists
of σ-stable Borel subalgebras.
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Proof. Consider the action of G on X×X from 2. Let (x, x) ∈ ∆. If Bx is the
Borel subgroup which stabilizes x ∈ X, the stabilizer of (x, x) equals Bx ∩ σ(Bx).
Therefore, if the Lie algebra bx of Bx is σ-stable, the stabilizer of (x, x) is Bx, and
the G-orbit of (x, x) is closed. Let C be the connected component containing (x, x)
of the intersection of this orbit with the diagonal ∆. Then C is closed. Via the
correspondence set up in the proof of 1, C corresponds to the K-orbit of x under
the diagonal imbedding of X in X ×X.

Let Q be a closed K-orbit, and x ∈ Q. Then the stabilizer of x in K is a
solvable parabolic subgroup, i.e., it is a Borel subgroup of K. Therefore, by 5,

dimQ = 1
2(dim k− dim t) = 1

2 (Card ΣQ,CI + 1
2 (Card ΣQ,C + CardΣQ,R)).

Comparing this with 6, we get

CardΣQ,R + CardΣQ,C = 2d(Q).

Since D+(Q) consists of at most half of all Q-complex roots, we see that there are
no Q-real roots, and all positive Q-complex root lie in D+(Q). This implies that
all Borel subalgebras bx, x ∈ Q, are σ-stable. �

5.9. Corollary. The closed K-orbits in X are the Zuckerman orbits attached
to the conjugacy class of maximally toroidal Cartan subalgebras in g.

5.10. The K-orbits for SL(2,R). The simplest example corresponds to the
group SL(2,R). For simplicity of the notation, we shall discuss the group SU(1, 1)
isomorphic to it. In this case g = sl(2,C). We can identify the flag variety X of g
with the one-dimensional projective space P1. If we denote by [x0, x1] the projective
coordinates of x ∈ P1, the corresponding Borel subalgebra bx is the Lie subalgebra
of sl(2,C) which leaves the line x invariant. The Cartan involution σ is given by
σ(T ) = J T J, T ∈ g, where

J =
(
−1 0

0 1

)
.

Then k is the subalgebra of diagonal matrices in g, and K is the torus of diagonal
matrices in SL(2,C) which stabilizes 0 = [1, 0] and ∞ = [0, 1]. Hence, the K-orbits
in X = P1 are {0}, {∞} and C∗. There are two K-conjugacy classes of σ-stable
Cartan subalgebras in g, the class of toroidal Cartan subalgebras and the class of
split Cartan subalgebras. The K-orbits {0}, {∞} correspond to the toroidal class,
the open K-orbit C∗ corresponds to the split class.

5.11. The K-orbits for G0 = SU(2, 1). This is a more interesting example.
In this case, g = sl(3,C). Let

J =

−1 0 0
0 −1 0
0 0 1

 .

The Cartan involution σ on g is given σ(T ) = J T J, T ∈ g. The subalgebra k
consists of matrices (

A
0
0

0 0 − trA

)
,
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where A is an arbitrary 2× 2 matrix. In addition, K = {A ∈ SL(3,C) | σ(A) = A}
consists of matrices (

B
0
0

0 0 (detB)−1

)
,

where B is an arbitrary regular 2×2 matrix. There exist two K-conjugacy classes of
σ-stable Cartan subalgebras. The conjugacy class of toroidal Cartan subalgebras is
represented by the Cartan subalgebra of the diagonal matrices in g. The conjugacy
class of maximally split Cartan subalgebras is represented by the Cartan subalgebra
of all matrices of the form  a 0 b

0 −2a 0
b 0 a


where a, b ∈ C are arbitrary. The Cartan involution acts on this Cartan subalgebra
by

σ

 a 0 b
0 −2a 0
b 0 a

 =

 a 0 −b
0 −2a 0

−b 0 a

 .

All roots attached to a toroidal Cartan subalgebra are imaginary. A pair of roots
is compact imaginary and the remaining ones are noncompact imaginary. Hence,
by 6. and 8, all K-orbits are one-dimensional and closed. Since the normalizer of
such Cartan subalgebra in K induces the reflection with respect to the compact
imaginary roots, the number of these K-orbits is equal to three. One of these, which
we denote by C0, corresponds to a set of simple roots consisting of two noncompact
imaginary roots. The other two, C+ and C−, correspond to sets of simple roots
containing one compact imaginary root and one noncompact imaginary root. The
latter two are the “holomorphic” and “antiholomorphic” K-orbits.

If we consider a maximally split Cartan subalgebra, one pair of roots is real
and the other roots are complex.

α

β γ

In the above figure, σ is the reflection with respect to the dotted line, the roots
α,−α are real, and the other roots are complex. By 6, we see that the K-orbits
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attached to the class of this Cartan subalgebra can have dimension equal to either 3
or 2. Since J ∈ K, the action of the Cartan involution on this Cartan subalgebra is
given by an element of K, i.e., the sets of positive roots conjugate by σ determine
the same orbit. Since the flag variety is three-dimensional, the open K-orbit O
corresponds to the set of positive roots consisting of α, β and γ. The remaining
two two-dimensional K-orbits, Q+ and Q−, correspond to the sets of positive roots
α, β and −γ and α, −β and γ respectively.

Therefore, we have the following picture of the K-orbit structure in X.

O

Q Q

C C C
0+

+

-

-

The top three K-orbits are attached to the K-conjugacy class of maximally
split Cartan subalgebras, the bottom three are the closed K-orbits attached to the
K-conjugacy class of toroidal Cartan subalgebras. The boundary of one K-orbit is
equal to the union of all K-orbits below it connected to it by lines.

6. Standard Harish-Chandra sheaves

Now we shall apply the results from the algebraic theory of D-modules we dis-
cussed in §4. to the study of Harish-Chandra sheaves. First we prove the following
basic result.

6.1. Theorem. Harish-Chandra sheaves are holonomic Dλ-modules. In par-
ticular, they are of finite length.

This result is based on an analysis of characteristic varieties of Harish-Chandra
modules. We start with the following observation.

6.2. Lemma. Any Harish-Chandra sheaf V has a good filtration FV consisting
of K-homogeneous coherent OX-modules.

Proof. By shifting with O(µ) for sufficiently negative µ ∈ P (Σ) we can as-
sume that λ is antidominant and regular. In this case, by the equivalence of cate-
gories, V = Dλ⊗Uθ

V , where V = Γ(X,V). Since V is an algebraic K-module and a
finitely generated Uθ-module, there is a finite-dimensional K-invariant subspace U
which generates V as a Uθ-module. Then FpDλ⊗C U , p ∈ Z+, are K-homogeneous
coherentOX -modules. Since the natural map of FpDλ⊗CU into V is K-equivariant,
the image Fp V is a K-homogeneous coherent OX -submodule of V for arbitrary
p ∈ Z+.

We claim that FV is a good filtration of the Dλ-module V . Clearly, this is
a Dλ-module filtration of V by K-homogeneous coherent OX -modules. Since V
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is generated by its global sections, to show that it is exhaustive it is enough to
show that any global section v of V lies in Fp V for sufficiently large p. Since V is
generated by U as a Uθ-module, there are Ti ∈ Uθ, ui ∈ U , 1 ≤ i ≤ m, such that
v =

∑m
i=1 Tiui. On the other hand, there exists p ∈ Z+ such that Ti, 1 ≤ i ≤ m, are

global sections of FpDλ. This implies that v ∈ Fp V . Finally, by the construction
of FV , it is evident that FpDλ Fq V = Fp+q V for all p, q ∈ Z+, i.e., FV is a good
filtration. �

We also need some notation. Let Y be a smooth algebraic variety and Z a
smooth subvariety of Y . Then we define a smooth subvariety NZ(Y ) of T ∗(Y ) as
the variety of all points (z, ω) ∈ T ∗(Y ) where z ∈ Z and ω ∈ T ∗z (Y ) is a linear
form vanishing on Tz(Z) ⊂ Tz(Y ). We call NZ(Y ) the conormal variety of Z in
Y . The dimension of the conormal variety NZ(Y ) of Z in Y is equal to dimY . To
see this, we remark that the dimension of the space of all linear forms in T ∗z (Y )
vanishing on Tz(Z) is equal to dimTz(Y ) − dim Tz(Z) = dimY − dimz Z. Hence,
dimz NZ(Y ) = dim Y .

Let λ ∈ h∗. Then, as we remarked before, GrDλ = π∗(OT∗(X)), where π :
T ∗(X) −→ X is the natural projection. Let ξ ∈ g. Then ξ determines a global
section of Dλ of order ≤ 1, i.e. a global section of F1Dλ. The symbol of this section
is a global section of π∗(OT∗(X)) independent of λ. Let x ∈ X. Then the differential
at 1 ∈ G of the orbit map fx : G −→ X, given by fx(g) = gx, g ∈ G, maps the Lie
algebra g onto the tangent space Tx(X) at x. The kernel of this map is bx, i.e. the
differential T1(fx) of fx at 1 identifies g/bx with Tx(X). The symbol of the section
determined by ξ is given by the function (x, ω) 7−→ ω(T1(fx)(ξ)) for x ∈ X and
ω ∈ T ∗x (X).

Denote by IK the ideal in theOX -algebra π∗(OT∗(X)) generated by the symbols
of sections attached to elements of k. Let NK be the set of zeros of this ideal in
T ∗(X).

6.3. Lemma. The variety NK is the union of the conormal varieties NQ(X)
for all K-orbits Q in X. Its dimension is equal to dimX.

Proof. Let x ∈ X and denote by Q the K-orbit through x. Then,

NK ∩ T ∗x (X) = {ω ∈ T ∗x (X) | ω vanishes on T1(fx)(k) }
= {ω ∈ T ∗x (X) | ω vanishes on Tx(Q) } = NQ(X) ∩ T ∗x (X),

i.e. NK is the union of all NQ(X).
For any K-orbit Q in X, its conormal variety NQ(X) has dimension equal

to dimX. Since the number of K-orbits in X is finite, NK is a finite union of
subvarieties of dimension dimX. �

Therefore, 1. is an immediate consequence of the following result.

6.4. Proposition. Let V be a Harish-Chandra sheaf. Then the characteristic
variety Char(V) of V is a closed subvariety of NK .

Proof. By 2, V has a good filtration FV consisting of K-homogeneous coher-
ent OX -modules. Therefore, the global sections of Dλ corresponding to k map FpV
into itself for p ∈ Z. Hence, their symbols annihilate GrV and IK is contained in
the annihilator of GrV in π∗(OT∗(X)). This implies that the characteristic variety
Char(V) is a closed subvariety of NK . �
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Now we want to describe all irreducible Harish-Chandra sheaves. We start with
the following remark.

6.5. Lemma. Let V be an irreducible Harish-Chandra sheaf. Then its support
supp(V) is the closure of a K-orbit Q in X.

Proof. Since K is connected, the Harish-Chandra sheaf V is irreducible if and
only if it is irreducible as a Dλ-module. To see this we may assume, by twisting
with O(µ) for sufficiently negative µ, that λ is antidominant and regular. In this
case the statement follows from the equivalence of categories and the analogous
statement for Harish-Chandra modules (which is evident).

Therefore, we know that supp(V) is an irreducible closed subvariety of X. Since
it must also be K-invariant, it is a union of K-orbits. The finiteness of K-orbits
implies that there exists an orbit Q in supp(V) such that dimQ = dim supp(V).
Therefore, Q̄ is a closed irreducible subset of supp(V) and dim Q̄ = dim supp(V).
This implies that Q̄ = supp(V). �

Let V be an irreducible Harish-Chandra sheaf and Q the K-orbit in X such
that supp(V) = Q̄. Let X ′ = X − ∂Q. Then X ′ is an open subvariety of X and Q
is a closed subvariety of X ′. The restriction V|X′ of V to X ′ is again irreducible.
Let i : Q −→ X, i′ : Q −→ X ′ and j : X ′ −→ X be the natural immersions. Hence,
i = j ◦ i′. Then V|X′ is an irreducible module supported in Q. Since Q is a smooth
closed subvariety of X ′, by Kashiwara’s equivalence of categories, i′+(τ) = V|X′ for
τ = i!(V). Also, τ is an irreducible (Di

λ,K)-module. Since V is holonomic by 1,
τ is a holonomic Di

λ-module with the support equal to Q. This implies that there
exists an open dense subset U in Q such that τ |U is a connection. Since K acts
transitively on Q, τ must be a K-homogeneous connection on Q.

Therefore, to each irreducible Harish-Chandra sheaf we attach a pair (Q, τ)
consisting of a K-orbit Q and an irreducible K-homogeneous connection τ on Q
such that:

(i) supp(V) = Q̄;
(ii) i!(V) = τ .

We call the pair (Q, τ) the standard data attached to V .
Let Q be a K-orbit in X and τ an irreducible K-homogeneous connection on

Q in Mcoh(Di
λ,K). Then, I(Q, τ) = i+(τ) is a (Dλ,K)-module. Moreover, it is

holonomic and therefore coherent. Hence, I(Q, τ) is a Harish-Chandra sheaf. We
call it the standard Harish-Chandra sheaf attached to (Q, τ).

6.6. Lemma. Let Q be a K-orbit in X and τ an irreducible K-homogeneous
connection on Q. Then the standard Harish-Chandra sheaf I(Q, τ) contains a
unique irreducible Harish-Chandra subsheaf.

Proof. Clearly,

I(Q, τ) = i+(τ) = j+(i′+(τ)) = j·(i′+(τ)),

where j· is the sheaf direct image functor. Therefore, I(Q, τ) contains no sections
supported in ∂Q. Hence, any nonzero Dλ-submodule U of I(Q, τ) has a nonzero
restriction to X ′. By Kashiwara’s equivalence of categories, i′+(τ) is an irreducible
Dλ|X′ -module. Hence, U|X′ = I(Q, τ)|X′ . Therefore, for any two nonzero Dλ-
submodules U and U ′ of I(Q, τ), U ∩U ′ 6= 0. Since I(Q, τ) is of finite length, it has
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a minimal Dλ-submodule and by the preceding remark this module is unique. By its
uniqueness it must be K-equivariant, therefore it is a Harish-Chandra subsheaf. �

We denote by L(Q, τ) the unique irreducible Harish-Chandra subsheaf of I(Q, τ).
The following result gives a classification of irreducible Harish-Chandra sheaves.

6.7. Theorem (Beilinson-Bernstein).
(i) An irreducible Harish-Chandra sheaf V with the standard data (Q, τ) is iso-

morphic to L(Q, τ).
(ii) Let Q and Q′ be K-orbits in X, and τ and τ ′ irreducible K-homogeneous

connections on Q and Q′ respectively. Then L(Q, τ) ∼= L(Q′, τ ′) if and only
if Q = Q′ and τ ∼= τ ′.

Proof. (i) Let V be an irreducible Harish-Chandra sheaf and (Q, τ) the cor-
responding standard data. Then, as we remarked before, V|X ′ = (i′)+(τ). By the
universal property of j·, there exists a nontrivial morphism of V into I(Q, τ) =
j·(i′+(τ)) which extends this isomorphism. Since V is irreducible, the kernel of this
morphism must be zero. Clearly, by 6, its image is equal to L(Q, τ).

(ii) Since Q̄ = suppL(Q, τ), it is evident that L(Q, τ) ∼= L(Q′, τ ′) implies
Q = Q′. The rest follows from the formula τ = i!(L(Q, τ)). �

From the construction it is evident that the quotient of the standard module
I(Q, τ) by the irreducible submodule L(Q, τ) is supported in the boundary ∂Q of
Q. In particular, if Q is closed, I(Q, τ) is irreducible.

Let Q be a K-orbit and τ an irreducible K-homogeneous connection on Q in
Mcoh(Di

λ,K). Let x ∈ Q and Tx(τ) be the geometric fibre of τ at x. Then Tx(τ)
is finite dimensional, and the stabilizer Sx of x in K acts irreducibly in Tx(τ). The
connection τ is completely determined by the representation ω of Sx in Tx(τ). Let
c be a σ-stable Cartan subalgebra in bx. The Lie algebra sx = k ∩ bx of Sx is the
semidirect product of the toroidal part t of c with the nilpotent radical ux = k∩nx of
sx. Let Ux be the unipotent subgroup of K corresponding to ux; it is the unipotent
radical of Sx. Let T be the Levi factor of Sx with Lie algebra t. Then Sx is the
semidirect product of T with Ux. The representation ω is trivial on Ux, hence it can
be viewed as a representation of the group T . The differential of the representation
ω, considered as a representation of t, is a direct sum of a finite number of copies of
the one dimensional representation defined by the restriction of the specialization
of λ+ ρ to t. Therefore, we say that τ is compatible with λ+ ρ.

If the group G0 is linear, T is contained in a complex torus in the complex-
ification of G0, hence it is abelian. Therefore, in this case, ω is one-dimensional.
Hence, if Sx is connected, it is completely determined by λ+ ρ. Otherwise, Q can
admit several K-homogeneous connections compatible with the same λ+ ρ, as we
can see from the following basic example.

6.8. Standard Harish-Chandra sheaves for SL(2,R). Now we discuss
the structure of standard Harish-Chandra sheaves for SL(2,R) (the more general
situation of finite covers of SL(2,R) is discussed in [13]). In this case, as we dis-
cussed in 5.10, K has three orbits in X = P1, namely {0}, {∞} and C∗.

The standard Dλ-modules corresponding to the orbits {0} and {∞} exist if and
only if λ is a weight in P (Σ). Since these orbits are closed, these standard modules
are irreducible.
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Therefore, it remains to study the standard modules attached to the open orbit
C∗. First we want to construct suitable trivializations of Dλ on the open cover of
P1 consisting of P1 − {0} and P1 − {∞}. We denote by α ∈ h∗ the positive root of
g and put ρ = 1

2α and t = α (̌λ), where αˇ is the dual root of α.
Let {E,F,H} denote the standard basis of sl(2,C):

E =
(

0 1
0 0

)
F =

(
0 0
1 0

)
H =

(
1 0
0 −1

)
.

They satisfy the commutation relations

[H,E] = 2E [H,F ] = −2F [E,F ] = H.

Also, H spans the Lie algebra k. Moreover, if we specialize at 0, H corresponds to
the dual root α ,̌ but if we specialize at ∞, H corresponds to the negative of α .̌

First we discuss P1−{∞}. On this set we define the coordinate z by z([1, x1]) =
x1. In this way one identifies P1 − {∞} with the complex plane C. After a short
calculation we get

E = −z2∂ − (t+ 1)z, F = ∂, H = 2z∂ + (t+ 1)

in this coordinate system. Analogously, on P1 − {0} with the natural coordinate
ζ([x0, 1]) = x0, we have

E = ∂, F = −ζ2∂ − (t+ 1)ζ, H = −2ζ∂ − (t+ 1).

On C∗ these two coordinate systems are related by the inversion ζ = 1
z . This

implies that ∂ζ = −z2∂z , i. e., on C∗ the second trivialization gives

E = −z2∂, F = ∂ − 1 + t

z
H = 2z∂ − (t+ 1).

It follows that the first and the second trivialization on C∗ are related by the
automorphism of DC∗ induced by

∂ −→ ∂ − 1 + t

z
= z1+t ∂ z−(1+t).

Now we want to analyze the standard Harish-Chandra sheaves attached to the open
K-orbit C∗. If we identify K with another copy of C∗, the stabilizer in K of any
point in the orbit C∗ is the group M = {±1}. Let η0 be the trivial representation
of M and η1 the identity representation of M . Denote by τk the irreducible K-
equivariant connection on C∗ corresponding to the representation ηk of M , and
by I(C∗, τk) the corresponding standard Harish-Chandra sheaf in Mcoh(Dλ,K).
To analyze these Dλ-modules it is convenient to introduce a trivialization of Dλ

on C∗ = P1 − {0,∞} such that H corresponds to the differential operator 2z∂ on
the orbit C∗ and t ∈ K ∼= C∗ acts on it by multiplication by t2. We obtain this
trivialization by restricting the original z-trivialization to C∗ and twisting it by the
automorphism

∂ −→ ∂ − 1 + t

2z
= z

1+t
2 ∂ z−

1+t
2 .

This gives a trivialization of Dλ|C∗ which satisfies

E = −z2∂ − 1 + t

2
z, F = ∂ − 1 + t

2z
, H = 2z∂.
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The global sections of τk on C∗ form the linear space spanned by functions zp+ k
2 ,

p ∈ Z. To analyze irreducibility of the standard Dλ-module I(C∗, τk) we have
to study its behavior at 0 and ∞. By the preceding discussion, if we use the z-
trivialization of Dλ on C∗, I(C∗, τk)|P1 − {∞} looks like the DC-module which is
the direct image of the DC∗ -module generated by z

k−t−1
2 . This module is clearly

reducible if and only if it contains functions regular at the origin, i.e., if and only
if k−t−1

2 is an integer. Analogously, I(C∗, τk)|P1 − {0} is reducible if and only if
k+t+1

2 is an integer. Therefore, I(C∗, τk) is irreducible if and only if t+ k is an odd
integer.

We can summarize this as the parity condition: The following conditions are
equivalent:

(i) α (̌λ) + k /∈ 2Z + 1;
(ii) the standard module I(C∗, τk) is irreducible.
Therefore, if λ is not a weight, the standard Harish-Chandra sheaves I(C∗, τk),

k = 0, 1, are irreducible. If λ is a weight, α (̌λ) is an integer, and depending on
its parity, one of the standard Harish-Chandra sheaves I(C∗, τ0) and I(C∗, τ1) is
reducible while the other one is irreducible. Assume that I(C∗, τk) is reducible.
Then it contains the module O(λ+ρ) as the unique irreducible submodule and the
quotient by this submodule is the direct sum of standard Harish-Chandra sheaves
at {0} and {∞}.

Under the equivalence of categories, this describes basic results on classification
of irreducible Harish-Chandra modules for SL(2,R). If Reα (̌λ) ≤ 0 and λ 6= 0, the
global sections of the standard Harish-Chandra sheaves at {0} and {∞} represent
the discrete series representations (holomorphic and antiholomorphic series corre-
spond to the opposite orbits). The global sections of the standard Harish-Chandra
sheaves attached to the open orbit are the principal series representations. They
are reducible if α (̌λ) is an integer and k is of the appropriate parity. In this case,
they have irreducible finite-dimensional submodules, and their quotients by these
submodules are direct sums of holomorphic and antiholomorphic discrete series.
If λ = 0, the global sections of the irreducible standard Harish-Chandra sheaves
attached to {0} and {∞} are the limits of discrete series, the space of global sec-
tions of the irreducible standard Harish-Chandra sheaf attached to the open orbit
is the irreducible principal series representation and the space of global sections
of the reducible standard Harish-Chandra sheaf attached to the open orbit is the
reducible principal series representation which splits into the sum of two limits of
discrete series. The latter phenomenon is caused by the vanishing of global sections
of O(ρ).

To handle the analogous phenomena in general, we have to formulate an anal-
ogous parity condition. We restrict ourselves to the case of linear group G0 (the
general case is discussed in [13]). In this case we can assume that K is a sub-
group of the complexification G of G0. Let α be a Q-real root. Denote by sα the
three-dimensional simple algebra generated by the root subspaces corresponding
to α and −α. Let Sα be the connected subgroup of G with Lie algebra sα; it is
isomorphic either to SL(2,C) or to PSL(2,C). Denote by Hα the element of sα ∩ c

such that α(Hα) = 2. Then mα = exp(πiHα) ∈ G satisfies m2
α = 1. Moreover,

σ(mα) = exp(−πiHα) = m−1
α = mα. Clearly, mα = 1 if Sα

∼= PSL(2,C), and
mα 6= 1 if Sα

∼= SL(2,C). In the latter case mα corresponds to the negative of the
identity matrix in SL(2,C). In both cases, mα lies in T .
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The set D−(Q) is the union of −σQ-orbits consisting of pairs {β,−σQβ}. Let
A be a set of representatives of −σQ-orbits in D−(Q). Then, for an arbitrary Q-real
root α, the number

δQ(mα) =
∏
β∈A

eβ(mα)

is independent of the choice of A and equal to ±1.
Following B. Speh and D. Vogan [16]2, we say that τ satisfies the SL2-parity

condition with respect to the Q-real root α if the number eiπαˇ(λ) is not equal to
−δQ(mα)ω(mα). Clearly, this condition specializes to the condition (i) in 8.

The relation of the SL2-parity condition with irreducibility of the standard
modules can be seen from the following result. First, let

Σλ = {α ∈ Σ | α (̌λ) ∈ Z}

be the root subsystem of Σ consisting of all roots integral with respect to λ. The
following result is established in [8]. We formulate it in the case of linear group G0,
where it corresponds to the result of Speh and Vogan [16]. The discussion of the
general situation can be found in [13].

6.9. Theorem. Let Q be a K-orbit in X, λ ∈ h∗, and τ an irreducible K-
homogeneous connection on Q compatible with λ+ρ. Then the following conditions
are equivalent:

(i) D−(Q) ∩ Σλ = ∅, and τ satisfies the SL2-parity condition with respect to
every Q-real root in Σ; and

(ii) the standard Dλ-module I(Q, τ) is irreducible.

6.10. Standard Harish-Chandra sheaves for SU(2, 1). Consider again
the case of G0 = SU(2, 1). In this case, the stabilizers in K of any point x ∈ X
are connected, so each K-orbit admits at most one irreducible K-homogeneous
connection compatible with λ+ ρ for a given λ ∈ h∗. Therefore, we can denote the
corresponding standard Harish-Chandra sheaf by I(Q,λ). If Q is any of the closed
K-orbits, these standard Harish-Chandra sheaves exist if and only if λ ∈ P (Σ). If
Q is a nonclosed K-orbit, these standard Harish-Chandra sheaves exist if and only
if λ+ σQλ ∈ P (Σ).

Clearly, the standard Harish-Chandra sheaves attached to the closed orbits
are always irreducible. By analyzing 9, we see that the standard Harish-Chandra
sheaves for the other orbits are reducible if and only if λ is a weight. If Q is the open
orbit O, the standard Harish-Chandra sheaf I(Q,λ) attached to λ ∈ P (Σ) contains
the homogeneous invertible OX -module O(λ+ρ) as its unique irreducible submod-
ule, the standard Harish-Chandra sheaf I(C0, λ) is its unique irreducible quotient,
and the direct sum L(Q+, λ) ⊕ L(Q−, λ) is in the “middle” of the composition se-
ries. The standard Harish-Chandra sheaves I(Q+, λ) and I(Q−, λ) have unique
irreducible submodules L(Q+, λ) and L(Q−, λ) respectively, and the quotients are

I(Q+, λ)/L(Q+, λ) = I(C+, λ) ⊕ I(C0, λ)
and I(Q−, λ)/L(Q−, λ) = I(C−, λ) ⊕ I(C0, λ).

2In fact, they consider the reducibility condition, while ours is the irreducibility condition.
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7. Geometric classification of irreducible Harish-Chandra modules

In the preceding section we described the classification of all irreducible Harish-
Chandra sheaves. Now, we use this classification to classify irreducible Harish-
Chandra modules.

First, it is useful to use a more restrictive condition than antidominance. We
say that λ ∈ h∗ is strongly antidominant if Reα (̌λ) ≤ 0 for any α ∈ Σ+. Clearly,
a strongly antidominant λ is antidominant.

Let V be an irreducible Harish-Chandra module. We can view V as an irre-
ducible object in the category M(Uθ,K). We fix a strongly antidominant λ ∈ θ.
Then, as we remarked in §3, there exists a unique irreducible Dλ-module V such
that Γ(X,V) = V . Since this Dλ-module must be a Harish-Chandra sheaf, it is
of the form L(Q, τ) for some K-orbit Q in X and an irreducible K-homogeneous
connection τ on Q compatible with λ + ρ. Hence, there is a unique pair (Q, τ)
such that Γ(X,L(Q, τ)) = V . If λ is regular in addition, this correspondence gives
a parametrization of equivalence classes of irreducible Harish-Chandra modules by
all pairs (Q, τ). On the other hand, if λ is not regular, some of the pairs (Q, τ)
correspond to irreducible Harish-Chandra sheaves L(Q, τ) with Γ(X,L(Q, τ)) = 0.
Therefore, to give a precise formulation of this classification of irreducible Harish-
Chandra modules, we have to determine a necessary and sufficient condition for
nonvanishing of global sections of irreducible Harish-Chandra sheaves L(Q, τ).

For any root α ∈ Σ we have α (̌λ+σQλ) ∈ R. In particular, if α is Q-imaginary,
α (̌λ) is real.

Let λ ∈ h∗ be strongly antidominant. Let

Σ0 = {α ∈ Σ | Reα (̌λ) = 0}.

Let Π be the basis in Σ corresponding to Σ+. Put Σ+
0 = Σ0∩Σ+ and Π0 = Π∩Σ0.

Since λ is strongly antidominant, Π0 is the basis of the root system Σ0 determined
by the set of positive roots Σ+

0 .
Let Σ1 = Σ0 ∩ σQ(Σ0); equivalently, Σ1 is the largest root subsystem of Σ0

invariant under σQ. Let

Σ2 = {α ∈ Σ1 | α (̌λ) = 0}.

This set is also σQ-invariant. Let Σ+
2 = Σ2∩Σ+, and denote by Π2 the correspond-

ing basis of the root system Σ2. Clearly, Π0 ∩ Σ2 ⊂ Π2, but this inclusion is strict
in general.

The next theorem gives the simple necessary and sufficient condition for Γ(X,L(Q, τ)) 6=
0, that was alluded to before. In effect, this completes the classification of irre-
ducible Harish-Chandra modules. The proof can be found in [8].

7.1. Theorem. Let λ ∈ h∗ be strongly antidominant. Let Q be a K-orbit in
X and τ an irreducible K-homogeneous connection on Q compatible with λ + ρ.
Then the following conditions are equivalent:

(i) Γ(X,L(Q, τ)) 6= 0;
(ii) the following conditions hold:

(1) (a) the set Π2 contains no compact Q-imaginary roots;
(2) (b) for any positive Q-complex root α with αˇ(λ) = 0, the root σQα is

also positive;
(3) (c) for any Q-real α with α (̌λ) = 0, τ must satisfy the SL2-parity

condition with respect to α.
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The proof of this result is based on the use of the intertwining functors Iw
for w in the subgroup W0 of the Weyl group W generated by reflections with
respect to roots in Σ0 [2], [13]. The vanishing of Γ(X,L(Q, τ)) is equivalent with
Iw(L(Q, τ)) = 0 for some w ∈W0. Let α ∈ Π0 and sα the corresponding reflection.
Then, essentially by an SL(2,C)-calculation, Isα

(L(Q, τ)) = 0 if and only if a
condition in (ii) fails for α, i.e., α (̌λ) = 0 and α is either a compact Q-imaginary
root, or a Q-complex root with −σQα ∈ Σ+, or a Q-real root and the SL2-parity
condition for τ fails for α. Otherwise, either α (̌λ) = 0 and L(Q, τ) is a quotient
of Isα

(L(Q, τ)), or α (̌λ) 6= 0 and Isα
(L(Q, τ)) = L(Q′, τ ′) for some K-orbit Q′

and irreducible K-homogeneous connection τ ′ on Q′ compatible with sαλ+ ρ and
Γ(X,L(Q, τ)) = Γ(X,L(Q′, τ ′)). Since intertwining functors satisfy the product
formula

Iw′w′′ = Iw′Iw′′ for w′, w′′ ∈ W such that `(w′w′′) = `(w′) + `(w′′),

by induction in the length of w ∈ W0, one checks that (i) holds if and only if (ii)
holds for all roots in Σ0.

In general, there are several strongly antidominant λ in θ, and an irreducible
Harish-Chandra module V correspond to different standard data (Q, τ). Still, all
such K-orbits Q correspond to the same K-conjugacy class of σ-stable Cartan
subalgebras [8].

8. Geometric classification versus Langlands classification

At the first glance it is not clear how the “geometric” classification in §7 relates
to the other classification schemes. To see its relation to the Langlands classifica-
tion, it is critical to understand the asymptotic behavior of the matrix coefficients
of the irreducible Harish-Chandra modules Γ(X,L(Q, τ)). Although the asymp-
totic behavior of the matrix coefficients is an “analytic” invariant, its connection
with the n-homology of Harish-Chandra modules studied by Casselman and the
author in [6], [12], shows that it also has a simple, completely algebraic, interpre-
tation. Together with the connection of the n-homology of Γ(X,L(Q, τ)) with the
derived geometric fibres of L(Q, τ) (see, for example, [9]), this establishes a precise
relationship between the standard data and the asymptotics of Γ(X,L(Q, τ)) [8].

To formulate some important consequences of this relationship, for λ ∈ h∗ and
a K-orbit Q, we introduce the following invariant:

λQ =
1
2
(λ− σQλ).

8.1. Theorem. Let λ ∈ h∗ be strongly antidominant, Q a K-orbit in X and
τ an irreducible K-homogeneous connection on Q compatible with λ+ ρ such that
V = Γ(X,L(Q, τ)) 6= 0. Then:

(i) V is tempered if and only if Re λQ = 0;
(ii) V is square-integrable if and only if σQ = 1 and λ is regular.

If ReλQ = 0, then Reα (̌λ) = Re(σQα)̌ (λ). Hence, if α is Q-real, Reα (̌λ) = 0
and α is in the subset Σ1 introduced in the preceding section. If α is in D−(Q),
α,−σQα ∈ Σ+ and, since λ is strongly dominant, we conclude that Reα (̌λ) =
Re(σQα)̌ (λ) = 0, i.e., α is also in Σ1. It follows that all roots in D−(Q) and all
Q-real roots are in Σ1.

Hence, 1, 7.1. and 6.9. have the following consequence which was first proved
by Ivan Mirkovíc [15].
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8.2. Theorem. Let λ ∈ h∗ be strongly antidominant. Let Q be a K-orbit in
X and τ an irreducible K-homogeneous connection on Q. Assume that ReλQ = 0.
Then Γ(X,L(Q, τ)) 6= 0 implies that I(Q, τ) is irreducible, i.e., L(Q, τ) = I(Q, τ).

Thus 2. explains the simplicity of the classification of tempered irreducible
Harish-Chandra modules: every tempered irreducible Harish-Chandra module is
the space of global sections of an irreducible standard Harish-Chandra sheaf.

The analysis becomes especially simple in the case of square-integrable irre-
ducible Harish-Chandra modules. By 1.(ii) they exist if and only if rank g = rankK
– this is a classical result of Harish-Chandra. If this condition is satisfied, the Weyl
group orbit θ must in addition be regular and real. Since it is real, θ contains a
unique strongly antidominant λ. This λ is regular and Γ(X,L(Q, τ)) is square-
integrable if and only if σQ = 1. Therefore, all Borel subalgebras in Q are σ-stable.
By 5.8, the K-orbit Q is necessarily closed. The stabilizer in K of a point in Q is
a Borel subgroup of K. Hence, an irreducible K-homogeneous connection τ com-
patible with λ + ρ exists on the K-orbit Q if and only if λ + ρ specializes to a
character of this Borel subgroup. If G0 is linear, this means that λ is a weight in
P (Σ). The connection τ = τQ,λ is completely determined by λ+ρ. Hence, the map
Q −→ Γ(X,I(Q, τQ,λ)) is a bijection between closed K-orbits in X and equivalence
classes of irreducible square-integrable Harish-Chandra modules with infinitesimal
character determined by θ.

By definition, the discrete series is the set of equivalence classes of irreducible
square-integrable Harish-Chandra modules.

If we drop the regularity assumption on λ, for a closed K-orbit Q in X and an
irreducible K-homogeneous connection τ compatible with λ+ ρ, Γ(X,I(Q, τ)) 6= 0
if and only if there exists no compact Q-imaginary root α ∈ Π such that α (̌λ) = 0.
These representations are tempered irreducible Harish-Chandra modules. They
constitute the limits of discrete series.

Using the duality theorem of [7], one shows that the space of global sections of
a standard Harish-Chandra sheaf is a standard Harish-Chandra module, as is ex-
plained in [18]. In particular, irreducible tempered representations are irreducible
unitary principal series representations induced from limits of discrete series [10].
More precisely, if Γ(X,I(Q, τ)) is not a limit of discrete series, we have aQ 6= {0}.
Then aQ determines a parabolic subgroup in G0. The standard data (Q, τ) deter-
mine, by “restriction”, the standard data of a limit of discrete series representation
of its Levi factor. The module Γ(X,I(Q, τ)) is the irreducible unitary principal
series representation induced from the limits of discrete series representation at-
tached to these “restricted” data. If the standard Harish-Chandra sheaf I(Q, τ)
with ReλQ = 0 is reducible, its space of global sections represents a reducible
unitary principal series representation induced from a limits of discrete series rep-
resentation. These reducible standard Harish-Chandra sheaves can be analyzed in
more detail. This leads to a D-module theoretic explanation of the results of Knapp
and Zuckerman on the reducibility of unitary principal series representations [10].
This analysis has been done by Ivan Mirkovíc in [15].

It remains to discuss nontempered irreducible Harish-Chandra modules, i.e.,
the Langlands representations. In this case Re λQ 6= 0 and it defines a nonzero
linear form on aQ. This form determines a parabolic subgroup of G0 such that the
roots of its Levi factor are orthogonal to the specialization of Re λQ. The “restric-
tion” of the standard data (Q, τ) to this Levi factor determines tempered standard
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data. The module Γ(X,L(Q, τ)) is equal to the unique irreducible submodule of the
principal series representation Γ(X,I(Q, τ)) corresponding to this parabolic sub-
group, and induced from the tempered representation of the Levi factor attached
to the “restricted” standard data. By definition, this unique irreducible submodule
is a Langlands representation. A detailed analysis of this construction leads to a
completely algebraic proof of the Langlands classification [8].

In the following we analyze in detail the case of SU(2, 1). In this case the K-
orbit structure and the structure of standard Harish-Chandra sheaves are rather
simple. Still, all situations from 7.1.(ii) appear there.

8.3. Discrete series of SU(2, 1). If G0 is SU(2, 1), we see that the discrete
series are attached to all regular weights λ in the negative chamber. Therefore, we
have the following picture:

The black dots correspond to weights λ to which a discrete series representation
is attached for a particular orbit. If the orbit in question is C0, these are the “non-
holomorphic” discrete series and the white dots in the walls correspond to the limits
of discrete series. If the orbit is either C+ or C−, these are either “holomorphic”
or “anti-holomorphic” discrete series. Since one of the simple roots is compact
imaginary in these cases, the standard Harish-Chandra sheaves corresponding to
the white dots in the wall orthogonal to this root have no global sections. The
white dots in the other wall are again the limits of discrete series.
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8.4. Tempered representations of SU(2, 1). Except the discrete series
and the limits of discrete series we already discussed, the other irreducible Harish-
Chandra modules are attached to the open orbit O and the two-dimensional orbits
Q+ and Q−. The picture for the open orbit is:

Complex

Complex

Real

As we discussed in 6.10, the standard Harish-Chandra sheaves I(O,λ) on the
open orbit O exist (in the negative chamber) only for Reλ on the dotted lines. As
we remarked, I(O,λ) are reducible if and only if λ is a weight (i.e. one of the dots
in the picture). At these points, I(O,λ) have the invertible OX -modules O(λ+ ρ)
as the unique irreducible submodules, i.e., L(O,λ) = O(λ+ρ). The length of these
standard Harish-Chandra sheaves is equal to 4. Their composition series consist of
the irreducible Harish-Chandra sheaves attached to K-orbits O, Q+, Q− and C0.
The standard Harish-Chandra sheaf corresponding to C0 is the unique irreducible
quotient of I(O,λ) and I(O,λ)/O(λ+ ρ) contains the direct sum of L(Q+, λ) and
L(Q−, λ) as a submodule.

The only tempered modules can be obtained for ReλO = 0, which in this
situation corresponds to Re λ = 0. Since λ = 0 corresponds to the invertible OX -
moduleO(ρ) with no cohomology, we see that the only irreducible tempered Harish-
Chandra modules in this case correspond to Reλ = 0, λ 6= 0. These representations
are irreducible unitary spherical principal series.

It remains to study the case of tempered Harish-Chandra modules attached to
the orbits Q+ and Q−. The picture in these cases is:
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Complex Complex

Real

Assume that we are looking at the picture for Q+. Again, the standard Harish-
Chandra sheaves on this orbit (in the negative chamber) exist only for Re λ on
the dotted lines. The standard Harish-Chandra sheaves I(Q+, λ) are reducible
if and only if λ is a weight (i.e., one of the dots in the picture). In this case
I(Q+, λ) has length 3, and the quotient I(Q+, λ)/L(Q+, λ) is the direct sum of the
standard modules on C0 and C+. The temperedness condition is satisfied for Reλ
in the wall corresponding to the real root. The corresponding standard Harish-
Chandra sheaves are irreducible, except in the case of λ being one of the black
dots. Their global sections are various irreducible unitary principal series. The
standard modules at the black dots correspond to the reducible unitary principal
series. Since in these cases the global sections of L(Q+, λ) vanish, the global sections
of I(Q+, λ), for λ 6= 0, are direct sums of “non-holomorphic” and “holomorphic”
limits of discrete series representations. If λ = 0, the “holomorphic” limit of discrete
series also “disappears,” hence the spherical unitary principal series representation
is irreducible and equal to the “non-holomorphic” limit of discrete series.

8.5. Langlands representations of SU(2, 1). As we already remarked,
Langlands representations are attached only to non-closed K-orbits. They are
either irreducible non-unitary principal series representations, or unique irreducible
submodules of reducible principal series. In the latter case, for the open K-orbit,
the Langlands representations are irreducible finite-dimensional representations by
the Borel-Weil theorem.

Putting all of this information together we can describe the structure of prin-
cipal series representations for SU(2, 1). Let P be the minimal parabolic subgroup
of SU(2, 1) and P = MAN its Langlands decomposition. Then the group MA is
a connected maximally split Cartan subgroup in G0. Therefore the principal series
representations are parametrized by pairs (δ, µ) where δ is a representation of the
circle group M and µ is a linear form on the complexified Lie algebra a of A. The
Lie algebra a is spanned by the dual root αˇ of a real root α. Because of the duality
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between principal series, it is enough to describe their structure for Reα (̌µ) ≤ 0.
These parameters correspond to the dotted lines in our next figure.

α

This picture is a “union” of the pictures for the orbits O, Q+ and Q−. A
detailed explanation of this phenomenon in general can be found in [18]. The
principal series are generically irreducible. The length of their composition series
is two at the black dots, three at the white dots and four at the gray dots. The
representations on the intersection of the dotted lines with the vertical wall are
unitary principal series. They are either irreducible or sums of two limits of the
discrete series, one “holomorphic” and one “non-holomorphic”. The spherical uni-
tary principal series at the origin is actually equal to a limit of “non-holomorphic”
discrete series. The white dots correspond to the representations which contain in-
finite dimensional Langlands representations as unique irreducible submodules and
direct sums of two discrete series, one “holomorphic” and one “non-holomorphic”,
as quotients. At two non-vertical walls the composition series consists of an in-
finite dimensional Langlands representation as a submodule and a limit of “non-
holomorphic” discrete series as a quotient (since the limit of “holomorphic” dis-
crete series “vanishes” in these walls). The gray dots correspond to representations
which contain finite-dimensional representations as unique irreducible submodules,
the “non-holomorphic” discrete series as unique irreducible quotients, and the di-
rect sums of the infinite dimensional Langlands representations attached to Q+ and
Q− in the “middle” of the composition series.
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Birkhäuser, Boston, 1981.

Department of Mathematics, University of Utah, Salt Lake City, Utah 84112
E-mail address: milicic@math.utah.edu


