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CHAPTER I

Introduction

1.1 Overview

Algebraic geometry is built upon the correspondence between algebraic objects

such as rings and ideals and the geometric structures of curves, surfaces, and more

general varieties and schemes. The rich and beautiful interplay between algebra and

geometry is integral to modern expositions of the field, such as [Har77], and has

been essential to most recent progress in both algebraic geometry and commutative

algebra.

Remarkably, over the past fifteen years the classical correspondence between com-

mutative rings and schemes has been extended to many noncommutative rings, at

least in the graded setting. This is the new field of noncommutative algebraic ge-

ometry. The use of geometric techniques to study noncommutative graded rings is

interesting in its own right, but has also had important applications to noncommu-

tative algebra. These include Artin and Stafford’s classification of noncommutative

projective curves [AS95] and the use of geometric techniques to study and classify the

noncommutative analogues of P2, including the well-known 3-dimensional Sklyanin

algebras [ATV90, ATV91, Ste96, Ste97].

One of the most important active research areas in noncommutative algebraic
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geometry is the classification of noncommutative projective surfaces: formally, these

are noetherian finitely graded domains of Gelfand-Kirillov dimension 3. In this thesis,

we make a significant contribution to this program by classifying all birationally

commutative projective surfaces, completely solving the classification problem for one

of what is conjectured to be only four birational types of noncommutative surface.

For these classification results, it was necessary to understand many graded rings

that had not previously been studied. In particular, we investigate geometric ide-

alizers: idealizer subrings of twisted homogeneous coordinate rings. These rings

are defined by geometric data, and in order to understand them algebraically, new

geometric techniques were needed. Ultimately, these led us to a generalization of the

classical Kleiman-Bertini theorem, which in its earliest forms goes back to the 1880s.

We remark that in addition to the work in this thesis, the paper [Sie06] and

the preprint [Sie07] were completed while the author was a Ph.D. student in the

University of Michigan Mathematics Department.

In the remainder of the introduction, we give a more leisurely overview of the

context and main results of this thesis. In Section 1.2 we describe the commuta-

tive setting and give a general discussion of noncommutative projective geometry.

In Section 1.3, we present Artin and Stafford’s results on noncommutative curves

and summarize the current state of knowledge of noncommutative surfaces. In Sec-

tion 1.4, we specifically discuss birationally commutative graded rings, and present

our results on birationally commutative surfaces and on idealizers. In Section 1.5, we

relate the geometry underlying idealizers to modern versions of the Kleiman-Bertini

theorem, and give our generalization of this classical result. Finally, in Section 1.6,

we summarize the overall plan of this thesis.
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1.2 Commutative and noncommutative projective schemes

All rings in this introduction will be algebras over a fixed uncountable algebraically

closed field k, and all schemes will be of finite type over k. We will also assume

that our rings R are finitely N-graded: that is, R is N-graded and all Rn are finite-

dimensional over k.

Before describing the framework of noncommutative algebraic geometry, we review

some important results from classical (commutative) algebraic geometry. For details,

we refer readers to [Har77, Chapter II].

Let X be a projective variety, and let L be an invertible sheaf on X. The section

ring of L is defined as

B(X,L) =
⊕

n≥0

H0(L⊗n).

Multiplication on B(X,L) is given by the maps

H0(L⊗n)⊗H0(L⊗m) → H0(L⊗(m+n)).

In general, determining the properties of section rings is extremely difficult —

see the recent paper [BCHM06] on finite generation of the canonical ring for an

example! However, when L is ample — recall this means that for any coherent

sheaf F on X, for n $ 0 the sheaf F ⊗ L⊗n is generated by its global sections and

has no higher cohomology — then a well-known result of Serre says that not only

is B(X,L) noetherian, but there is a functorial relationship that is essentially an

equivalence between the categories of coherent sheaves on X and finitely generated

graded B(X,L)-modules.

We introduce the notation we will need to describe the relevant categories. Given a

projective scheme X, let OX-mod denote the category of coherent sheaves on X. The

relevant module category is a bit more complicated. Let R be a finitely N-graded k-
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algebra. The category gr-R is the category of noetherian Z-graded right R-modules,

with morphisms preserving degree. Inside gr-R, let tors-R be the full subcategory of

finite-dimensional modules. We define qgr-R to be the quotient category

qgr-R = gr-R/ tors-R,

and define R-qgr to be the corresponding category on the left. (For more details on

this construction, see Section 2.2.1.)

Serre’s fundamental theorem states:

Theorem 1.2.1. (Serre’s Theorem [Ser55, Chapter III.3, Propositions 5 and 6]) Let

X be a projective scheme and let L be an ample invertible sheaf on X. Then B(X,L)

is noetherian, and there is an equivalence of categories

OX-mod % qgr-B(X,L).

Furthermore, if X = Proj R, where R is a finitely graded commutative k-algebra gen-

erated in degree 1, then the Serre twisting sheaf O(1) is ample, and R and B(X,O(1))

are equal in large degree. Thus qgr-R is equivalent to the category of coherent sheaves

on Proj R.

In their seminal paper [AV90], Artin and Van den Bergh showed that Serre’s

theorem has a noncommutative version. This noncommutative Serre’s theorem relies

on the important construction of a twisted homogeneous coordinate ring, which we

describe here. As before, we begin with a projective scheme X and an invertible

sheaf L on X. We have one additional piece of data: an automorphism σ of X.

For ease of notation, if F is a quasicoherent sheaf on X, we will let Fσ = σ∗F ,

the pullback of F along σ. We form the twisted tensor powers Ln of L, where we

define

Ln = L ⊗ Lσ ⊗ · · · ⊗ Lσn−1
.
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Then the twisted homogeneous coordinate ring of L is defined to be

B(X,L, σ) =
⊕

n≥0

H0(Ln).

This is a ring, with multiplication given by

H0(Ln)⊗H0(Lm)
1⊗σn

!! H0(Ln)⊗H0((Lm)σn
) !! H0(Ln+m).

Example 1.2.2. Let X = P1 = P1(k), let L = O(1), and define σ ∈ PGL2 by

σ([a : b]) = [a : a + b]. We let σ act on a function f as fσ = f ◦ σ. Then the

twisted homogeneous coordinate ring B(P1,O(1), σ) may be presented by generators

and relations as

k{x, y}/(xy − yx− x2)

This ring is commonly referred to as the Jordan (affine) plane and is usually written

kJ [x, y].

Remarkably, if the twisted tensor powers of L satisfy the appropriate ampleness

property (the technical term is that L is σ-ample, defined precisely in Section 2.3),

then a version of Serre’s Theorem still holds.

Theorem 1.2.3. ([AV90, Theorem 1.3, Theorem 1.4], [Kee00, Theorem 1.2]) Let

X be a projective scheme, let σ be an automorphism of X, and let L be a σ-ample

invertible sheaf on X. Then B(X,L, σ) is left and right noetherian, and there are

equivalences of categories

qgr-B(X,L, σ) % OX-mod % B(X,L, σ)-qgr .

Motivated by Theorem 1.2.3, if R is a graded k-algebra, Artin and Zhang [AZ94]

defined the right noncommutative projective scheme associated to R to be the pair

Proj-R = (qgr-R, [R]),
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where [R] denotes the image of R in qgr-R. For example, one can easily deduce from

Theorem 1.2.3 that

qgr-kJ [x, y] % OP1-mod % qgr-k[x, y]

and that

Proj-kJ [x, y] = (qgr-kJ [x, y], [kJ [x, y]]) ∼= (OP1-mod,OP1).

In general, the distinguished object [R] is supposed to play the role of the structure

sheaf of a projective scheme. Thus one defines cohomology functors Hq(Proj-R, )

on Proj-R as the right derived functors of H0(Proj-R, ), where

H0(Proj-R,M) = Homqgr-R([R],M),

for M ∈ qgr-R. The (right) cohomological dimension of Proj-R is the maximum q

such that Hq(Proj-R,M) *= 0 for some M. It is an important question, asked by

Stafford and Van den Bergh in [SV01, page 194], whether all graded noetherian rings

have finite left and right cohomological dimension. (Note that commutative graded

noetherian rings have finite cohomological dimension by [Har77, Theorem III.2.7].

This and Theorem 1.2.3 imply that twisted homogeneous coordinate rings have finite

left and right cohomological dimension.)

Although twisted homogeneous coordinate rings are noncommutative, in many

important ways they behave remarkably like commutative rings. This is certainly

not true for all noncommutative graded rings, and to give an indication of the issues

that can arise, we give a second example, due to Stafford and Zhang.

Example 1.2.4. ([SZ94, Example 0.1]) Let B = kJ [x, y] be the Jordan plane defined

in Example 1.2.2. We consider the subring

R = k + yB
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of B. Intuition from commutative algebra might lead us to expect that R behaves

pathologically, since the similarly constructed commutative ring

R′ = k + yk[x, y] ⊂ k[x, y]

is certainly not noetherian. In fact, if k is countable, then R′ has countably many

elements and uncountably many ideals.

However, if char k = 0, then, perhaps surprisingly, it turns out that R is left and

right noetherian. Many of the properties of R in characteristic 0 derive from the

fact that it is an idealizer inside B: that is, R is the maximal subring of B in which

the right ideal yB, generated by sections that vanish at the point [1 : 0], becomes a

two-sided ideal.

Example 1.2.4 is a special case of the following construction, which we study in

detail in Chapter III.

Construction 1.2.5. Let Z be a closed subscheme of a variety X, let σ be an

automorphism of X, and let L be a σ-ample invertible sheaf on X. Inside the

twisted homogeneous coordinate ring B(X,L, σ), let I be the right ideal generated

by sections that vanish on Z. We define the ring

R(X,L, σ, Z) = {x ∈ B | xI ⊆ I}

to be the idealizer IB(I) of I in B.

In this notation, the ring of Example 1.2.4 becomes R(P1,O(1), σ, [1 : 0]).

1.3 Noncommutative curves and surfaces

Many of the important techniques of commutative algebraic geometry were ini-

tially developed to study curves and surfaces. Likewise, studying low-dimensional
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rings has been important in noncommutative algebraic geometry. We note that there

is a technical difficulty: we must define what we mean by the “dimension” of a graded

ring. We will use the Gelfand-Kirillov dimension (GK-dimension), which we define

precisely in Section 2.2.2. For now we will simply say that a graded ring R has

GK-dimension d if dim Rn grows like nd−1.

Here we outline what is known about graded domains of low GK-dimension; we

refer the reader to the survey article [SV01] for a more in-depth discussion. If R is a

finitely generated k-algebra that is a domain of GK-dimension 1, then a well-known

result of Small and Warfield [SW84] says that R is commutative. GK-dimension 2 is

thus the first case of interest to us. A noetherian graded domain of GK-dimension 2

is known as a noncommutative projective curve. We have already seen two examples

of noncommutative curves: Example 1.2.2, and more generally any twisted homo-

geneous coordinate ring of a projective curve, and Example 1.2.4. By a remarkable

result due to Artin and Stafford, all noncommutative projective curves fall into one

of these two types.

If R is a graded ring and k ≥ 1 ∈ Z, we define the k’th Veronese of R to be

R(k) =
⊕

n∈Z
Rkn.

That is, (R(k))n = Rkn.

Theorem 1.3.1. ([AS95]) Let R be a noetherian finitely N-graded domain of GK-

dimension 2. Then there is an integer k ≥ 1 so that R(k) is either:

(1) a twisted homogeneous coordinate ring B(X,L, σ) for some projective curve

X, automorphism σ of X, and σ-ample invertible sheaf L on X; or

(2) an idealizer at points of infinite order inside the twisted homogeneous coordi-

nate ring of a projective curve: that is, a ring similar to Example 1.2.4.
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Theorem 1.3.1 implies that noncommutative curves are closely related to commu-

tative curves. Artin and Stafford in fact show that if R is a noncommutative pro-

jective curve, then (even in the idealizer case) qgr-R % OX-mod for some projective

curve X. However, even though the noncommutative projective scheme associated

to a noncommutative curve is in fact commutative, the idealizers that occur are rings

for which there is no clear commutative analogue.

We now turn to discussing noncommutative projective surfaces: noetherian finitely

N-graded domains of GK-dimension 3. Here the situation is significantly more com-

plex. It is natural to attempt a classification by birational type, mimicking the

Enriques classification of (commutative) projective surfaces. In the noncommutative

setting, we will define this as follows. Let R be a graded domain of GK-dimension

3. We form the graded quotient ring of R by inverting all homogeneous elements to

obtain a graded division ring, which by standard results must be a skew-Laurent ring

of the form

D[z, z−1; σ]

for some division ring D and automorphism σ of D. For more details on noncom-

mutative localization, see Section 2.2.3.

By abuse of notation, we will refer to D as the function field of R, and will say that

two noncommutative projective surfaces are birationally equivalent if their function

fields are isomorphic.

Clearly there is a large class of noncommutative surfaces whose function fields are

actually (commutative) fields; these include twisted homogeneous coordinate rings of

projective surfaces as well as their idealizers and other subrings. Such rings are called

birationally commutative. For now, we postpone discussing birationally commutative

surfaces until Section 1.4, and consider other surfaces that do not fall into this class.
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One important set of examples are the Artin-Schelter regular rings of dimension

3, known less formally as “noncommutative P2s.”

Definition 1.3.2. A finitely N-graded domain R is called Artin-Schelter regular of

dimension d if R satisfies the following properties:

(1) R has global dimension d;

(2) R has finite GK-dimension;

(3) R is homologically well-behaved in the sense that R has left and right injective

dimension d and

Exti
R(k, R) =






0 if i *= d

k if i = d.

The idea behind this definition is that R is supposed to be a good analogue of

a polynomial ring in d (weighted) variables. Condition (3), which is known as the

Artin-Schelter Gorenstein condition, is included to rule out unpleasant examples like

k{x, y}/(xy).

Artin, Tate, Van den Bergh, and Stephenson [ATV90, ATV91, Ste96, Ste97] have

classified the Artin-Schelter regular rings of dimension 3. The most interesting ex-

amples are the 3-dimensional Sklyanin algebras

Skl3(a, b, c) = k{x0, x1, x2}/(axixi+1 + bxi+1xi + cx2
i+2 : i = 1, 2, 3 mod 3),

where [a : b : c] ∈ P2 ! {a finite set of degenerate points}. Techniques from noncom-

mutative algebraic geometry were central to this work. It turns out that a Sklyanin

algebra S = Skl3(a, b, c) contains a normal element g of degree 3, and that S/(g)

is isomorphic to the twisted homogeneous coordinate ring B(E,L, σ) of an elliptic

curve E. Further, S is determined by the data (E,L, σ), and in fact by E and σ.
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Thus we may write

Skl3(a, b, c) = Skl3(E, σ).

We note that the Hilbert series of Skl3(E, σ) is 1/(1− t)3, and so it is plausible that

S is an analogue of a polynomial ring in 3 variables.

There is one more birational class of noncommutative surfaces that is easy to write

down: they are built from curves. For example, we may take a (skew) polynomial

extension of a noncommutative projective curve. A simple example is the ring

R = kJ [x, y][z]

where kJ [x, y] is the Jordan plane defined in Example 1.2.2. The function field of

R is the full quotient division ring of kJ [x, y]. As a variation, we may consider

the (homogenized) ring of differential operators on an affine curve; for example, the

homogenized Weyl algebra

H = k{x, y, h}/(xy − yx− h2, xh− hx, yh− hy).

The function field of H is the quotient division ring of the Weyl algebra, the ring

of differential operators on the affine line. More generally still, we may consider the

quotient division ring of any Ore extension (see Definition 2.2.2) K[x; σ, δ], where

K is a field of transcendence degree 1. These Ore extensions are noncommutative

polynomial rings in one variable.

Michael Artin made the bold conjecture in 1995 that up to birational equivalence,

all noncommutative surfaces fall into this short list of examples. We present a slightly

modified form of his conjecture.

Conjecture 1.3.3. ([Art95, Conjecture 4.1]) If R is a noncommutative projective

surface, then its function field is either:
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(1) a field of transcendence degree 2 (birationally commutative);

(2) a division ring finite-dimensional over a central field of transcendence degree

2;

(3) the full quotient division ring of an Ore extension K[x; σ, δ], where K is a field

of transcendence degree 1 (a “quantum ruled surface”); or

(4) D(E, σ), the function field of the Sklyanin algebra Skl3(E, σ) for some elliptic

curve E and automorphism σ of E (a “quantum rational surface”).

Artin’s conjecture is the most important open problem in noncommutative alge-

braic geometry. It was extremely provocative at the time that it was made, and

remains so. It is also notable for its difficulty: in the 13 years since it was made,

there has been no significant progress towards either a proof or a counterexample.

We do not attempt to do either in this thesis. Instead, we restrict our attention

to case (1), and completely classify the graded domains in this birational equivalence

class. We discuss this classification in the next section.

1.4 Birationally commutative graded rings

In this section, we discuss birationally commutative projective surfaces and make

some comments on higher dimensional birationally commutative graded rings. We

begin with an example, due to Rogalski:

Example 1.4.1. ([Rog04a, Definition 1.1]) Let X = P2, and let

σ =





1

p

q




∈ PGL3.

We will assume that p, q ∈ k∗ are very general; it is enough to assume that the

multiplicative subgroup of k generated by p, q, and 1 is isomorphic to Z3. Then one
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can easily check that

B = B(P2,O(1), σ) ∼= k{x, y, z}/(xy − pyx, xz − qzx, yz − qp−1zy).

Now consider the ring S ⊂ B, where

S = k〈x− y, y − z〉.

By [Rog04a, Theorem 1.2], S is left and right noetherian.

The ring S constructed in Example 1.4.1 is an example of a so-called näıve blowup

algebra. Some special cases were studied in [Rog04a], and a more general construction

was given in [KRS05] and subsequently generalized in [RS07]. Here we follow the

exposition in [KRS05].

To construct a näıve blowup algebra, begin as usual with a projective variety X,

an automorphism σ of X, and a σ-ample invertible sheaf L on X. Also choose a

point P ∈ X (or more generally, let P be a 0-dimensional subscheme of X). Let

I = IP be the ideal sheaf of P . Then we may form a ring

(1.4.2) S(X,L, σ, P ) =
⊕

n≥0

H0(IIσ · · · Iσn−1Ln),

which we refer to as a näıve blowup of X at P . The construction of S(X,L, σ, P )

mimics the construction of a commutative blowup as a Rees ring: we are taking

(sections of) higher and higher successive powers of the ideal defining P , using the

multiplication on the twisted homogeneous coordinate ring B(X,L, σ).

Let P be a 0-dimensional subscheme of X. Then the properties of the näıve

blowup S(X,L, σ, P ) depend on the geometry of the orbits {σn(p)}n∈Z for p ∈ P .

Definition 1.4.3. Let X be a projective variety, let σ be an automorphism of X,

and let p ∈ X. We say the orbit {σn(p)} is critically dense if it is infinite and any

infinite subset is Zariski-dense in X.
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Then we have:

Theorem 1.4.4. ([RS07, Theorem 1.1]) Let X be a projective variety, σ an auto-

morphism of X, and L a σ-ample invertible sheaf on X. Let P be a 0-dimensional

closed subscheme of X. If the set {σn(p)} is critically dense for all p ∈ P , then the

ring S(X,L, σ, P ) is noetherian.

We remark that [KRS05, Theorem 4.1] is an earlier version of this result, with

less general hypotheses. We also note that we prove the converse to Theorem 1.4.4

in this thesis; see Proposition 4.7.14.

Rogalski and Stafford [RS06] have recently classified all birationally commutative

projective surfaces that are generated in degree 1; remarkably, twisted homogeneous

coordinate rings and näıve blowups are the only two types of rings that occur.

Theorem 1.4.5. ([RS06, Theorem 1.1]) Let R be a birationally commutative pro-

jective surface that is generated in degree 1. Then there is an integer k ≥ 1 so that

R(k) is either:

(1) the twisted homogeneous coordinate ring of a projective surface; or

(2) the näıve blowup of a projective surface at a 0-dimensional subscheme sup-

ported on points that move in critically dense orbits.

We note that Rogalski and Stafford consider a slightly more general class of rings

than our noncommutative projective surfaces. They study finitely N-graded noethe-

rian domains R whose graded quotient ring is of the form

K[z, z−1; σ]

where K = k(X) is the function field of a projective surface X such that σ induces

an automorphism of X. By [Rog07, Theorem 1.1], any such R has GK-dimension 3
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or 5, and any birationally commutative domain of GK-dimension 3 that is generated

in degree 1 is of the form considered by Rogalski and Stafford. See Section 4.1 for

more discussion of the GK-dimension of noncommutative surfaces.

The hypothesis in Theorem 1.4.5 that R be generated in degree 1 seems overly

restrictive; note that in contrast with the commutative case, there are many non-

commutative noetherian graded rings that have no Veronese subring generated in

degree 1. (For example, the idealizers in Construction 1.2.5 have this property.) We

remove this restriction in Chapter IV, and make a complete classification of bira-

tionally commutative surfaces, using methods that are quite different from the proof

of Theorem 1.4.5. Besides idealizers, näıve blowups, and twisted homogeneous co-

ordinate rings, one new type of ring arises; we refer to these as ADC rings. They

are similar to, but more general than, näıve blowups, and give rise to a new class

of maximal orders — the noncommutative version of integrally closed rings. (The

formal definition is given in Definition 4.1.6.)

We obtain:

Theorem 1.4.6. (Theorem 4.1.4) Let R be a finitely N-graded birationally commu-

tative noetherian domain of GK-dimension 3. Then there is an integer k ≥ 1 so that

R(k) is either:

(1) the twisted homogeneous coordinate ring of a projective surface;

(2) a näıve blowup or ADC ring on a projective surface;

(1′), (2′) an idealizer inside a ring of type (1) or (2) respectively.

By classifying all rings falling within case (1) of Conjecture 1.3.3, Theorem 1.4.6

shows that relatively mild assumptions on rings of GK-dimension 3 can have pow-

erful consequences. Artin’s original formulation of Conjecture 1.3.3 assumed much

stronger technical conditions on the rings under study; it is quite interesting that



16

these assumptions do not, in fact, seem to be necessary to understand birationally

commutative surfaces. Furthermore, by enumerating the possible types of bira-

tionally commutative surfaces, Theorem 1.4.6 opens up new avenues of future re-

search: understanding the rings given in cases (1)–(2′) of Theorem 1.4.6 should give

new insight into the possibilities for important concepts such as the Artin-Zhang χ

conditions, which are defined in Section 2.4. We plan to explore this further in future

work.

The main difficulty in proving both Theorem 1.4.6 and Theorem 1.4.5 is construct-

ing the classical projective surface X that is associated to a given birationally com-

mutative projective surface R. Rogalski and Stafford prove Theorem 1.4.5 through

a delicate analysis of a certain class of modules, called point modules over R. This

is quite difficult because for näıve blowups such modules are parameterized by an

infinite series of projective schemes but not by any individual projective scheme; see

[KRS05, Theorem 1.1]. In contrast, in the proof of Theorem 1.4.6 we construct the

surface X much more directly, through a method of successive approximations of the

“correct” surface. While there are technical issues involved in this proof, most of

them are involved with showing that this method does, in fact, lead to an appropri-

ate projective surface, and the actual construction is relatively straightforward. We

comment also that comparing the methods of proof of Theorems 1.4.5 and 1.4.6 may

be a fruitful direction for future research.

Another important component of the proof of Theorem 1.4.6 is understanding

idealizers in twisted homogeneous coordinate rings, as in Construction 1.2.5. These

form a large class of examples, are often noetherian, and are never generated in degree

1. Idealizers on curves are understood, thanks to the classification of noncommutative
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curves in [AS95]; Rogalski [Rog04b] has also investigated idealizers of the form

(1.4.7) R(Pd,O(1), σ, P ),

where P = {p} is a point in Pd, from an algebraic perspective. However, until

now the properties of general geometric idealizers were not known. In Chapter III,

we investigate idealizers inside twisted homogeneous coordinate rings of arbitrary

dimension.

Rogalski proved that the properties of the idealizers (1.4.7) depend on the critical

density of the orbit {σn(p)}. Notably, in order for R to be left noetherian, one needs

that {σn(p)}n≥0 is critically dense. Finding a condition on an arbitrary subscheme

that will give rise to a noetherian idealizer is an important geometric question to be

solved in generalizing Rogalski’s results to arbitrary idealizers.

In Chapter III we answer this question. We define:

Definition 1.4.8. Let X be a projective variety and let σ ∈ Aut X. Let Z ⊆ X be

a closed subscheme. The set {σnZ}n∈Z is critically transverse in X if for all closed

subschemes Y ⊆ X, for all but finitely many n we have TorX
j (OσnZ ,OY ) = 0 for any

j ≥ 1.

We show that critical transversality of the set {σnZ} controls the behavior of

idealizers.

Theorem 1.4.9. (Theorem 3.1.6) Let X be a projective scheme, let σ be an auto-

morphism of X, and let L be a σ-ample invertible sheaf on X. Let Z be a closed sub-

scheme of X. For simplicity, assume that Z is reduced and irreducible and of infinite

order under σ. (We treat the general case in the body of the thesis.) Let I be the right

ideal of B(X,L, σ) generated by sections vanishing on Z. Let R = R(X,L, σ, Z), as

in Construction 1.2.5.
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Then

R = k + I,

and R is right noetherian if and only if the set {n ≥ 0 | σn(p) ∈ Z} is finite for any

p ∈ X. If {σnZ}n≥0 is critically transverse, then R is left noetherian.

This generalizes the results in [SZ94, AS95, Rog04b] to arbitrary idealizers in

twisted homogeneous coordinate rings.

As mentioned, the question of whether the left and right cohomological dimensions

of a noetherian graded ring are finite is an important open problem in noncommu-

tative geometry. Let R be one of the idealizers considered in Theorem 1.4.9. By a

result of Rogalski [Rog04b, Proposition 3.5], the cohomological dimension of the left

projective scheme associated to R is equal to dim X. We study the cohomological

dimension of the right projective scheme associated to R, and prove (Theorem 3.7.1)

that if R is left noetherian, then cd(Proj-R) is finite, even if the global dimension

of Proj-R is infinite. On the other hand, in Example 3.7.6 we give an example of a

right but not left noetherian ring that has infinite right cohomological dimension.

1.5 Transversality

We have seen that the properties of many noncommutative rings defined by geo-

metric data are controlled by the critical transversality of the underlying data. Here

we discuss other concepts of transversality, and describe purely algebro-geometric

results that relate these concepts. This is the subject of Chapter V of this thesis.

It is a fundamental principle of intersection theory that generic intersections are

well-behaved. If the ambient variety is sufficiently nice, one expects two nonsingular

subvarieties in general position to meet transversally, so a generic intersection should

be nonsingular. Classically, these heuristics are made precise by the well-known
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Kleiman-Bertini theorem, which goes back to 1882 [Ber82] in its earliest form.

Theorem 1.5.1. (Bertini, Kleiman [Har77, Theorem III.10.8]) Assume k has char-

acteristic 0. Let X be a variety (necessarily nonsingular) with a transitive left action

of an algebraic group G. Let Y and Z be nonsingular closed subvarieties of X. Then

there is a dense open subset U of G such that if g ∈ U , then gZ and Y intersect

transversally. In particular, a general hyperplane section of a nonsingular projective

variety is nonsingular.

Recently, Miller and Speyer [MS06] generalized the Kleiman-Bertini theorem to

apply to a more algebraic concept of a well-behaved intersection.

Definition 1.5.2. Let X be a scheme, and let Y and Z be closed subschemes of

X. If TorX
j (OY ,OZ) = 0 for j ≥ 1, we will say that Y and Z are homologically

transverse.

Homological transversality has the following geometric meaning. If P is a compo-

nent of Y ∩ Z, then Serre’s formula for the multiplicity of the intersection of Y and

Z at P [Har77, p. 427] is:

i(Y, Z; P ) =
∑

j≥0

(−1)j lenP (TorX
j (OZ ,OY )),

where the length lenP ( ) is taken over the local ring at P . Thus if Y and Z are

homologically transverse, their intersection multiplicity at P is simply the length of

their scheme-theoretic intersection over the local ring at P .

We note that homological transversality does generalize classical transversality:

if X, Y , and Z are nonsingular, Y and Z meet transversally, and char k = 0, then

Y and Z are also homologically transverse.

Miller and Speyer’s result is:
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Theorem 1.5.3. [MS06] Let X be a variety with a transitive left action of a smooth

algebraic group G. Let Z and Y be closed subschemes of X. Then there is a dense

Zariski open subset U of G such that, for all g ∈ U , the subschemes gZ and Y are

homologically transverse.

It is natural to ask what conditions on the action of G are necessary to conclude

that homological transversality is generic in the sense of Theorem 5.1.1. In particular,

the restriction to transitive actions is unfortunately strong, as it excludes important

situations such as the torus action on Pn. On the other hand, suppose that Z is the

closure of a non-dense orbit. Then for all g ∈ G, we have

TorX
1 (OgZ ,OZ) = TorX

1 (OZ ,OZ) *= 0,

and so the conclusion of Theorem 5.1.1 fails. Thus for non-transitive group actions

some additional hypothesis is necessary.

In Chapter V, we show that there is a simple condition for homological transver-

sality to be generic. We will state it here for algebraically closed fields, although in

the text we make no assumptions on the ground field.

Theorem 1.5.4. (Theorem 5.1.2) Let X be a variety with a left action of a smooth

algebraic group G, and let Z be a closed subscheme of X. Then the following are

equivalent:

(1) Z is homologically transverse to all G-orbit closures in X;

(2) For all closed subschemes Y of X, there is a Zariski open and dense subset U

of G such that for all g ∈ U , the subscheme gZ is homologically transverse to Y .

The investigations that led to Theorem 1.5.4 were motivated by the work in

Chapter III. We have seen that if X is a projective variety, σ an automorphism

of X, L a σ-ample invertible sheaf on X, and Z a closed subscheme of X, then the



21

algebraic properties of the geometric idealizer ring R(X,L, σ, Z) in Construction 1.2.5

are controlled by the property that {σnZ} is critically transverse: that is, for any

closed subscheme Y and for any j ≥ 1, the sheaves TorX
j (OσnZ ,OY ) vanish for all

but finitely many n. This certainly reminds one of generic transversality statements

like the Kleiman-Bertini theorem or Theorem 1.5.3. Thus, in investigating critical

transversality, one is naturally led to wonder what conditions on Z are necessary to

conclude that some sort of generic transversality result holds for the translates of Z.

Using Theorem 1.5.4, we are able to answer this question, at least in many situ-

ations. We show:

Theorem 1.5.5. (Theorem 5.4.2) Suppose that char k = 0 and that σ is an element

of an algebraic group acting on X. Then the following are equivalent:

(1) Z is homologically transverse to all reduced σ-invariant subschemes of X;

(2) the set {σnZ} is critically transverse.

In particular, Theorem 1.5.5 implies that (in characteristic 0), if σ is a sufficiently

general element of PGLd+1, then {σnZ} is critically transverse for almost every

Z ⊆ Pd. (See Corollary 5.4.3 for a precise statement.)

1.6 Plan of this thesis

In this section we briefly discuss the plan of the rest of this thesis. In Chap-

ter II, we review some of the ring theory, algebraic geometry, and noncommutative

geometry that we will use. We give an overview of the current state of knowledge

of noncommutative projective surfaces, and describe some of the techniques that we

will use to prove the results in this thesis.

Chapter III is devoted to studying the geometric idealizers constructed in Con-

struction 1.2.5. We determine many of the properties of geometric idealizers and
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show that they are controlled by the critical transversality of the underlying data; in

particular, we prove Theorem 1.4.9. We also investigate when idealizers satisfy the

Artin-Zhang χ conditions and are strongly noetherian, and study the cohomological

dimension of idealizers.

Chapter IV is devoted to the proof of Theorem 1.4.6. We use many of the results

from Chapter III in this proof.

Finally, in Chapter V, we investigate algebro-geometric questions related to ho-

mological transversality and critical transversality, and prove Theorem 1.5.4 and

Theorem 1.5.5.



CHAPTER II

Background

2.1 Introduction

In this chapter, we lay out the fundamental notations and definitions that we will

use in this thesis. In the first section, we collect some basic facts about graded rings,

abelian categories, and Gelfand-Kirillov dimension. In the second section, we discuss

bimodule algebras: a bimodule algebra, roughly speaking, is the noncommutative

version of a sheaf of algebras. We also define and discuss σ-ampleness and outline

the proof of Theorem 1.2.3, since it introduces techniques that we will use in the

sequel. The third section is devoted to a discussion of two important technical

conditions that we will see repeatedly in the rest of this thesis. Finally, we give a

few results from classical algebraic geometry that we will need.

2.2 Basic definitions

In this section, we give basic definitions and notations that we use throughout

this thesis.

2.2.1 Graded rings and abelian categories

We work throughout over a fixed field k, which we assume to be algebraically

closed unless otherwise stated. A k-algebra R is called graded if it has a direct sum

23
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decomposition

R =
⊕

n∈Z
Rn

that satisfies RnRm ⊆ Rn+m for all n, m. We adopt the convention that N =

{0, 1, 2, . . .}, and we will say that R is N-graded if Rn = 0 for n < 0. A graded

k-algebra R is called connected graded if R0 = k, and connected N-graded if it is con-

nected graded and N-graded. A graded k-algebra R is finitely graded if it is finitely

generated as a k-algebra and each Rn is finite-dimensional over k, and finitely N-

graded if it is finitely graded and N-graded. Note that a finitely graded domain is

connected graded.

If R is a k-algebra, we will denote the category of right, respectively left, R-

modules by Mod-R, respectively R-Mod. If R is, in addition, graded, then by Gr-R

we will denote the category of graded right R-modules: that is, modules MR with a

direct sum decomposition

M =
⊕

n∈Z
Mn,

satisfying MnRm ⊆ Mn+m. Morphisms in Gr-R are module homomorphisms φ :

M → N such that φ(Mn) ⊆ Nn for all n ∈ Z. We write

homR(M, N) = HomGr-R(M, N),

and denote the derived functors of homR by extj
R. We similarly define the category

R-Gr of graded left R-modules.

If C and C ′ are categories, then we will use the notation C % C ′ to mean that C

and C ′ are equivalent. We adopt the convention throughout that if Abc is the name

of a category, then abc will denote the full subcategory of noetherian objects; that

is, objects whose subobjects satisfy the ascending chain condition. Thus for a graded

k-algebra R, we also have categories R-gr, gr-R, mod-R, etc.
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Let R be a graded k-algebra. If M is a graded R-module and n ∈ Z, we may

define a new module M [n] by shifting degrees: let

M [n] =
⊕

i∈Z
M [n]i

and set M [n]i = Mn+i. For all n, the functor

M 1→ M [n]

is an autoequivalence of Gr-R and of R-Gr; we call these autoequivalences shift

functors.

Let R be a graded k-algebra, and let M and N be graded right R-modules. We

define

HomR(M, N) =
⊕

n∈Z
homR(M, N [n]),

and write

HomR(M, N)n = homR(M, N [n]).

These are the maps φ such that φ(Mi) ⊆ Nn+i, and we refer to them as homomor-

phisms of degree n. Similarly, we define, for any j,

Extj
R(M, N) =

⊕

n∈Z
extj

R(M, N [n]).

If M is finitely generated, we may identify HomR(M, N) with HomMod-R(M, N).

If R is a graded k-algebra and k *= 0 ∈ N, we denote the k’th Veronese of R by

R(k), where

(R(k))n = Rkn.

If R is noetherian, so is R(k) for all k ≥ 1. If R(k) is left (right) noetherian and R is

a finitely generated left (right) R(k)-module, then R is left (right) noetherian.

We briefly review the definition of a quotient category; we refer the reader to

[Gab62] for a reference for the category theory used here. Let C be an abelian
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category. A full subcategory A of C that is closed under taking subobjects, quotients,

and extensions is called a Serre subcategory or a dense subcategory of C. If A is a

Serre subcategory of C, then we may form the quotient category C/A. The objects

of C/A are the same as the objects of C. If M, N are two objects of C, we define

HomC/A(M, N) = lim−→HomC(M
′, N/N ′),

where the direct limit is taken over all subobjects M ′ of M and N ′ of N such that

M/M ′ and N ′ are both in A. There is clearly a quotient functor π : C → C/A: we

define πC = C for all C ∈ C, and let π(f : M → N) be the image of f in the direct

system that defines HomC/A(M, N).

We now specialize to the case that R is a finitely N-graded k-algebra and C =

Gr-R. A graded right R-module M is called right bounded if Mn = 0 for all n $ 0.

We say that M is torsion if M is a direct limit of right bounded modules. Let Tors-R

denote the full subcategory of Gr-R of torsion modules. We leave it to the reader to

verify that Tors-R is a Serre subcategory of Gr-R. Thus we may form the quotient

category

Qgr-R = Gr-R/ Tors-R.

We set qgr-R = gr-R/ tors-R, where tors-R = Tors-R∩gr-R. We note that the shift

functors

M → M [n]

descend to autoequivalences of Qgr-R and of qgr-R, and similarly on the left.

In fact, Tors-R is a localizing subcategory of Gr-R: this means that there is a

section functor ω : Qgr-R → Gr-R such that πω ∼= IdQgr-R, where π : Gr-R → Qgr-R

is the quotient functor. If M ∈ Gr-R is torsionfree, then ωπM is the largest essential

extension M ′ of M such that M ′/M is torsion.
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Recall from Chapter I that if B = B(X,L, σ) is the twisted homogeneous co-

ordinate ring of a σ-ample invertible sheaf L on the projective variety X, then

by Theorem 1.2.3, we have that qgr-B % OX-mod. Motivated by this, Artin and

Zhang [AZ94] defined the noncommutative projective scheme associated to a graded

k-algebra R to be the pair

Proj-R = (qgr-R, πR).

The distinguished object πR plays the role of the structure sheaf of Proj-R. Now, if F

is a quasicoherent sheaf on a projective variety X, then H0(X,F) = HomX(OX ,F).

By analogy, we define cohomology functors on Proj-R by setting

H i(Proj-R, ) = Exti
Qgr-R(πR, ).

We define the right cohomological dimension of R, or cd(Proj-R), to be

max{i | H i(Proj-R,M) *= 0 for some M∈ Qgr-R}.

We may of course mirror the constructions in the previous two paragraphs on the

left; thus we also have R-Qgr, R-qgr, R-Proj, and the left cohomological dimension

of R, or cd(R-Proj).

2.2.2 Gelfand-Kirillov dimension

One difficulty of noncommutative algebra is that the numerous equivalent notions

of dimension for commutative rings diverge once one passes to the noncommutative

realm. The dimension we will use in this thesis is the Gelfand-Kirillov dimension or

GK-dimension. We will mention only a few properties here; for a general reference

on GK-dimension, see [KL00].
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Definition 2.2.1. Let R be a finitely generated k-algebra, and let V be a finite-

dimensional generating subspace for R that contains 1. The GK-dimension of R

is

GKdim R = inf{α ∈ R | dimk(V
n) ≤ nα for all n $ 0}

= lim sup
n→∞

log dimk V n

log n
.

One easily checks that this definition is independent of the generating subspace

V .

For finitely generated commutative k-algebras, the GK-dimension is equal to the

Krull dimension. For noncommutative rings, GK-dimension can be quite badly be-

haved: in particular, it is not necessarily an integer. However, if R is a graded

domain of GK-dimension ≤ 3, then GKdim R ∈ {0, 1, 2, 3} by results of Bergman

[KL00, Theorem 2.5], Artin and Stafford [AS95], and Smoktunowicz [Smo06]. It is

an open question whether there exist any domains with non-integer GK-dimension.

2.2.3 Noncommutative localization and skew polynomial rings

In the noncommutative setting, it is not always clear what one means by a “quo-

tient ring.” A general result due to Gabriel [Gab62, Théorème 1, p. 418] says that

any noncommutative domain has what is known as a maximal right quotient ring;

see [GW89, Chapter 4] for a construction. However, this ring is not necessarily a

division ring! Furthermore, if R is badly behaved, then there may be many divi-

sion rings sitting between R and its maximal quotient ring. For example, it appears

that almost any division ring infinite-dimensional over its center K contains a free

subalgebra K{x, y} on two generators over K; cf. [ML83]. Thus one cannot form a

“quotient division ring” of K{x, y} in any canonical way.

Here we briefly review when noncommutative localization is possible.
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Definition 2.2.2. Let R be a domain. A set X ⊂ R of nonzero elements is a right

Ore set if X is multiplicatively closed and if for all x ∈ X and r ∈ R, we have

xR ∩ rX *= ∅.

If X is a right Ore set, then one can form a ring of fractions with denominators

in X. That is, there is a unique way to form the localization

RX−1 = {rx−1 | r ∈ R, x ∈ X}

such that RX−1 is an overring of R with appropriate properties. If X is both a right

and a left Ore set, then the rings RX−1 and X−1R are naturally isomorphic. In

particular, any element of RX−1 may be written as both a right fraction rx−1 and

a left fraction y−1s for some r, s ∈ R and x, y ∈ X, and any finite set of elements

of RX−1 has both a right and a left common denominator. (See [GW89, Chapter 9]

for details.)

If R is a graded domain and is either noetherian or has finite GK-dimension, then

the set

X = R ! {0}

is automatically a right and left Ore set by Goldie’s Theorem [GW89, Theorem 5.10]

or by [KL00, Theorem 4.15]. Further, the set

Y =

(
⋃

n∈Z
Rn

)
! {0}

is also a right and left Ore set [GS00, Theorem 5a]. The ring RX−1 formed by

inverting all nonzero elements is called the quotient division ring of R and written

Q(R). The ring RY −1 formed by inverting all nonzero homogeneous elements is

known as the graded quotient ring of R and denoted Qgr(R). Clearly Qgr(R) is

graded, and Qgr(R)0 is a division ring. We will call Qgr(R)0 the function field of
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R; note that the function field of R need not be commutative! If z is any nonzero

element of Qgr(R)1 (in particular, we assume some such z exists), then it is not hard

to see that the map

σ(x) = zxz−1

defines an automorphism of Qgr(R)0. In fact, by [NvO82, Corollary I.4.3], Qgr(R) is

isomorphic to the skew-Laurent ring

S = D[z, z−1; σ],

where D = Qgr(R)0 is the function field of R. Elements of S are are Laurent

polynomials
∞∑

i=−∞

diz
i,

with di ∈ D and only finitely many di nonzero; multiplication is induced from the

rule that if d ∈ D, then

zd = dσz.

We also mention the general construction of skew polynomial rings, which we use

in the statement of Conjecture 1.3.3. Let K be a k-algebra and let σ ∈ Autk(K).

Then we define a σ-derivation of K to be an additive map

δ : K → K

satisfying

δ(rs) = δ(r)σ(s) + rδ(s)

for all r, s ∈ K. Given an automorphism σ of K and a σ-derivation δ of K, we define

the skew polynomial ring or Ore extension K[x; σ, δ] to be the free K-module

⊕

n≥0

Kxn,
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with multiplication induced from the rule that

xr = σ(r)x + δ(r)

for all r ∈ K. Details of skew-Laurent and skew polynomial rings may be found in

[GW89, Chapter 1].

2.3 Bimodule algebras

In this section, we develop the notation to work with bimodule algebras. Most of

the material in this section was developed in [Van96] and [AV90], and we refer the

reader there for references. We will not work in full generality, however, and our

presentation will follow that in [KRS05, Section 2].

We fix throughout this section a projective variety X; for us, a variety is an integral

separated scheme of finite type over k. We will denote the category of quasicoherent

(respectively coherent) sheaves on X by OX-Mod (respectively OX-mod). If σ is an

automorphism of X and F is a sheaf on X, recall the notation that Fσ = σ∗F . Thus

σ acts on functions by sending f to fσ = f ◦ σ.

A bimodule algebra on X is, roughly speaking, a quasicoherent sheaf with a multi-

plicative structure. Before presenting an explicit definition, we give the fundamental

example.

Example 2.3.1 (Twisted bimodule algebras). Let σ be an automorphism of X and

let L be an invertible sheaf on X. We define the twisted bimodule algebra of L to be

B = B(X,L, σ) =
⊕

n≥0

L ⊗ Lσ ⊗ · · · ⊗ Lσn−1
.

Let Ln be the nth twisted tensor power of L; i.e., let

Ln = L ⊗ Lσ ⊗ · · · ⊗ Lσn−1
.
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There is a natural map from Ln ⊗ Lm → Lm+n = Ln ⊗ (Lm)σn
, given by 1 ⊗ σn.

Thus the multiplication on B is twisted by σ, in a sense that we will make precise in

the following definitions.

Definition 2.3.2. An OX-bimodule is a quasicoherent OX×X-module F , such that

for every coherent F ′ ⊆ F , we have that for Z = SuppF ′, the projection maps

p1, p2 : Z → X are both finite morphisms. The left and right OX-module structures

associated to an OX-bimodule F are defined respectively as (p1)∗F and (p2)∗F .

We note that by [Van96, Proposition 2.5], there is a tensor product operation on

the category of bimodules that has the expected properties.

In general, operations with bimodules can be quite technical. However, all the

bimodules that we consider will be constructed from bimodules of the following form:

Definition 2.3.3. Let σ, τ ∈ Aut(X). Let (σ, τ) denote the map

X → X ×X

x 1→ (σ(x), τ(x)).

If F is a quasicoherent sheaf on X, we define the OX-bimodule σFτ to be

σFτ = (σ, τ)∗F .

If σ = 1 is the identity, we will often omit it; thus we write Fτ for 1Fτ and F for

the OX-bimodule 1F1 = ∆∗F , where ∆ : X → X ×X is the diagonal.

We quote a lemma that shows how to work with bimodules of the form σFτ , and,

in particular, how to form their tensor product.

Lemma 2.3.4. ([KRS05, Lemma 2.3]) Let F , G be coherent OX-modules, and let

σ, τ ∈ Aut X.
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(1) τFσ
∼= (F τ−1

)στ−1.

(2) Fσ ⊗ Gτ
∼= (F ⊗ Gσ)τσ.

(3) In particular, L⊗n
σ = (Ln)σn.

We will usually work with bimodules of the form Fτ . By Lemma 2.3.4(1), this is

not a restriction. We make the notational convention that when we refer to an OX-

bimodule simply as an OX-module, we are using the left-handed structure (for exam-

ple, when we refer to the global sections or higher cohomology of an OX-bimodule).

Definition 2.3.5. Let X be a projective scheme and let σ ∈ Aut X. AnOX-bimodule

algebra, or simply a bimodule algebra, B is an algebra object in the category of

bimodules. That is, there is a unit map 1 : OX → B and a product map µ : B⊗B → B

that have the usual properties.

We follow [KRS05] and define

Definition 2.3.6. A bimodule algebra B is a graded (OX , σ)-bimodule algebra if:

(1) There are coherent sheaves Bn on X such that

B =
⊕

n∈Z
1(Bn)σn ;

(2) B0 = OX ;

(3) the multiplication map µ is given by OX-module maps Bn ⊗ Bσn

m → Bn+m,

satisfying the obvious associativity conditions. Note that by Lemma 2.3.4(2),

(Bn)σn ⊗ (Bm)σm = (Bn ⊗ Bσn

m )σn+m .

Example 2.3.7. The twisted bimodule algebra B(X,L, σ) from Example 2.3.1 is a

graded (OX , σ)-bimodule algebra, with Bn = Ln for all n ≥ 0.

Definition 2.3.8. Let B be a graded (OX , σ)-bimodule algebra. A right B-module

M is a quasicoherent OX-module M together with a right OX-module map µ :
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M⊗ B → M satisfying the usual axioms. We say that M is graded if there is a

direct sum decomposition

M =
⊕

n∈Z
(Mn)σn

with multiplication giving a family ofOX-module mapsMn⊗Bσn

m →Mn+m, obeying

the appropriate axioms.

We say that M is coherent if there is a coherent OX-module M′ and a surjective

map M′ ⊗ B → M of ungraded OX-modules. We similarly define left B-modules.

The bimodule algebra B is right (left) noetherian if every right (left) ideal of B is

coherent. By standard arguments, a graded (OX , σ)-bimodule algebra is right (left)

noetherian if and only if every graded right (left) ideal is coherent.

If B is a graded (OX , σ)-bimodule algebra, we let Gr-B be the abelian category

of graded right B-modules, with morphisms those that preserve degree. A module

M∈ Gr-B is bounded if Mi = 0 for all but finitely many i. We say that M is torsion

if every coherent submodule of M is bounded. We denote the full subcategory of

Gr-B of torsion modules by Tors-B. This is a Serre subcategory, and as in the

previous section, we define Qgr-B to be the quotient category Gr-B/ Tors-B. As

before, let π : Gr-B → Qgr-B be the quotient functor. We will let gr-B, qgr-B, etc.

be the full subcategories of noetherian objects, and we will similarly define B-Gr,

B-qgr, etc.

Coherence for B-modules should be viewed as analogous to finite generation, but

it is unknown whether, for a general noetherian bimodule algebra, every submodule

of a coherent module is coherent! Fortunately, in our situation the usual intuitions

do hold. We restate [KRS05, Proposition 2.10] as:

Lemma 2.3.9. Let R =
⊕

n∈Z(Rn)σn be a graded (OX , σ)-sub-bimodule algebra

of a twisted bimodule algebra. Then R is right (left) noetherian if and only if all
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submodules of coherent right (left) R-modules are coherent.

Proof. (⇐) is clear. Conversely, suppose that R is right noetherian, so all right ideals

of R are coherent. By [KRS05, Proposition 2.10], since the Rn are subsheaves of

locally free sheaves, then all submodules of coherent right R-modules are coherent.

The left-handed result follows from symmetry.

If R is a graded (OX , σ) bimodule algebra, we may form its section algebra

H0(X,R) = H0(R) =
⊕

n≥0

H0(Rn) =
⊕

n≥0

H0(X,Rn).

(Throughout this thesis, we will omit the scheme X when taking global sections or

cohomology unless the underlying scheme is not clear from context.)

Multiplication on H0(R) is induced from the multiplication map µ on R; that is,

from the maps

H0(Rn)⊗H0(Rm) → H0(Rn)⊗H0(Rσn

m ) → H0(Rn+m).

Global sections give a functor from Gr-R to Gr-H0(R). If M is a graded right

R-module, define

H0(M) =
⊕

n∈Z
H0(Mn).

This is a right H0(R)-module in the obvious way.

If R = H0(R), and M is a graded right R-module, define M ⊗RR to be the sheaf

associated to the presheaf V 1→ M ⊗R R(V ). This is a graded right R-module, and

the functor ⊗R R : Gr-R → Gr-R is a right adjoint to H0.

Example 2.3.10. Let B(X,L, σ) be a twisted bimodule algebra. Then the section

algebra H0(B(X,L, σ)) is the twisted homogeneous coordinate ring B(X,L, σ).

The fundamental result on when one can more closely relate Gr-R and Gr-R is

due to Van den Bergh. We first give a definition:
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Definition 2.3.11. Let X be a projective variety, let σ ∈ Aut X, and let {Rn}n∈N

be a sequence of coherent sheaves on X. The sequence of bimodules {(Rn)σn} is

right ample if for any coherent OX-module F , the following properties hold:

(i) F ⊗Rn is globally generated for n $ 0;

(ii) Hq(F ⊗Rn) = 0 for n $ 0 and all q ≥ 1.

The sequence {(Rn)σn} is left ample if for any coherent OX-module F , the following

properties hold:

(i) Rn ⊗Fσn
is globally generated for n $ 0;

(ii) Hq(Rn ⊗Fσn
) = 0 for n $ 0 and all q ≥ 1.

We say that an invertible sheaf L is σ-ample if the OX-bimodules

{(Ln)σn} = {L⊗n
σ }

form a right ample sequence. By [Kee00, Theorem 1.2], this is true if and only if the

OX-bimodules {(Ln)σn} form a left ample sequence.

The following result is a special case of a result due to Van den Bergh [Van96,

Theorem 5.2], although we follow the presentation of [KRS05, Theorem 2.12]:

Theorem 2.3.12. (Van den Bergh) Let X be a projective scheme and let σ be an

automorphism of X. Let R =
⊕

(Rn)σn be a right noetherian graded (OX , σ)-

bimodule algebra, such that the bimodules {(Rn)σn} form a right ample sequence.

Then R = H0(R) is also right noetherian, and the functors H0 and ⊗R R induce

an equivalence of categories

qgr-R % qgr-R.

Theorem 1.2.3 follows easily from Theorem 2.3.12, and we give the proof here.

Proof of Theorem 1.2.3. Let I =
⊕

(In)σn be a graded right ideal of B = B(X,L, σ).

The coherent OX-modules In ⊗ (Ln)−1 form an ascending chain of ideal sheaves on
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X; thus they stabilize after some n0, and we have a surjection I≤n0 ⊗ B → I. Thus

B is right noetherian. Arguing similarly, one sees that the functors

M 1→Mn ⊗ (Ln)−1 for n $ 0

and

F 1→ F ⊗X B

give an equivalence of categories between OX-mod and qgr-B. By assumption,

L is σ-ample; thus by Theorem 2.3.12, the categories qgr-B and qgr-B(X,L, σ)

are equivalent. Therefore OX-mod % qgr-B(X,L, σ). By symmetry, OX-mod %

B(X,L, σ)-qgr.

We introduce notation for the quasi-inverse functors between qgr-B and OX-mod.

Define a functor

Γ∗ : OX-mod → qgr-B

F 1→
⊕

n≥0

H0(F ⊗ Ln).

The quasi-inverse of Γ∗ is induced by a functor

˜ : gr-B → OX-mod .

To define this functor, let M ∈ gr-B. There is a unique coherent sheaf F such that

F ⊗ Ln = (M ⊗B B)n for all n $ 0. Define M̃ = F . Note that if πM = πN in

qgr-R, then M̃ = Ñ .

Since right and left σ-ample invertible sheaves are the same, there is also an

equivalence B-qgr % OX-mod. The quasi-inverses between these two categories are

defined by letting

Γ∗F =
⊕

n≥0

H0(Ln ⊗Fσn
)
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and letting M̃ be the unique F such that Ln ⊗Fσn
= (B ⊗B M)n for all n $ 0.

We note that if N ∈ gr-B, then by [SV01, (3.1)], we have that

(2.3.13) Ñ [n] ∼= (Ñ ⊗ Ln)σ−n

for all n ≥ 0.

We record here the observation that when working with bimodule algebras, we

may in our setting suppose, without loss of generality, that we are working with

sub-bimodule algebras of the twisted bimodule algebra B(X,OX , σ).

Lemma 2.3.14. Let X be a projective scheme with automorphism σ, and let L be

an invertible sheaf on X. Let

R =
⊕

n≥0

(Rn)σn

be a graded (OX , σ)-sub-bimodule algebra of the twisted bimodule algebra B(X,L, σ).

Let Jn = RnL−1
n for n ≥ 0.

(1) Let S be the graded (OX , σ)-bimodule algebra defined by

S =
⊕

n≥0

(Sn)σn =
⊕

n≥0

(Jn)σn .

Then the categories gr-R and gr-S are equivalent, and the categories S-gr and R-gr

are equivalent.

(2) Let H be an invertible sheaf on X and let k ∈ Z. Then the functor Hσk ⊗

that maps

M =
⊕

n∈Z
(Mn)σn 1→

⊕

n∈Z
(H⊗Mσk

n )σk+n = Hσk ⊗M

is an autoequivalence of grR.

Proof. (1) By symmetry, it suffices to prove that gr-R % gr-S. For n < 0, define

Ln = (L−1)σn ⊗ (L−1)σn+1 ⊗ · · · ⊗ (L−1)σ−1
.



39

One easily verifies that

Lm ⊗ Lσm

n
∼= Ln+m

for all n, m ∈ Z. Define a functor F : gr-R → gr-S as follows: if

M =
⊕

n∈Z
(Mn)σn

is a graded right R-module, define

F (M) =
⊕

n∈Z
(Mn ⊗ (Ln)−1)σn .

The inverse functor G : gr-S → gr-R is defined as follows: if

N =
⊕

n∈Z
(Nn)σn

is a graded right S-module, let

G(N ) =
⊕

n∈Z
(Nn ⊗ Ln)σn .

It is trivial that GF ∼= Idgr-R and that FG ∼= Idgr-S .

(2) By Lemma 2.3.4(2), we have that

(
(Hσ−k

)−1
)

σ−k ⊗Hσk
∼= 1

(
(Hσ−k

)−1 ⊗Hσ−k
)1
∼= OX .

Thus the functor ((Hσ−k
)−1)σ−k ⊗ is a quasi-inverse to Hσk ⊗ .

We also record here an elementary lemma on the two-sided ideals of twisted ho-

mogeneous coordinate rings; compare [AS95, Lemma 4.4].

Lemma 2.3.15. Let X be a projective variety, let σ ∈ Aut X, and let L be an

invertible sheaf on X. Let B = B(X,L, σ) and let J be a two-sided ideal of B. Then

there is a σ-invariant ideal sheaf I so that Jn = ILn for n $ 0.
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Proof. By Lemma 2.3.14, without loss of generality we may let L = OX . As J is a

right ideal,

Jm+1 ⊇ Jm · B1 = Jm

for all m. There is therefore some n so that Jm = Jn for all m ≥ n. Let I = Jn. As

J is also a left ideal,

I = Jn+1 ⊇ B1 · J σ
n = J σ

n = Iσ.

Thus I = Iσ.

2.4 The χ conditions and the strong noetherian property

In this section we describe two properties, which, while technical, are needed to

extend important techniques from commutative to noncommutative geometry. Be-

cause in their absence one’s tools are relatively limited, it is important to understand

when these properties hold.

We begin with the Artin-Zhang χ conditions.

Definition 2.4.1. Let R be a finitely N-graded k-algebra, and fix j ∈ N. We say

that R satisfies right χj if, for all i ≤ j and for all finitely generated graded right

R-modules M , we have that

dimk Exti
R(k, M) < ∞.

We say that R satisfies right χ if R satisfies right χj for all j ∈ N. We similarly

define left χj and left χ; we say R satisfies χ if it satisfies left and right χ.

By [AZ94, Corollary 8.12], any commutative noetherian ring satisfies χ. It is an

easy exercise to see that R satisfies right χ0 if and only if R is right noetherian.

The most important of the χ conditions is χ1. Artin and Zhang discovered that

its presence allows one to reconstruct R from Proj-R. That is, we have:
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Theorem 2.4.2. ([AZ94, Theorem 4.5]) Let R be a finitely N-graded k-algebra, and

let B be the N-graded ring

B = HomQgr-R(πR, πR)n≥0 =
⊕

n≥0

H0(Proj-R, πR[n])

If R satisfies right χ1, then the canonical map R → B is an isomorphism in large

degree.

The higher conditions χj for j > 1 are less well understood. However, if a ring

satisfies right or left χ, then it is well-behaved in some important ways. For example,

by [AZ94, Theorem 7.4], R satisfies right χ if and only if the noncommutative version

of Serre’s finiteness theorem holds for Proj-R. That is, if R satisfies right χ, then for

any M∈ qgr-R, the cohomology Hj(Proj-R,M) is finite-dimensional for any j ≥ 0,

and for any j ≥ 1,

Hj(Proj-R,M[n]) = 0

for n $ 0.

The χ conditions are also needed in order to have a version of Serre duality for

a noncommutative ring R. This is known as the existence of a balanced dualizing

complex for R; see [Van97, Definition 6.2] for the precise definition. By results of

Van den Bergh [Van97, Theorem 6.3] and Yekutieli and Zhang [YZ97, Theorem 4.2],

R has a balanced dualizing complex if and only if R satisfies χ and both Proj-R and

R-Proj have finite cohomological dimension.

The second technical condition we consider is the strong noetherian property.

Definition 2.4.3. We say that the k-algebra R is strongly right (left) noetherian

if, for any commutative noetherian k-algebra C, the ring R ⊗k C is right (left)

noetherian.
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The strong noetherian property is clearly related to questions of extending the

base ring and working scheme-theoretically. All finitely generated commutative k-

algebras are strongly noetherian; however, the ring in Example 1.4.1 is an example

of a finitely generated k-algebra that is noetherian but not strongly noetherian on

either side, by [Rog04a, Theorem 1.2].

The fundamental result about strongly noetherian rings is also due to Artin and

Zhang. Before stating it, we define an important class of modules, which have the

Hilbert series of a point in Pn.

Definition 2.4.4. Let R be a connected N-graded k-algebra. A (right or left) point

module is a cyclic graded (right or left) module M such that dim Mn = 1 for all

n ≥ 0. A (right or left) truncated point module of length d is a module M such that

dim Mn = 1 for 0 ≤ n ≤ d, and Mn = 0 otherwise.

Theorem 2.4.5. ([AZ01, Corollary E4.11]) Let R be a connected N-graded, strongly

right noetherian k-algebra. Then the right point modules over R are parameterized

by a projective scheme.

We comment briefly on the construction of the point scheme for R. It is not hard

to see that for any d, the right truncated point modules of length d are parameterized

by a projective scheme, which we temporarily denote Xd. It turns out if R is strongly

right noetherian, then there is some d such that the natural maps

Xn+1 → Xn

are isomorphisms for all n ≥ d. The right point scheme for R is then isomorphic to

this stable scheme Xd.

If we have a parameterization of the point modules for R, then understanding the

point scheme can often provide crucial information about R. For example, consider
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the Sklyanin algebra S = Skl3(E, σ) defined in Chapter I. The elliptic curve E turns

out to be the point scheme for S, and this allows one to construct a map from S to

a twisted homogeneous coordinate ring on E. On the other hand, we have seen that

the ring of Example 1.4.1 is not strongly noetherian; by [KRS05, Theorem 1.1], the

point modules over this ring are not parameterized by any scheme.

To end this section, we return to giving properties of twisted homogeneous coor-

dinate rings. Intuition says that the χ conditions and the strong noetherian property

should hold for “nice” rings, and in fact both hold for twisted homogeneous coordi-

nate rings. We record this as

Theorem 2.4.6. (Artin-Small-Zhang, Yekutieli, Van den Bergh) Let X be a projec-

tive variety, let σ be an automorphism of X, and let L be a σ-ample invertible sheaf

on X. Let B = B(X,L, σ). Then B is strongly noetherian and satisfies χ.

Proof. That twisted homogeneous coordinate rings are strongly noetherian is [ASZ99,

Proposition 4.13]. By [Yek92, Theorem 7.3], B has a balanced dualizing complex.

Then [Van97, Theorem 6.3] (or alternately, [YZ97, Theorem 4.2]) implies that B

satisfies χ.

2.5 A few results from algebraic geometry

Our primary algebraic geometry reference is [Har77]. We include here a few results

that we will use that are not included in that text.

For us, the term divisor means Cartier divisor. Recall that a (Cartier) divisor P

on a projective variety X is nef if P.C ≥ 0 for any curve C on X.

Theorem 2.5.1. (Fujita’s Vanishing Theorem [Laz04, Theorem 1.4.35]) Let X be a

projective variety and let F be a coherent sheaf on X. Let N be an ample divisor on
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X. Then there is an integer m so that H i(F(mN + P )) = 0 for all nef divisors P

and for all i ≥ 1.

We will also use the concept of Castelnuovo-Mumford regularity. Recall that if N

is a very ample divisor on a projective variety X and F is a coherent sheaf on X,

then F is k-regular with respect to N if, for all i ≥ 1, we have that

H i(F((k − i)N)) = 0.

If F is k-regular with respect to N , it is (k + n)-regular for any n ≥ 0, by [Laz04,

Theorem 1.8.5(iii)]. The regularity of F (with respect to N) is the minimal k such

that F is k-regular with respect to N .

One of the most important applications of regularity is that it gives a criterion

for a sheaf to be generated by its global sections.

Theorem 2.5.2. (Mumford’s theorem [Laz04, Theorem 1.8.5(i)]) Let X be a projec-

tive variety and let F be a coherent sheaf on X. Let N be a very ample divisor on X,

and suppose that F is 0-regular with respect to N . Then F is globally generated.

We will need to use the Riemann-Roch theorem for singular curves, and we give

that here as well. We denote linear equivalence of divisors by ∼.

Theorem 2.5.3. Let X be a smooth surface, and let D be a reduced and irreducible

curve on X. There are constants k and c, depending only on the isomorphism class

of D, such that if C is any divisor on X with C.D ≥ k, then

(1) H1(OD(C)) = 0;

(2) OD(C) is globally generated;

(3) h0(OD(C)) = C.D + c.

Proof. Because X is smooth, D is locally principal as a Cartier divisor, and so in

particular is a local complete intersection.
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Let N be a very ample Cartier divisor on D. Without loss of generality, by [Har77,

Exercise IV.1.9(b)], we may assume that N is supported in Dreg. Let b = deg(N).

Let ω be the Serre dualizing sheaf on D. By [Har77, Theorem III.7.11], ω is invertible;

let K be a divisor with support in Dreg so that OD(K) ∼= ω. Let w = deg K.

Suppose that C is a divisor on X such that C.D ≥ w + 1. We claim that

H1(OD(C)) = 0. To see this, let H be a very ample divisor on X so that H + C

is also very ample. Applying Bertini’s theorem, by [Har77, Lemma V.1.2], we may

choose irreducible nonsingular curves E ∼ H and E ′ ∼ H +C such that both E and

E ′ are nonsingular and meet D transversally (in particular, they do not meet the

singular locus of D). Now, by Serre duality, we have that

h1(OD(C)) = h1(OD(E ′ − E)) = h0(OD(K + E − E ′)).

This is 0, since degD(OD(K + E − E ′)) = w −D.C < 0.

Now suppose that C.D ≥ w+b+1. By the above, H1(OD(C)) = 0. Furthermore,

degD(OD(C)−N) ≥ w + 1, and so H1(OD(C)−N) = 0. Then OD(C) is 0-regular

with respect to N , and Theorem 2.5.2 implies that OD(C) is globally generated.

(3) is [Har77, Exercise IV.1.9(a)] combined with (1).



CHAPTER III

Geometric idealizer rings

3.1 Introduction

In recent years, many examples have appeared of subrings of twisted homoge-

neous coordinate rings that have unusual and counter-intuitive properties. While

these rings are often noetherian (indeed, generically so in many cases) and are bi-

rationally commutative by construction, subtler properties such as the χ conditions

and the strong noetherian property can fail. Examples of such rings include the näıve

blowup algebras defined in (1.4.2), first constructed by Keeler, Rogalski, and Stafford

[KRS05], and the idealizers (1.4.7), studied by Rogalski in [Rog04b]. Since ideally

a classification effort in noncommutative geometry would not depend on technical

conditions, understanding when these kinds of examples occur is important. In par-

ticular, understanding a broad range of noetherian subrings of twisted homogeneous

coordinate rings is necessary to fully classify noncommutative surfaces.

In this chapter we investigate one particular class of subrings of twisted homoge-

neous coordinate rings. We repeat Construction 1.2.5, with more detail.

Construction 3.1.1. Let X be a projective variety over an algebraically closed field

k, let σ be an automorphism of X, and let L be a σ-ample invertible sheaf on X.

Let Z be a closed subscheme of X. Following Example 2.3.10, form the twisted

46



47

homogeneous coordinate ring B = B(X,L, σ), and let I be the right ideal of B

generated by sections that vanish on Z.

Our object of study is the ring

R = R(X,L, σ, Z) = IB(I) = {x ∈ B | xI ⊆ I}.

By construction, R is the maximal subring of B in which the right ideal I becomes

a two-sided ideal. We refer to R as a geometric idealizer, or more specifically, as the

(right) idealizer at Z inside B.

The main goal of this chapter is to study the properties of geometric idealizers,

and, in particular, to understand how these algebraic properties are controlled by the

geometry of the defining data. At a basic level, we want to know when R(X,L, σ, Z)

is noetherian. We also analyze when idealizers are strongly noetherian, satisfy various

χ conditions, and have finite cohomological dimension. In general, the ways in which

it is possible for these properties to fail are still poorly understood. Thus another

goal of the work in this chapter is to gain more insight into these issues.

Our work generalizes work of Rogalski [Rog04b], who investigated idealizers at

points in Pd using algebraic techniques. His work generalized earlier work of Stafford

and Zhang [SZ94], who studied idealizers on P1. Rogalski worked in the more al-

gebraic setting of Zhang twists of polynomial rings, and here we give the relevant

definitions.

Definition 3.1.2. (cf. [Zha96]) Let d ≥ 1 and let σ be an automorphism of Pd.

We also let σ denote the graded automorphism of k[x0, . . . , xd] induced by σ; that is

xσ
j = xj ◦ σ. Then the Zhang twist of k[x0, . . . , xd] by σ is written

k[x0, . . . , xd]
σ.
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As graded vector spaces, k[x0, . . . , xd]σ and k[x0, . . . , xd] are isomorphic. Let · denote

the multiplication in k[x0, . . . , xd]. The multiplication ) on k[x0, . . . , xd]σ is induced

by the rule

xi ) xj = xi · xσ
j .

Technically, the automorphism σ of k[x0, . . . , xd] is defined up to a choice of mul-

tiplicative scalars. However, for any such choice of scalars, we obtain an isomorphic

ring k[x0, . . . , xd]σ. In fact,

k[x0, . . . , xd]
σ ∼= B(Pd,O(1), σ).

We leave the verification to the reader.

Recall (Definition 1.4.3) that {σn(x)} is critically dense if it is infinite and any

infinite subset is Zariski dense in Pd.

Theorem 3.1.3. (Rogalski) Let σ be an automorphism of Pd, and let

B = k[x0, x1, . . . , xd]
σ ∼= B(Pd,O(1), σ).

Let p ∈ Pd, and let I be the right ideal of B of functions vanishing at p. Assume that

x is of infinite order under σ, and let R = IB(I) ∼= R(Pd,O(1), σ, {p}). Then

(1) R is strongly right noetherian.

(2) R fails left χ1.

Further, if the set {σn(p)} is critically dense, then:

(3) R is left noetherian but not strongly left noetherian.

(4) R satisfies right χd−1 but fails right χd.

One interesting aspect of Rogalski’s work is that the geometry driving the alge-

braic conclusions of (3) and (4) is rather subtle. Theorem 3.1.3 shows that right
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idealizers at points of infinite order are automatically right noetherian, but in or-

der for them to be left noetherian, σ must move x significantly and in some sense

uniformly around Pd.

The aim of this chapter is to work out in detail the properties of R(X,L, σ, Z)

for a general projective variety X and subschemes Z ⊆ X of arbitrary dimension.

In particular, we would like to understand if there is a higher-dimensional analogue

of critical density that controls the behavior of more general idealizers than those

studied in Theorem 3.1.3.

The answer is “yes.” We define:

Definition 3.1.4. Let X be a projective variety and let Z, Y ⊆ X be closed sub-

schemes. We say that Z and Y are homologically transverse if

TorX
j (OZ ,OY ) = 0

for all j ≥ 1.

Definition 3.1.5. Let X be a projective variety and let σ ∈ Aut X. Let Z ⊆ X be

a closed subscheme. The set {σnZ}n∈Z is critically transverse in X if for all closed

subschemes Y ⊆ X, the subschemes σn(Z) and Y are homologically transverse for

all but finitely many n.

In this chapter, we generalize Theorem 3.1.3 to arbitrary idealizers in twisted

homogeneous coordinate rings. We show that critical transversality controls the

behavior of these rings, and we prove:

Theorem 3.1.6. (Theorem 3.8.2) Let X be a projective variety, let σ be an au-

tomorphism of X, and let L be a σ-ample invertible sheaf on X. Form the ring

R(X,L, σ, Z) as above. For simplicity, assume that Z is irreducible and of infinite

order under σ. (We treat the general case in the body of the chapter).
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If for all p ∈ X, the set {n ≥ 0 | σn(p) ∈ Z} is finite, then:

(1) R is strongly right noetherian.

(2) R fails left χ1.

If the set {σnZ}n∈Z is critically transverse, then

(3) R is left noetherian, but R is strongly left noetherian if and only if all compo-

nents of Z have codimension 1.

(4) Let d = codim Z. Then R fails right χd. If X and Z are smooth, then R

satisfies right χd−1.

Furthermore, if R is noetherian, then R has finite left and right cohomological di-

mension.

On the other hand, we give an example of a right but not left noetherian ring that

has infinite right cohomological dimension, partially answering a question of Stafford

and Van den Bergh [SV01, page 194].

In the remainder of the introduction, we explain the geometric meaning behind

the technical-looking definition of critical transversality. We first explain the use of

the term “transverse.” Let Y and Z be closed subschemes of X, and recall [Har77,

p. 427] Serre’s definition of the intersection multiplicity of Y and Z along the proper

component P of their intersection:

i(Y, Z; P ) =
∑

i≥0

(−1)i lenP (TorX
i (OY ,OZ)),

where lenP (F) is the length of FP over the local ring OX,P .

Suppose that Y and Z are homologically transverse. Then their intersection

multiplicity is given by the näıve formula that i(Y, Z; P ) is the length of the structure

sheaf of their scheme-theoretic intersection over the local ring at P . We note that if

char k = 0, X, Y , and Z are smooth, and Y and Z meet transversally, then Y and
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Z are homologically transverse.

Another way of viewing the critical transversality of {σn(Z)} is that for any Y ,

the general translate of Z is homologically transverse to Y . This sort of statement

is clearly reminiscent of the Kleiman-Bertini theorem, and in fact the investigations

in this chapter have led to a new, purely algebro-geometric, generalization of this

classical result. Furthermore, as an application of our generalized Kleiman-Bertini

theorem, we are able to obtain a simple criterion for the critical transversality of

{σn(Z)} in many cases. We discuss these results in Chapter V.

3.2 Right noetherian bimodule algebras

Let X, L, σ, and Z be as in Construction 3.1.1, and let R be the geometric

idealizer ring

R = R(X,L, σ, Z).

The key technique in this chapter is to work, not with R, but with the corresponding

bimodule algebra. To define this object, we first introduce some notation on oper-

ations with ideal sheaves. For any two ideal sheaves K and J on X, we define the

ideal quotient

(J : K)

to be the maximal coherent subsheaf F of OX such that KF ⊆ J .

Notation 3.2.1. Let X be a projective variety, let σ ∈ Aut X, and let L be an

invertible sheaf on X. Let Z be a closed subscheme of X and let I = IZ be its

defining ideal. Following Example 2.3.1, let

B = B(X,L, σ),
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and let R be the graded (OX , σ)-sub-bimodule algebra of B defined by

R = R(X,L, σ, Z) =
⊕

n≥0

(
(I : Iσn

)Ln

)
σn .

It is straightforward to compute that R is the maximal sub-bimodule algebra of

B such that IB+ is a two-sided ideal of R, and we will write

R = IB(IB+)

and speak of R as an idealizer bimodule algebra inside B. As usual we write

R =
⊕

n≥0

(Rn)σn ,

so

Rn = (I : Iσn
)Ln.

We note here that

B(X,L, σ)(n) ∼= B(X,Ln, σ
n)

and that

R(X,L, σ, Z)(n) ∼= R(X,Ln, σ
n, Z).

In the next lemma, we show that R(X,L, σ, Z) is precisely the section ring of the

bimodule algebra R(X,L, σ, Z).

Lemma 3.2.2. Assume Notation 3.2.1, and let R = R(X,L, σ, Z) as in Construc-

tion 3.1.1. If L is σ-ample, then

R = R(X,L, σ, Z) = H0(R(X,L, σ, Z)).

Proof. Let I = Γ∗(I) be the right ideal of B(X,L, σ) generated by sections vanishing

along Z. Suppose that x ∈ Rn, so xI ⊆ I. Since L is σ-ample, ILm is globally
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generated by Im = H0(ILm) for m $ 0, and so for m $ 0

xOX(ILσm
)σn

= xOX(ImOX)σn ⊆ Im+nOX = ILm+n

for any n. Thus xOX ⊆ (I : Iσn
)Ln and x ∈ H0((I : Iσn

)Ln) = H0(Rn).

For the other containment, suppose that x ∈ H0(Rn). Then for any m ≥ 0 we

have

xIm ⊆ H0((I : Iσn
)Ln) ·H0((ILm)σn

) ⊆ H0(ILm+n) = In+m.

Thus x ∈ Rn, and we have established the equality we seek.

In this section, we will determine when R is right noetherian; we will show that

this is controlled by a straightforward geometric property of the motion of Z under σ.

To analyze the bimodule algebra R, we will need some basic lemmas. We first give

an elementary result that allows us to pass from one noetherian idealizer bimodule

algebra to a larger one.

Lemma 3.2.3. Let X be a projective variety, let σ ∈ Aut X, and let L be an invert-

ible sheaf on X. Let B be a graded (OX , σ)-sub-bimodule algebra of B(X,L, σ), and

let R and R′ be graded (OX , σ)-sub-bimodule algebras of B. Suppose that R is right

noetherian and contains a nonzero graded right ideal of B and that there is some n0

so that

R≥n0 ⊆ R′
≥n0

.

Then R′ is right noetherian. If R ⊆ R′, then R′ is a coherent right R-module.

Proof. By Lemma 2.3.14, without loss of generality we may assume that L = OX .

We note thatR≥n0 also contains a nonzero graded right ideal of B. Further, R∩R′

is also right noetherian, as (R∩R′)≥n0 = R≥n0 . Thus without loss of generality we

may assume that R ⊆ R′.
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Let J be a nonzero graded right ideal of B that is contained in R; let m be such

that Jm *= 0. Let H be an invertible ideal sheaf contained in Jm. As R is right

noetherian and HR′ ⊆ HB ⊆ R, we see that HR′ is a coherent right R-module.

Lemma 2.3.14 now implies that R′ is a coherent right R-module.

Any right ideal of R′ is also a right R-submodule, and so is coherent as an R-

module. It is thus also coherent as an R′-module. Thus R′ is right noetherian.

We will also use primary decomposition of ideal sheaves. We give the definitions

here. Let I be a proper ideal sheaf on X. We will say that I is prime if it defines

a reduced and irreducible subscheme of X. We say that I is P-primary if there is a

prime ideal sheaf P such that some Pn ⊆ I, and for all ideal sheaves J and K on

X, if JK ⊆ I but J *⊆ P , then K ⊆ I.

Since primary decompositions localize, the theory of primary decomposition of

ideals in a commutative ring translates straightforwardly to ideal sheaves on X. In

particular, any ideal sheaf I has a minimal primary decomposition

I = I1 ∩ · · · ∩ Ic,

where each Ii is Pi-primary for some prime ideal sheaf Pi, the Pi are all distinct, and

I may not be written as an intersection with fewer terms. If Pi is a minimal prime

over I, then we will refer to Ii as a minimal primary component of I. If Pi is not min-

imal over I, we will refer to Ii as an embedded primary component. As is well-known,

the primes Pi and the minimal primary components of I are uniquely determined

by I, while the embedded primary components are not necessarily unique.

Now let Z be a closed subscheme of X and let I be the ideal sheaf of Z. Let

I = I1 ∩ · · · ∩ Ic be a minimal primary decomposition of I. We will refer to the

closed subschemes Zi defined by the minimal primary components Ii of I as the
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irreducible components of Z. We will refer to the subschemes defined by embedded

primary components as embedded components of Z. Together, the irreducible and

embedded components make up the primary components of Z.

We record the following elementary lemmas for future use.

Lemma 3.2.4. Let I = I1 ∩ · · · ∩ Ic be a primary decomposition of the ideal sheaf

I, where Ii is Qi-primary for some prime ideal sheaf Qi.

(1) If K and J are ideal sheaves so that K *⊆ Qi for some i, then

(
I : (K ∩ J )

)
⊆ (Ii : J ).

(2) If K is not contained in any Qi, then (I : K) = I.

Proof. (1) We have

(
I : (K ∩ J )

)
KJ ⊆

(
I : (K ∩ J )

)
(K ∩ J ) ⊆ I ⊆ Ii.

As K *⊆ Qi, we have

(
I : (K ∩ J )

)
J ⊆ Ii

and so

(
I : (K ∩ J )

)
⊆ (Ii : J ).

(2) Applying (1) with J = OX , we see that

(I : K) ⊆
c⋂

i=1

(Ii : OX) =
c⋂

i=1

Ii = I.

The other containment is automatic.

Lemma 3.2.5. Let P and I be ideal sheaves on the variety X, where P is prime

and I is P-primary. If J is an ideal sheaf on X that is not contained in I, then

(I : J ) is also P-primary.
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Proof. Since J *⊆ I, we have that (I : J ) *= OX . Suppose that F and G are ideal

sheaves with F *⊆ P and FG ⊆ (I : J ). Thus FGJ ⊆ I, and since I is P-primary,

we have that GJ ⊆ I. This precisely says that G ⊆ (I : J ). Since for some m, we

have Pm ⊆ I ⊆ (I : J ), we see that (I : J ) is P-primary.

We next translate some general results on idealizers to the context of bimodule al-

gebras. We give these results in a slightly more general context than we are currently

considering, to allow us to use them in Chapter IV.

The following result is originally due to Robson [Rob72, Proposition 2.3(i)], al-

though we will follow Stafford’s restatement of it.

Lemma 3.2.6. ([Sta85, Lemma 1.1]) Let I be a right ideal of a right noetherian

ring B, and let R = IB(I). If B/I is a right noetherian R-module, then R is right

noetherian.

Our version of this is the following lemma.

Lemma 3.2.7. Let X be a projective variety, let σ ∈ Aut X, and let L be an invert-

ible sheaf on X. Let B be a right noetherian graded (OX , σ)-sub-bimodule algebra of

the twisted bimodule algebra B(X,L, σ), and let I =
⊕

(In)σn be a nonzero graded

right ideal of B. Let R = IB(I). Then B/I is a noetherian right R-module if and

only if R is right noetherian.

Proof. The proof is a straightforward translation of Robson’s proof into sheaf termi-

nology. By Lemma 2.3.14, without loss of generality we may let L = OX . Thus all

Rn and all In are ideal sheaves on X.

By Lemma 3.2.3, if R is right noetherian, certainly BR and thus (B/I)R are also.

So suppose that B/I is a noetherian right R-module. Let J be a right ideal of

R; we will show that J is coherent. Because B is right noetherian, we may choose
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a coherent sheaf J ′ ⊆ J such that J ′B = JB. It suffices to show that J /J ′R is a

coherent right R-module.

Now, J /J ′R is a submodule of (J ′B ∩ R)/J ′R. Further, it is killed by I and

so is a subfactor of J ′ ⊗ (B/I). Since B/I is a noetherian right R-module, so is

J ′ ⊗ (B/I). Thus the subfactor J /J ′R is coherent.

The criterion in Lemma 3.2.6 can be hard to test. Stafford [Sta85, Lemma 1.2]

gave a different criterion for an idealizer to be noetherian; it was later slightly

strengthened by Rogalski [Rog04b, Proposition 2.1]. We give the following version,

which is adequate for our needs.

Lemma 3.2.8. Let B be a right noetherian domain, let I be a right ideal of B, and

let R = IB(I). Then the following are equivalent:

(1) R is right noetherian;

(2) BR is finitely generated, and for all right ideals J of B such that J ⊇ I, we

have that HomB(B/I, B/J) is a noetherian right R-module (or R/I-module).

Proof. (2) ⇒ (1) is [Sta85, Lemma 1.2]. For (1) ⇒ (2), note that if R is noetherian,

as B is a domain we have BR ↪→ RR and so BR is finitely generated. The rest of the

argument is [Rog04b, Proposition 2.1].

Our version of this is the following lemma:

Lemma 3.2.9. Let X be a projective variety, and let σ ∈ Aut X. Let B be a

right noetherian graded (OX , σ)-sub-bimodule algebra of the twisted bimodule algebra

B(X,OX , σ), and let I =
⊕

(In)σn be a nonzero graded right ideal of B. Let R =

IB(I). Suppose that for all graded right ideals J ⊇ I of B, we have that for n $ 0,

Bn ∩
⋂

m≥0

(Jn+m : Iσn

m ) = Jn.
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Then R is right noetherian.

Proof. We follow Stafford’s proof of [Sta85, Lemma 1.2]. Assume that the hypotheses

of the lemma hold; we claim that B/I is a noetherian right R-module.

Let G be a graded right R-module with I ⊆ G ⊆ B. We seek to prove that G/I

is coherent. Let J be the largest graded right ideal of B of the form G ′I for some

coherent graded OX-submodule G ′ of G. (J exists because B is right noetherian.)

By maximality of J , we have I ⊆ J .

Using Zorn’s lemma, let C be the maximal quasicoherent subsheaf of B such that

CI ⊆ J . Obviously, C is graded. Note that

Cn = Bn ∩
⋂

m≥0

(Jn+m : Iσn

m ).

Since by assumption CRI ⊆ CI ⊆ J , we have that CR ⊆ C and C is a right R-

submodule of B. Since Cn = Jn for n $ 0, the right R-module C/J is in fact a

coherent OX-module.

We claim that G ⊆ C. Suppose not. We may choose a coherent graded OX-

submodule G ′′ of G such that G ′′ *⊆ C, and so G ′′I *⊆ J . Then (G ′ + G ′′)I # J by

choice of G ′′, contradicting the maximality of J . Thus G ⊆ C.

Since C/J is a coherent OX-module, so is the submodule G/J . Since JR is

coherent and G/J is a coherent OX-module, GR is coherent. Thus G/IR is also

coherent. Since G was arbitrary, we have shown that B/I is a right noetherian R-

module. Applying Lemma 3.2.7, we obtain that R is a right noetherian bimodule

algebra.

One technical difficulty in studying the bimodule algebra R = R(X,L, σ, Z) is

that if Z has multiple components, it may be difficult to compute (I : Iσn
) and thus

R. However, if Z is irreducible, then computing R is straightforward.
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Lemma 3.2.10. Assume Notation 3.2.1. Suppose in addition that Z is irreducible

and without embedded components. If Zred has infinite order under σ, then R =

OX ⊕ IB+.

Proof. Let P be the ideal sheaf of Zred. For n ≥ 1, clearly Iσn *⊆ P, since Iσn
is Pσn

-

primary and Pσn *= P . The result follows from Lemma 3.2.4(2) and the identification

Rn = (I : Iσn
)Ln.

We now give a geometric condition that is equivalent to R being right noetherian,

at least in the setting that the components of Z are of infinite order under σ.

Definition 3.2.11. Let x ∈ X and let σ be an automorphism of X. The forward

σ-orbit or forward orbit of x is the set

{σn(x) | n ≥ 0}.

If Z ⊂ X is such that for any x ∈ X, the set

{n ≥ 0 | σn(x) ∈ Z}

is finite, we say that Z has finite intersection with forward orbits. In particular, if Z

has finite intersection with forward orbits, it contains no points of finite order under

σ.

Lemma 3.2.12. Assume Notation 3.2.1. Let

I = K1 ∩ · · · ∩ Kc

be a minimal primary decomposition, where each Ki is Qi-primary for some prime

ideal sheaf Qi. For i = 1 . . . c, let Zi be the primary component of Z corresponding

to Ki, and let

Ri = IB(KiB+) = R(X,L, σ, Zi).
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Suppose that for all 1 ≤ i, j ≤ c the set

{m ≥ 0 | Kσm

j ⊆ Qi}

is finite. (In particular, we assume that the Qi are of infinite order under σ.) Then

Rm = ILm for m $ 0. Further, the following are equivalent:

(1) R is right noetherian;

(2) Ri is right noetherian for i = 1 . . . c;

(3) Z has finite intersection with forward orbits;

(4) if J is an ideal sheaf on X such that J ⊇ I, then (J : Iσm
) = J for m $ 0;

(5) the bimodule algebra

OX ⊕ IB+

is right noetherian.

We note that the assumptions of the lemma are satisfied if Z consists of one

primary component such that Zred is of infinite order under σ.

Proof. By Lemma 2.3.14, we may without loss of generality assume that L = OX .

By Lemma 3.2.4(2)

(I : Iσm
) = I

for m $ 0. Thus Rm = I for m $ 0, as claimed. Note that this implies that (1)

⇐⇒ (5).

(1) ⇒ (2). Fix i. By Lemma 3.2.10, (Ri)m = Ki for all m ≥ 1. As Rm = I for

m $ 0, there is some m0 so that for m ≥ m0

R(X,OX , σ, Z)m = I ⊆ Ki = R(X,L, σ, Zi)m.

By Lemma 3.2.3, Ri is right noetherian.
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(2) ⇒ (3) Since Z is the set-theoretic union of finitely many irreducible compo-

nents, it is enough to prove (3) in the case that I is itself primary; that is, in the case

that i = 1. In this case, since R = R1 is noetherian by assumption, by Lemma 3.2.3

BR is coherent.

Fix x ∈ X, and let Ix be its ideal sheaf. Let

M =
⊕

n≥0

(Ix : Iσn
)σn ⊆ B =

⊕

n≥0

(OX)σn .

Let m ≥ 1 and n ≥ 0. By Lemma 3.2.10, Rm = I. Therefore,

Mn(Rm)σn
= (Ix : Iσn

)Iσn ⊆ Ix ⊆Mm+n,

and so M is a right R-submodule of B. It is therefore coherent, and so is the

quotient M/IxB. Since M · IB+ ⊆ IxB, the R-action on M/IxB factors through

R/IB+ = OX . In other words, M/IxB is a noetherian and therefore coherent OX-

module, and so the ideal sheaves (Ix : Iσn
) and Ix are equal for n $ 0. For fixed n,

this is true if and only if x *∈ σ−nZ or σn(x) *∈ Z. Thus {n ≥ 0 | σn(x) ∈ Z} is finite.

(3)⇒ (4). Let P be a nonzero prime ideal sheaf, defining a reduced and irreducible

subscheme W ⊂ X. Since for any m ∈ Z we have that Iσm ⊆ P if and only if σm(W )

is (set-theoretically) contained in Z, we see that the set

{m ≥ 0 | Iσm ⊆ P}

is finite.

Now let J ⊇ I be an ideal sheaf on X, and let J = J1 ∩ · · · ∩ Je be a primary

decomposition of J , where Ji is Pi-primary for a suitable prime ideal sheaf Pi.

For m $ 0 and for i = 1 . . . e, we have Iσm *⊆ Pi. Therefore by Lemma 3.2.4(2),

(J : Iσm
) = J for m $ 0.
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(4) ⇒ (1). Suppose that for all I ⊆ J ⊆ OX , we have (J : Iσn
) = J for n $ 0.

Let F ⊇ IB be a graded right ideal of B, and for all m ≥ 0 let

Cm =
⋂

n≥0

(Fn+m : Iσm
).

We saw in Section 2.3 that the categories qgr-B and OX-mod are equivalent, and

that there is an ideal sheaf J ⊆ OX such that, for some k, we have

F≥k =
⊕

m≥k

(J )σm .

By construction, J ⊇ I. For m ≥ k, we have Cm = (J : Iσm
). This is equal to

J = Fm for m $ k, and so the hypotheses of Lemma 3.2.9 hold. By Lemma 3.2.9,

R is right noetherian.

We now give a general geometric criterion showing when an idealizer bimodule

algebra is right noetherian.

Theorem 3.2.13. Assume Notation 3.2.1. Let

(3.2.14) I = J1 ∩ · · · ∩ Jc ∩ K1 ∩ · · · ∩ Ke

be a minimal primary decomposition of I, where each Ji is Pi-primary for some

prime ideal sheaf Pi of finite order under σ, and each Kj is Qj-primary for some

prime ideal sheaf Qj of infinite order under σ. Let W be the closed subscheme of Z

defined by the ideal sheaf K = K1 ∩ · · · ∩ Ke, and let J = J1 ∩ · · · ∩ Jc. Then the

following are equivalent:

(1) R = R(X,L, σ, Z) is right noetherian;

(2) there is some n so that J σn
= J , and either W = X or W has finite inter-

section with forward σ-orbits.
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Furthermore, if (2) and (1) hold, then R is a finite module over R(n), and there

are a closed subscheme W ′ of W , with (W ′)red = W red, and an integer n0 such that

R(X,Ln, σ
n, Z)≥n0 = R(X,Ln, σ

n, W ′)≥n0 .

That is, any noetherian right idealizer is a finite module over a right idealizer at a

subscheme without fixed components.

Proof. By Lemma 2.3.14, we may without loss of generality assume that L = OX .

(1) ⇒ (2). Suppose that R is right noetherian. We first show this implies that

there is some n so that all Ji are fixed by σn. Suppose, in contrast, that for some i

there is no n with J σn

i = Ji. Since Veronese subrings of R are also right noetherian

and Pi has finite order under σ, we may assume without loss of generality that Pi is

fixed by σ.

Let m ≥ 1. Since (Ji)σm *= Ji, by minimality of the primary decomposition

(3.2.14), it is clear that Iσm *⊆ Ji. Thus by Lemma 3.2.5 (Ji : Iσm
) *= OX is

Pi-primary. Therefore

Rm = (I : Iσm
) ⊆ (Ji : Iσm

) ⊆ Pi

for all m ≥ 1.

Let B = B(X,OX , σ). For any k, we have

(B≤k · R)k+1 =
k∑

j=0

(Rk+1−j)
σj ⊆ Pi *= OX = Bk+1.

We see that BR is not finitely generated; by Lemma 3.2.3, this contradicts the as-

sumption that R is right noetherian. Thus Ji is of finite order under σ.

As this holds for all i, there is some n so that J σn
= J . Suppose that W *= X.

Since W has finite intersection with forward σ-orbits if and only if W has finite

intersection with forward σn-orbits, without loss of generality we may replace R by
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the Veronese R(n) and assume that J is σ-invariant. Suppose that W has infinite

intersection with some forward σ-orbit. We will derive a contradiction.

For i = 1 . . . e, let Wi be the primary component of Z corresponding to Ki, and

let Yi be the subvariety corresponding to the prime ideal sheaf Qi. We claim that

there is some i so that

(i) Yi *⊆ σ−m(W ) for m ≥ 1;

(ii) for some x ∈ X, the set {m ≥ 0 | σm(x) ∈ Yi} is infinite.

To see this, note that we may define a strict partial order ≺ on the set of the Yi by

defining

Yi ≺ Yj if Yi ⊆ σ−m(Yj) for some m ≥ 1.

The order ≺ is strict because each Yi has infinite order under σ. Now if (ii) holds for

some Yi, then (ii) holds for some Yi that is maximal under ≺. But (i) holds for any

such maximal Yi, as the ideal sheaf of Yi is prime.

Let i satisfy (i) and (ii). We thus have Kσm *⊆ Qi for any m ≥ 1. As

Iσm
= Kσm ∩ J σm

= Kσm ∩ J ,

by Lemma 3.2.4(1) we have

Rm = (I : Iσm
) ⊆ (Ki : J )

for all m ≥ 1. By minimality of the primary decomposition (3.2.14) and Lemma 3.2.5,

the ideal sheaf (Ki : J ) is Qi-primary.

Let V be the closed subscheme of X defined by (Ki : J ). By Lemma 3.2.10,

R(X,OX , σ, V ) = OX ⊕ (Ki : J )B+,

so

R(X,OX , σ, Z) ⊆ R(X,OX , σ, V ).
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Thus by Lemma 3.2.3, R(X,OX , σ, V ) is right noetherian. But V also has infinite

intersection with some forward σ-orbit. By Lemma 3.2.12, this is impossible.

Thus W has finite intersections with forward σ-orbits.

(2) ⇒ (1). Suppose that (2) holds. We claim that

(3.2.15) Rm = (I : J σm
) for m $ 0.

If W = X then I = J and (3.2.15) holds for all m. If W *= X has finite

intersection with forward σ-orbits, then for m $ 0, Kσm
is not contained in any

minimal prime over I. Thus by Lemma 3.2.4(1) we have that

(I : Iσm
) ⊆ (I : J σm

)

for m $ 0. As the other containment is automatic, we see that (3.2.15) holds.

Now, if n|m then

(I : J σm
) = (I : J ) = (K : J )

and so (3.2.15) implies in particular that R(n) and OX ⊕ (K : J )(B(n))+ are equal in

large degree.

If W = X then (K : J ) = OX and R(n) = B(n). If W has finite intersection

with forward σ-orbits, then note that (K : J ) is the intersection of the Qi-primary

ideal sheaves (Ki : J ). Let W ′ be the closed subscheme defined by (K : J ); then

W ′ also has finite intersection with forward σ-orbits, and (W ′)red = W red. Thus we

may apply Lemma 3.2.12 to R(n) and we obtain that R(n) is right noetherian. By

Lemma 3.2.3, B(n) is a coherent R(n)-module.

Thus in either case, B(n) is a coherent ring R(n)-module. Therefore, for any m the

right ideal

(I : J σm
)B(n)
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of B(n) is a coherent R(n)-module. Applying (3.2.15) for m = 0 . . . n − 1, we obtain

that R is a finitely generated right R(n)-module and so R is right noetherian.

Example 3.2.16. We give an example illustrating what can go wrong when J σn
is

never equal to J . Let X = P2, let L = O(1), and let

σ =





1

p

q





for some p, q ∈ k∗ that are not roots of unity. Let B = B(X,L, σ). We saw in

Definition 3.1.2 that B can be written as a Zhang twist k[x, y, z]σ.

Let a = [0 : 0 : 1] and let O = OX,a. Let m be the maximal ideal of O. As

σ(a) = a, the automorphism σ acts on O via

σ(x) = x

σ(y) = py,

where (x, y) is an appropriate system of parameters for O.

Let I be the ideal sheaf cosupported at a so that Ia = (x + y, m2). Let M be the

ideal sheaf of a. Then for any n we have that

(Iσn
)a = (x + pny,m2).

We leave to the reader the computation that

(I : Iσn
) = M.

Thus, if Z is the subscheme defined by I, we have that

R(X,L, σ, Z) = k + xB + yB.

This ring is not noetherian.
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We end this section with a lemma giving conditions for BR to be coherent, even

when R is not necessarily right noetherian.

Lemma 3.2.17. Assume Notation 3.2.1. Let Z1, . . . , Zc be the primary components

of Z. For i = 1 . . . c, let Yi = Zred
i .

(1) If for all i, {n ≥ 0 | σn(Yi) ⊆ Z} is finite, then Rn = ILn for n $ 0.

(2) Assume (1) holds. Then BR is coherent if and only if Z contains no forward

σ-orbits; that is, if and only if there is no point x ∈ Z such that for all n ≥ 0, we

have σn(x) ∈ Z.

(3) If Z contains no σ-invariant subvarieties, then for all n ≥ 0, B/(B · R≥n) is

a coherent OX-module.

Proof. (1) By Lemma 3.2.4(2),

Rn = (I : Iσn
)Ln = ILn

for n $ 0. Thus (1) holds.

(2) By (1), B is a coherent right R-module if and only if B is a coherent right

module over S = OX ⊕IB+. But this is true if and only if there is some k such that

I + Iσ + · · ·+ Iσk
= OX , i.e. if and only if Z ∩ σ−1(Z) ∩ · · · ∩ σ−k(Z) = ∅. This is

equivalent to Z containing no forward σ-orbits.

(3) Certainly B · R≥n contains the two-sided ideal BI · B≥n of B. Since by assump-

tion, I is contained in no nontrivial σ-invariant ideal sheaf, Lemma 2.3.15 implies

that B · R≥n must contain B≥m for some m.

3.3 Left noetherian bimodule algebras

Since our ultimate goal is to understand noetherian idealizers, from now on we

will assume the condition
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Assumption-Notation 3.3.1. Let X be a projective variety, let σ ∈ Aut X, and

let L be an invertible sheaf on X. Let Z be a closed subscheme of X and let I = IZ

be its defining ideal. Let

B = B(X,L, σ)

and let

R = R(X,L, σ, Z) =
⊕

n≥0

(
(I : Iσn

)Ln

)
σn .

For any associated prime Q of I, we assume that the set {n ≥ 0 | Q ⊇ Iσn} is

finite. By Lemma 3.2.17(1), this implies that Rn = ILn for all n $ 0.

By Theorem 3.2.13, any right noetherian bimodule algebra is, up to a finite ex-

tension, one whose defining data satisfies Assumption-Notation 3.3.1.

We now consider when the idealizer bimodule algebra R is left noetherian. We

quote a result of Rogalski; we note that the original result was stated for left ideals

of noetherian rings.

Proposition 3.3.2. ([Rog04b, Proposition 2.2]) If R = IB(I) for some right ideal I

of a noetherian ring B, then R is left noetherian if and only if R/I is a left noetherian

ring and for all left ideals J of B, the left R-module TorB
1 (B/I, B/J) is noetherian.

We note that if R/I is finite-dimensional, this result reduces to saying that R is

left noetherian if and only if TorB
1 (B/I, B/J) is a finite-dimensional vector space for

all left ideals J of B.

We now prove a version of Proposition 3.3.2 for the bimodule algebra R. Again,

we give it in slightly more generality than we currently need.

Proposition 3.3.3. Let B be a noetherian graded (OX , σ)-sub-bimodule algebra of

B(X,L, σ), and let I =
⊕

(In)σn be a graded right ideal of B. Let R = IB(I).
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Suppose that Rn = In for all n $ 0. Then R is left noetherian if and only if for all

graded left ideals J of B we have

(I ∩ J )n = (IJ )n

for n $ 0.

Proof. We follow Rogalski’s proof of Proposition 3.3.2.

Since (I ∩ J )/IJ is a subfactor of RR that is killed by I, if R is left noetherian

then this is a coherent module over R/I and so is certainly a coherent OX-module.

For the other direction, suppose that for all graded left ideals J of B we have that

(I ∩ J )n = (IJ )n

for n $ 0. Let K be a graded left ideal of R. Since B is noetherian, we may choose

a graded coherent OX-submodule K′ of K such that BK = BK′. Since K/RK′ is a

submodule of (BK′∩R)/RK′, it is enough to show for any coherent graded left ideal

K of R, that (BK ∩R)/K is a noetherian left R-module.

But now consider the exact sequences of left R-modules

(3.3.4) 0 → K
IK → BK ∩R

IK → BK ∩R
K → 0

and

(3.3.5) 0 → BK ∩ I
IK → BK ∩R

IK → BK ∩R
BK ∩ I → 0.

Since (BK∩R)/(BK∩I) is a coherentOX-module, we see that (BK∩R)/K is noethe-

rian if (BK∩I)/IK is noetherian. Since BK is a left ideal of B, and IBK = IK, we

have by assumption that (BK∩I)/IK is a coherent OX-module. In particular, it is

noetherian. Thus R is left noetherian.
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Proposition 3.3.6. Assume Assumption-Notation 3.3.1. Then R is left noetherian

if and only if for all closed subschemes Y ⊆ X the set

{n ≥ 0 | TorX
1 (OσnZ ,OY ) *= 0}

is finite.

Proof. Let J be an ideal sheaf defining a closed subscheme Y of X. There are

identifications of OX-modules

IB ∩ BJ
IBJ

∼=
⊕

n≥0

I ∩ J σn

IJ σn ⊗ Ln

∼=
⊕

n≥0

TorX
1 (OZ ,Oσ−nY )⊗ Ln

∼=
⊕

n≥0

TorX
1 (OσnZ ,OY )⊗ Ln,

using [Wei94, Exercise 3.1.3] and the local property of Tor . As R/IB is a coherent

OX-module, (IB∩BJ )/IBJ is a coherent leftR-module if and only if it is a coherent

OX-module. This is true if and only if the set {n ≥ 0 | TorX
1 (OσnZ ,OY ) *= 0} is

finite.

The vanishing of the sheaves TorX
1 (OσnZ ,OY ) for large n is an important condition

that in fact gives many further nice properties ofR. As remarked in the introduction,

it is an analogue of critical density and can be viewed as a transversality property.

To begin, we define an algebraic generalization of classical transversality.

Definition 3.3.7. Let Y and Z be closed subschemes of X. We say that Y and Z

are homologically transverse if

TorX
i (OZ ,OY ) = 0

for all i ≥ 1.

While this appears as an arcane algebraic condition, it does in fact have a geomet-

ric basis. As discussed in the introduction, Serre defined the intersection multiplicity
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of two closed subschemes Y and Z of X along the proper component P of their

intersection by

i(Y, Z; P ) =
∑

i≥0

(−1)i lenP (TorX
i (OY ,OZ)).

The higher Tor sheaves are needed to correct for possible mis-counting from the

näıve attempt to define i(Y, Z; P ) as lenP (OY ⊗ OZ). [Har77, Appendix A, Exam-

ple 1.1.1] gives an example where Tor 1 is needed to properly compute the intersection

multiplicity.

We may think of the non-vanishing of TorX
≥1(OY ,OZ) as indicating that Y and Z

have an extremely non-transverse intersection (for example, the codimension of the

intersection is smaller than codim Y + codim Z).

Definition 3.3.8. Let A ⊆ Z be infinite. We say that the set {σn(Z)}n∈A is criti-

cally transverse if for all closed subschemes Y of X, σn(Z) and Y are homologically

transverse for all but finitely many n ∈ A.

Critical transversality of {σnZ} is a generic transversality property: for any closed

subscheme Y , it implies that the general translate of Z is homologically transverse

to Y .

In the remainder of this section, we prove some technical results on critical

transversality. We first remark that although our definition of critical transversality

looks stronger than the condition needed for R to be left noetherian, it is in fact

equivalent.

The following lemma is due to Mel Hochster, and we thank him for allowing us

to include it here. Recall that if F is a coherent sheaf on a projective variety X, we



72

write hdX(F) for the maximal length of a locally free resolution of F ; that is,

hdX(F) = sup
x∈X

{pdOX,x
Fx}.

Lemma 3.3.9. (Hochster) Suppose that Z is homologically transverse to all parts of

the singular stratification of X. Then

hdX(OZ) ≤ dim X.

Proof. Let X = X(0) ⊃ X(1) · · · ⊃ X(k) be the singular stratification of X. By

assumption, Z is homologically transverse to all X(i). By [Eis95, Corollary 19.5],

(3.3.10) hdX(OZ) = sup{j | for some closed point x ∈ X, TorX
j (OZ , kx) *= 0}.

So fix x ∈ X, and let O = OX,x. Let F = OZ,x, considered as an O-module. Let i

be such that x ∈ X(i) ! X(i+1). Let J be the ideal of X(i) in O. By assumption on

i, O/J is a regular local ring; in particular, pdO/J kx = dim X(i) ≤ dim X.

The change of rings theorem for Tor [Wei94, Theorem 5.6.6] gives a spectral

sequence

(3.3.11) TorO/J
p (TorOq (F,O/J), kx) ⇒ TorOp+q(F, kx).

Now by assumption, Z is homologically transverse to X(i), and so (3.3.11) collapses

for q *= 0. We obtain

TorO/J
p (F ⊗O (O/J), kx) ∼= TorOp (F, kx).

As O/J is a regular local ring of dimension no greater than dim X, we have that

pdO/J kx ≤ dim X and so TorOp (F, kx) = 0 if p > dim X. By (3.3.10), hdX(OZ) ≤

dim X.
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Lemma 3.3.12. Let A ⊆ Z. The following are equivalent:

(1) For all closed subschemes Y of X, the set

{n ∈ A | TorX
1 (OσnZ ,OY ) *= 0}

is finite.

(2) For all reduced and irreducible closed subschemes Y of X, the set

{n ∈ A | TorX
1 (OσnZ ,OY ) *= 0}

is finite.

(3) For all closed subschemes Y of X, the set

A′(Y ) = {n ∈ A | σnZ is not homologically transverse to Y }

is finite.

Proof. The implications (3) ⇒ (1) ⇒ (2) are trivial. We prove (2) ⇒ (3).

Assume (2). Without loss of generality we may assume that A is infinite. We first

claim that for any coherent sheaf F and for any j ≥ 1, the set

{n ∈ A | TorX
j (OσnZ ,F) *= 0}

is finite. We induct on j. As any coherent sheaf on a projective variety has a finite

filtration by products of invertible sheaves with structure sheaves of reduced and

irreducible closed subvarieties, the claim is true for j = 1. Let j > 1 and fix a

coherent sheaf F . Because X is projective, it has enough locally frees, and there is

an exact sequence

0 → K → L → F → 0

where L is locally free and K is also coherent. The long exact sequence in Tor implies

that

TorX
j (OσnZ ,F) ∼= TorX

j−1(OσnZ ,K)
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for any n. By induction, the right-hand side vanishes for all but finitely many n ∈ A.

The claim implies that Z is homologically transverse to any σ-invariant closed

subscheme of X, and, in particular, that Z is homologically transverse to the singular

stratification of X. By Lemma 3.3.9, we have hdX(OZ) ≤ dim X. Thus for a fixed

Y ,

A′(Y ) = {n ∈ A | TorX
j (OσnZ ,OY ) *= 0 for some 1 ≤ j ≤ dim X }.

By the claim, this is finite.

Corollary 3.3.13. Assume Assumption-Notation 3.3.1. Then the bimodule algebra

R is left noetherian if and only if {σnZ}n≥0 is critically transverse.

Proof. Combine Lemma 3.3.12 with Proposition 3.3.6.

We next verify that critical transversality generalizes critical density of the orbits

of points. We first prove:

Lemma 3.3.14. Let W ⊆ V be closed subschemes of X. Then TorX
1 (OV ,OW ) *= 0.

Proof. We work locally; let W ′ be an irreducible component of W , and let P =

(W ′)red. Let m be the maximal ideal of the local ring O = OX,P . Let J be the ideal

of O defining V and let I be the m-primary ideal defining W locally at P . Then we

have

TorX
1 (OV ,OW )P = TorO1 (O/J,O/I) ∼= (J ∩ I)/JI = J/JI,

as J ⊆ I. By Nakayama’s Lemma, this is nonzero.

Corollary 3.3.15. If Z is a 0-dimensional subscheme of X and A ⊆ Z, then

{σn(Z)}n∈A is critically transverse if and only if {σn(x)}n∈A is critically dense for

all points x in the support of Z.
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Proof. Because TorX
j (OσnZ ,OY ) is supported on σnZ ∩ Y for any j, critical density

implies critical transversality. We prove that critical transversality implies critical

density. By working locally, we may assume that Z is supported on a single point

x. Suppose that critical density fails, so there is some infinite A′ ⊆ A and some

reduced W ⊂ X such that σn(x) ∈ W for all n ∈ A′. Then there is some, not

necessarily reduced, W ′ supported on W such that σn(Z) ⊆ W ′ for all n ∈ A′. By

Lemma 3.3.14, we have that TorX
1 (OσnZ ,OW ′) *= 0 for any n ∈ A′. Thus critical

transversality also fails.

3.4 Ampleness

Our ultimate goal is to study, not the bimodule algebra R(X,L, σ, Z), but its

section ring R(X,L, σ, Z). We have seen in Section 2.3 that, given appropriate

ampleness of the graded pieces of a bimodule algebra, many properties descend from

the bimodule algebra to its section ring. The goal of this section is to show that the

sequence of bimodules {(Rn)σn} is suitably ample.

We recall from Section 2.3 the definition of the properties we will need.

Definition 3.4.1. (Definition 2.3.11) Let {Rn}n∈N be a sequence of coherent sheaves

on the projective variety X. The sequence of bimodules {(Rn)σn} is right ample if

for any coherent OX-module F , the following properties hold:

(i) F ⊗Rn is globally generated for n $ 0;

(ii) Hq(F ⊗Rn) = 0 for n $ 0 and all q ≥ 1.

The sequence {(Rn)σn} is left ample if for any coherent OX-module F , the following

properties hold:

(i) Rn ⊗Fσn
is globally generated for n $ 0;

(ii) Hq(Rn ⊗Fσn
) = 0 for n $ 0 and all q ≥ 1.
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Recall also that if L is σ-ample, then {(Ln)σn} is a left and right ample sequence.

Throughout this section we assume Assumption-Notation 3.3.1. Thus to prove

that the sequence {(Rn)σn} is left or right ample, it suffices to prove that {(I⊗Ln)σn}

is left or right ample.

Given σ-ampleness of L, right ampleness of {(Rn)σn} is almost trivial; we record

this in the next lemma.

Lemma 3.4.2. Assume Assumption-Notation 3.3.1. Assume in addition that L is

σ-ample. Then {(Rn)σn} is right ample.

Proof. From Assumption-Notation 3.3.1, we know that Rn = ILn = I ⊗Ln for n $

0. Fix a coherent sheaf F . Then for n $ 0, F ⊗Rn = F ⊗I ⊗Ln. By σ-ampleness

of L, for n $ 0 this is globally generated and has no higher cohomology.

Left ampleness, however, is more subtle. In fact, we do not know when, in general,

{(Rn)σn} is left ample. However, we will see that this does hold when R is left

noetherian.

Lemma 3.4.3. Let L be a σ-ample invertible sheaf.

(1) If M and N are coherent sheaves on X, then there is an integer n0 so M⊗

Ln ⊗N σn
is globally generated for all n ≥ n0.

(2) If E and F are invertible sheaves on X, there is an integer m0 so that E ⊗

Lm ⊗Fσm
is ample for all m ≥ m0.

Proof. (1) Using the σ-ampleness of L, take i, j $ 0 so that M⊗Li and Lj ⊗N σj

are globally generated. Then Lσi

j ⊗N σi+j
is also globally generated. Since the tensor

product of globally generated sheaves is globally generated, M⊗ Li+j ⊗ N σi+j
is

globally generated.
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(2) In fact, we will show that E ⊗ Lm ⊗ Fσm
is very ample for m $ 0. Let C

be an arbitrary very ample invertible sheaf. By (1) we may choose m0 so that if

m ≥ m0, the sheaf K = C−1⊗E ⊗Lm⊗Fσm
is globally generated. Since by [Har77,

Exercise II.7.5(d)] the tensor product of a very ample invertible sheaf and a globally

generated invertible sheaf is very ample, E ⊗ Lm ⊗Fσm ∼= C ⊗ K is very ample.

Proposition 3.4.4. If L is σ-ample and {σn(Z)}n≥0 is critically transverse, then

{(I ⊗ Ln)σn} is a left ample sequence.

Proof. LetM be an arbitrary coherent sheaf. By Lemma 3.4.3, we know that I⊗Ln⊗

Mσn
is globally generated for n $ 0. We must establish that Hj(I⊗Ln⊗Mσn

) = 0

for all j ≥ 1 and n $ 0.

We know that TorX
j (OσnZ ,M) = 0 for all n $ 0 and j ≥ 1. Thus

TorX
j (I,Mσn

) ∼= TorX
j (Iσ−n

,M)σn
= 0

for all n $ 0 and j ≥ 1.

First suppose that M is invertible. By Fujita’s vanishing theorem, Theorem 2.5.1,

choose an invertible sheaf H such that H i(I⊗H⊗F) = 0 for all i ≥ 1 and any ample

invertible sheaf F . By Lemma 3.4.3(2), we may choose m0 such thatH−1⊗Lm⊗Mσm

is ample for all m ≥ m0. Then I ⊗Lm⊗Mσm
= I ⊗H⊗H−1⊗Lm⊗Mσm

and so

its higher cohomology vanishes.

Now for general M let the cochain complex

· · · → P−2 → P−1 → P0 →M→ 0

be a (not necessarily finite!) projective resolution of M. By tensoring on the left

with I ⊗ Ln, we obtain a complex Q•, where Qi = I ⊗ Ln ⊗ (P i)σn
. The q-th

cohomology of Q• is isomorphic to TorX
−q(I,Mσn

) ⊗ Ln. Now, by [Wei94, 5.7.9],
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using a Cartan-Eilenberg resolution of Q• we obtain two spectral sequences

(3.4.5) IEpq
1 = Hq(Qp)

and

(3.4.6) IIEpq
2 = Hp(Tor−q(I,Mσn

)⊗ Ln).

Since X has finite cohomological dimension d = dim X, these both converge to the

hypercohomology groups Hp+q(Q•).

Now, given p + q = j ≥ 1, by critical transversality we may take n $ 0 so that

Tor−q(I,Mσn
) = 0 for all j − d ≤ q ≤ −1; thus (3.4.6) collapses and we obtain

Hj(Q•) = Hj(I ⊗Mσn ⊗ Ln).

On the other hand, since the sheaves P i are locally free, applying the invertible case

to each summand of P i we may further increase n if necessary to obtain that

Hq(Qp) = Hq(I ⊗ Ln ⊗ (Pp)σn
) = 0

for d ≥ q ≥ 1 and 1− d ≤ p ≤ 0. Thus if j ≥ 1, (3.4.5) collapses to 0. Thus

Hj(I ⊗ Ln ⊗Mσn
) = 0

for all n $ 0 and j ≥ 1.

3.5 Noetherian idealizer rings

We are now ready to begin translating our results on bimodules to results about

geometric idealizer rings. We will work in the following setting:

Assumption-Notation 3.5.1. Let X be a projective variety, let σ ∈ Aut X, and

let L be an invertible sheaf on X, which we now assume to be σ-ample. Let Z be a
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closed subscheme of X and let I = IZ be its ideal sheaf. We continue to assume that

for any associated prime Q of I, the set {n ≥ 0 | Q ⊇ Iσn} is finite. Let

B = B(X,L, σ)

and let

B = B(X,L, σ).

Let

R = R(X,L, σ, Z) =
⊕

n≥0

(
(I : Iσn

)Ln

)
σn .

Let

I =
⊕

n≥0

H0(ILn)

and let

R = R(X,L, σ, Z) = IB(I)

as in Construction 3.1.1. By Lemma 3.2.2,

R =
⊕

n≥0

H0(R(X,L, σ, Z)n).

Our assumptions imply that Rn = ILn and Rn = In for n $ 0.

Assume Assumption-Notation 3.5.1. We next show that the right noetherian

property for R, and in fact the strong right noetherian property, are equivalent to

the simple geometric criterion from Theorem 3.2.13.

Proposition 3.5.2. Assume Assumption-Notation 3.5.1. Then the following are

equivalent:

(1) Z has finite intersection with forward σ-orbits;

(2) R is right noetherian;

(3) R is strongly right noetherian.



80

Proof. (1) ⇒ (3). By Theorem 3.2.13, if (1) holds then the bimodule algebra

R(X,L, σ, Z)

is right noetherian. Now let C be any commutative noetherian ring, and let

XC = X × Spec C

and

ZC = Z × Spec C ⊆ XC .

Also define

BC = B ⊗k C,

RC = R⊗k C,

and

IC = I ⊗k C ∼= I ⊗B BC .

It is clear that

RC = IBC (IC)

and that RC/IC is a finitely generated C-module. Let p : XC → X be projection

onto the first factor.

The idea behind our proof is very simple: if Z has finite intersection with forward

σ-orbits, then ZC has finite intersection with forward (σ × 1)-orbits, and so RC

should be noetherian by Theorem 3.2.13 and Theorem 2.3.12. However, neither of

these were proved over an arbitrary base ring C; to work scheme-theoretically we

instead follow the proof of [ASZ99, Proposition 4.13].

By [ASZ99, Proposition 4.13], BC is noetherian. The proof of this proposition

uses the fact that the shift functor in qgr-BC satisfies the hypotheses of [AZ94,
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Theorem 4.5]. By [AZ94, Theorem 4.5], BC satisfies right χ1. In particular, for any

graded right ideal J of BC , the natural map

(3.5.3) HomBC
(BC/IC , BC/J) → Homqgr-BC

(π(BC/IC), π(BC/J))

is an isomorphism in large degree, by [AZ94, Proposition 3.5].

As qgr-B % OX-mod, it is clear that

(3.5.4) qgr-BC % OXC -mod .

We note that BC/IC corresponds to OZC under this equivalence.

Let J be a graded right ideal of BC containing IC . We claim that

HomBC
(BC/IC , BC/J)

is a finitely generated C-module. To see this, let Y ⊆ ZC be the closed subscheme of

XC such that BC/J corresponds to OY under the equivalence (3.5.4). By (2.3.13),

(BC/J)[n] corresponds to

(OY ⊗ p∗Ln)(σ−n×1) ∼= O(σn×1)Y ⊗ p∗(Lσ−n

n )

under (3.5.4). Thus

Homqgr-BC
(π(BC/IC), π(BC/J))≥0

∼=
⊕

n≥0

HomXC (OZC ,O(σn×1)Y ⊗ p∗(Lσ−n

n )).

Now, ZC has finite intersection with forward (σ × 1)-orbits, and so for n $ 0, no

component of (σn × 1)Y is contained in ZC . Thus

HomXC (OZC ,O(σn×1)Y ⊗ p∗(Lσ−n

n )) = 0

for n $ 0. As the map (3.5.3) is an isomorphism in large degree, we see that

HomBC
(BC/IC , BC/J)n = 0
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for n $ 0, and so

HomBC
(BC/IC , BC/J)

is a finitely generated C-module, as claimed. As this is true for any graded J ⊇ IC ,

by Lemma 3.2.8, RC is right noetherian.

(3) ⇒ (2) is obvious.

(2) ⇒ (1). Let x ∈ X and let J be the right ideal Γ∗(Ix) of B. As B and R are

right noetherian, by Lemma 3.2.8,

HomB(B/I, B/J) ∼= {r ∈ B | rI ⊆ J}/J

is a noetherian right R/I-module. It is thus finite-dimensional, as R/I is finite-

dimensional by assumption.

As L is σ-ample, Ln is globally generated for n $ 0; in particular, Jn $ Bn for

n $ 0. Now, suppose that

{n ≥ 0 | σn(x) ∈ Z} = {n ≥ 0 | x ∈ σ−n(Z)}

is infinite. For any such n, we have that BnI ⊆ J . Thus

{r ∈ B | rI ⊆ J}/J

is infinite-dimensional, giving a contradiction.

Thus {n ≥ 0 | σn(x) ∈ Z} is finite.

The left-hand side is very different. If R is left noetherian, then so is R; but R can

only be strongly left noetherian if codim Z = 1. In this case, R is both a left and a

right idealizer, so the strong left noetherian property will follow from the left-handed

version of Proposition 3.5.2.

Proposition 3.5.5. Assume Assumption-Notation 3.5.1. If {σnZ}n≥0 is critically

transverse, then R = R(X,L, σ, Z) is left noetherian.
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Proof. By Proposition 3.4.4 and Corollary 3.3.13, we have that R = R(X,L, σ, Z) is

left noetherian and that {(Rn)σn} is a left ample sequence. Thus by Theorem 2.3.12,

the section ring R(X,L, σ, Z) is also left noetherian.

Unfortunately, we cannot prove the converse to Proposition 3.5.5 in full generality.

We do give below several special cases where the converse does hold.

Proposition 3.5.6. Assume Assumption-Notation 3.5.1. If {σn(Z)}n≥0 is not crit-

ically transverse, and either

(1) there is some σ-invariant subscheme Y that is not homologically transverse to

Z; or

(2) codim Z = 1;

then R = R(X,L, σ, Z) is not left noetherian.

Before giving the proof, we give a preliminary lemma.

Lemma 3.5.7. Let X = X(0) ⊃ X(1) ⊃ X(2) ⊃ · · · be the singular stratifica-

tion of X. Suppose that Z is a subscheme of codimension 1 such that for all j,

TorX
1 (OZ ,OX(j)) = 0. Then Z is locally principal.

Proof. Fix x ∈ Z; we will show that Z is locally principal at x. Let O = OX,x.

Let j be maximal so that x ∈ X(j), and let J be the ideal of X(j) in O. Let I be

the defining ideal of Z in O. By Lemma 3.3.14, I *⊆ J . Thus (I +J)/J locally defines

a hypersurface in X(j). Since O/J is a regular local ring, (I + J)/J is principal in

O/J , and so there is f ∈ I such that (f) + J = I + J .

By homological transversality, I ∩ J = IJ . Thus

I

(f)
⊗O

O
J
∼=

I

(f) + IJ
=

I

(f) + I ∩ J
.

But

(f) + I ∩ J = I ∩ ((f) + J) = I ∩ (I + J) = I.
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Thus

I

(f)
⊗O

O
J
∼=

I

I
= 0.

Let K be the residue field of O. Since I/(f)⊗O (O/J) surjects on to (I/(f))⊗OK

we see that (I/(f))⊗O K = 0. Nakayama’s Lemma implies that I = (f).

Proof of Proposition 3.5.6. Suppose (1) holds. Let Y be a σ-invariant subscheme

that is not homologically transverse to Z, and let j ≥ 1 be such that

TorX
j (OZ ,OY ) *= 0.

Let J = IY , and let J = Γ∗(J ) be the right ideal of B generated by sections

that vanish on Y . Since σY = Y , J is a two-sided ideal of B. We claim that

TorB
j (B/I, B/J)n *= 0 for n $ 0.

Form a graded projective resolution

· · · → P−1 → P 0 → B/I → 0

of B/I, where each P i is a finitely generated graded free module. Thus for each

i ≤ 0, there is a finite multiset Ai of integers such that

P i =
⊕

a∈Ai

B[a].

Now, for each i let P i = P̃ i. Since the functor ˜ is exact, the complex

· · · → P−1 → P0

is a resolution of OZ = B̃/I. Furthermore, by the σ-invariance of Y and the σ-

ampleness of L, for −j − d ≤ i ≤ −j + 1 and for n $ 0, we have that

(3.5.8) H0(P i ⊗ Ln ⊗OY ) =
⊕

a∈Ai

(B/J)n+a = (P i ⊗B B/J)n.
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Fix n and letQ• = P•⊗Ln⊗OY . We will temporarily denote sheaf cohomology by

Ȟq to distinguish it from the cohomology Hp of a complex. As in Proposition 3.4.4,

from a Cartan-Eilenberg resolution C•,• of Q• we obtain two spectral sequences

(3.5.9) IE2
pq = Hp(Ȟq(Q•))

and

(3.5.10) IIE2
pq = Ȟp(TorX

−q(OZ ,OY )⊗ Ln),

both of which converge (since X has finite cohomological dimension) to the hyper-

cohomology Hp+q(C•,•).

By σ-ampleness of L, by taking n $ 0 we may assume that

Ȟp(Tor−q(OZ ,OY )⊗ Ln) = 0 for p ≥ 1 and −j − d ≤ q ≤ −j − 1

and that

Ȟq(Qp) = 0 for q ≥ 1 and −j − d ≤ p ≤ −j − 1.

Thus for p + q = −j, both (3.5.9) and (3.5.10) collapse, and we obtain that

(3.5.11) Ȟ0(TorX
j (OZ ,OY )⊗ Ln) = H−j(Ȟ0(Q•)).

Since TorX
j (OZ ,OY ) *= 0 and L is σ-ample, for n $ 0 the left-hand side of (3.5.11)

is nonzero; but (3.5.8) implies that for n $ 0, the right-hand side is equal to

H−j(P • ⊗B B/J)n = TorB
j (B/I, B/J)n.

Thus TorB
j (B/I, B/J)n *= 0.

But if R is left noetherian, then, using Proposition 3.3.2 and a similar argument

to that used in the proof of Lemma 3.3.12, for any finitely generated left B-module
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M and for any j ≥ 1, we must have that TorB
j (B/I, M) is torsion. Since we have

shown this is false for M = B/J , R is not left noetherian.

Now suppose that (2) holds. Consider the singular stratification

X = X(0) ⊃ X(1) ⊃ · · ·

of X. If Z is not homologically transverse to some X(i), then by (1) R is not left

noetherian. If Z is homologically transverse to all X(i), then by Lemma 3.5.7, Z is

locally principal. By Lemma 3.3.12, there is some reduced and irreducible subscheme

Y such that TorX
1 (OσnZ ,OY ) *= 0 for infinitely many n ≥ 0. But for the locally

principal subvariety σnZ, TorX
1 (OσnZ ,OY ) *= 0 if and only if σnZ ⊇ Y .

Thus σn(Z) ⊇ Y for infinitely many n ≥ 0. Let J be the ideal sheaf defining Y

and let

A = {n ≥ 0 | Y ⊆ σnZ} = {n ≥ 0 | J σn ⊇ I}.

Let R′ = k⊕H0(IB+). It is sufficient to show that R′ is not left noetherian.

Let

J =
⊕

n≥0

H0((I ∩ J σn
)Ln).

We will show that the left ideal J of R′ is not finitely generated.

Fix an integer k ≥ 1. By σ-ampleness of L, we may choose n > k such that n ∈ A

and (I ∩ J σn
)Ln = ILn is globally generated. Then

(R′ · J≤k)n ⊆ H0(IJ σnLn) $ Jn

and R′J is not finitely generated.

Since the geometric condition required for a right idealizer to be left noetherian

is fairly subtle, it is not surprising that right idealizers are almost never strongly

left noetherian. To show this, we use the concept of generic flatness, as defined in
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[ASZ99]. Let C be a commutative noetherian domain. We say that a C-module M

is generically flat if there is some f *= 0 ∈ C such that Mf is flat over Cf . If R is

a finitely generated commutative C-algebra, then by Grothendieck’s generic freeness

theorem [Gro65, Theorem 6.9.1], every finitely generated R-module is a generically

flat C-module.

Artin, Small, and Zhang have generalized this result to strongly noetherian non-

commutative rings. They prove:

Theorem 3.5.12. ([ASZ99, Theorem 0.1]) Let R be a strongly noetherian algebra

over an excellent Dedekind domain C. Then every finitely generated right R-module

is generically flat over C.

Lemma 3.5.13. Assume Assumption-Notation 3.5.1. If Z ′ is a component of Z

such that codim Z ′ ≥ 2 and such that
⋃

m≥0 σmZ ′ is Zariski dense in X, then for

every open affine U ⊆ X, the finitely generated left R⊗k O(U)-module

M =
⊕

n≥0

R(σ−nU)

is not a generically flat O(U)-module.

Proof. We first verify that M is a left R-module. By [AV90, Equation 2.5], the

multiplication rule in R acts on sections via:

Rn(V )×Rm(σnV ) → Rn+m(V )

or, writing V = σ−n−mU ,

Rn(σ−n−mU)×Rm(σ−mU) → Rn+m(σ−n−mU).

Thus we have a map

Rn ×Mm = R(X)×Rm(σ−mU)
res→ Rn(σ−n−mU)×Rm(σ−mU) → Mm+n.
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Verifying associativity is trivial, and so M is a left R-module.

Let C = O(U). By identifying C with Cop, consider the right action of C on M

given by g ) f = g · fσn
= g · (f ◦ σn), where g ∈ Mn, f ∈ C. Note that f ◦ σn acts

on σ−nU and so does act naturally on elements of Mn.

Now since for n $ 0 the sheaves I ⊗ Ln are globally generated, the restriction

map R → M is surjective in degree ≥ m for some m. But since M<m is a finitely

generated C-module, therefore M is a finitely generated RC module.

Now let f be an arbitrary element of C; let M ′ = Mf . Since the σm(Z ′) are

Zariski dense, there is some m such that σmZ ′ meets Uf , say at a point p. But then

(M ′
p)m = (ILm)σ−mp, which is not flat over Cp, since codim Z ′ ≥ 2. Thus Mf is not

flat over Cf .

Corollary 3.5.14. R is strongly left noetherian if and only if codim Z = 1 and

{σnZ}n≥0 is critically transverse.

Proof. If codim Z = 1 and {σnZ}n≥0 is critically transverse, then in particular Z is

homologically transverse to the singular stratification of X and so by Lemma 3.5.7,

Z is locally principal and I = IZ is invertible. Now, letting L′ = IL(I−1)σ, we

have that ILn = (L′)nIσn
. Since L′ is clearly also σ-ample, we see that R is also

the left idealizer at Z inside the twisted homogeneous coordinate ring B(X,L′, σ).

By assumption on critical transversality, we have in particular that for any p ∈ X,

the set {n ≤ 0 | σn(p) ∈ Z} is finite. Thus by Proposition 3.5.2, R is strongly left

noetherian.

If codim Z = 1 and {σnZ}n≥0 is not critically transverse, then by Proposi-

tion 3.5.6(2), R is not left noetherian so is certainly not strongly left noetherian.

If codim Z *= 1, fix an open affine U ⊆ X such that X ! U has codimension

1. Let M be the module from Lemma 3.5.13. As M is not a generically flat left
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O(U)-module, by Theorem 3.5.12, R⊗O(U) is not strongly left noetherian, so R is

not strongly left noetherian.

3.6 The χ conditions for idealizers

In this section, we determine the homological properties of graded idealizers;

specifically, we investigate the Artin-Zhang χ conditions, as defined in Section 2.4.

We first recall Rogalski’s result that a right idealizer will fail χ1 and all higher χj

on the left.

Proposition 3.6.1. (Rogalski) Assume Assumption-Notation 3.5.1. Then R fails

left χ1.

Proof. This is proved in [Rog04b, Proposition 4.2]. To see it directly, note that

changing R by a finite-dimensional vector space does not affect the χ conditions, so

without loss of generality we have R = k + I. Now B/R is infinite-dimensional and

is killed on the left by I; thus we have an injection B/R ↪→ Ext1
R(k, R) and we see

that Ext1
R(k, R) is infinite-dimensional.

To analyze the right χ conditions, our key result is the following, due to Rogalski:

Proposition 3.6.2. ([Rog04b, Proposition 4.1]) Let B be a noetherian ring that

satisfies right χ. Let I be a a right ideal of B, and let R = IB(I). Assume that

B/I is infinite-dimensional, that BR is finitely generated, and that R/I is finite-

dimensional. Then R satisfies right χi for some i ≥ 0 if and only if Extj
B(B/I, M)

is finite-dimensional for all 0 ≤ j ≤ i and all M ∈ gr-B.

Rogalski proved that the right idealizer of a point in Pd satisfies right χd−1 and

fails right χd if the orbit of the point is critically dense. Here we extend Rogalski’s

result to higher-dimensional subvarieties.
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Lemma 3.6.3. Let X be a projective variety, let σ ∈ Aut X, and let L be a σ-

ample invertible sheaf on X. Let Z and Y be closed subschemes of X, and let

B = B(X,L, σ). Let J be the right ideal of B consisting of sections vanishing along

Y , and let I be the right ideal of B consisting of sections vanishing along Z. For

n $ 0, there is an isomorphism of k-vector spaces

Extj
B(B/I, B/J)n

∼= Extj
X(OZ ,OσnY ⊗ Lσ−n

n ).

Proof. There is a natural map from Extj
B(B/I, B/J) to Extj

Qgr-B(π(B/I), π(B/J)).

Since B satisfies χ by Theorem 2.4.6, this map has right bounded kernel and cokernel

by [AZ94, Proposition 3.5]. Thus it suffices to show that for n $ 0, we have

Extj
Qgr-B(π(B/I), π(B/J))n

∼= Extj
X(OZ ,OσnY ⊗ Lσ−n

n ).

In fact, we show that we have this isomorphism for all n.

Using the equivalence between Qgr-B and OX-mod, we have that

Extj
Qgr-B(π(B/I), π(B/J))n

∼= Extj
Qgr-B(π(B/I), π((B/J)[n]))

∼= Extj
X(B̃/I, ˜(B/J)[n]).

Now, B̃/I = OZ , and by (2.3.13),

˜(B/J)[n] ∼= (OYLn)σ−n ∼= OσnYLσ−n

n .

The result follows.

We have seen that for R to be right Noetherian is relatively straightforward, but

the left Noetherian property for R depends on the critical transversality of {σnZ}.

It turns out that the right χj properties, for j ≥ 1, also depend on the critical

transversality of {σnZ}. In particular, we have:
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Proposition 3.6.4. Assume Assumption-Notation 3.5.1. Let k be the minimal codi-

mension of an irreducible component of Z.

(1) If {σnZ}n≤0 is critically transverse, and either

(a) X is nonsingular and Z is Gorenstein; or

(b) Z is 0-dimensional,

then R satisfies right χk−1 but fails right χk.

(2) More generally, if Z contains an irreducible component of codimension k that

is not contained in the singular locus of X, then R fails right χk. In particular, if R

is left noetherian then R fails right χk.

Proof. By Proposition 3.6.2, R satisfies right χi if and only if for all finitely generated

MB we have dimk Extj
B(B/I, M) < ∞ for all j ≤ i. Furthermore, using the equiv-

alence of categories between qgr-B and OX-mod, without loss of generality we may

assume that M = B/J , where J is a right ideal of B consisting of sections vanishing

along a reduced, irreducible subscheme Y of X.

Now by Lemma 3.6.3, for n $ 0 we have isomorphisms Extj
X(πB/I, πB/J)n

∼=

Extj
X(OZ ,OσnY ⊗ Lσ−n

n ). Thus we have:

(3.6.5) R satisfies right χi ⇐⇒ for all Y ⊆ X,

Extj
X(OZ ,OσnY ⊗ Lσ−n

n ) = 0 for all j ≤ i and n $ 0.

By [Gro57, Prop 4.2.1], for any coherent sheaves E and F there is a spectral

sequence

(3.6.6) Hp(Ext q
X(E ,F)) ⇒ Extp+q

X (E ,F).

We consider the special case

(3.6.7) Epq = Hp(Ext q
X(OZ ,OσnY ⊗ Lσ−n

n )) ⇒ Extp+q
X (OZ ,OσnY ⊗ Lσ−n

n ).
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We first suppose that (1)(a) holds, and show that R satisfies right χk−1.

Fix a closed subscheme Y of X and consider the sheaf Ext j
X(OZ ,OσnY ). This

is supported on Z; we compute it by working locally at some closed point x ∈ Z.

Gorenstein rings are Cohen-Macaulay and therefore locally equidimensional [Eis95,

Corollary 18.11], so we may assume that Z is pure-dimensional of codimension k′ ≥ k.

Let J ⊆ O be the ideal defining Z locally at x.

By [Eis95, Corollary 21.16], O/J has a self-dual free resolution as an O-module

0 → Qk′ → · · · → Q0 → O/J.

We write this resolution as Q• → O/J .

For a given n, let K ⊆ O be the ideal defining σnY at P . Let M = O/K. Then

we have isomorphisms of complexes

HomO(Q•, M) ∼= HomO(Q•,O)⊗M ∼= Q• ⊗M,

where the final isomorphism follows from the fact that Q• is self-dual. The right-hand

complex of this equation computes TorOk′−j(O/J,M). Thus we obtain isomorphisms

(3.6.8) Ext j
X(OZ ,OσnY ) ∼= TorX

k′−j(OZ ,OσnY ) ∼= TorX
k′−j(Oσ−nZ ,OY )σ−n

for all j.

We return to the Grothendieck spectral sequence (3.6.7). By [Har77, III.6.7], we

have that

Ext q
X(OZ ,OσnY ⊗ Lσ−n

n ) ∼= Ext q
X(OZ ,OσnY )⊗ Lσ−n

n .

Using critical transversality and (3.6.8), choose n0 such that Ext j
X(OZ ,OσnY ) = 0 for

all n ≥ n0 and j < k ≤ k′. Then Epq = 0 for q < k; so we see that if p + q = j < k,

then (3.6.7) collapses to 0 and we have Extj
X(OZ ,OσnY ⊗ Lσ−n

n ) = 0 for n $ 0. By

(3.6.5), R satisfies χk−1.
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Let Xsing be the singular locus of X. We now suppose that (2) holds; that is, Z

contains an irreducible component of codimension k that is not contained in Xsing.

We show that in this situation, R fails right χk.

We consider the special case of (3.6.7) where Y = X:

(3.6.9) Hp(Ext q
X(OZ ,Lσ−n

n )) ⇒ Extp+q
X (OZ ,Lσ−n

n ).

Let x ∈ Z be a nonsingular point of X such that the codimension of Z at x is k.

Since X is nonsingular at x, by [BH93, Theorem 1.2.5]

(3.6.10) Ext j
X(OZ ,OX)x = 0 for j < k

and

(3.6.11) Extk
X(OZ ,OX)x *= 0.

Now (3.6.10) implies that for p + q = k, (3.6.9) collapses, and we obtain that

Extk
X(OZ ,Lσ−n

n ) ∼= H0(Extk
X(OZ ,OX)⊗ Lσ−n

n ) ∼= H0((Extk
X(OZ ,OX)σn ⊗ Ln).

This is nonzero for n $ 0 by (3.6.11) and σ-ampleness of L. Thus by (3.6.5), R fails

right χk.

We have seen that if (2) holds, then R fails right χk. We note that if {σnZ}n≤0 is

critically transverse, then Z is homologically transverse to all σ-invariant subschemes,

and certainly no component of Z is contained in Xsing. If R is left noetherian, then

using Proposition 3.5.6 and Lemma 3.3.14, we again have that no component of Z

is contained in the singular locus of X. Thus if (1)(a) or (1)(b) hold, or if R is left

noetherian, then (2) holds and R fails right χk.

It remains to show that if (1)(b) holds, then R satisfies right χk−1. We have seen

that X is nonsingular at all points of Z, and so (3.6.10) holds. Let j ≤ k − 1. By
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(3.6.9) we have that Extj
X(OZ ,Lσ−n

n ) = 0. On the other hand, if Y ⊂ X is a proper

subvariety, then critical transversality of {σnZ}n≤0 and Corollary 3.3.15 show that

σnY and Z are disjoint for n $ 0, and so certainly Extj
X(OZ ,OσnY ⊗ Ln) = 0 for

n $ 0. By (3.6.5), R satisfies right χk−1.

3.7 Proj of graded idealizer rings and cohomological dimension

Assume Assumption-Notation 3.5.1. We are interested in understanding the co-

homological dimension of the (right) noncommutative projective scheme associated

to R, and here we briefly review the definitions.

Recall that Proj-R is defined as the pair (Qgr-R, πR). The cohomology groups

on Proj-R are defined by setting

H i(Proj-R,M) = Exti
Qgr-R(πR,M)

for any M ∈ Qgr-R. The cohomological dimension of Proj-R or the right cohomo-

logical dimension of R is

max{i | H i(Proj-R,M) *= 0 for some M∈ Qgr-R }.

If R is a finitely generated commutative graded k-algebra, then its cohomological

dimension is finite and in fact bounded by the dimension of Proj R. The proofs of

this are geometric, for example relying on Čech cohomology calculations, and do not

generalize to the noncommutative situation. Stafford and Van den Bergh have asked

[SV01, page 194] if every connected graded noetherian ring has finite left and right

cohomological dimension.

In this section, we give a partial answer to Stafford and Van den Bergh’s question.

We prove:
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Theorem 3.7.1. Assume Assumption-Notation 3.5.1. If R = R(X,L, σ, Z) is

noetherian, then R has finite left and right cohomological dimension.

We also give an example of a right, but not left, noetherian ring with infinite

right cohomological dimension. Amusingly, this ring has finite left cohomological

dimension.

To begin, we review Rogalski’s results on the cohomological dimension of idealiz-

ers.

Proposition 3.7.2. ([Rog04b, Lemma 3.2]) Let B be a noetherian connected graded

finitely N-graded k-algebra, and let I be a graded right ideal of B such that R/I

is infinite-dimensional. Assume that BR is finitely generated and R/I is finite-

dimensional. Then there are isomorphisms of pairs

(3.7.3) R-Proj = (R-Qgr, πR) ∼= (B-Qgr, πB) = B-Proj

and

(3.7.4) Proj-R = (Qgr-R, πR) ∼= (Qgr-B, πI).

Because of (3.7.3), it is clear that cd(R-Proj) = cd(B-Proj) = dim X, and this

was observed by Rogalski. We thus focus on calculating cd(Proj-R).

Lemma 3.7.5. Assume Assumption-Notation 3.5.1. Then cd(Proj-R) is infinite if

and only if hdX(OZ) is infinite.

Proof. Let I = Γ∗(I) ⊆ B. Since (Qgr-B, πI) ∼= (OX-Mod, I), by (3.7.4) cd(Proj-R)

is infinite if and only if for any k ≥ 0, there is some quasi-coherent F such that

Extk
X(I,F) *= 0.
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Suppose that hdX(OZ) and therefore hdX(I) are infinite. Thus for any k > 0,

there is some G such that Extk
X(I,G) *= 0. But let O(1) be any very ample in-

vertible sheaf on X; by [Har77, III.6.9] we may choose n so that Extk
X(I,G(n)) =

H0(Extk
X(I,G) ⊗ O(n)) *= 0. Thus cd(Proj-R) ≥ k and since k was arbitrary,

cd(Proj-R) is infinite.

Now suppose that hdX(I) is finite, say equal to N , and let G be an arbitrary

coherent sheaf. We apply (3.6.6) to obtain a spectral sequence

Hp(Ext q
X(I,G)) ⇒ Extp+q

X (I,G).

The left-hand side has nonzero terms only for 0 ≤ p ≤ dim X and 0 ≤ q ≤ N . Thus

if p+q is large (in particular p+q > N +dim X), then all the groups on the left-hand

side are 0, and so the right hand side is also 0. Thus cd(Proj-R) ≤ N + dim X.

Proof of Theorem 3.7.1. If R(X,L, σ, Z) is left noetherian, then by Proposition 3.5.6,

we have that {σnZ}n≥0 is homologically transverse to all σ-invariant subvarieties of

X, and in particular, to the singular stratification of X. Thus by Lemma 3.3.9,

hdX(OZ) is finite. By Lemma 3.7.5, cd(Proj-R) is finite.

We now give the promised example of a right noetherian ring with infinite right

cohomological dimension.

Example 3.7.6. Assume that char k = 0. Let Y be the cuspidal cubic and let

X = Y × P1. Let τ : P1 → P1 be the automorphism τ([x : y]) = [x + y : y], and let

σ = 1 × τ ∈ Aut X. Let P be the singular point of Y and let Z = P × [0 : 1] ∈ X.

Let L be any ample invertible sheaf on X, and let R = R(X,L, σ, Z). Since the

numerical action of σ is trivial, by [Kee00, Theorem 1.2] L is σ-ample.

Now Z is certainly of infinite order under σ, and applying Proposition 3.5.2, we

have that R is right noetherian. On the other hand, Z is contained in the singular
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locus of X, and so Proposition 3.5.6(1) and Lemma 3.3.14 imply that R is not

left noetherian. Since X is not regular at Z, we have that hdX(OZ) is infinite.

Lemma 3.7.5 implies that cd Proj-R = ∞.

We note that Proposition 3.7.2 implies that the left cohomological dimension of

R is 2.

Remark: Suppose that R = R(X,L, σ, Z) is a left noetherian idealizer. Together,

Lemma 3.7.5 and Lemma 3.3.9 imply that the right cohomological dimension of R is

bounded by 2 dim X−1. We conjecture that in fact the left cohomological dimension

of R is precisely dim X. It is easy to see that cd(Proj-R) ≥ dim X.

3.8 Conclusion

Here we collect our results on geometric idealizers, and prove Theorem 3.1.6 and

its promised generalization. Throughout, we make the following assumptions.

Assumptions 3.8.1. Let X be a projective variety, let σ be an automorphism of X,

and let L be a σ-ample invertible sheaf on X. Let Z be a closed subscheme of X such

that for any irreducible component Y of Z,

σn(Y red) *⊆ Z

for n $ 0.

Given this data, we let

R = R(X,L, σ, Z).

Let I = IZ be the ideal sheaf of Z on X.

We note that since by Theorem 3.2.13 any noetherian right idealizer is up to

a finite extension an idealizer at a scheme whose defining data satisfies Assump-

tions 3.8.1, these assumptions are not unduly restrictive.
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We now summarize our results.

Theorem 3.8.2. Assume Assumptions 3.8.1.

(1) R is right noetherian if and only if for any x ∈ X, the set {n ≥ 0 | σn(x) ∈ Z}

is finite.

(2) If R is right noetherian, then R is strongly right noetherian.

(3) R fails left χ1.

(4) If {σn(Z)}n≥0 is critically transverse, then {(ILn)σn} is a left and right ample

sequence of bimodules, and R is left noetherian.

(5) R is strongly left noetherian if and only if codim Z = 1 and {σnZ}n≥0 is

critically transverse.

(6) Let k be the minimal codimension of a component of Z. If {σnZ}n≤0 is

critically transverse and either k = dim X or X and Z are both smooth, then R

satisfies right χk−1. If R is noetherian, then R fails right χk.

(7) If R is noetherian, then R has finite left and right cohomological dimension.

We note that Theorem 3.1.6 is a special case of Theorem 3.8.2.

Proof. (1) and (2) are Proposition 3.5.2. (3) is Proposition 3.6.1. (4) is Lemma 3.4.2,

Proposition 3.4.4 and Proposition 3.5.5. (5) is Corollary 3.5.14. (6) is a special case

of Proposition 3.6.4, and (7) is Theorem 3.7.1.



CHAPTER IV

Birationally commutative projective surfaces

4.1 Introduction

Artin and Stafford’s classification [AS95] of noncommutative projective curves—

finitely N-graded domains of GK-dimension 2—was one of the early triumphs of

noncommutative algebraic geometry. The classification of graded domains of GK-

dimension 3, known as the problem of classification of noncommutative projective

surfaces, is now the most important open problem in the field. It is much more

difficult than the classification of curves: for example, while Artin and Stafford’s work

implies that all noncommutative curves are birationally commutative, the birational

classification of surfaces is still unknown.

Artin’s conjectured birational classification (Conjecture 1.3.3) says that a non-

commutative projective surface is either birational to a quantum P2, birational to

a quantum ruled surface, birationally commutative, or has a function field finite-

dimensional over a field of transcendence degree 2. In this chapter, we classify bi-

rationally commutative surfaces, thus resolving one of the cases of Conjecture 1.3.3.

We will always work over a fixed uncountable algebraically closed ground field, k.

We formally define:

Definition 4.1.1. A finitely N-graded domain R is a birationally commutative pro-

99
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jective surface if

(1) R is noetherian of GK-dimension 3;

(2) the graded quotient ring of R is of the form K[z, z−1; σ] where K is a field of

transcendence degree 2.

Some examples of birationally commutative projective surfaces are twisted homo-

geneous coordinate rings on projective surfaces, the näıve blowups defined in (1.4.2),

and idealizer subrings of twisted homogeneous coordinate rings of surfaces, as stud-

ied in the last chapter. In addition, one expects that idealizers inside näıve blowups

will provide examples of birationally commutative projective surfaces. Naturally,

one asks if this is a complete enumeration of birationally commutative projective

surfaces, and if and how one can construct the underlying geometric data of such a

surface.

In this chapter, we give a complete classification of birationally commutative

projective surfaces. We show that there is one new class of such surfaces; we refer to

these as ADC rings. ADC rings have similar properties to näıve blowups, although

they are never generated in degree 1. We then show that (up to a Veronese, as usual)

a birationally commutative projective surface is either:

• a twisted homogeneous coordinate ring;

• an ADC ring;

• or an idealizer in one of the above.

Further, we obtain strong constraints on the geometry of the defining data.

We make a remark on the GK-dimension of noncommutative surfaces. Artin and

Van den Bergh showed [AV90, Theorem 1.7(iii)] that the GK-dimension of the twisted

homogeneous coordinate ring of a projective surface is either 3 or 5 and may attain
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either value; see [AV90, Example 5.18] for an example of a surface whose twisted

homogeneous coordinate ring has GK-dimension 5. Surely such twisted homogeneous

coordinate rings should be considered noncommutative surfaces! Thus, although the

requirement that a noncommutative surface have GK-dimension 3 seems natural, it

does impose some restrictions. As yet, we have not been able to extend our results

on birationally commutative surfaces to include the GK-dimension 5 case.

Let us describe the geometric data defining a birationally commutative surface in

more detail.

Definition 4.1.2. The tuple D = (X,L, σ,A,D, C, Ω, Λ, Λ′) is surface data if:

• X is a projective surface;

• σ is an automorphism of X;

• L is an invertible sheaf on X;

• D is the ideal sheaf of a 0-dimensional subscheme of X such that all points in

the cosupport of D have distinct infinite σ-orbits;

• A and C are ideal sheaves on X such that AC ⊆ D and such that the pair (A, C)

is maximal with respect to this property (in particular, D ⊆ A ∩ C and so A

and C are cofinite);

• Ω is a curve on X; and

• Λ and Λ′ are 0-dimensional subschemes of X supported on points of infinite

order.

Given surface data D = (X,L, σ,A,D, C, Ω, Λ, Λ′), we define a graded (OX , σ)-

bimodule algebra

T = T (D) =
⊕

n≥0

(Tn)σn ,
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where T0 = OX and

Tn = (ADσ · · · Dσn−1Cσn ∩ IΩIΛIσn

Λ′ )Ln

for n ≥ 1, and a k-algebra

T (D) = H0(T (D)) =
⊕

n≥0

H0(Tn).

Definition 4.1.3. The surface data D = (X,L, σ,A,D, C, Ω, Λ, Λ′) is transverse if:

• σ is numerically trivial;

• L is ample and σ-ample;

• all points in the cosupport of D have critically dense σ-orbits;

• {σnΩ}n∈Z is critically transverse; and

• both {σnΛ}n≥0 and {σnΛ′}n≤0 are critically transverse.

The main theorem of this chapter is:

Theorem 4.1.4. Let R be a finitely N-graded domain. If R is a birationally com-

mutative projective surface, then there is transverse surface data

D = (X,L, σ,A,D, C, Ω, Λ, Λ′)

so that some Veronese of R satisfies

R(k) = T (D).

Further, if the surface data D = (X,L, σ,A,D, C, Ω, Λ, Λ′) is transverse, then T (D)

is a birationally commutative projective surface.
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Theorem 4.1.4 is an extension of Rogalski and Stafford’s recent classification of

birationally commutative projective surfaces that are generated in degree 1. Their

result is:

Theorem 4.1.5. ([RS06, Theorem 1.1]) Let R be a birationally commutative surface

that is generated in degree 1. Then there are a projective surface X, an automorphism

σ of X, a σ-ample invertible sheaf L on X, and a 0-dimensional subscheme Z of

X, supported on points with critically dense orbits, so that for some k ≥ 1, R(k) =

S(X,L, σ, Z). (If Z is nonempty, this is a näıve blowup; the twisted homogeneous

coordinate ring B(X,L, σ) corresponds to Z = ∅.)

We remark that Rogalski and Stafford work slightly more generally than we do, in

that their rings may have GK-dimension 3 or 5. That is, they study finitely N-graded

noetherian domains R whose graded quotient ring is of the form

K[z, z−1; σ]

where K = k(X) is the function field of a projective surface X such that σ induces an

automorphism of X. By [Rog07, Theorem 1.1], any such R has GK-dimension 3 or 5,

and any birationally commutative projective surface in the sense of Definition 4.1.1

that is generated in degree 1 is of the form studied by Rogalski and Stafford.

Let D = (X,L, σ,A,D, C, Ω, Λ, Λ′) be transverse surface data, and let T = T (D).

We comment on the various roles played by the pieces of D in the behavior of T .

The data Ω, Λ, and Λ′ correspond to idealizing. That is, let

E = (X,L, σ,A,D, C, ∅, ∅, ∅),

and let S = T (E). Then

Sn = H0(ADσ · · · Dσn−1CσnLn)
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for n ≥ 1. We see that T ⊆ S; one may easily show that (in sufficiently large degree)

T is a right idealizer inside a left idealizer inside S. In particular, ifA = D = C = OX ,

then T (D) is a right idealizer inside a left idealizer inside the twisted homogeneous

coordinate ring B(X,L, σ).

We studied the process of idealizing, at least in twisted homogeneous coordinate

rings, in detail in Chapter III. We make a few comments now on the data defining

S.

Definition 4.1.6. The tuple (X,L, σ,A,D, C) is ADC data if:

• X is a projective surface;

• σ is an automorphism of X;

• L is a σ-ample invertible sheaf on X;

• D is the ideal sheaf of a 0-dimensional subscheme of X such that all points in

the cosupport of D have distinct critically dense σ-orbits;

• A and C are ideal sheaves on X such that AC ⊆ D, and so that the pair (A, C)

is maximal with respect to this property.

Given ADC data (X,L, σ,A,D, C), we define the ADC bimodule algebra

S = S(X,L, σ,A,D, C)

to be the graded (OX , σ)-bimodule algebra

S =
⊕

n≥0

(Sn)σn ,

where S0 = OX and

Sn = ADσ · · · Dσn−1CσnLn
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for n ≥ 1. We define the ADC ring S = S(X,L, σ,A,D, C) as

S = H0(S) =
⊕

n≥0

H0(ADσ · · · Dσn−1CσnLn).

Note that a näıve blowup is a special case of an ADC ring: if A = D and C = OX ,

then S = S(X,L, σ,D,D,OX) satisfies

Sn = H0(DDσ · · · Dσn−1Ln)

and so S is a näıve blowup. More generally, if AC = D, then S is a näıve blowup at

the subscheme defined by ACσ.

Example 4.1.7. To see that ADC rings are not idealizers inside näıve blowups, let

X be a projective surface, let σ ∈ Aut X, and let p ∈ X be a (nonsingular) point

with a critically dense orbit. Let x, y ∈ OX,p be local coordinates at p. Let A = C

be the ideal sheaf cosupported at p so that

Ap = Cp = (x, y)OX,p,

and let D be the ideal sheaf cosupported at p so that

Dp = (x, y2)OX,p.

We have (AC)p = (x2, xy, y2)OX,p ⊆ Dp. Thus AC ⊆ D, and clearly (A, C) is

maximal with respect to this inclusion. Thus if L is a σ-ample invertible sheaf on

X, the tuple (X,L, σ,A,D, C) is ADC data.

The ring S = S(X,L, σ,A,D, C) is not an idealizer. In fact, one can show that

S is a maximal order — roughly speaking, the noncommutative equivalent of an

integrally closed ring — although we do not do so in this thesis. One can also show

that no Veronese subring of S is generated in degree 1.
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The techniques used in the proofs of Theorem 4.1.4 and Theorem 4.1.5 are quite

different. In order to construct the scheme X on which R lives, Rogalski and Stafford

study the space of point modules (see Definition 2.4.4) over R. Since the point

modules over a näıve blowup are not parameterized by any scheme, the arguments

involving this space are quite subtle and technical.

In contrast, we are able to construct the data (X,L, σ,A,D, C, Ω, Λ, Λ′) associated

to R much more directly. We work via a method of successive approximations: we

first construct a twisted homogeneous coordinate ring B that contains R, and then

gradually modify the defining data for B to approach R more and more closely. Our

philosophy is thus relatively straightforward, although showing that our methods do

eventually converge to R is fairly involved.

4.2 Properties of rings defined by transverse data

We begin with the easy direction of Theorem 4.1.4. Suppose that the surface data

D = (X,L, σ,A,D, C, Ω, Λ, Λ′) is transverse. Let T = T (D) and let T = T (D). In

this section, we show that both T and T are noetherian, and study some of their

properties.

Let K = k(X). The automorphism σ of X induces a k-automorphism of K,

which we also denote by σ. As a matter of notation, we will write B(X,L, σ) and

all of its graded subrings as subrings of K[z, z−1; σ]. That is, let S be any graded

(OX , σ)-sub-bimodule algebra of B(X,L, σ). We write

H0(S) =
⊕

n≥0

H0(Sn)zn,

where z is a formal parameter. If S is any graded subring of

B(X,L, σ) =
⊕

n≥0

H0(Ln)zn,
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we let

Sn = Snz
−n ⊆ K,

so

S =
⊕

n≥0

Snz
n.

If I is a graded right or left ideal of S we will write

I =
⊕

n≥0

In =
⊕

n≥0

Inz
n.

In particular, for the rest of the chapter we will use the notation that if

D = (X,L, σ,A,D, C, Ω, Λ, Λ′),

then

T = T (D)

is defined by

(4.2.1) Tn = H0(Tn)zn = H0((ADσ · · · Dσn−1Cσn ∩ IΩIΛIσn

Λ′ )Ln)zn.

Note that multiplication on T is now induced from its inclusion in K[z, z−1; σ].

We begin by showing that the sequence of bimodules {(Tn)σn} is left and right

ample. We will use a result of Rogalski and Stafford that relates the ampleness of a

sequence of bimodules of the form {(Rn)σn} to the Castelnuovo-Mumford regularity

of the sheaves Rn.

Lemma 4.2.2. ([RS07, Corollary 3.14]) Let X be a projective scheme with very

ample invertible sheaf N . Let Fn be a sequence of coherent sheaves on X such that

for each n, the closed set where Fn is not locally free has dimension at most 2. Then

{(Fn)σn} is a right ample sequence if and only if

lim
n→∞

regN Fn = −∞,
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and {(Fn)σn} is a left ample sequence if and only if

lim
n→∞

regNσn Fn = −∞.

Proof. The right ampleness statement is a restatement of [RS07, Corollary 3.14].

The left ampleness statement follows by symmetry.

We will also use the following result of Dennis Keeler:

Lemma 4.2.3. ([Kee06, Proposition 2.8]) Let X be a projective scheme with very

ample invertible sheaf N . Then there is a constant C, depending only on X and N ,

so that for any pair F ,G of coherent sheaves such that the dimension of the closed

set where both F and G are not locally free is less than or equal to 2, we have that

regN F ⊗ G ≤ regN F + regN G + C.

We will also frequently use the following easy observation about cohomology van-

ishing.

Lemma 4.2.4. Let X be a projective scheme and suppose that

0 → K →M θ→ N → K′ → 0

is an exact sequence of coherent sheaves on X, where K and K′ are supported on

subschemes of dimension 0. Further suppose that H i(M) = 0 for all i ≥ 1. Then

H i(N ) = 0 for all i ≥ 1.

Proof. Note that H i(K) = H i(K′) = 0 for all i ≥ 1. Let M′ = Im θ. From the long

exact cohomology sequence, we deduce that H i(M′) = 0 for all i ≥ 1. This implies

that H i(N ) = 0 for all i ≥ 1.
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We will show that the sequence of bimodules {(Tn)σn} is left and right ample

under slightly less restrictive assumptions on the defining data than transversality.

We first assume that Λ and Λ′ are empty.

Lemma 4.2.5. Let X be a projective surface, let σ ∈ Aut X, and let L be a σ-ample

invertible sheaf on X. Let Ω be a curve on X so that {σnΩ} is critically transverse.

(1) Let E be an ideal sheaf on X that defines a 0-dimensional subscheme supported

on dense orbits. Then the sequence of bimodules

{
(
(IΩ ∩ EEσ · · · Eσn−1

)Ln

)
σn}

is left and right ample.

(2) In addition, let A, D, and C be ideal shaves on X such that the tuple

E = (X,L, σ,A,D, C, Ω, ∅, ∅)

is surface data. Suppose also that the orbits of all points in the cosupport of D are

dense. Let T = T (E). Then the sequence of bimodules {(Tn)σn} is left and right

ample.

Proof. (1) For all n ≥ 1, let

Jn = IΩ ∩ EEσ · · · Eσn−1
.

We will show that the sequence {(JnLn)σn} is left and right ample.

We first assume in addition that L is ample. By [AV90, Theorem 1.7], L is then

also σ2-ample. Note that all points in the cosupport of EEσ have dense σ2-orbits.

Let

Fn = (EEσ)(EEσ)σ2 · · · (EEσ)σ2n−2L ⊗ Lσ2 ⊗ · · · ⊗ Lσ2n−2

= EEσ · · · Eσ2n−1L ⊗ Lσ2 ⊗ · · · ⊗ Lσ2n−2
.
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By [RS07, Theorem 3.1], the sequences {(Fn)σ2n} and {(Fn+1)σ2n+1} are left and

right ample.

Now let

Gn = IΩLσLσ3 · · · Lσ2n−1
.

By Proposition 3.4.4, the sequences {(Gn)σ2n} and {(Gn)σ2n+1} are left and right

ample. By Lemma 4.2.3 and Lemma 4.2.2, the sequences

{(Fn ⊗ Gn)σ2n}

and

{(Fn+1 ⊗ Gn)σ2n+1}

are left and right ample.

Let M be any coherent sheaf on X. For any n ≥ 0, there is an exact sequence

0 → Hn → Fn ⊗ Gn ⊗Mσ2n → J2nL2n ⊗Mσ2n → Kn → 0

where both Hn and Kn are supported on dimension 0 subschemes of X. Since

H i(Fn ⊗ Gn ⊗Mσ2n
) = 0 for i ≥ 1 and n $ 0, Lemma 4.2.4 implies that

H i(J2nL2n ⊗Mσ2n
) = 0

for i ≥ 1 and n $ 0. Thus {(J2nL2n)σ2n} is a left ample sequence; the argument

that it is right ample is similar. Likewise, from the maps

Fn+1 ⊗ Gn → J2n+1L2n+1

we obtain that {(J2n+1L2n+1)σ2n+1} is left and right ample. Thus

{(JnLn)σn}

is left and right ample.
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Now consider the general case. By [AV90, Theorem 1.7], there is some k ≥ 1

so that Lk is ample. Let E ′ = EEσ · · · Eσk−1
. We have seen that the sequence of

bimodules

{((IΩ ∩ E ′(E ′)σk · · · (E ′)σk(n−1)
)Lkn)σkn} = {(JknLkn)σkn}

is left and right ample. Lemma 4.2.2 implies that for any 0 ≤ i ≤ k−1, the sequence

{(JknLkn−i)σkn−i}

is left and right ample.

Fix 0 ≤ i ≤ k − 1. We have Jkn ⊆ Jkn−i for all n ≥ 1. For any coherent M on

X the kernel and cokernel of

M⊗JknLkn−i →M⊗Jkn−iLkn−i

are supported on sets of dimension 0. Thus by Lemma 4.2.4 the sequence

{(Jkn−iLkn−i)σkn−i}

is left and right ample for all 0 ≤ i ≤ k − 1. Thus

{(JnLn)σn}

is a left and right ample sequence, as claimed.

(2) Let E = DDσ, so

EEσ · · · Eσn−1 ⊆ ADσ · · · Dσn−1Cσn
.

The cokernel of this inclusion is supported on a set of dimension 0. By (1) the

sequence

{
(
(IΩ ∩ EEσ · · · Eσn−1

)Ln

)
σn}
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is left and right ample. An argument similar to those above shows that

{(Tn)σn}

is left and right ample.

We thank Dennis Keeler for assistance with the following argument.

Lemma 4.2.6. Let X be a projective surface and let σ be a numerically trivial

automorphism of X. Let L be an invertible sheaf on X. Suppose that there are

sheaves Rn ⊆ Ln so that the sequence of bimodules {(Rn)σn} is a left and right

ample sequence. Let I be an ideal sheaf that is locally free except on a set of dimension

≤ 0. Then both {(ILn ∩ Rn)σn} and {(IRn)σn} are left and right ample sequences

of bimodules.

Proof. Fix a very ample invertible sheaf N on X. We first show that {(I ⊗ Rn)σn}

is left and right ample. Right ampleness is immediate. For left ampleness, by

Lemma 4.2.2, it is sufficient to show that

lim
n→∞

regNσn I ⊗Rn = −∞.

By Fujita’s Vanishing Theorem 2.5.1, we may choose m such that for any nef invert-

ible sheaf F , we have that H i(I ⊗ N⊗m ⊗ F) = 0 for all i ≥ 1. As σ is numerically

trivial, for any k the invertible sheaf (N−1 ⊗N σk
)⊗m is nef. Thus for any k and for

any i ≥ 1 we have that

H i(I ⊗ (N σk
)⊗m) = H i(I ⊗N⊗m ⊗ (N−1 ⊗N σk

)⊗m) = 0,

and so I is (m + 2)-regular with respect to any N σk
. Now by Lemma 4.2.3, we have

that

lim
n→∞

regNσn I ⊗Rn = −∞.
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Thus {(I ⊗Rn)σn} is left ample.

Now for any coherent M, since the maps

I ⊗Rn ⊗M→ (ILn ∩Rn)⊗M

and

I ⊗Rn ⊗M→ IRn ⊗M

have kernel and cokernel supported on sets of dimension 0, by Lemma 4.2.4 we obtain

that {(ILn ∩Rn)σn} and {(IRn)σn} are left and right ample sequences.

Lemma 4.2.7. Suppose that D = (X,L, σ,A,D, C, Ω, Λ, Λ′) is surface data so that

L is σ-ample, all points in the cosupport of D have dense orbits, and either

(1) {σnΩ}n∈Z, {σnΛ}n≥0, and {σnΛ′}n≤0 are critically transverse; or

(2) σ is numerically trivial and Ω does not contain any 1-dimensional component

of the singular locus of X.

Let T = T (D). Then the sequence of bimodules {(Tn)σn} is left and right ample.

Proof. In case (1), certainly the orbits of all points in Λ and Λ′ are Zariski-dense.

Thus there is an ideal sheaf E on X, supported on points with dense orbits, so that

for all n ≥ 1 we have

(4.2.8) IΩ ∩ EEσ · · · Eσn−1 ⊆ IΩIΛIσn

Λ′ ∩ ADσ · · · Dσn−1Cσn
= TnL−1

n .

Let

Mn = (IΩ ∩ EEσ · · · Eσn−1
)Ln.

By Lemma 4.2.5 the sequence of bimodules {(Mn)σn} is left and right ample. Since

the cokernel of the inclusion (4.2.8) is supported on a 0-dimensional scheme, {(Tn)σn}

is left and right ample by Lemma 4.2.4.



114

In case (2), our assumption on Ω implies that IΩ is locally free except possibly

on the 0-dimensional set where Ω meets the singular locus of X. Thus

{(Tn)σn}

is left and right ample by repeated applications of Lemma 4.2.6.

We will now prove that if the surface data D = (X,L, σ,A,D, C, Ω, Λ, Λ′) is trans-

verse, then both the bimodule algebra T (D) and the k-algebra T (D) are left and

right noetherian. As mentioned, the data Ω, Λ, and Λ′ correspond to idealizing. We

first assume that no idealizing is taking place, and show that ADC bimodule algebras

are noetherian. To do this, we explicitly construct generators for graded right and

left ideals.

Proposition 4.2.9. Suppose that the tuple (X,L, σ,A,D, C) is ADC data, and let

S = S(X,L, σ,A,D, C). Let J =
⊕

(Jn)σn be a graded right ideal of S. Then there

are an ideal sheaf J ′ on X and an integer m ≥ 0 such that for n > m,

Jn = (J ′Dσm · · · Dσn−1Cσn
)Ln.

Further, for n ≥ m, J ′ and Dσn
are comaximal.

Likewise, let K be a graded left ideal of S. Then there are an ideal sheaf K′ on X

and an integer m′ ≥ 0 such that for n > m′,

Kn = (ADσ · · · Dσn−m′
(K′)σn

)Ln.

Further, for j ≤ −m′, K′ and Dσj
are comaximal.

Proof. Let Z be the cosupport of D; note that our assumptions imply that {σnZ}

is critically transverse. By Lemma 2.3.14, without loss of generality we may assume

that L = OX .
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By symmetry, it suffices to prove the result for a graded right ideal J of S, and

we may assume that J *= 0. Let n0 be such that Jn0 *= 0. Let Y be the subscheme

of X defined by Jn0 . By critical transversality, there is some n1 > n0 such that for

n ≥ n1, we have σ−n(Z) ∩ Y = ∅.

For n > n1, let In be the maximal ideal sheaf on X so that In ⊇ Jn and so that

In/Jn is supported on

σ−(n1+1)Z ∪ · · · ∪ σ−n(Z).

Note that this implies that (In)p = OX,p for all p ∈ σ−jZ with j ≥ n1 + 1. As

Jn(S1)
σn

= JnAσnCσn+1 ⊆ Jn+1

for any n, if n > n1 then In ⊆ In+1. Further, if n, j > n1, then

In ⊇ Jn0Aσn0Dσn0+1 · · · Dσn1 .

Therefore, In and Dσj
are comaximal; thus In and Cσn

are also comaximal. There-

fore,

Jn = InDσn1+1 · · · Dσn−1Cσn

for n ≥ n1 + 1.

Let I be the maximal element in the chain of the In. Let m > n1 be such that

In = I for all n ≥ m. Let J ′ = IDσn1+1 · · · Dσm−1
. Then for n > m,

Jn = IDσn1+1 · · · Dσn−1Cσn
= J ′Dσm · · · Dσn−1Cσn

.

We have seen that I and Dσn
are comaximal for all n > n1, and in particular,

for n ≥ m. As Dσj
and Dσn

are comaximal if j *= n, it follows that J ′ and Dσn
are

comaximal for n ≥ m.
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Corollary 4.2.10. Suppose that the tuple (X,L, σ,A,D, C) is ADC data. Then the

ADC ring S(X,L, σ,A,D, C) and the ADC bimodule algebra S(X,L, σ,A,D, C) are

left and right noetherian.

Proof. Let

S = S(X,L, σ,A,D, C),

so that Sn = ADσ · · · Dσn−1CσnLn for n ≥ 1. Let

S = S(X,L, σ,A,D, C).

Let Z be the subscheme of X defined by D; by assumption, the ideal sheaves A

and C define subschemes of Z. Since by Lemma 4.2.5 the sequence {(Sn)σn} is left

and right ample, by Theorem 2.3.12, to show that S is noetherian it suffices to show

that the bimodule algebra S is left and right noetherian. By Lemma 2.3.14, this

property does not depend on the invertible sheaf L, so without loss of generality we

may assume that L = OX .

By symmetry, it suffices to prove that S is right noetherian. Let J be a graded

right ideal of S. By Proposition 4.2.9, there are an ideal sheaf J ′ on X and an

integer m ≥ 0 such that for n > m,

Jn = J ′Dσm · · · Dσn−1Cσn
.

We claim that J is generated by J≤m+2.

This is a straightforward computation. Let k ≥ 2. Note that ACDσ +D(AC)σ =
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DDσ. Thus

Jm+1Sσm+1

k + Jm+2Sσm+2

k−1 =

J ′Dσm
(AC)σm+1Dσm+2 · · · Dσm+kCσm+k+1

+

J ′DσmDσm+1
(AC)σm+2Dσm+3 · · · Dσm+kCσm+k+1

= J ′DσmDσm+1Dσm+2 · · · Dσm+kCσm+k+1
= Jm+k+1.

Thus J≥m+1 = Jm+1S + Jm+2S. The claim follows, and J is coherent.

Before proving that the rings T (D) are noetherian, we give a result similar to

Proposition 4.2.9 on the structure of left and right ideals of idealizer bimodule alge-

bras.

Lemma 4.2.11. Let X be a variety, let σ ∈ Aut(X), and let L be an invertible sheaf

on X. Let

S =
⊕

n≥0

(Sn)σn

be a noetherian sub-bimodule algebra of B(X,L, σ), and let I =
⊕

(In)σn be a graded

right ideal of S. Let R = IS(I), and assume that R is also noetherian and that

Rn = In for n $ 0. Let J =
⊕

(Jn)σn be a graded right ideal of R and let

K =
⊕

(Kn)σn be a graded left ideal of R. Then there are a right ideal J ′ ⊆ I of S

and a left ideal K′ of S such that

Jn = (J ′)n

and

Kn = (I ∩ K′)n = (IK′)n

for n $ 0.
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Proof. Since R is noetherian, there is an integer k such that both J and K are

generated in degree ≤ k. Let J ′ = J I. Then J ′ is a right ideal of S. Since Rn = In

for n $ 0, we have

J ′
n = (J I)n = (J≤kR)n = Jn

for n $ k.

Let K′ = SK. A similar argument shows that for n $ k that (IK′)n = Kn. By

Proposition 3.3.3, since R is left noetherian, for n $ 0 we have that (I ∩ K′)n =

(IK′)n.

We are now ready to show that the rings T (D), for transverse surface data D,

are noetherian. In fact, this is true even if the automorphism σ is not numerically

trivial, and we prove it in that generality.

Definition 4.2.12. Let D = (X,L, σ,A,D, C, Ω, Λ, Λ′) be surface data. We say that

D is quasi-transverse if

• L is σ-ample;

• all points in the cosupport of D have critically dense σ-orbits;

• {σnΩ}n∈Z is critically transverse; and

• both {σnΛ}n≥0 and {σnΛ′}n≤0 are critically transverse.

Proposition 4.2.13. Suppose that the surface data D = (X,L, σ,A,D, C, Ω, Λ, Λ′)

is quasi-transverse. Let T = T (D) and let T = T (D). Then both T and T are

noetherian.

Proof. By Lemma 4.2.7 the sequence of bimodules {(Tn)σn} is left and right ample.

Thus by Theorem 2.3.12, it suffices to prove that T is right and left noetherian. By

Lemma 2.3.14, without loss of generality we may assume that L = OX .
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If Λ = Λ′ = Ω = ∅ (that is, if T is an ADC bimodule algebra), then this is

Corollary 4.2.10. Suppose that Λ′ = ∅ but that Λ or Ω is nonempty. Let S =

S(X,OX , σ,A,D, C), and for n ≥ 0 let

In = Sn ∩ IΩIΛ.

Let

I =
⊕

n≥0

(In)σn .

Then I is a graded right ideal of S. Let J ⊇ I be another graded right ideal of S.

By Proposition 4.2.9, there are ideal sheaves J ′ and I ′ on X and an integer m ≥ 0

such that for n > m,

Jn = J ′Dσm · · · Dσn−1Cσn

and

In = I ′Dσm · · · Dσn−1Cσn
,

and I ′ and Dσn
are comaximal for n ≥ m. Note that

I ′ ⊆ ADσ · · · Dσm−1 ∩ IΩIΛ.

Let

Fn = Sn ∩
⋂

k≥0

(Jk+n : Iσn

k ).

Then

Fn ⊆ Sn ∩
⋂

k>m

(J ′Dσm · · · Dσk+n−1Cσk+n
: (I ′)σnDσm+n · · · Dσk+n−1Cσk+n

).

For n $ 0 and for any k > m, no primary component of (I ′)σnDσm+n · · · Dσk+n−1Cσk+n

is contained in any associated prime of J ′, by assumption on the transversality of
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the defining data for T . By Lemma 3.2.4(1), we see that for k > m,

(J ′Dσm · · · Dσk+n−1Cσk+n
: (I ′)σnDσm+n · · · Dσk+n−1Cσk+n

)

⊆ (J ′ : (I ′)σnDσm+n · · · Dσk+n−1Cσk+n
) ⊆ J ′.

This implies that Fn = Jn for n $ 0.

In particular, letting J = I we obtain that

IS(I)n = Tn

for n $ 0. By Lemma 3.2.9, IS(I) is right noetherian; thus T is right noetherian.

Now suppose that K is a graded left ideal of S; by Proposition 4.2.9, there are an

ideal sheaf K′ on X and an integer m′ so that for n > m′ we have that

Kn = (ADσ · · · Dσn−m′
(K′)σn

),

and K′ and Dσj
are comaximal for j ≤ −m. Then for n > N = m + m′, we have

that

(4.2.14) (I ∩ K)n = I ′Dσm · · · Dσn−1Cσn ∩ ADσ · · · Dσn−m′
(K′)σn

.

Critical transversality of the defining data for T implies that

I ′ ∩ (K′)σn
= I ′(K′)σn

for n $ 0. Thus (4.2.14) is equal to

I ′Dσm · · · Dσn−m′
(K′)σn

for n $ 0.

On the other hand, for n ≥ 2N + 1 we have

(IK)n ⊇ IN(Kn−N)σN
+ IN+1(Kn−N−1)

σN+1
= I ′Dσm · · · Dσn−m′

(K′)σn
.
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Thus we have

(IK)n ⊇ (I ∩ K)n

for n $ 0. As the other containment is automatic, by Proposition 3.3.3 T is left

noetherian.

We now consider the general case, except as before we let L = OX . Given

transverse surface data D = (X,L, σ,A,D, C, Ω, Λ, Λ′), let

E = (X,OX , σ,A,D, C, Ω, Λ, ∅)

and let

R = T (E).

We have seen above that R is left and right noetherian.

Define a left ideal I of R by

I =
⊕

n≥0

(Rn ∩ Iσn

Λ′ )σn .

Let J ⊇ I be a graded left ideal of R. By Proposition 4.2.9 and Lemma 4.2.11 there

are ideal sheaves J ′ and I ′ and an integer j so that

Jn = IΩIΛ ∩ ADσ · · · Dσn−j
(J ′)σn

= IΩIΛ ∩ ADσ · · · Dσn−j ∩ (J ′)σn

and

In = IΩIΛ ∩ ADσ · · · Dσn−j
(I ′)σn

= IΩIΛ ∩ ADσ · · · Dσn−j ∩ (I ′)σn

for n > j. Further, we may assume that Dσn
and I ′ are comaximal for n ≤ −j.

By construction, the cosupport of I ′ and therefore of J ′ is 0-dimensional. For

m $ 0, the ideal sheaves (J ′)σm
and I ′ are comaximal, and computing locally we

see that

(Jn+m : In)σ−n ⊆ (J ′)σm
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for n, m $ 0. Thus for m $ 0 we have that

Jm ⊆ Rm ∩
⋂

n≥0

(Jn+m : In)σ−n ⊆ (J ′)σm ∩Rm = Jm,

and

Rm ∩
⋂

n≥0

(Jn+m : Im)σ−n
= Jm.

In particular, T and IR(I) are equal in large degree. The symmetric version of

Lemma 3.2.9 for left idealizers implies that T is left noetherian.

Likewise, if K is a right ideal of R, then there are an ideal sheaf K′ ⊆ IΩIΛ and

an integer k so that for n > k,

Kn = K′Dσk · · · Dσn−1Cσn
.

Choose m > k, j so that if n ≥ m, then (I ′)σn
and K′ are comaximal, and (I ′)σn

and IΩIΛ are also comaximal. Let N be such that the right ideal K≥m of R is

generated in degrees ≤ m + N . Let n ≥ 2m + N .

We will show that

(4.2.15) (KI)n ⊇ (Kn ∩ In).

Certainly,

(KI)n ⊇ KmIσm

n−m = (K′Dσk · · · Dσm−1Cσm
)(IΩIΛ ∩ ADσ · · · Dσn−m−j

)σm
(I ′)σn

.

Let Y be the subscheme defined by I ′. Let y ∈ σ−n(Y ). As K′ and (I ′)σn
are

comaximal, (Kn)y = (Rn)y. Further, (In)y = ((I ′)σn
)y. Thus,

(
(K′Dσk · · · Dσm−1Cσm

)(IΩIΛ ∩ ADσ · · · Dσn−m−j
)σm

(I ′)σn)
y

= (I ′)σn

y = (Rn ∩ In)y = (Kn ∩ In)y.

Therefore (4.2.15) holds locally at y.
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On the other hand, if x *∈ σ−n(Y ), then

(Iσm+"

n−m−%)x = (Rσm+"

n−m−%)x

for , = 0 . . . N . Therefore,

(
(KI)n

)
x
⊇

( N∑

%=0

Km+%Iσm+"

n−m−%

)
x

=
( N∑

%=0

Km+%Rσm+"

n−m−%

)
x
.

This is equal to (Kn)x by assumption on N . Thus

(
(KI)n

)
x
⊇ (Kn)x = (Kn ∩Rn)x = (Kn ∩ In)x.

Thus (4.2.15) holds locally at x.

Since (4.2.15) holds locally at all points in X, it holds globally. Since the other

inclusion is automatic, we have that

(KI)n = Kn ∩ In

for all n ≥ 2m + N . By the symmetric result to Proposition 3.3.3, T is right

noetherian.

Let D = (X,L, σ,A,D, C, Ω, Λ, Λ′) be transverse surface data. To end this section,

we give some results about the two-sided ideals of T (D), which we will need later in

the chapter.

Lemma 4.2.16. Let X be a projective surface, let σ be an automorphism of X, let L

be an invertible sheaf on X, and let Ω be a curve on X such that the set {σnΩ}n∈Z is

critically transverse. Let R = R(X,L, σ, Ω) be the right idealizer bimodule algebra at

Ω inside B(X,L, σ), and let K be a graded ideal of R. Then there is some σ-invariant

ideal sheaf K′ such that

Kn = IΩK′Ln = (IΩ ∩ K′)Ln

for n $ 0.
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Proof. Let I = IΩ. By Lemma 2.3.14, is sufficient to prove the lemma in the case

that L = OX . Let B = B(X,OX , σ). By Lemma 4.2.11, and by the equivalence

between qgr-B, OX-mod, and B-qgr, there are ideal sheaves K′ and J ′ ⊆ I on X

such that for n $ 0,

Kn = I ∩ (K′)σn
= I(K′)σn

= J ′.

Since I is invertible by Lemma 3.5.7, we have that I−1J ′ = (K′)σn
for all n $ 0. In

particular, (K′)σn
is constant for all n $ 0. As a subscheme that is invariant under

relatively prime powers of σ is σ-invariant, K′ is σ-invariant.

If p ∈ X, we denote the σ-orbit of p by O(p).

Proposition 4.2.17. Suppose that the surface data D = (X,L, σ,A,D, C, Ω, Λ, Λ′)

is quasi-transverse. Let T = T (D). Let K be a graded ideal of T . Then there are

a σ-invariant ideal sheaf J on X and an integer n0 ≥ 0 such that if n ≥ n0, then

Kn = Tn ∩ JLn = J Tn.

Proof. We may assume that K *= 0. Without loss of generality, we may suppose that

L = OX . Let B = B(X,OX , σ), and let S = OX ⊕ IΩB+. Let Z be the cosupport

of D and let W be the union of the orbits of all points in Z ∪ Λ ∪ Λ′. For all n ≥ 0,

let K̂n ⊇ Kn be the maximal ideal sheaf on X such that K̂n/Kn is supported on a

subset of W. Note that, as Kn ⊆ IΩ for all n, we have K̂n ⊆ IΩ for all n.

As

TnKσn

m +KmT σm

n ⊆ Km+n

for all m, n ≥ 0, one easily verifies that

IΩK̂σn

m + K̂mIσm

Ω ⊆ K̂n+m
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for all m, n ≥ 0. That is, the bimodule

⊕

n≥0

(K̂n)σn

is an ideal of the bimodule algebra S. As {σnΩ} is critically transverse, S and

R(X,OX , σ, Ω) are equal in large degree; thus by Lemma 4.2.16, there are a σ-

invariant ideal sheaf J and an integer n0 such that if n ≥ n0, then K̂n = J ∩ IΩ =

J IΩ.

We will show for n $ 0 that

(4.2.18) (Kn)q = (J ∩ Tn)q = (J Tn)q

for all q ∈ X.

We first note that if q *∈ W, then (Tn)q = IΩ,q. Thus if n ≥ n0 and q *∈ W, then

(Kn)q = (K̂n)q = (J ∩ IΩ)q = (J IΩ)q = (J ∩ Tn)q = (J T n)q,

and (4.2.18) holds for q.

To show that (4.2.18) holds for q ∈ W, it suffices to show that for any p ∈ W

and for all n $ 0 that (4.2.18) holds for all q ∈ O(p). Now, by transversality of

the surface data D, the cosupport of J is disjoint from W. Thus for any q ∈ O(p),

Jq = OX,q. It therefore suffices to prove for n $ 0 that

(4.2.19) (Kn)q = (Tn)q

for all q ∈ O(p).

Note that for any p ∈ W, the cosupport of K̂n0 has finite intersection with O(p)

by assumption on the transversality of D.

Sublemma 4.2.20. Let X be a projective surface, let σ ∈ Aut(X), and let Ω be a

curve on X. Let

S = OX ⊕ IΩ · B(X,OX , σ)≥1
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and let T be a finitely generated graded (OX , σ)-sub-bimodule algebra of S so that

Supp(Sn/Tn) is 0-dimensional and supported on infinite σ-orbits for all n ≥ 1. Let K

be a two-sided ideal of T and let p ∈ X be a point of infinite order. Assume that for

n ≥ n0, the cosupport of Kn meets O(p) at only finitely many points. (In particular,

this implies that Ω ∩O(p) is finite.)

Let O = OX,p. For all n ≥ 1 and for all i ∈ Z, let kn
i be the stalk of Kn at σ−i(p),

considered as an ideal in O via σi. Similarly, let mn
i ⊆ O be the stalk of Tn at σ−i(p).

Our assumptions imply that the cosupport of T1 has finite intersection with O(p),

and so by reindexing the orbit of p, we may assume that m1
i = O if i < 0. Let

s = max({i | m1
i *= O} ∪ {0}).

Then there are an ideal k of O and integers a′ ≤ a, b′ ≤ b, and N so that if n ≥ N

then:

(1) if i < a′ or i > n− b′ then kn
i = O;

(2) if a′ ≤ i ≤ a then kn
i = kN

i ;

(3) if a ≤ i ≤ n− b then kn
i = k;

(4) if n− b ≤ i ≤ n− b′ then kn
i = kN

i−n+N .

Furthermore, we have

(4.2.21) kN
s ⊆ kN

s+1 ⊆ · · · ⊆ k

and

(4.2.22) kN
N−1 ⊆ kN

N−2 ⊆ · · · ⊆ k.

We refer to the ideal k of O constructed in Sublemma 4.2.20 as the central stalk

of K.
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Proof of Sublemma 4.2.20. Since K is a two-sided ideal of T , we certainly have for

all n, j ≥ 0 that

TjKσj

n +KnT σn

j ⊆ Kn+j.

In terms of the stalks k and m, this translates to the statement that

mj
i k

n
i−j + kn

i m
j
i−n ⊆ kn+j

i .

Therefore,

(4.2.23) if i ≤ j − 1 then kj+1
i ⊇ kj

im
1
i−j = kj

i ,

and

(4.2.24) if i ≥ s then kj+1
i+1 ⊇ m1

i+1k
j
i = kj

i .

By assumption, {i | kn0
i *= O} is finite. Let

a′ = min({i | kn0
i *= O} ∪ {0})

and let

b′ = min({j | kn0
n0−j *= O} ∪ {−s}).

Then kn0
i = O for i < a′ or i > n0 − b′, and the relations (4.2.23) and (4.2.24) imply

that

kn
i = O

for n ≥ n0 and i < a′ or i > n− b′. Thus (1) holds for n ≥ n0.

For fixed i, (4.2.23) implies that

kn
i = kn+1

i

for n $ i, and (4.2.24) implies that

kn
n−i = kn+1

n+1−i
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for n $ i + s. Furthermore, for n ≥ max{s, 1} we have

k2n
n ⊆ k2n+1

n+1 ⊆ k2n+2
n+1 .

Let

k =
⋃

n≥s

k2n
n .

Choose m ≥ max{n0, s} so that k2m
m = k, and choose N ≥ 2m so that

kn
i = kN

i =
⋃

j>i

kj
i

for a′ ≤ i ≤ m and n ≥ N , and

kn
i = kN

i−n+N =
⋃

j≥s+n−i

kj
j+i−n

for n−m ≤ i ≤ n− b′ and n ≥ N . By construction, (2) and (4) hold for a = b = m.

We now prove (3). We claim that

kn
i = k

for n ≥ N and m ≤ i ≤ n −m. To see this, note that the claim is certainly true if

n = 2i, by definition of k. We prove the claim for n *= 2i; by symmetry, it suffices to

consider the case n > 2i. If n > 2i, then

kn
i ⊆ kn+(n−2i)

i+(n−2i) = k2n−2i
n−i

by (4.2.24), as i ≥ s. This is equal to k, as n− i ≥ m. On the other hand, we have

k = k2m
m ⊆ k2m+(i−m)

m+(i−m) = km+i
i

by (4.2.24), as i ≥ m ≥ s. Further,

km+i
i ⊆ kn

i
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by (4.2.23), as n ≥ m + i > i. Thus we have

kn
i = k,

as claimed.

It remains to show that (4.2.21) and (4.2.22) hold. Let s ≤ j ≤ m− 1. We have

kN
j ⊆ kN+1

j+1

by (4.2.24), as j ≥ s. As j + 1 ≤ m,

kN+1
j+1 = kN

j+1

by our choice of N . Thus kN
j ⊆ kN

j+1. Note that kN
m = k. Thus (4.2.21) holds. The

proof that (4.2.22) holds is symmetric.

We return to the proof of Proposition 4.2.17. Our assumption that D is transverse

implies that the hypotheses of Sublemma 4.2.20 hold for T , p, and K. They hold

also for K = T+, with n0 = 1.

Let O = OX,p. For all n ≥ 1 and i ∈ Z define ideals mn
i and kn

i of O as in the

statement of Sublemma 4.2.20. By applying Sublemma 4.2.20 to the ideals T+ and

K, we obtain integers a, b, and N and ideals k and d of O so that if n ≥ N then

• if i ≤ a then kn
i = kN

i and mn
i = mN

i ;

• if a ≤ i ≤ n− b then kn
i = k and mn

i = d;

• if i ≥ n− b then kn
i = kN

i−n+N and mn
i = mN

i−n+N .

For fixed i, by taking j $ 0 we have kN
i−j = O. Thus if i ≤ a, by taking j $ N we

obtain that

mN
i ⊇ kN

i = kN+j
i ⊇ mj

i k
N
i−j = mj

i = mN
i ,
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so kN
i = mN

i . In particular,

d = mN
a = kN

a = k.

The argument that if i ≥ N − b then

kN
i = mN

i

is symmetric. Thus kN
i = mN

i for all i, and so kn
i = mn

i for all i and for all n ≥ N .

This precisely says that (4.2.19) holds, as we sought to prove.

Corollary 4.2.25. Suppose that the surface data

D = (X,L, σ,A,D, C, Ω, Λ, Λ′)

is quasi-transverse. Let T = T (D). Recall our convention (4.2.1) that

T (D) =
⊕

n≥0

H0(Tn)zn.

Let K be a graded ideal of T . Then there are a σ-invariant ideal sheaf J on X and

an integer n0 ≥ 0 such that if n ≥ n0, then

Kn = H0(J T n)zn = H0(JLn ∩ Tn)zn.

Proof. By Lemma 4.2.7, the sequence of bimodules {(Tn)σn} is left and right ample.

Theorem 2.3.12 then implies that there is some graded ideal K of T so that

Kn = H0(Kn)zn

or

Kn = H0(Kn)

for n $ 0. Note that Tn and Kn are globally generated for n $ 0.

From the inclusion

TnKm ⊆ Kn+m,
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we obtain that

Tn(Km)σn ⊆ Kn+m

for all n, m $ 0. By Proposition 4.2.13, the right ideal K of T is generated by a

coherent OX-submodule F . Therefore

(T FT )n = (T K)n = Kn

for n $ 0. That is, without loss of generality we may assume that K is a two-sided

ideal of T . Proposition 4.2.17 implies that there is a σ-invariant ideal sheaf J on X

so that Kn = J Tn = JLn ∩ Tn for n $ 0. Thus

Kn = H0(Kn) = H0(J T n) = H0(JLn ∩ Tn)

for n $ 0.

4.3 Approximating birationally commutative surfaces in codimension 1

Let R be a birationally commutative projective surface with function field K, as

in Definition 4.1.1. We now turn to constructing surface data

D = (X,L, σ,A,D, C, Ω, Λ, Λ′)

that will correspond to R. The central problem is to find the correct surface X.

Fortunately, we have a place to start. The graded quotient ring of R is isomorphic

to K[z, z−1; σ], where σ is a k-automorphism of K; since R has GK-dimension 3, K

has transcendence degree 2. We say that σ is geometric if there is a projective

surface X with K = k(X) such that σ is induced by an automorphism of X. We

call such a pair (X, σ) a model for R. We note that not all automorphisms of fields

of transcendence degree 2 are geometric; for example, by [DF01, Remark 7.3], the

automorphism (x, y) 1→ (x, xy) of C(x, y) is not geometric.
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Suppose that X and X ′ are birationally equivalent surfaces; let σ, respectively σ′,

be an automorphism of X, respectively X ′. We say that σ and σ′ are conjugate if

they induce (up to conjugacy) the same automorphism of k(X) ∼= k(X ′); that is, if

there is a birational map π : X ′ → X so that πσ′ = σπ as birational maps from X ′

to X.

Rogalski and Stafford note that it is an easy consequence of the existence of

resolutions of singularities for surfaces (see [Lip69]) that any geometric automorphism

of a field of transcendence degree 2 is conjugate to an automorphism of a nonsingular

surface.

Lemma 4.3.1. ([RS06, Lemma 6.2]) If K is a field of transcendence degree 2 over

k and σ ∈ Autk(K) is a geometric automorphism of K, then there is a nonsingular

surface X with k(X) = K such that σ is induced from an automorphism of X.

In particular, if a birationally commutative projective surface has a model, it has a

nonsingular model.

A result of Rogalski ensures that in our situation, R has a model (X, σ); results of

Artin and Van den Bergh then allow us to get precise information on the numerical

action of the automorphism σ of X. Recall that two Cartier divisors D and D′ on

a projective scheme X are numerically equivalent (written D ≡ D′) if D.C = D′.C

for any irreducible curve C on X. An automorphism σ of X is numerically trivial

if σD ≡ D for any Cartier divisor D on X. We will say that an σ is quasi-trivial if

there is some integer r > 0 so that σr is numerically trivial.

If X is a projective scheme, we denote the group of Cartier divisors on X modulo

numerical equivalence by NS(X).

Theorem 4.3.2. (Rogalski, Artin-Van den Bergh) Let K/k be a finitely generated
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field extension where K has transcendence degree 2, and let σ ∈ Autk(K). Then

every locally finite N-graded domain R such that Qgr(R) = K[z, z−1; σ] has the same

GK-dimension d ∈ {3, 4, 5,∞}. Moreover, d ∈ {3, 5} if and only if σ is geometric.

Further, d = 3 if and only if for any model (X, σ) for R, the automorphism σ is

quasi-trivial.

Proof. The first and second statements are [Rog07, Theorem 1.1]. Now suppose that

σ is geometric, and let (X, σ) be a model for R. Let P ∈ O(NS(X)) be the matrix

giving the numeric action of σ on NS(X). By [Rog07, Theorem 7.1] and [Rog07,

Lemma 2.12], all eigenvalues of P have modulus 1; now by [AV90, Lemma 5.3], the

eigenvalues of P are all roots of unity. Let L be an ample invertible sheaf on X.

Then [AV90, Theorem 1.7] implies that L is σ-ample, and that the GK-dimension

of B(X,L, σ), which is equal to d, is 3 if and only if σ is quasi-trivial. The result

follows.

As we have assumed that R has GK-dimension 3, Theorem 4.3.2 implies that

there is a model (X, σ) for R. By Lemma 4.3.1, we may also, if we choose, assume

that X is nonsingular.

We begin be establishing notation for the geometric data determined by R. If X

is a projective variety and V ⊆ K = k(X) is a finite-dimensional k-vector space, we

will denote the coherent subsheaf of the constant sheaf K on X generated by the

elements of V by

V · OX .

We note that any Veronese subring R(k) of R has the same function field as R

and is also a birationally commutative projective surface; that is, R(k) is noetherian

and of GK-dimension 3. Thus, by replacing R by an appropriate Veronese subring,
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we may assume that R1 *= 0.

Assumption-Notation 4.3.3. We assume that R is a birationally commutative

projective surface with R1 *= 0. Let K be the function field of R and let (X, σ) be a

model for R. Fix z *= 0 ∈ R1. For all n ≥ 0, we define Rn = (Rn) · z−n ⊆ K, so that

R =
⊕

n≥0

Rnz
n ⊆ K[z, z−1; σ].

Let Rn(X) = Rn · OX .

Example 4.3.4. Before beginning to work with our noncommutative ring R, suppose

for a moment that R = k[x, y, z]. We know, of course, that R ∼= B(P2,O(1), 1) =

B(P2,O(1)) and that P2 = Proj R. However, we cannot construct the variety Proj R

directly using noncommutative techniques. Instead, we will construct the defining

data (P2,O(1)) from the graded pieces of R.

The function field of R is K = k(x/z, y/z). Consider the model X = P1 × P1

for K, where we think of X as Proj of the bigraded ring k[s, t][u, v]. We will let

s/t = x/z and u/v = y/z in K.

Let R1 = R1z−1 ⊂ K. Then

R1 = {x

z
,
y

z
, 1} = {sv

tv
,
tu

tv
,
tv

tv
}.

Let D ∼= O(1, 1) be the divisor on X defined by the equation tv = 0. On X, the

rational functions in R1 correspond to sections of OX(D), and they generate

R1 · OX = I[1:0]×[1:0]OX(D).

We will modify X by blowing up the base locus of R1, considered as a vector space

of sections of D.

Let π : X̃ → X be the blowup of X at [1 : 0]× [1 : 0]. Let E = π−1([1 : 0]× [1 : 0])

be the exceptional locus of π, and let F1 and F2 be the strict transforms of [1 : 0]×P1
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and P1 × [1 : 0] respectively. Then F1, F2 and E are the three (-1) curves on X̃, and

on X̃, R1 generates the invertible sheaf

L = R1 · O eX = O eX(F1 + F2 + E) ∼= IEO eX(π∗D).

One may check that R and the section ring B(X̃,L) are isomorphic. However,

L is not ample. By the Nakai-Moishezon criterion [Har77, Theorem V.1.10], the

failure of ampleness of L is equivalent to the existence of an effective curve C so that

(F1 + F2 + E).C = 0. One checks that (F1 + F2 + E).F1 = (F1 + F2 + E).F2 = 0.

That is, the curves F1 and F2 are contracted by the morphism defined by the base

point free linear system R1 ⊆ H0(O eX(F1 + F2 + E)) on X̃. The image of X̃ under

this morphism is, of course, P2, the “correct” model for R.

We now return to the setting of a noncommutative projective surface R. We

assume Assumption-Notation 4.3.3. It is immediate that the bimodule

R(X) =
⊕

n≥0

(Rn(X))σn

is in fact a graded (OX , σ)-bimodule algebra, and of course R ⊆ H0(R(X)). While

ultimately we wish to understand R, our fundamental technique will be to approach

R by analyzing the bimodule algebra R(X) on a suitable model (X, σ) for R; to

construct X, we will mimic the steps carried out in Example 4.3.4.

For all n ≥ 0, let Rn = Rn(X). We note immediately that we have

(4.3.5) RnRσn

m ⊆ Rn+m

for all n, m ≥ 0. Since R is an affine k-algebra, there is some r ≥ 1 such that for all

n > r we have:

(4.3.6) Rn =
r∑

i=1

RiRσi

n−i.
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We introduce some notation and terminology on divisors associated to finite-

dimensional spaces of rational functions; see [Laz04, Chapter 1] for a more detailed

discussion.

Definition 4.3.7. If X is a normal projective variety and f is a rational function on

X, we will denote its associated Weil divisor by divX(f). We note that if σ ∈ Aut X

and f ∈ k(X), then divX(fσ) = σ−1divX(f). For any finite dimensional k-vector

space V ⊆ K, and for any normal projective model X for K, let DX(V ) be the

minimal Weil divisor on X such that divX(f) + D ≥ 0 for all f ∈ V . That is,

OX(DX(V )) is canonically isomorphic to the double dual (V · OX)∗∗.

Now suppose that X is an arbitrary projective variety and let K = k(X). Let D

be a Cartier divisor on X. Recall [Har77, p. 144] that to D is associated an invertible

subsheaf OX(D) of the constant sheaf K on X. We will denote H0(OX(D)) by |D|;

this is the complete linear system associated to D.

Let V ⊂ K be a finite-dimensional k-vector space. Note that V may be contained

in many complete linear systems. If V ⊆ |D| for some Cartier divisor D, we define

the image of the natural map

V ⊗OX(−D) → OX

to be the base ideal of V with respect to D. The closed subscheme of X that it

defines is called the base locus of V with respect to D. We write it BsD(V ). If

(V · OX)∗∗ is an invertible sheaf, then it corresponds to an effective Cartier divisor

D with V ⊆ |D|. This is the minimal such D, and in this situation we refer to the

base ideal (respectively base locus) of V with respect to D simply as the base ideal

of V (respectively, the base locus of V ). We write the base locus of V as Bs(V ).

If the base locus of the complete linear system |D| is empty, we say that D and
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|D| are base point free. A divisor D is base point free if and only if the sheaf OX(D)

is globally generated.

If X is nonsingular or X is normal and DX(V ) is Cartier, then the base ideal and

base locus of V are always defined. Note that if either of these holds, then the base

locus of V must have codimension at least 2.

Lemma 4.3.8. Let X be a normal surface and let K = k(X). Let σ ∈ Aut X, and

let V, W ⊆ K be finite-dimensional k-vector spaces.

(1) DX(V W ) = DX(V ) + DX(W ).

(2) For every n, DX(V σn
) = σ−n(DX(V )).

Proof. (1) For any f ∈ V and g ∈ W , we have

divX(fg) + DX(V ) + DX(W ) = divX(f) + divX(g) + DX(V ) + DX(W ) ≥ 0,

and so

(4.3.9) DX(V ) + DX(W ) ≥ DX(V W ).

Now fix f ∈ V . Since for any g ∈ W , we have DX(V W ) + divX(f) + divX(g) ≥ 0,

we see that DX(V W ) + divX(f) ≥ DX(W ). As this holds for any f ∈ V , we obtain

that

(4.3.10) DX(V W )−DX(W ) ≥ DX(V ).

Combining (4.3.9) and (4.3.10), we have proved (1).

(2) is a consequence of the equality divX(fσ) = σ−1divX(f).

We introduce some more notation for data associated to Rn, in the situation that

we are working on a normal model for R.
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Assumption-Notation 4.3.11. Assume that R is a birationally commutative pro-

jective surface with R1 *= 0. Let K be the function field of R and let (X, σ) be a nor-

mal model for R. Fix z *= 0 ∈ R1. Let Rn = Rn ·z−n and let Rn = Rn(X) = Rn ·OX

for all n ≥ 0.

For all n ≥ 0, let Dn = DX(Rn). If n < 0, let Dn = 0. If Dn is Cartier for all

n ≥ 1 (for example, if X is nonsingular), then for n ≥ 1 we further let In be the

base ideal of Rn and let Wn be the base locus of Rn.

The following purely combinatorial lemma is a restatement of results of Artin and

Stafford on the combinatorics of divisors on smooth curves.

Lemma 4.3.12. (Artin-Stafford) Let A = Z/(k) for some k ∈ Z (possibly k = 0).

Let M be the free abelian group on the generating set {Pi | i ∈ A}; define a partial

order ≥ on M by saying that E ≥ 0 if E =
∑

niPi where ni ≥ 0 for all i. Define an

automorphism σ of M by σ(Pi) = Pi+1.

Suppose there is a sequence of elements {Ei | i ∈ Z} in M satisfying:

(i) Ei ≥ 0 for all i ≥ 0, and Ei = 0 if i < 0.

(ii) There exists an integer r such that

En =
r

sup
i=1

(Ei + σ−iEn−i)

for all n ≥ 1.

Then:

(1) If k = 0, so A = Z, there is an element Ψ ≥ 0 ∈ M and an integer t ≥ 0 such

that

Em+n = Em + σ−m(En) + σ−m(Ψ)

for all m, n ≥ t.

(2) If k = 1, then there is an integer , so that En% = nE% for all n ≥ 1.
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Proof. (1) is [AS95, Corollary 2.12]. (2) is [AS95, Lemma 2.7].

Lemma 4.3.13. Assume Assumption-Notation 4.3.11. Then there are Weil divisors

0 ≤ Ω ≤ D on X and an integer k ≥ 1 such that for all n ≥ 1 we have

(4.3.14) Dkn = D + σ−kD + · · ·+ σ−k(n−1)D − Ω,

and so that no irreducible component of Ω is fixed by any power of σ. Furthermore,

(4.3.15) D(n+m)k = Dnk + σ−nk(Dmk) + σ−nk(Ω)

for all n, m ≥ 1.

Proof. We note that it suffices to prove the lemma for a Veronese subring of R; it

then holds for R by changing k and D.

We claim that for all n, m ≥ 0 we have

(4.3.16) Dn+m ≥ Dn + σ−nDm

and that there is r ≥ 1 such that for all n ≥ 1, we have

(4.3.17) Dn =
r

sup
i=1

(
Di + σ−i(Dn−i)

)
.

To see this, fix m, n ≥ 0. Let D′ = DX(Rn(Rm)σn
). By Lemma 4.3.8, D′ =

DX(Rn) + σ−nDX(Rm). Because Rn(R
σn

m ) ⊆ Rn+m, we have that Dn+m ≥ D′. This

gives (4.3.16). Because 1 ∈ R1, we have Dn+1 ≥ Dn for all n. Let r ≥ 1 be such that

for all n ≥ r, we have Rn =
∑r

i=1 RiRn−i. Then (4.3.17) follows.

Let WDiv(X) denote the group of Weil divisors on X. Equation 4.3.17 implies

that there are only finitely many σ-orbits of prime divisors in WDiv(X) on which

some Dn is nonzero. In particular, there are only finitely many such σ-orbits that are

finite. Thus for some ,, each σ%-orbit of WDiv(X) on which some Dn% is nonzero is
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either infinite or consists of one point. Without loss of generality, we may replace R by

R(%) and assume that all curves of finite order that appear in some Dn are σ-invariant.

Note that R(%) is still a birationally commutative surface, and, in particular, is finitely

generated.

Let E ∈ WDiv(X) be a σ-invariant irreducible curve such that some Dn ≥ E.

There are only finitely many such E. Let En = Dn|E. Equations 4.3.16 and 4.3.17

imply that {En} satisfies the hypotheses of Lemma 4.3.12, with k = 1. Thus, by

Lemma 4.3.12(2), there is an integer m ≥ 1 such that for all n ≥ 1, we have

Dnm|E = n(Dm|E).

If E ∈ WDiv(X) is of finite order under σ but not σ-invariant, then

Dnm|E = 0 = n(Dm|E)

for all m. Thus, by replacing R by R(m), we may assume that

Dn|E = n(D1|E)

for all irreducible curves E that are of finite order under σ.

Let {P 1, . . . , P s} be irreducible generators of the finitely many distinct infinite

σ-orbits in WDiv(X) on which some Dn is nonzero. Fix 1 ≤ i ≤ s, and let M be

the subgroup of WDiv(X) generated by {σn(P i)}n∈Z. Let En = Dn|M . As before,

{En} satisfies the hypotheses of Lemma 4.3.12. Thus there exist t and Ψ as in

the statement of Lemma 4.3.12(1). By varying i, we obtain integers t1, . . . , ts and

divisors Ψ1, . . . , Ψs, with Ψi supported on {σnP i}n∈Z. Let k = max{ti} and let

Ω = Ψ1 + · · ·+ Ψs. By construction, Ω contains no components of finite order under

σ, and

(4.3.18) Dm+n = Dm + σ−m(Dn) + σ−m(Ω)
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for all n, m ≥ k. Define D = Dk + Ω. Note that (4.3.15) holds for all n, m ≥ 1.

We claim that (4.3.14) holds for all n ≥ 1. The claim is true for n = 1; assume it

holds for n− 1. By (4.3.18),

Dkn = Dk(n−1) + σ−k(n−1)(Dk) + σ−k(n−1)(Ω).

This is equal to

(
D + σ−k(D) + · · ·+ σ−k(n−2)(D)− Ω

)
+ σ−k(n−1)(D − Ω) + σ−k(n−1)(Ω)

= D + σ−k(D) + · · ·+ σ−k(n−1)(D)− Ω

by induction.

Definition 4.3.19. Assume Assumption-Notation 4.3.3; in particular, fix 0 *= z ∈

R1. Let (X, σ) be a normal model for R. Let Dn = DX(Rn). If there are effective

Weil divisors D and Ω on X and an integer k so that (4.3.14) and (4.3.15) hold for

all n, m $ 0, we follow the terminology of [AS95] and say that Ω is a gap divisor for

R on X associated to z (or more briefly a gap divisor for R on X), and that D is a

coordinate divisor for R on X (associated to z).

Note that Ω is a gap divisor for R associated to z if and only if it is a gap divisor

associated to zn for some R(n). We note that this gap divisor is unique (at least up

to choice of z).

Lemma 4.3.20. Assume Assumption-Notation 4.3.11. For a fixed z *= 0 ∈ R1, there

is exactly one Weil divisor Ω that is a gap divisor for R associated to z.

Proof. By Lemma 4.3.13, there is a gap divisor Ω for R on X associated to z. Suppose

that there are Weil divisors Ω and Ω′ so that for some k, k′ ≥ 1 we have

Dk(n+m) −Dkn − σ−kn(Dkm) = σ−kn(Ω)
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and

Dk′(n+m) −Dk′n − σ−k′n(Dk′m) = σ−k′n(Ω′)

for all n, m ≥ 1. Then

σ−kk′(Ω) = D2kk′ −Dkk′ − σ−kk′(Dkk′) = σ−k′k(Ω′).

Thus Ω = Ω′.

Initially, it will be more convenient to work on a nonsingular model for R. By

Lemma 4.3.13 and Theorem 4.3.2, we may replace R by a Veronese subring to assume

without loss of generality that we are in the following situation:

Assumption-Notation 4.3.21. Assume that R is a birationally commutative pro-

jective surface with R1 *= 0. Let K be the function field of R and assume that there

is a nonsingular model (X, σ) for R so that σ is numerically trivial. As usual, we

will identify Weil and Cartier divisors. Fix z *= 0 ∈ R1. Let Rn = Rn · z−n and let

Rn = Rn(X) = Rn · OX for all n ≥ 0. For all n ≥ 0, let Dn = DX(Rn). If n < 0,

let Dn = 0. Let In be the base ideal of Rn and let Wn be the base locus of Rn.

Further assume that there are a gap divisor Ω and a coordinate divisor D asso-

ciated to z so that (4.3.14) and (4.3.15) hold with k = 1 for all n ≥ 1, and that

Ω ∩ σkΩ is finite for all k *= 0.

Let L = OX(D). Recall that Ln = L ⊗ Lσ ⊗ · · · ⊗ Lσn−1
. For n ≥ 0, let

∆n = D + · · ·+ σ−(n−1)D,

so Ln = OX(∆n).

Our assumptions imply that

Rn = InIΩLn = In(∆n − Ω)

for all n ≥ 1.
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We note that if Assumption-Notation 4.3.21 holds for R, then it holds for any

Veronese R(n) of R, by replacing σ by σn. (The effect of this change is to also replace

D by ∆n.) Also note that in the setting of Assumption-Notation 4.3.21, we may

regard R as a subring of B(X,L, σ) =
⊕

H0(Ln)zn, even if L is not ample or σ-

ample. That is, elements of Rn correspond to global sections of Ln. We will make

this identification throughout the rest of the chapter.

4.4 Points of finite order

The model X that we chose was picked quite arbitrarily, and in general we cannot

expect that X is the space to which R is actually associated. Thus in the rest of this

chapter, we will work to gradually modify X and to construct the other data that

will define the ring R. In this section, we will show that we can modify X to remove

any points of finite order in the the base loci of the rational functions Rn.

Lemma 4.4.1. Assume Assumption-Notation 4.3.21. Then there is a finite set V

so that Wn is supported on V ∪ · · ·σ−(n−1)(V ) for all n ≥ 1. In fact, we may take

(4.4.2) V = W1 ∪W2 ∪ (σ−1Ω ∩ σ−2Ω).

Proof. Recall that In is the base ideal of the vector space Rn of rational functions.

For all m, n ≥ 0, the equation

IΩInIσn

Ω Iσn

m Ln+m = RnRσn

m ⊆ Rn+m = IΩIn+mLn+m

gives a set-theoretic containment

(4.4.3) Wn+m ⊆ Wn ∪ σ−n(Wm) ∪ σ−n(Ω).

Define V as in (4.4.2). As σ−1Ω ∩ σ−2Ω is finite by assumption, V is finite.
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Assume that for all j ≤ n, we have Wj ⊆ V ∪ · · · ∪ σ−(j−1)(V ). By construction,

this is true for n = 1, 2. For n ≥ 2, (4.4.3) gives that

Wn+1 ⊆ (W1 ∪ σ−1Wn ∪ σ−1Ω) ∩ (W2 ∪ σ−2Wn−1 ∪ σ−2Ω).

By induction, we therefore have

Wn+1 ⊆ V ∪ · · · ∪ σ−nV ∪ (σ−1Ω ∩ σ−2Ω) = V ∪ · · · ∪ σ−nV.

We give an elementary lemma on how base ideals transform under birational

morphisms of projective varieties.

Lemma 4.4.4. Let π : X ′ → X be a birational morphism of projective varieties, and

let D be an effective (Cartier) divisor on X. Let V ⊆ |D|. Then the base ideal of V

on X ′ with respect to π∗D is the expansion to X ′ of the base ideal of V on X with

respect to D. If X and X ′ are normal, DX(V ) is Cartier, and the indeterminacy

locus of π−1 consists of smooth points of X, then

π∗DX(V )−DX′
(V )

is effective and supported on the exceptional locus of π.

Proof. Note that the elements of V are also elements of the linear system |π∗D|. Let

I be the base ideal of V with respect to D; this is the image of the natural map

V ⊗OX(−D) → OX .

Let J be the base ideal of V on X ′ with respect to π∗D; that is, the image of the

natural map

V ⊗OX′(−π∗D) → OX′ .
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Now, if we pull back the surjection

V ⊗OX(−D) ! I

to X ′, we obtain, by right exactness of pullbacks, a surjection

V ⊗OX′(−π∗D) ! π∗I.

Composing this with the natural map from π∗I → π∗OX = OX′ , we obtain the map

V ⊗OX′(−π∗D) → OX′

defining J . The image of π∗I in OX′ is precisely IOX′ ; that is, J is the expansion

of I to OX′ .

Suppose now that X and X ′ are normal, DX(V ) is Cartier, and the indeterminacy

locus of π−1 consists of smooth points of X. Let F = DX(V ), and let I be the base

ideal of V on X. Then by the above,

V · OX′ = IOX′(π∗F ),

and so DX′
(V ) = π∗F − C for some effective Weil divisor C contained in the sub-

scheme of X ′ defined by IOX′ . Thus C is supported on the exceptional locus of

π.

Suppose now that X is a surface and σ ∈ Aut(X). Let Z = {p, σ(p), . . . , σk−1(p)}

be a finite σ-orbit in X. We record an easy result on automorphisms of blowups.

Lemma 4.4.5. Let X be a smooth surface, let σ ∈ Aut(X) and let Z ⊆ X be a

finite (reduced) σ-orbit. Let π : X ′ → X be the blowup of X at Z. Then σ lifts to an

automorphism σ′ of X ′.
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Proof. Let I = IZ be the ideal sheaf defining Z. As Z is σ-invariant, we have Iσ = I

and so σ induces an automorphism of I. It therefore induces an automorphism of

the blowup of X at Z; see [Har77, p. 163]. By construction, we have πσ′ = σπ.

We now begin the process of modifying X to remove points of finite order from

the base loci Wn. We will do this through a series of blowups at finite orbits, and

we begin by studying the effect of blowing up on the gap divisor Ω.

Lemma 4.4.6. Assume Assumption-Notation 4.3.21; in particular, fix 0 *= z ∈ R1,

which we will use to calculate gap divisors, and let Ω be the gap divisor of R on X.

(1) Let π : X̃ → X be the blowup of X at a finite σ-orbit. Then the gap divisor

of R on X̃ is the strict transform of Ω.

(2) There are a nonsingular projective surface X ′ and a birational morphism π :

X ′ → X so that there is an automorphism σ′ of X ′ with πσ′ = σπ, and so that

the gap divisor of R on X ′ contains no points of finite order under σ′. That is,

by changing our smooth model X, without loss of generality we may assume that Ω

contains no points of finite order.

Proof. (1) By assumption,

(4.4.7) Dn + σ−nDm + σ−nΩ = Dn+m

for all n, m ≥ 1. For all n ≥ 1, let Fn = D
eX(Rn); let Jn be the base ideal of Rn on

X̃, so

Jn = Rn(X̃)(−Fn) ⊆ O eX .

By [Har77, Proposition V.3.1], X̃ is nonsingular. Let σ̃ be the automorphism of X̃

that is conjugate to σ, given by Lemma 4.4.5. By Lemma 4.3.13, let Ω̃ be the gap

divisor of R on X̃. All components of Ω̃ are of infinite order under σ̃, and there is
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some k ≥ 1 so that

(4.4.8) Fnk + σ̃−nkFmk + σ̃−nkΩ̃ = F(n+m)k

for all n, m ≥ 1.

For all n ≥ 0, let En = π∗Dn−Fn. By Lemma 4.4.4, En is effective and supported

on the exceptional locus of π. Pulling back (4.4.7) to X̃, we obtain that

π∗Dn + σ̃−n(π∗Dm) + σ̃−n(π∗Ω) = π∗(Dn+m)

for all n, m ≥ 1. Comparing this to (4.4.8), we see that

Enk + σ̃−nk(Emk) + σ̃−nk(π∗Ω− Ω̃) = E(n+m)k

for all n, m ≥ 1. Thus π∗Ω − Ω̃ is supported on the exceptional locus of π. All its

components are thus of finite order under σ̃; as Ω̃ contains no components of finite

order under σ̃, we see that Ω̃ is the strict transform of Ω.

(2) Suppose that Ω contains a point p of finite order, and let π : X̃ → X be the

blowup of X at the orbit of p. Let σ̃ be the automorphism of X̃ conjugate to σ. Let

Ω̃ be the gap divisor of R on X̃. By (1), Ω̃ is the strict transform of Ω.

Note that σ̃ is quasi-trivial. Thus we may choose k so that σ̃k is numerically

trivial. By assumption, Ω̃ ∩ σ̃kΩ̃ is finite. Then we have:

(4.4.9) Ω2 > (Ω̃)2 = Ω̃.σ̃k(Ω̃) ≥ 0.

If Ω̃ contains any points of finite order, we may repeat this process and reduce

(Ω̃)2 further. Since (4.4.9) shows that the gap divisor always has non-negative self-

intersection, this process must terminate after finitely many steps. That is, after

finitely many steps we must obtain a gap divisor containing no points of finite order.
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We are ready to prove that there is some model of R on which the base loci of all

Rn consist of points of infinite order. Before doing so, we recall some terminology

from commutative algebra. Let (S,M) be a regular local ring of dimension 2, and let

I be an M -primary ideal of S. Recall [Eis95, Section 12.1] that the Hilbert-Samuel

function of S with respect to I is defined as

HI(n) = len In/In+1.

Recall further [Eis95, Exercise 12.6] that the multiplicity of I, written e(I), is defined

as

e(I) = (2 = 2!)× (the leading coefficient of HI).

This is a positive integer that may be defined more geometrically as follows: let

a, b ∈ I be a regular sequence. Then e(I) is the intersection multiplicity of two

general members of the ideal aS + bS.

Now let X be a nonsingular surface and let Z be a 0-dimensional subscheme of

X. We define the multiplicity e(Z) of Z to be the sum of the multiplicities of the

defining ideal of Z at all points in Supp(Z). By definition, e(Z) ≥ 0, and e(Z) = 0

if and only if Z = ∅. Let p ∈ Z and let π : X ′ → X be the blowup of X at p; let

Z ′ ⊆ X ′ be the strict transform of Z. The identification of e(Z) with an intersection

multiplicity shows that e(Z ′) is strictly less than e(Z).

Proposition 4.4.10. Let R be a birationally commutative surface with R1 *= 0.

There is a smooth model (X, σ) for some Veronese R(r) of R such that σ is numeri-

cally trivial, the gap divisor of R(r) on X contains no points of finite order, and so

that for all n ≥ 1 the base locus of Rnr on X is supported on points of infinite order.

Proof. Choose a smooth model (X, σ) for R. By Lemma 4.3.13, by replacing R by

a Veronese subring, we may assume that we are in the situation of Assumption-
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Notation 4.3.21. By Lemma 4.4.6, by changing X and possibly replacing R by a

further Veronese (to ensure that Assumption-Notation 4.3.21 still holds), we may

further assume that Ω contains no points of finite order.

Let M be such that R and R = R(X) are generated in degrees ≤ M . If there is

some 1 ≤ i ≤ M such that Wi contains a point p of finite order under σ, replace X by

the blowup of X at the orbit of p. As e(Wi) is reduced each time, continuing finitely

many times, we may assume that there is a surface X̃ with a morphism π : X̃ → X

and an automorphism σ̃ of X̃, conjugate to σ, so that for i = 1 . . . M the base locus

of Ri on X̃ contains no points of finite order.

For all n ≥ 1, let Fn = D
eX(Rn), and let Jn = Rn(X̃)(−Fn) be the base ideal of

Rn on X̃. We caution that (4.3.14) and (4.3.15) may not hold for the Fi with k = 1,

although they do, of course, hold for some k. On the other hand, Dn = ∆n − Ω for

all n ≥ 1. By Lemma 4.4.4, for all n ≥ 1 the divisor En = π∗Dn − Fn is effective

and supported on the exceptional locus of π. In particular, all components of any

En are of finite order under σ. Note that as the indeterminacy locus of π−1 consists

of points of finite order, it is disjoint from Ω. Thus, π∗Ω ∩ En = ∅ for all n. By

Lemma 4.4.6(1), the gap divisor of R on X̃ is equal to π∗Ω and contains no points

of finite order under σ̃.

The bimodule algebra R(X̃) on X̃ is still generated in degrees ≤ M . That is,

(4.4.11) Rn(X̃) =
M∑

i=1

Ri(X̃)Rn−i(X̃)eσi
= Rn(X̃)

for all n > M . As

Rn(X̃) = Jn(Fn) = JnO eX(−π∗Ω− En + π∗∆n)
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for all n ≥ 1, we may rewrite (4.4.11) as

JnO eX(−π∗Ω− En + π∗∆n) =

M∑

i=1

JiO eX(−π∗Ω− Ei + π∗∆i) · J eσi

n−iO eX(σ̃−i(−π∗Ω− En−i + π∗∆n−i))

for all n > M . Since π∗∆n = π∗∆i + σ̃−iπ∗∆n−i, this may be rewritten as

(4.4.12) JnIEn = JnO eX(−En) =
M∑

i=1

JiJ eσi

n−iO eX(−Ei − σ̃−i(En−i + π∗Ω)).

for all n > M .

For all n, let Kn be the minimal ideal sheaf on X̃ that contains Jn and is cosup-

ported at points on the exceptional locus of π; this exists because Jn is coartinian.

Now, σ̃−i(π∗Ω) is disjoint from the exceptional locus of π. This means that by

restricting (4.4.12) to the exceptional locus of π, we obtain that

KnIEn =
M∑

i=1

KiKeσi

n−iO eX(−Ei − σ̃−iEn−i) =
M∑

i=1

KiKeσi

n−iIEiIeσi

En−i

for all n > M .

For all n, let K̂n be the minimal ideal sheaf on X̃ containing Kn and cosupported

at points of finite order. Now, there is some k so that the ideal sheaf
∑M

i=1 IEiIeσi

En−i

is σ̃k-invariant, as all Ei are of finite order under σ̃. This implies that

K̂nIEn =
M∑

i=1

K̂iK̂eσi

n−iIEiIeσi

En−i

for all n > M . But for 1 ≤ i ≤ M , the base locus of Ri on X̃ contains no points of

finite order, and so K̂i = O eX . Thus

(4.4.13) K̂nIEn =
M∑

i=1

K̂eσi

n−iIEiIeσi

En−i

for n > M . Let , be such that σ̃% fixes all irreducible exceptional curves and so all

components of E1, . . . , EM . Then (4.4.13) and an easy induction imply that for all

n, K̂n is σ̃%-invariant.
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Let S be the graded (O eX , σ̃%)-bimodule algebra defined by

S =
⊕

n≥0

(Sn)eσn" ,

where

Sn = K̂n%IEn"
.

As all Sn are σ̃%-invariant, S is a commutative bimodule algebra; that is, S is a sheaf

of (commutative) graded algebras on X̃. Now, as R is noetherian, R(X̃)(%) is finitely

generated. Thus there is N ≥ 1 so that

Rn%(X̃) =
N∑

i=1

Ri%(X̃)R(n−i)%(X̃)eσi"

for all n > N . Restricting to the exceptional locus of π and to finite orbits, we obtain

that

Sn =
N∑

i=1

SiSeσi"

n−i =
N∑

i=1

SiSn−i

for all n > N , and so S is finitely generated.

Let U1, . . . , Un be a finite affine cover of X. As is well-known (see [Bou98, Sec-

tion III.1.3, Proposition 3]), for each 1 ≤ j ≤ n there is some ej so that the graded

ring S(Uj) is generated by Sej(Uj) and O eX(Uj). Let e = e1 · · · en. Then all S(e)(Ui)

are generated in degree 1, so S(e) is generated in degree 1.

That is,

K̂n%eIEn"e
= Sne = (Se)

n = (K̂%eIE"e
)n

for all n ≥ 1. As K̂%e is σ̃%-invariant, we may resolve it by a sequence of point blowups

at finite σ̃-orbits. We obtain a nonsingular surface X ′ with a birational morphism

π : X ′ → X so that σ̃ is conjugate to an automorphism σ′ of X ′ and so that the

expansion of K̂%e to X ′ is invertible. Thus the expansion of K̂n%e to X ′ is invertible

for all n ≥ 1.
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Recall that Jn is the base ideal of Rn on X̃. For all n, there is an ideal sheaf Cn

so that

Jn = K̂nCn.

Necessarily, Cn is cosupported at points of infinite order. Let Zn be the subscheme of

X̃ defined by Cn. Lemma 4.4.4 implies that the base locus of Rn%e on X ′ is π−1(Zn%e),

as the expansion of K̂n%e to X ′ is invertible. This contains no points of finite order

for any n ≥ 1. By Lemma 4.4.6, the gap divisor of R on X ′ contains no points of

finite order under σ′.

We will be considering the rational maps to projective space defined by the rational

functions in Rn and |∆n|. We record here the elementary result that these are

birational onto their image for n $ 0.

Lemma 4.4.14. Let R be a birationally commutative projective surface with function

field K. Assume that R1 *= 0 and fix 0 *= z ∈ R1. For some n, the rational functions

in Rn generate K as a field and so induce a birational map of X onto its image.

Proof. Let f1, . . . , fk be rational functions that generate K. For each i, there are

homogeneous elements ai, bi of some Rni so that fi = aib
−1
i . By putting all the fi

over a common denominator, we may assume that there are some c1, . . . , ck, b ∈ Rn

with fi = cib−1 for all i. Thus Rn generates the field K.

By Proposition 4.4.10 and Lemma 4.4.14, we may pass to a further Veronese

subring to strengthen our assumptions on R.

Assumption-Notation 4.4.15. Assume that R is a birationally commutative pro-

jective surface with function field K so that R1 *= 0. Fix 0 *= z ∈ R1, and define

Rn = Rnz−n. Assume that R1 generates K as a field.
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Assume also that there is a nonsingular model (X, σ) for R so that σ is numerically

trivial. Define Rn(X), Dn, In, and Wn as in Assumption-Notation 4.3.11. Further

assume that there are a gap divisor Ω and a coordinate divisor D associated to z so

that (4.3.14) and (4.3.15) hold with k = 1 for all n, m ≥ 1, and that Ω∩σkΩ is finite

for all k *= 0. We further assume that Ω and all Wn are disjoint from finite σ-orbits.

We continue to define ∆n = D + · · ·+ σ−(n−1)D and L = OX(D).

We remark that if Assumption-Notation 4.4.15 holds for R, it holds for any

Veronese R(k) of R, by replacing σ by σk and D by ∆k.

4.5 An ample model for R

Let (X, σ) be a normal model for R. If a coordinate divisor of R on X is σ-ample,

we refer to X or to the pair (X, σ) as an ample model for R. The goal of this section

is to show that an ample model for R exists.

We begin by giving the σ-twisted versions of some results about big and nef

divisors. Recall that a divisor D on a projective surface X is big if

h0(OX(nD)) = dim H0(OX(nD))

grows as O(n2), and D is nef if D.C ≥ 0 for any curve C on X. We refer the reader

to [Laz04] for the basic properties of big and nef divisors.

Recall also that we denote linear equivalence of divisors by ∼ and numerical

equivalence by ≡. If D is a divisor on X and m ≥ 1, let ∆m = D + σ−1D + · · · +

σ−(m−1)D.

Definition 4.5.1. Let σ be a quasi-trivial automorphism of the projective surface

X. We say that a divisor D is σ-big if h0(OX(∆n)) grows at least as O(n2).
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We note that for any normal model (X, σ) for R, if D is a coordinate divisor for

R on X, then D is σ-big by assumption on the GK-dimension of R.

Lemma 4.5.2. (Kodaira’s Lemma; cf. [Laz04, Proposition 2.2.6]) Let σ be a quasi-

trivial automorphism of a smooth projective surface X, and let D be a σ-big divisor

on X. Let F be an effective divisor on X. Then H0(OX(∆m − F )) *= 0 for all

sufficiently large m.

Proof. We consider the exact sequence

0 → H0(OX(∆m − F )) → H0(OX(∆m))
φm→ H0(OF (∆m)).

By Theorem 2.5.3, there are constants n and c such that if E is a divisor on X

with E.F ≥ n, then h0(OF (E)) = F.E + c. Since σ is quasi-trivial, ∆m.F grows

no faster than O(m), and thus h0(OF (∆m)) grows no faster than O(m). Since D

is σ-big, for m $ 0 we have that h0(OX(∆m)) > h0(OF (∆m)) and therefore the

map φm : H0(OX(∆m)) → H0(OF (∆m)) must have a kernel. This gives a section of

OX(∆m − F ).

Corollary 4.5.3. (cf. [Laz04, Corollary 2.2.7]) Let σ be a quasi-trivial automorphism

of the smooth projective surface X, and let D be a σ-big divisor on X. Let A be an

ample divisor on X. Then there is some m > 0 and some effective divisor N on X

such that ∆m ∼ A + N .

Proof. Choose r such that (r + 1)A and rA are both effective. Using Lemma 4.5.2,

choose m such that H0(OX(∆m − (r + 1)A)) *= 0. Thus there is some effective N ′

with

∆m − (r + 1)A ∼ N ′.

That is, ∆m ∼ A + (rA + N ′). Since rA and N ′ are both effective, the theorem is

proved for N = rA + N ′.
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Lemma 4.5.4. (Wilson’s Theorem; cf. [Laz04, Theorem 2.3.9]) Let σ be a quasi-

trivial automorphism of the smooth projective surface X, and let D be a σ-big and

nef divisor on X. Then there are an effective divisor N and an integer m0 > 0 such

that for every m ≥ m0, both ∆m −N and ∆m − σ−(m−m0)(N) are base point free.

Proof. By Theorem 2.5.1, there is a very ample divisor B such that H i(OX(B+P )) =

0 for all nef P and for all i ≥ 1. Note that the same property holds for all σnB.

Corollary 4.5.3 implies that there is some m0 > 0 so that ∆m0 ∼ 3B + N for N

effective. Then for m ≥ m0,

∆m −N ∼ 3B + σ−m0∆m−m0 .

As D is nef, all σiD are also nef. Nef divisors form a cone, so σ−m0∆m−m0 is nef.

Thus

∆m −N ∼ B + 2B + nef.

Our assumption on B implies that

H i(OX(∆m −N − iB)) = 0

for i = 1, 2. That is, ∆m − N is 0-regular with respect to B (in the sense of

Section 2.5), and so by Theorem 2.5.2, OX(∆m −N) is globally generated.

Similarly,

∆m − σ−(m−m0)N ∼ ∆m−m0 + 3σ−(m−m0)B,

and so H i(OX(∆m − σ−(m−m0)N − iσ−(m−m0)B)) = 0 for i = 1, 2. That is, ∆m −

σ−(m−m0)N is 0-regular with respect to the very ample divisor σ−(m−m0)B. Applying

Theorem 2.5.2 again, we have that OX(∆m − σ−(m−m0)N) is globally generated.

Lemma 4.5.5. Assume Assumption-Notation 4.4.15, so D is the coordinate divisor

of R on X and σ is numerically trivial. Then ∆n is big and nef for all n ≥ 1.
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Proof. It is enough to show that D is big and nef. Suppose that D is not nef. Then

there is some effective curve C such that C.D < 0. For n $ 0 we have (∆n−Ω).C =

nD.C − Ω.C < 0. This implies that if Γ ∼ ∆n − Ω is effective, then C ≤ Γ; that is,

C is contained in the base locus of |∆n−Ω|. But Bs(|∆n−Ω|) ⊆ Bs(Rn) = Wn, and

this is 0-dimensional. Thus D is nef.

By assumption on R, we know that D is σ-big. By Corollary 4.5.3 we have that

some ∆n ∼ A + F for some ample A and some effective F . Thus ∆n is big by

[Laz04, Corollary 2.2.7]. Since σ is numerically trivial and bigness is numeric [Laz04,

Corollary 2.2.8], we see that nD and therefore D are big.

Theorem 4.5.6. Assume Assumption-Notation 4.4.15. Then there is some k so

that ∆nk is base point free for n $ 0.

We note that if R is commutative (so Ω = 0 and σ = IdX), then this follows from

Zariski’s result [Zar62, Theorem 6.2] that if L is a line bundle on a projective variety

with a 0-dimensional base locus, then some tensor power of L is globally generated.

Proof. For all n, let Zn = Bs(|∆n|). We want to show that for some k, Znk = ∅ for

n $ 0.

We first show that Zn is 0-dimensional for n $ 0. Let Cn be the 1-dimensional

component of Zn. The coordinate divisor D is σ-big by assumption, and nef by

Lemma 4.5.5. By Lemma 4.5.4, we know that there is some effective N such that

for all m $ 0, both ∆m − N and ∆m − σ−(m−m0)N are base point free. Thus

Cm ⊆ N ∩σm−m0N for all m $ 0, and so for all m $ 0, Cm is a union of components

of N that are of finite order under σ. Now,

Cm ⊆ Bs(|∆m|) ⊆ Ω ∪ Bs(|∆m − Ω|).
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As Bs(|∆m−Ω|) ⊆ Bs(Rn) = Wn is 0-dimensional, we also have that Cm ≤ Ω. Since

Ω has no components of finite order, Cm = 0 for m $ 0.

By passing to a Veronese subring, and replacing D by some ∆k and σ by σk, we

may assume that Zn is 0-dimensional for all n ≥ 1. Let φ = φ|D| be the rational map

from X to some PN defined by the complete linear system |D|. Let Y be the closure

of φ(X); we will abuse notation and refer to φ as a rational map from X to Y . Note

that φ is birational by assumption, as R1 ⊆ H0(OX(D)) generates K.

By blowing up the finite base locus of |D|, we obtain a surface X ′ and a diagram

of birational maps

X ′

π

""!!
!!

!!
!! φ′

##"
""

""
""

"

X
φ

!!####### Y

such that π and φ′ are morphisms. Let C be a reduced and irreducible hyperplane

section of Y that avoids the finitely many points with positive-dimensional preimage

in X or X ′ and does not contain any component of the singular locus of Y . Such

C exist by Bertini’s theorem and [Har77, Remark III.7.9.1]. Then π(φ′)−1(C) = D′

is a reduced and irreducible curve that is linearly equivalent to D. Without loss of

generality, we may replace D by D′ and assume that D is reduced and irreducible.

We will show that OX(∆m) is globally generated for all m $ 0. The proof is

based on repeated applications of the following long exact cohomology sequence. Let

B be an effective divisor on X and let A and A′ be divisors such that A′ ∼ A− B.

Then the exact sequence

0 → OX(A′) → OX(A) → OB(A) → 0
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induces a long exact cohomology sequence

(4.5.7) 0 → H0(OX(A′)) → H0(OX(A)) → H0(OB(A))

→ H1(OX(A′)) → H1(OX(A)) → H1(OB(A)).

In particular, for all m ≥ 0 there are homomorphisms

H1(OX(σ−1(∆m))) → H1(OX(∆m+1)) → H1(OD(∆m+1)).

Now D is irreducible and D.∆m = mD2, as σ is numerically trivial. Since D is big

and nef, D2 > 0 by [Laz04, Theorem 2.2.16]. Applying Theorem 2.5.3, there is an

integer m0 such that if m ≥ m0, then H1(OD(∆m)) = 0. Thus if m ≥ m0 we have

that h1(OX(∆m)) = h1(OX(σ−1∆m)) ≥ h1(OX(∆m+1)). Therefore, there are some

m1 ≥ m0 and some non-negative integer a such that if m ≥ m1, we have that

h1(OX(∆m)) = a.

Applying Theorem 2.5.3 again, we see that by possibly increasing m1 further, we

may also assume that if H is any divisor on X with D.H ≥ m1D2, then for any j,

OσjD(H) is globally generated and H1(OσjD(H)) = 0.

Suppose that m ≥ 2m1. We claim that OX(∆m) is globally generated; that is,

Bs(|∆m|) = 0. Since Bs(|∆m|) ⊆ D∪σ−1(D)∪· · ·∪σ−(m−1)(D), it is enough to show

that OX(∆m) is globally generated at every point in σ−i(D) for i = 0 . . . m− 1.

We claim that for any such i, we have that

(4.5.8) h1(OX(∆m − σ−i(D))) = a.

We will do the case when m = 2m′ for m′ ≥ m1 and i ≤ m′ − 1; similar arguments

work for other choices for m and i. For j = 0 . . . i, let

Cj = ∆m − σ−i(D)− · · · − σ−j(D).
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Define Ci+1 = ∆m. Thus for j = 0 . . . i, we have Cj = Cj+1 − σ−j(D). For all

j = 0 . . . i, we have Cj+1 ≥ σ−m′
∆m′ . Thus σ−jD · Cj+1 ≥ m1D2 and so by the

choice of m1 we have that H1(Oσ−jD(Cj+1)) = 0. Thus the long exact cohomology

sequence (4.5.7) gives an exact sequence

H1(OX(Cj)) → H1(OX(Cj+1)) → H1(Oσ−jD(Cj+1)) = 0.

We obtain that

h1(OX(C0)) ≥ h1(OX(C1)) ≥ · · · ≥ h1(OX(Ci)) ≥ h1(∆m) = a.

Since C0 = ∆m −∆i+1 = σ−(i+1)(∆m−i−1) and m − i − 1 ≥ m′ ≥ m1, we have that

h1(OX(C0)) = a; so h1(OX(Ci)) = a. The claim (4.5.8) is proved.

Now let 0 ≤ i ≤ m − 1 be arbitrary. As a special case of (4.5.7), we obtain the

long exact sequence

0 → H0(OX(∆m − σ−i(D))) → H0(OX(∆m))
φ→ H0(Oσ−i(D)(∆m)) →

H1(OX(∆m − σ−i(D))) → H1(OX(∆m)) → H1(Oσ−i(D)(∆m)).

By assumption on m, we have H1(Oσ−iD(∆m)) = 0, and we have seen that

h1(OX(∆m − σ−i(D))) = h1(OX(∆m)) = a.

Thus the map

φ : H0(OX(∆m)) → H0(Oσ−i(D)(∆m))

is surjective. Since we have taken m sufficiently large so that Oσ−i(D)(∆m) is globally

generated, Bs(|∆m|) must be disjoint from σ−i(D). Since this holds for all i, we see

that |∆m| is base point free.

We are almost ready to construct the ample model for R. We first prove two

lemmas about birational maps.
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Lemma 4.5.9. Let D be a Cartier divisor on a normal projective variety X and let

V ⊆ |D| be a subspace of dimension d ≥ 2. Let φ = φV be the rational map to Pd−1

defined by V , and let Γ be an irreducible curve on X that is disjoint from the base

locus of V with respect to D. Then φ contracts Γ if and only if D · Γ = 0. Further,

if φ contracts Γ, then for any v ∈ V , either v never vanishes on Γ or v|Γ ≡ 0.

Proof. Suppose that φ contracts Γ to a point. By making a linear change of coordi-

nates, without loss of generality we may assume that φ(Γ) = [1 : 0 : · · · : 0]. This

is the same as choosing a basis {v1, . . . , vd} of V such that v1|Γ is never 0 and that

vi|Γ ≡ 0 for all i ≥ 2. In particular, the divisor of zeroes of v1 is disjoint from Γ and

so D.Γ = 0.

Conversely, suppose that D.Γ = 0. Then choose x, y ∈ Γ and v ∈ V . If v(x) *= 0

but v(y) = 0 then we have that Γ.D > 0; thus v vanishes at some point of Γ if and

only if v|Γ ≡ 0. Now, since Γ does not meet BsD(V ), there is some v ∈ V such that

v(x) *= 0. We may choose a basis {v, v2 . . . , vd} for V such that vi(x) = 0 for all

i ≥ 2. By the above, in these coordinates φ(Γ) = [1 : 0 : · · · : 0].

We obtain as a corollary that any curve Γ such that Γ.∆n = 0 must be disjoint

from the gap divisor Ω and from the base loci Wm.

Corollary 4.5.10. Assume Assumption-Notation 4.4.15. Suppose that |∆n| is base

point free. Let φn be the morphism to projective space defined by |∆n|. If φn contracts

an irreducible curve Γ, then there is some f ∈ Rn so that

(divX(f) + ∆n) ∩ Γ = (divX(f) + Ω + (∆n − Ω)) ∩ Γ = ∅.

In particular, Wn ∪ Ω is disjoint from Γ.

Proof. As X is nonsingular, we may identify Cartier and Weil divisors. Lemma 4.5.9

implies that the set of irreducible curves contracted by φn is precisely the set of
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irreducible curves Γ with Γ.∆n = 0. As σ is numerically trivial, Γ.∆n = 0 if and only

if σΓ.∆n = 0. Thus the set of curves contracted by the morphism φn is σ-invariant.

By assumption φn is birational onto its image. Thus there are finitely many such

curves and so all are of finite order under σ. In particular, if Γ is such a curve, then

Γ *≤ Ω.

Now, set-theoretically we have

(4.5.11) Supp(Ω ∪Wn) =
⋂

f∈Rn

divX(f) + ∆n.

Fix an irreducible curve Γ with ∆n.Γ = 0. As Γ *⊆ Supp(Ω ∪Wn), we have some

f ∈ Rn so that Γ *≤ divX(f) + ∆n. Thus Γ∩ divX(f) + ∆n = ∅ by Lemma 4.5.9. By

(4.5.11), Ω ∩ Γ = ∅ and Wn ∩ Γ = ∅.

Lemma 4.5.12. (Compare [AS95, Lemma 3.2].) Let X be a normal variety, and let

G1, G2, and G3 be effective (Cartier) divisors on X; let E = G3 − G1 − G2. For

i = 1 . . . 3, let Ui ⊆ |Gi| be a vector space of dimension at least 2, and suppose that

U1U2 ⊆ U3. Let φi : X → PNi be the rational map defined by the sections Ui of

Gi and let Yi be the closure of Im φi in PNi. Further assume that φ3 : X → Y3 is

birational. Then there is an induced rational map π : Y3 → Y1 so that πφ3 = φ1 and

so that if x *∈ BsGi(Ui) for i = 1 . . . 3 and x *∈ Supp E, then π is defined at φ3(x).

Proof. We repeat the proof of [AS95, Lemma 3.2], to note that it works in our situ-

ation as well. As rational maps, π = φ1(φ3)−1. Let x ∈ X ! (Supp E ∪ BsG1(U1) ∪

BsG2(U2)∪BsG3(U3)); then all the maps φi are defined at x. We may thus choose ele-

ments u0 ∈ U1 and v ∈ U2 so that, locally at x, D1 = −divX(u0) and D2 = −divX(v).

Our assumptions imply that, locally at x, D3 = −divX(u0v). Let {u0, . . . , ur} be

a basis for U1. Locally at x, φ1 is defined by [u0 : · · · : ur]; we may also define it

by [u0v : · · · : urv]. Then if {u0v, . . . , urv, wr+1, . . . , ws} is a basis for U3, then the
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rational map π is given by projection onto the first r +1 coordinates. This is defined

locally at φ3(x) by construction.

Theorem 4.5.13. Assume Assumption-Notation 4.4.15. Then there are a normal

surface X ′, a birational morphism θ : X → X ′, and an ample invertible sheaf L′ on

X ′ such that for some k ≥ 1, σk is conjugate to a numerically trivial automorphism

σ′ of X ′ and θ∗(L′) ∼= Lk. In particular, L′ is σ′-ample.

Let Ω′ be the gap divisor of R(k) on X ′. Then Ω′ is Cartier and contains no points

or components of finite order. Furthermore, for all n ≥ 1, the base locus of Rnk on

X ′ contains no points of finite order.

Proof. For all n, let αn be the rational map from X to some projective space given

by |∆n|; let Xn be the closure of the image of X under αn. By Theorem 4.5.6, we

may replace R by a Veronese subring to assume that |∆n| is base point free for all

n ≥ 1, so αn is a birational morphism for all n ≥ 1. Assumption-Notation 4.4.15

continues to hold.

For all n, we have ∆n + σ−nD = ∆n+1 and |∆n| · |σ−nD| ⊆ |∆n+1|. Using

Lemma 4.5.12 with E = 0, for each n ≥ 1 we obtain a birational morphism πn :

Xn+1 → Xn so that the diagram

X
αn+1!!

αn $$$$$$$$$$ Xn+1

πn

%%
Xn

commutes. Likewise, the equation D + σ−1∆n = ∆n+1 gives a birational morphism

ρn : Xn+1 → Xn so that

X
αn+1!!

αn◦σ $$$$$$$$$$ Xn+1

ρn

%%
Xn
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commutes.

Let Γ be an irreducible curve on X. Then, as σ is numerically trivial,

∆n+1.Γ = (n + 1)D.Γ =
n + 1

n
∆n.Γ,

so ∆n+1.Γ = 0 if and only if ∆n.Γ = 0. By Lemma 4.5.9, αn+1 and αn = πn ◦ αn+1

contract the same curves; thus πn : Xn+1 → Xn does not contract any curves and is

a finite morphism. Likewise, ρn is a finite morphism. By finiteness of the integral

closure, there is some k such that if n ≥ k, then both πn and ρn are isomorphisms.

Let X = Xk, and let α = αk : X → X. Define σ = (ρkπ
−1
k )k. Then σ is an

automorphism of X, and we have that

σ ◦ α = α ◦ σk.

Clearly σ is numerically trivial.

Let π : X ′ → X be the normalization of X. Since X is normal by assumption, the

morphism α factors through π — that is, there is a birational morphism θ : X → X ′

such that the diagram

X
θ !!

α
&&%

%%
%%

%%
X ′

π
""&&

&&
&&

&&

X

commutes. Note that if θ is finite at x ∈ X, then θ is a local isomorphism at x. By

the universal property of normalizations, σ lifts uniquely to an automorphism σ′ of

X ′, which is also numerically trivial.

By construction, X carries a very ample line bundle L such that

Lk
∼= OX(∆k) ∼= α∗L ∼= θ∗π∗L.

Let L′ = π∗L. Then L′ is the pullback of an ample line bundle by a finite map

and so is ample by [Har77, Exercise III.5.7(d)]. Further, L′ is σ′-ample by [AV90,

Theorem 1.7]. By the projection formula [Har77, Exercise II.5.1.(d)], θ∗(Lk) ∼= L′.
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Let C be the union of the finitely many curves in X that are contracted by θ.

Note that θ is an isomorphism from the open subset X !C of X onto an open subset

of X ′. Note also that, by Corollary 4.5.10, Ω ⊆ X ! C. Let Ω′ = θ(Ω) be the

scheme-theoretic image of Ω. Thus Ω′ is a Cartier divisor on X ′.

Let D′ be the Cartier divisor on X ′ corresponding to the invertible sheaf L′. The

singular locus of X ′ consists of finitely many points, as X ′ is normal. Fix n ≥ 1. By

restricting the Weil divisor DX′
(Rnk) to the open set where X ′ is smooth, we obtain

that

DX′
(Rnk) = D′ + (σ′)−1(D′) + · · ·+ (σ′)−(n−1)(D′)− Ω′.

By Lemma 4.3.20, Ω′ is the gap divisor of R(k) on X ′ associated to z. That Ω′ con-

tains no points or components of finite order follows directly from the corresponding

properties for Ω.

Fix n ≥ 1. We have seen that DX′
(Rnk) is Cartier. Let Zn be the base locus

of Rnk on X ′. Let x ∈ X ′ be a point of finite order under σ′, and let Γ be an

irreducible component of θ−1(x). If Γ is a curve, then by Corollary 4.5.10, there is

some f ∈ Rnk so that Γ ∩ (divX(f) + (∆nk − Ω)) = ∅. If Γ = {p} is a point, then it

is of finite order, and so by assumption p *∈ Wn. Again, there is an f ∈ Rnk so that

p *∈ divX(f) + (∆nk −Ω). In either case, f gives a section of L′n(−Ω′) that does not

vanish at x, so x *∈ Zn. Thus Zn contains no points of finite order.

We comment that in the commutative setting, X would be normal automatically;

see [Laz04, Theorem 2.1.27, Example 2.1.15]. We do not know if this is true for our

construction.
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4.6 Stabilizing 0-dimensional data

We are ready to start working with the infinite order 0-dimensional data defining

X. In this section, we construct an ADC ring S(X,L, σ,A,D, C) so that (some

Veronese of) R is a subring of S, and give surface data D = (X,L, σ,A,D, C, Ω, Λ, Λ′)

such that the bimodule algebras R(X) and T (D) are equal up to finite dimension.

By Theorem 4.5.13, by replacing R by a further Veronese subring, we may without

loss of generality make the following assumptions:

Assumption-Notation 4.6.1. We assume that R is a birationally commutative

projective surface with function field K and fix 0 *= z ∈ R1. Let Rn = Rnz−n,

and assume that R1 generates K as a field. Let (X, σ) be a normal model for R

with σ numerically trivial, and let Rn(X) = Rn · OX . Assume also that there are

an ample and σ-ample invertible sheaf L on X, an effective locally principal Weil

divisor Ω on X containing no points or components of finite order under σ, and

0-dimensional subschemes Wn of X, disjoint from finite σ-orbits, such that for all

n ≥ 1, Rn(X) = IWnIΩLn.

To begin, we show that our assumptions imply that Ω meets orbits only finitely

often.

Proposition 4.6.2. Assume Assumption-Notation 4.6.1. Let p ∈ X be a point of

infinite order under σ; let O(p) denote the σ-orbit of p. Then Ω intersects O(p) only

finitely often.

Proof. Suppose that O(p) ∩ Ω is infinite. We will show that R is not noetherian.

First suppose that for infinitely many d ≤ 0, we have σd(p) ∈ Ω. By Lemma 4.4.1

there is a finite set V such that, for all n ≥ 1, we have Wn ⊆ V ∪ · · · ∪ σ−(n−1)V .

We define a point q as follows: if O(p) ∩ V = ∅, let q = p. If O(p) meets V , let
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c = min{d | σd(p) ∈ V } and let q = σc−1(p). In either case, for all n ≥ 1 and

1 ≤ m ≤ n, we have σ−n(q) *∈ Wm.

Define a left ideal J of R by letting J =
⊕

Jnzn, where

Jn = H0(Ln · Iσn

q ) ∩Rn.

If σ−n(q) ∈ Ω, then Rn ⊆ LnIσn

q and so Jn = Rn. On the other hand, since

σ−n(q) *∈ Wn = Bs(Rn) by construction, if σ−n(q) *∈ Ω then there is some section of

Ln in Rn that does not vanish at σ−n(q). Thus Jn $ Rn. That is, Jn = Rn if and

only if σ−n(q) ∈ Ω.

For all i < n we have Rn−iJi ⊆ H0(IΩ · Iσn

q Ln)zn. Fix m ≥ 1 and n > m such

that σ−n(q) ∈ Ω. Then

(R · J≤m)n ⊆ H0(IΩ · Iσn

q Ln)zn.

As σ−n(q) *∈ Wn = Bs(Rn), we have that

H0(IΩ · Iσn

q Ln) *= Rn = Jn.

Thus J is not finitely generated.

Now suppose that for infinitely many d ≥ 0, we have σd(p) ∈ Ω. Let

L′ = IΩ ⊗ L⊗ (Iσ
Ω)−1.

Then Rn = IWn(IΩ)σn
(L′)n. That is, R is also contained in a left idealizer at Ω

inside B′ = B(X,L′, σ). Define a point q′ ∈ O(p) as follows: if O(p) ∩ V = ∅, let

q′ = p. Otherwise, let c = max{d | σd(p) ∈ V }, and let q′ = σc+1(p). Then q′ *∈ Wm

for any m. Let

J ′ =
⊕

n≥0

(
H0(Iq′(L′)n) ∩Rn

)
zn.

Then J ′ is a right ideal of R, and a symmetric argument to the one above shows that

J ′ is not finitely generated.
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We now analyze the 0-dimensional schemes (Ω ∪ Wn) ∩ O(p). To simplify our

computations, we will pass to a Veronese subring so that our data may be presented

in a standard form. That we may do so is the content of the following elementary

lemma.

For any k ≥ 1, and for any p ∈ X, we will let Ok(p) denote the σk-orbit of p.

Lemma 4.6.3. Assume Assumption-Notation 4.6.1. Then there is some positive

integer k such that, for any p ∈ X, either Ok(p) is disjoint from all Wn or there is

a point q ∈ Ok(p) so that Ok(p) ∩ Ω ⊆ {q} and

{q} ⊆
(
Ok(p) ∩ (Ω ∪Wk)

)
⊆ {q, σ−k(q)}.

We first prove:

Sublemma 4.6.4. Suppose that q is a point of infinite order and that

(Ω ∪W1) ∩O(q) ⊆ {q, . . . , σ−s(q)}.

Then

(Ω ∪Wn) ∩O(q) ⊆ {q, σ−1(q), . . . , σ−(n+s−1)(q)}

for all n ≥ 1.

Proof. It clearly suffices to prove that Wn ∩ O(q) ⊆ {q, . . . , σ−(n+s−1)(q)}. But by

(4.4.3),

Wn ∩O(q) ⊆
(
(Ω ∪W1) ∪ · · · ∪ σ−(n−1)(Ω ∪W1)

)
∩O(q) ⊆ {q, . . . , σ−(n−1)−s(q)}.

Proof of Lemma 4.6.3. By Lemma 4.4.1 we know that

⋃

n≥1

Wn
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is contained in finitely many infinite σ-orbits. By Proposition 4.6.2 each of those

orbits meets Ω only finitely often. Thus there is some s ≥ 1 such that for any

p ∈
⋃

n≥1 Wn, we have that

(Ω ∪W1) ∩O(p) ⊆ {σ−i(p), σ−(i+1)(p), . . . σ−(i+s)(p)}

for some i ∈ Z.

Let p be a point of
⋃

n≥1 Wn. Let

m = max{n ∈ Z | σn(p) ∈ Ω ∪W1},

and let q = σm(p). Then the hypotheses of Sublemma 4.6.4 hold, and therefore

(Ω ∪Wn) ∩O(q) ⊆ {q, . . . , σ−(n+s−1)(q)}

for all n ≥ 1. Thus, for any n ≥ s and any 0 ≤ i ≤ n− 1, we have that

(
(Ω ∪Wn) ∩On(σ−i(q))

)
⊆ {σ−i(q), σ−(i+n)(q)}.

In particular, for i = 0 . . . 2s− 1, as

O2s(σ
−i(q)) ⊂ Os(σ

−i(q)),

we have

Ω ∩O2s(σ
−i(q)) ⊆ {σ−i(q), σ−(i+2s)(q)} ∩ {σ−i(q), σ−(i+s)(q)} = {σ−i(q)}.

The lemma holds for k = 2s.

Lemma 4.6.3 allows us to replace R by a Veronese subring so that without loss of

generality we may make the following assumptions:

Assumption-Notation 4.6.5. We assume that R is a birationally commutative

projective surface with function field K and fix 0 *= z ∈ R1. Let Rn = Rnz−n,
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and assume that R1 generates K as a field. Let (X, σ) be a normal model for R

with σ numerically trivial, and let Rn(X) = Rn · OX . Assume also that there are

an ample and σ-ample invertible sheaf L on X, an effective locally principal Weil

divisor Ω on X containing no points or components of finite order under σ, and

0-dimensional subschemes Wn of X, disjoint from finite σ-orbits, such that for all

n ≥ 1, Rn(X) = IWnIΩLn.

In addition, we assume that for any orbit O(p) that meets
⋃

n≥1 Wn, there is some

q ∈ O(p) such that

{q} ⊆ O(p) ∩ (W1 ∪ Ω) ⊆ {q, σ−1(q)},

and O(p) ∩ Ω ⊆ {q}.

Lemma 4.6.6. Assume Assumption-Notation 4.6.5. Let p ∈
⋃

n≥1 Wn; note that

Sublemma 4.6.4 implies that Ω∪W1 must therefore meet O(p). Let O = OX,p be the

local ring of X at p, with maximal ideal p. For all j ≥ 1 and all i ∈ Z, define mj
i

to be the stalk of the ideal sheaf RjL−1
j = IΩIWn at σ−i(p), considered as an ideal in

O via the isomorphism σi : OX,σ−ip → O. Our assumptions imply that by reindexing

the orbit of p if necessary, we may assume that m1
i = O for all i < 0 and i > 1, that

m1
0 *= O, and that Ω ∩O(p) ⊆ {p}.

Then there are integers t, N ≥ 1, ideals a1, . . . at−1, d, ct−1, . . . c0 of O that are

either p-primary or equal to O, and an ideal a0 of O so that for all n ≥ N , we have:

mn
i = ai for 0 ≤ i < t

mn
i = d for t ≤ i ≤ n− t

mn
i = cn−i for n− t < i ≤ n

mn
i = O for i < 0 and i > n.
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Further, we have a0c0 ⊆ d and

a1 ⊆ a2 ⊆ · · · ⊆ at−1 ⊆ d ⊇ ct−1 ⊇ · · · ⊇ c1.

Proof. Define T to be the graded (OX , σ)-bimodule algebra

T =
⊕

n≥0

RnL−1
n .

Then T is a sub-bimodule-algebra of B(X,OX , σ), and mj
i is by definition the stalk

of Tj at σ−i(p). Let K = T+. For all n, the cosupport of Kn is (set-theoretically)

equal to Ω ∪Wn; by assumption, this meets O(p) in at most finitely many points.

Thus T , K, and p satisfy the hypotheses of Sublemma 4.2.20, with s = 0 or

1. Let N, a′, b′, a, and b be the integers given by Sublemma 4.2.20. Note that by

Sublemma 4.6.4, if i < 0 or i > n then mn
i = O. Thus we may take a′ = b′ = 0. Let

t = max{a, b}. For i = 0, . . . t− 1 let ai = mN
i and let ci = mN

N−i. Let d = mN
t be the

central stalk of K.

Since O(p)∩Ω ⊆ {p} by assumption, if i *= 0 the stalk of Tn at σ−i(p) is either O

or is p-primary. Because TnT σn

n ⊆ T2n, we have that

mn
nm

m
0 ⊆ m2n

n .

By taking n $ 0 this relation gives that a0c0 ⊆ d. The rest of the conclusions of the

lemma follow directly from Sublemma 4.2.20.

We may now give the defining data for the bimodule algebra R = R(X).

Definition 4.6.7. We will say that the surface data D = (X,L, σ,A,D, C, Ω, Λ, Λ′)

is normal if X is normal, σ is numerically trivial, L is ample and σ-ample, Ω contains

no points or components of finite order under σ, and Λ and Λ′ are disjoint from finite

σ-orbits. In particular, if D is normal, then Ω is locally principal.
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Theorem 4.6.8. Let R be a birationally commutative projective surface. Then there

are normal surface data D = (X,L, σ,A,D, C, Ω, Λ, Λ′) and integers N, k ≥ 1 so that

(R(X)(k))≥N = T (D)≥N .

Proof. By Proposition 4.4.10, after replacing R by a Veronese subring we may assume

that we are in the situation of Assumption-Notation 4.4.15. By Theorem 4.5.13, by

replacing R by a further Veronese subring and possibly changing X, we may assume

that R and X satisfy Assumption-Notation 4.6.1.

By Lemma 4.6.3, we may replace R by a further Veronese subring to assume that

for all p such that O(p) meets W1, there is a q ∈ O(p) so that

{q} ⊆ O(p) ∩ (Ω ∪W1) ⊆ {q, σ−1(q)}

and O(p) ∩ Ω ⊆ {q}. By Sublemma 4.6.4,

O(p) ∩ (Ω ∪Wn) ⊆ {q, . . . , σ−n(q)}

for all n ≥ 1. By Lemma 4.4.1, there are only finitely many orbits to consider; that

is, there are points q1, . . . , qr with orbits Oj = O(qj), so that

⋃

n≥1

Wn ⊆
r⋃

j=1

Oj.

For each Oj, let Aj,Dj, and Cj be the ideal sheaves that are cosupported at qj

and locally at qj are equal to, respectively, the ideals a0, d, and c0 of OX,qj produced

by Lemma 4.6.6. Define

A′ =
∏

j

Aj,

D =
∏

j

Dj,

and

C ′ =
∏

j

Cj.
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Finally, choose ideal sheaves A ⊇ A′ and C ⊇ C ′ such that the pair (A, C) is maximal

with respect to the containment AC ⊆ D. Let S be the ADC bimodule algebra

S(X,L, σ,A,D, C).

For j = 1 . . . r let tj and N j be the integers produced by Lemma 4.6.6 applied to

Oj; let the ideals inOX,qj produced by Lemma 4.6.6 be dj, aj
i , and cj

i for 1 ≤ i ≤ tj−1.

Let t = max{tj} and let N = max{N j, 2t}. For integers i with tj ≤ i ≤ t− 1, define

aj
i = cj

i = dj. By Lemma 4.6.6 we have

aj
1 ⊆ · · · ⊆ aj

t−1 ⊆ d ⊇ cj
t−1 ⊇ · · · ⊇ cj

1

for all j.

We define an ideal sheaf J ⊆ IΩ so that IΩ/J is supported on

{σ−i(qj) | 0 ≤ i ≤ t− 1, 1 ≤ j ≤ r}

by setting the stalk of J at σ−i(qj) to be isomorphic to aj
i . Similarly, we define an

ideal sheaf J ′, cosupported on

{σi(qj) | 0 ≤ i ≤ t− 1, 1 ≤ j ≤ r},

by setting the stalk of J ′ at σi(qj) to be isomorphic to cj
i . (Note that the definitions

of J and J ′ differ by a sign!)

Let Λ be the subscheme defined by I−1
Ω J and let Λ′ be the subscheme defined by

J ′. Let Z be the subscheme defined by D. Then Λ, Λ′, and Z are 0-dimensional and

supported at points of infinite order. In fact, we have

(4.6.9) Supp σ−n(Λ′) ∩Oj ⊆ {σ−(n−(t−1))(qj), . . . , σ−n(qj)} for all n ∈ Z

and

(4.6.10) Supp(Λ ∪ Ω) ∩Oj ⊆ {qj, . . . , σ−(t−1)(qj)}.
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Further,

IΛ′ ⊆ C ′ ⊆ C

and

IΩIΛ ⊆ A′ ⊆ A.

Fix n ≥ N , so that t − 1 < n − (t − 1) and (4.6.9) and (4.6.10) imply that

σ−n(Λ′) ∩ (Ω ∪ Λ) = ∅. Now, if 0 ≤ i ≤ t− 1, then

(RnL−1
n )σ−i(qj)

∼= aj
i
∼= (IΩIΛ)σ−i(qj) =

(
(IΩIΛIσn

Λ′ ) ∩ Sn

)
σ−i(qj)

.

If n− (t− 1) ≤ i ≤ n, then

(RnL−1
n )σ−i(qj)

∼= cj
n−i

∼= (Iσn

Λ′ )σ−i(qj) =
(
(IΩIΛIσn

Λ′ ) ∩ Sn

)
σ−i(qj)

.

And if t ≤ i ≤ n− t, then σ−i(qj) *∈ Ω ∪ Λ ∪ σ−nΛ′ and so

(RnL−1
n )σ−i(qj)

∼= dj ∼= Dσ−i(qj) =
(
(IΩIΛIσn

Λ′ ) ∩ Sn

)
σ−i(qj)

.

Thus for n ≥ N ,

Rn = Sn ∩ IΩIΛIσn

Λ′ Ln.

That is, if D = (X,L, σ,A,D, C, Ω, Λ, Λ′), then

R≥N = T (D)≥N .

We record for future reference an elementary observation on how surface data

transforms upon taking Veronese subrings.

Lemma 4.6.11. Suppose that

D′ = (X,L, σ,A,D, C, Ω, Λ, Λ′)
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is surface data. Let n ≥ 1, and let

D = (X,Ln, σ
n,ADσ · · · Dσn−1

,DDσ · · · Dσn−1
, C, Ω, Λ, Λ′).

Then D is surface data, and

T (D′)(n) = T (D).

Furthermore, if the surface data D′ is normal, respectively transverse, then the surface

data D is normal, respectively transverse.

Proof. This is an elementary computation, which we leave to the reader.

Corollary 4.6.12. Let R be a birationally commutative projective surface. Then

there are normal surface data D = (X,L, σ,A,D, C, Ω, Λ, Λ′) and an integer , ≥ 1 so

that

(R(X)(%)) = T (D).

Proof. By Theorem 4.6.8, there are normal surface data D′ and integers k,N ≥ 1 so

that

R(X)(k)
≥N = T (D′)≥N .

Let , = kN , and by Lemma 4.6.11 let D be the normal surface data corresponding

to T (D′)(N). Then

R(X)(%) = T (D′)(N) = T (D).

4.7 Transversality of the defining data

In Section 4.6, we constructed normal surface data D = (X,L, σ,A,D, C, Ω, Λ, Λ′)

such that (up to a Veronese) we have that R(X) = T (D). In this section, we

show that the data D is in fact transverse, and that T (D) is a finite module over (a
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Veronese of) R. This allows us to consider T (D) as some sort of normalization of R,

and further justifies the term “normal surface data.”

Assumption-Notation 4.7.1. We assume that R is a birationally commutative

projective surface with R1 *= 0 and fix 0 *= z ∈ R1. As usual, we define Rn = Rnz−n.

In addition, we assume that R1 generates K as a field, and that there is surface data

D = (X,L, σ,A,D, C, Ω, Λ, Λ′), normal in the sense of Definition 4.6.7, so that if

Rn(X) = Rn · OX , then

R(X) = T (D).

We will continue to let Wn be the base locus of Rn for n ≥ 1, so that Wn is defined

by

I−1
Ω (IΩIΛIσn

Λ′ ∩ ADσ · · · Dσn−1Cσn
)

for all n ≥ 1.

Assumption-Notation 4.7.1 implies in particular that if Z is the subscheme defined

by D, then

Wn ⊆ Λ ∪ σ−nΛ′ ∪ Z ∪ · · · ∪ σ−nZ

for all n ≥ 1.

We first prove the unsurprising result that in this situation Ω has good transver-

sality properties.

Lemma 4.7.2. The set {σnΩ}n∈Z is critically transverse.

Proof. By Lemma 3.3.12, it is sufficient to check that for any reduced and irreducible

subscheme Y of X, we have

(4.7.3) TorX
1 (OσnΩ,OY ) = 0 for all |n| $ 0.
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Let Y ⊆ X be reduced and irreducible. If Y = {p} is a point of infinite order, then

by Proposition 4.6.2, p *∈ σnΩ for |n| $ 0, and so (4.7.3) holds for Y . If Y = {p} is

a point of finite order, then Ω∩O(p) = ∅ by assumption, so (4.7.3) also holds for Y .

In particular, Ω is disjoint from the singular locus of X.

Thus if Y is a curve and (4.7.3) fails for Y , then Y must be contained in infinitely

many σnΩ. This is impossible, as Ω has no components of finite order under σ.

We next prove two lemmas that will, in many cases, allow us to work with the

full algebra T (D) instead of the subalgebra R. The first is an easy generalization of

a lemma of Rogalski and Stafford.

Lemma 4.7.4. (Compare [RS06, Lemma 9.3]) Let X be a projective scheme with

automorphism σ. Let {(Rn)σn} be a left and right ample of sequence of bimodules on

X such that for each n, the set where Rn is not locally free has dimension ≤ 0. Let

F be a globally generated coherent sheaf on X and let V ⊆ H0(F) be a vector space

that generates F . Let i ∈ Z. Then for n $ 0, the natural homomorphism

α : V ⊗k H0(Rσi

n ) → H0(F ⊗Rσi

n )

is surjective.

Proof. By assumption, there is an exact sequence

0 !! H !! V ⊗OX
!! F !! 0.

Tensoring with Rσi

n , we obtain an exact sequence

0 !! TorX
1 (F ,Rσi

n ) !! H⊗Rσi

n

θn !! V ⊗Rσi

n
!! F ⊗Rσi

n
!! 0.

Let Kn = Im θn. Our assumptions on R imply that TorX
1 (F ,Rσi

n ) is supported

on a set of dimension 0, and so H i(TorX
1 (F ,Rσi

n )) = 0 for all n and for all i ≥ 1.



177

Thus H1(Kn) ∼= H1(H⊗Rσi

n ). By ampleness of {(Rn)σn}, this vanishes for n $ 0.

Then the exact sequence

0 !! H0(Kn) → V ⊗k H0(Rσi

n )
α !! H0(F ⊗Rσi

n ) !! H1(Kn)

gives that α is surjective for n $ 0.

Lemma 4.7.5. Let X be a projective scheme, let σ be an automorphism of X, and

let L be a σ-ample invertible sheaf on X. Suppose that R is a finitely generated

graded subalgebra of B(X,L, σ). For all n ≥ 1 let Rn ⊆ Ln be the sheaf generated

by the sections in Rn. Let T =
⊕

n≥0 H0(Rn)zn.

Suppose that for all n, the set where Rn is not locally free has dimension ≤ 0 and

that the sequence of bimodules {(Rn)σn} is left and right ample. Then T is finitely

generated as a left and right R-module.

Proof. By symmetry, it suffices to prove that RT is finitely generated.

Let k be such that

Rn =
k∑

i=1

RiRn−i

for all n > k. Then

Rn =
k∑

i=1

RiRσi

n−i

for all n > k; taking global sections we have

(4.7.6) Tn =
k∑

i=1

H0(RiRσi

n−i)z
n

for all n > k.

For each 1 ≤ i ≤ k, the sections in Ri generate Ri. Applying Lemma 4.7.4, we

obtain that there is some n0, which we may take to be greater than k, so that the

multiplication map

Ri ⊗ Tn−i → H0(Ri ⊗Rσi

n−i)z
n
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is surjective for n ≥ n0 and 1 ≤ i ≤ k.

Now consider the exact sequence

0 → Ji,n → Ri ⊗Rσi

n−i → RiRσi

n−i → 0.

The kernel Ji,n is supported at finitely many points, and so H1(Ji,n) = 0. Thus the

induced map from H0(Ri ⊗ Rσi

n−i) → H0(RiRσi

n−i) is surjective. Therefore, for all

n ≥ n0, the natural map

Ri ⊗ Tn−i → H0(RiRσi

n−i)z
n

is surjective. Applying (4.7.6), we see that for n ≥ n0,

Tn =
k∑

i=1

RiTn−i.

By induction, T is generated as a left R-module by T≤n0 .

The next step in proving transversality of the data D is to show that D is cosup-

ported on points with dense orbits.

Proposition 4.7.7. Assume Assumption-Notation 4.7.1. Let Z be the subscheme of

X defined by D. Then all points in the support of Z have dense σ-orbits.

Proof. Suppose that there is a point in Z without a dense orbit. We claim that R is

not noetherian.

Let C be the Zariski closure of the orbits of all points without dense orbits in

Supp(Λ ∪ Z ∪ Λ′). Then C is a reduced but not necessarily irreducible curve on

X. Let Γ be an irreducible component of C. For all n ≥ 1, let Πn be the closed

subscheme of X defined by ADσ · · · Dσn−1Cσn
. We note that the scheme-theoretic

intersections Πn ∩ Γ and Z ∩ Γ are supported on points of infinite order, which are
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therefore nonsingular points of Γ (and of X). Note also that because A and C are

maximal with respect to the inclusion AC ⊆ D, we have that

(4.7.8) degΓ(Πn ∩ Γ) = n degΓ(Z ∩ Γ)

for all n ≥ 1.

Fix 0 *= f ∈ R1, and let F = divX(f) + ∆1. As

f ∈ H0(R1) ⊆ H0(ACσL),

we have that F ∩ Γ ⊇ Π1 ∩ Γ. Thus

degΓ(L|Γ) = ∆1.Γ = F.Γ ≥ degΓ(Π1 ∩ Γ) = degΓ(Z ∩ Γ).

We first suppose that this inequality is strict for some Γ, and so

(4.7.9) degΓ(L|Γ) > degΓ(Z ∩ Γ).

For some k, σkΓ = Γ. It is enough to prove that R(k) is not noetherian, so we

may pass without loss of generality to a Veronese subalgebra and assume that Γ is

σ-invariant.

Now, the sheaves Rn|Γ are invertible on Γ; their sections give an idealizer at points

of infinite order on the curve Γ, which will be noetherian by [AS95]. However, for a

sufficiently high multiple dΓ of Γ, the sheaves Rn|dΓ will not be invertible; they will

correspond, roughly speaking, to attempting to näıvely blow up a point on dΓ. Here

we will not have critical transversality, and so we do not expect the corresponding

factor ring of R to be noetherian. We will show that it is not.

For any p ∈ Z ∩ Γ, consider the closed subscheme Zp = Z|{p} of Z supported at

p. For any such p, there is an integer dp such that the Zariski closure of {σn(Zp)}n∈Z

is dpΓ. Let

d = min{dp | dp > 0},
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and let x ∈ Z be a point with dx = d.

Let Σ be the 2d-uple curve defined by the Weil divisor 2dΓ. The action of σ on

X restricts to an automorphism of Σ, which we also denote by σ. There is a natural

map

φ : B(X,L, σ) → B(Σ,L|Σ, σ).

Let S = φ(R). That is,

S =
⊕

n≥0

(
Rn

H0(IΣLn) ∩Rn

)
zn =

⊕

n≥0

Snz
n

We claim that S is not noetherian. This implies that R is not noetherian, giving a

contradiction.

Let Mn = Ln|Σ. For all n, let Sn be the image of Rn ⊗ OΣ under the natural

map

Rn ⊗OΣ →Mn.

The sections in Sn generate the subsheaf Sn of Mn. Let

k = degΓ(Z ∩ Γ) = degΓ(Π1 ∩ Γ),

and let

, = degΓ(L|Γ).

By (4.7.9), , > k.

One can easily see that the data Ω, Λ, and Λ′ give a constant c ≥ 0 so that

degΓ(Ω ∩ Γ + Wn ∩ Γ) = nk + c

for all n $ 0. Thus

degΓ(Rn|Γ) = n(,− k)− c

for all n $ 0.
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We will work with the nonreduced scheme Σ carefully. Fix n; let Zn be the

subscheme of X defined by IΩIWn . Let P be the scheme-theoretic intersection Γ ∩

Zn. Let {p1, . . . , pr} = Supp P . Recall that Γ is nonsingular at all pi. Therefore,

considered as a subscheme of Γ,

P = m1p1 + · · ·+ mrpr

for some integers mi ≥ 1.

If f ∈ OX,pi , let f be its image in OΓ,pi . Then for i = 1, . . . , r, there are elements

fi ∈ (RnL−1
n )pi ⊆ OX,pi so that the valuation of fi in the discrete valuation ring

OΓ,pi is mi. In particular, the image of fi in OΣ,pi is not in the nilradical and so is a

non-zerodivisor. By taking the locally free rank 1 ideal sheaf on Σ generated by the

images of the fi in OΣ,pi , we obtain an invertible ideal sheaf Nn on Σ. The sheaf Nn

defines a locally principal subscheme Q of Σ so that the scheme-theoretic intersection

Q∩Γ is equal to P . Let N ′
n = N ⊗Mn; then N ′

n is an invertible subsheaf of Sn with

degΓ(N ′
n|Γ) = degΓ(Rn|Γ).

Thus

degΓ(N ′
n|Γ) = n(l − k)− c

for n $ 0.

As

lim
n→∞

n(l − k)− c = ∞,

by Lemma 4.2.2 the sequence of bimodules {(N ′
n)σn}n≥0 is a left and right ample

sequence on Σ. Since for any coherent sheaf H on X, the kernel and cokernel of

H⊗N ′
n → H⊗ Sn
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are supported on sets of dimension 0, by Lemma 4.2.4, {(Sn)σn} is also a left and

right ample sequence on Σ.

Let

T =
⊕

n≥0

H0(Σ;Sn)zn.

By Lemma 4.7.5, T is finitely generated as a left and right S-module. Thus it suffices

to prove that T is not noetherian.

Let J be the ideal sheaf of dΓ on Σ. Note that J is σ-invariant. Let J be the

ideal

J =
⊕

n≥0

H0(Σ;JMn ∩ Sn)zn

of T . Let E be the subsheaf DOΣ of OΣ.

There are integers a, n0 ≥ 0 so that

(Sn)σ−a(x) = (Eσa
)σ−a(x)

for all n ≥ n0. As dΓ is the Zariski closure of {σn(Zx)}, we have containments

(JMn)σ−a(x) ⊆ (Sn)σ−a(x) ⊆ (Mn)σ−a(x).

Thus for any m ≥ n0 and n ≥ 1, we have

TmJn ⊆ H0(Σ; EσaMmJ σmMσm

n )zm+n = H0(Σ; EσaJMn+m)zm+n.

Let

K = J≥n0 .

The kernel and cokernel of

J ⊗ Sn → JMn ∩ Sn

are supported on sets of dimension 0, and {(Sn)σn} is a left and right ample sequence

on Σ. Thus by Lemma 4.2.4, there is n1 so that the sheaf JMn ∩ Sn is globally
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generated for n ≥ n1. We may assume that n1 ≥ n0. Then for any n > m ≥ n1, we

have

((K≤m) · T )n ⊆ H0(Σ; EσaJMn+m)zm+n $ Kn+m.

Thus K is not finitely generated as a right ideal of T .

It remains to consider the case that for all irreducible components Γ of C,

degΓ(Z ∩ Γ) = degΓ(L|Γ).

By (4.7.8), this implies that for all n ≥ 1,

(4.7.10) degΓ(Πn ∩ Γ) = degΓ(Ln|Γ).

Let Γ be an irreducible component of C; by passing to a Veronese subalgebra of R

as above we may assume that Γ is σ-invariant.

Fix a point p ∈ Z ∩ Γ. For all i, let

pi = σ−i(p).

By reindexing the orbit of p if necessary, we may assume that pi *∈ Z for i < 0. By

assumption on the defining data for R, if i ≥ 2, then pi *∈ Ω ∪W1. Let O = OX,p.

As usual, we will identify all OX,pi with O. Note that O is a regular local ring of

dimension 2, since X is normal by assumption and the orbit of p is infinite. Let d

be the central stalk of R+ at O(p); that is, there are integers b, which we assume

to be at least 1, and N , which we assume to be at least 2b, so that for n ≥ N and

b ≤ i ≤ n− b we have that

(Rn)pi = d.

The point p has infinite order on Γ, and so Γ is also nonsingular at p. Let y be

the local equation of Γ in O. Thus there is some x ∈ O so that x and y generate the

maximal ideal m of O.
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Our assumptions imply that RN *⊆ H0(IΓLN). Let f ∈ RN ! H0(IΓLN) and let

F = divX(f) + ∆N . The germ of F at pb is in d ! yO and is thus equal to xr + ys

for some r ∈ O ! yO. As

degΓ(F ∩ Γ) = degΓ(∆N ∩ Γ) = degΓ(ΠN ∩ Γ)

by (4.7.10), and

f ∈ H0(ADσ · · · DσN−1CσNLN),

we see that F does not vanish at pb+Nj unless j = 0.

Let d = min{i | yi ∈ d}. Then there is some h ∈ RN so that the germ of H =

divX(h) + ∆n at pb is equal to yd. Thus we have H = dΓ + G, where G(pb) *= 0.

Let m ≥ 2. For i = 1 . . . m− 1, define γi ∈ RNm by

γi = ffσN · · · fσN(i−1)
hσNi

fσN(i+1) · · · fσN(m−1)
.

Then

divX(γi) + ∆Nm =

F + σ−N(F ) + · · ·+ σ−N(i−1)(F ) + σ−Ni(H) + σ−N(i+1)(F ) + · · ·+ σ−N(m−1)(F )

= dΓ + F + · · ·+ σ−N(i−1)(F ) + σ−Ni(G) + σ−N(i+1)(F ) + · · ·+ σ−N(m−1)(F ).

Fix 1 ≤ i ≤ m− 1. The local equation of divX(γi) + ∆Nm at pb+Ni is equal to yd.

On the other hand, if j *= i, the local equation of divX(γj) + ∆Nm at pb+Ni is equal

to (xr + ys)ydβ for some 0 *= β ∈ O. In particular, we see that modulo yd+1, the set

{γj | j *= i}

does not generate γi.

For all i ≥ 1, let

J(i) =
⊕

n≥1

(Rn ∩H0(IiΓLn))zn ⊆ R.
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Let

A = R/J(d + 1).

The computations above imply that the images of the elements γizNm in ANm are

linearly independent, so dim ANm ≥ m. Therefore, the GK-dimension of A is at least

2.

We show that this contradicts our assumption that R is noetherian. Let

B = R/J(1) ⊆
⊕

n≥0

H0(Γ;Rn|Γ)zn.

As the sections in Rn do not vanish identically on Γ, we have dim Bn ≥ 1 for all

n. On the other hand, recall from (4.7.10) that degΓ(Πn ∩ Γ) = degΓ(Ln|Γ) for all

n ≥ 1. As Ω ∩ Γ + Wn ∩ Γ ⊇ Πn ∩ Γ, we have

degΓ(Ln|Γ) ≥ degΓ(Ω ∩ Γ + Wn ∩ Γ) ≥ degΓ(Πn ∩ Γ) = degΓ(Ln|Γ)

for all n ≥ 1. That is,

degΓ(Rn|Γ) = degΓ(Ln|Γ)− degΓ(Ω ∩ Γ + Wn ∩ Γ) = 0

for all n ≥ 1, and dim H0(Γ;Rn|Γ) = 1 for all n. That is, dim Bn = 1 for all n, and

so GKdim B = 1.

Since R is noetherian, each J(i)/J(i + 1) is a finitely generated R-module. The

R-action on J(i)/J(i+1) factors through B. Thus each J(i)/J(i+1) is also a finitely

generated B-module and thus has GK-dimension 1. As an R-module, A has a finite

filtration by modules of the form J(i)/J(i + 1); therefore A has GK-dimension 1.

This gives a contradiction.

Corollary 4.7.11. Assume Assumption-Notation 4.7.1. Then the sequence of bi-

modules

{(Rn(X))σn} = {(Tn(D))σn}
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is left and right ample, and T (D) is a finitely generated left and right R-module.

Proof. Let Z be the closed subscheme defined by D. We have seen in Lemma 4.7.2

that {σnΩ} is critically transverse and in Proposition 4.7.7 that all points in Z have

dense σ-orbits. Since all points in Z have dense orbits and σ is numerically trivial,

by Lemma 4.2.7(2) the sequence of bimodules {(Rn)σn} is left and right ample. By

Lemma 4.7.5, T (D) is a finitely generated left and right R-module.

Theorem 4.7.12. Assume Assumption-Notation 4.7.1. Then the surface data

D = (X,L, σ,A,D, C, Ω, Λ, Λ′)

is transverse.

Proof. Let T = T (D). Recall our convention (4.2.1) that

T =
⊕

n≥0

H0(Tn)zn.

Let Z be the closed subscheme of X defined by D. We have seen that {σnΩ} is

critically transverse and that all points in Z have dense σ-orbits. It remains to show

that the sets {σn(Λ)}n≥0, {σn(Λ′)}n≤0, and {σn(Z)}n∈Z are critically dense.

By Corollary 4.7.11, the sequence of bimodules {(Rn)σn} is left and right ample,

and T is a finitely generated left and right R-module. Therefore, T is noetherian.

We claim that this implies that the sets {σn(Λ)}n≥0, {σn(Λ′)}n≤0, and {σn(Z)}n∈Z

are critically transverse.

By symmetry, it suffices to prove that {σnΛ}n≥0 and {σn(Z)}n≥0 are critically

transverse. Corollary 3.3.15 implies that it suffices to prove that if there is some

p ∈ Z∪Λ so that {σn(p)}n≥0 is not critically dense, then T is not noetherian. Suppose

some such p exists. Let d = max{j | σj(p) ∈ Λ ∪ Z} and let q = σd(p). There is a

curve Γ on X (which we may take to be irreducible but possibly nonreduced) so that



187

the germ of Iσn

Γ = Iσ−nΓ at q is contained in the germ of Rn at q for infinitely many

n ≥ 0; let A ⊆ N be the (infinite) set of n ≥ 0 where this occurs.

For all n ≥ 1, let Jn = Iσn

Γ Ln ∩Rn. The left ampleness of {(Rn)σn} implies that

for n $ 0, Jn is globally generated. Let

J =
⊕

n≥0

H0(Jn)zn,

so J is a left ideal of T .

For any k ∈ N and for any n > k, we have that

(R · J≤k)n ⊆ H0(IqIσn

Γ Ln)zn.

On the other hand,

(Iσn

Γ Ln ∩Rn)q = (Iσn

Γ Ln)q

for any n ∈ A. As Jn is globally generated for n $ 0, we see that (R · J≤k)n *= Jn

for any n $ k ∈ A. Thus J is not a finitely generated left ideal of T , and T is not

left noetherian.

Corollary 4.7.13. Let R be a birationally commutative projective surface. Then

there are transverse surface data

D = (X,L, σ,A,D, C, Ω, Λ, Λ′),

where X is normal, and an integer , > 1 so that

R(%) ⊆ T (D)

and T (D) is a finitely generated left and right module over R(%).

Proof. By Corollary 4.6.12, there are a positive integer , and normal surface data

D = (X,L, σ,A,D, C, Ω, Λ, Λ′) so that

R(X)(%) = T (D).
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By possibly increasing ,, we may also assume that R1 generates K = k(X). Thus

Assumption-Notation 4.7.1 holds for R(%). By Corollary 4.7.11, T (D) is a finitely

generated left and right R(%)-module. Theorem 4.7.12 shows that data D are in fact

transverse.

The most difficult part of the proof of Theorem 4.7.12 is Proposition 4.7.7, and

specifically working in the situation where R and T (D) may not be equal in large

degree. To end this section, we show directly that the full section ring of a näıve

blowup bimodule algebra is noetherian exactly when the orbits of the defining data

are all critically dense. This gives the converse to [RS07, Theorem 3.1].

Proposition 4.7.14. Let X be a projective variety of dimension ≥ 2, let σ be an

automorphism of X, and let L be a σ-ample invertible sheaf on X. Let Z be a 0-

dimensional scheme supported at points with infinite orbits and let I be the ideal

sheaf of Z. As in (1.4.2), let

S = S(X,L, σ, Z) =
⊕

n≥0

H0(IIσ · · · IσnLn)

be the näıve blowup algebra of X at Z. Then S is noetherian if and only if all points

in the support of Z have critically dense orbits.

Proof. If all points have dense orbits, then this is [RS07, Proposition 3.16]. Suppose

that there is some z ∈ Z whose orbit is not dense. We show S is not noetherian.

Let Zd be the maximal subscheme of Z supported on points with dense orbits, and

let Zc be the maximal subscheme of Z supported on points with non-dense orbits.

By assumption, Zc *= ∅.

For all n ≥ 1, let Vn be the closed subscheme defined by IZc · · · Iσn−1

Zc . Let C be

the Zariski closure of the Vn; note that C is a proper subscheme of X. Since C is
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σ-invariant it is disjoint from Zd; thus by computing locally we have

ICIZd · · · Iσn−1

Zd Ln
∼= IC ⊗ IZd · · · Iσn−1

Zd Ln.

Now by [RS07, Theorem 3.1], the sequence {(IZd · · · Iσn−1

Zd Ln)σn} is left and right

ample, so for n $ 0, ICIZd · · · Iσn−1

Zd Ln is globally generated. It is contained in

I · · · Iσn−1Ln by construction.

Let

I =
⊕

n≥1

H0(ICIZd · · · Iσn−1

Zd Ln).

Then I is an ideal of S. Choose k such that if n ≥ k, then ICIZd · · · Iσn−1

Zd Ln is

globally generated. Let p ∈ Zc. Then for any m > n ≥ k, we have that

(S · I≤n)m ⊆ H0(IpICIZd · · · Iσm−1

Zd Lm) $ Im.

Thus I is not finitely generated as a left ideal and S is not left noetherian.

4.8 The correct model for R

Let us review our progress towards proving Theorem 4.1.4. In Theorem 4.6.8, we

constructed surface data D = (X,L, σ,A,D, C, Ω, Λ, Λ′) for an appropriate bimodule

algebra R associated to R; in Theorem 4.7.12 we showed that this data is actually

transverse, and that T (D) is a finite left and right module over some R(k). In some

sense, we may think of T (D) as an “integral extension” of R; note that the variety X

given in Theorem 4.6.8 is normal. Of course, there is no guarantee that R is really

associated to a normal variety. In this section we show how to modify X to find the

true surface associated to R.

We will assume that we are in the situation of Assumption-Notation 4.7.1. Let

D = (X,L, σ,A,D, C, Ω, Λ, Λ′). By Theorem 4.7.12 the data D is transverse.
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Notation 4.8.1. We establish notation that we will use throughout the section. For

any n ≥ 1, Rn defines a rational map

X
βn !!### PN

that is birational onto its image. Let Yn be the closure of the image of X; we write

the induced birational map from X to Yn as βn, as well. If we let α′n : X ′
n → X

be the blowup of X at the base locus Wn of Rn, then by [Har77, Example II.7.17.3]

there is a birational morphism γ′n : X ′
n → Yn such that the diagram

X ′
n

α′n
%%

γ′n

##"
""

""
""

"

X
βn

!!### Yn

commutes. Let λn : Xn → X ′
n be the normalization of X ′

n, and let αn = α′nλn and

γn = γ′nλn. Thus we have

Xn

αn

%%

γn

##'
''

''
''

'

X
βn

!!### Yn

for all n ≥ 1. Note, that as X is normal, α−1
n is defined at all points in X ! Wn.

Let Z be the closed subscheme defined by D and let

W =
⋃

p∈Z∪Λ∪Λ′

O(p).

That is, W is the union of the finitely many (dense) orbits that meet some Wn. Let

U = X ! W. Note that all βn are defined at all points in U . For any n ≥ 1, let En

be the exceptional locus of αn. Then αn induces an isomorphism from Xn ! En →

X ! Wn. Let Un = α−1
n (U). We caution that Un is not Xn ! En.

For all n ≥ 1, let An be the set of points p ∈ U such that βn is not a local

isomorphism at p; that is, the set of p such that the induced map from OYn,βn(p) →
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OX,p is not an isomorphism. We write An as the disjoint union An = Cn > Qn >

Pn, where Cn is the intersection of a curve in X with U , Qn is 0-dimensional and

supported on points of infinite order under σ, and Pn is 0-dimensional and supported

on points of finite order. By assumption on the cardinality of k, any curve in X must

meet U in uncountably many points, and so the sets C, P , and Q are well-defined.

If N > n ≥ 1, let πN
n : YN → Yn be the birational map induced from the

multiplication Rn(RN−n)σn ⊆ RN and Lemma 4.5.12, with E = σ−n(Ω). That is,

the diagram of birational maps

X
βN !!###

βn ##"
"

"
" YN

πN
n

%%
(
(
(

Yn

commutes, and for any x ∈ U ! σ−n(Ω), πN
n is defined at βN(x). Likewise, the

multiplication RN−n(Rn)σN−n ⊆ RN gives a commuting diagram of birational maps

X
βN !!###

βn◦σN−n
##"

"
"

" YN

ρN
n

%%
(
(
(

Yn.

The map ρN
n is defined at βN(x) if x ∈ U ! σ−(N−n)(Ω).

We record for future reference an elementary lemma on birational maps.

Lemma 4.8.2. Let β : X → Y be a birational map of projective varieties that is

defined and is a local isomorphism at x ∈ X; let y = β(x). Then β−1 is defined at

y; in particular, if x′ ∈ X with β(x′) = y, then x′ = x.

Proof. This is almost tautological. The fact that β induces an isomorphism between

the local rings OY,y and OX,x means that there are open neighborhoods x ∈ V ⊆ X

and y ∈ V ′ ⊆ Y so that β restricts to an isomorphism between V and V ′. This
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means that β−1 gives a well-defined map

V ′ → V ⊆ X.

This precisely says that the birational map β−1 : Y → X is defined at y.

Proposition 4.8.3. There is some m1 such that Am1 is σ-invariant and An = Am1

for all n ≥ m1; further, Cm1 ⊆ U and Qm1 = ∅.

Proof. Let y ∈ U and let N > n ≥ 1. If πN
n is defined at βN(y) and βn is a local

isomorphism at y, then from the inclusions

OYn,βn(y) ⊆ OYN ,βN (y) ⊆ OX,y

clearly βN is a local isomorphism at y. As πN
n is defined on βn(U ! σ−nΩ), we see

that

AN ⊆ An ∪ σ−nΩ.

Making the same argument with the map ρN
n , we obtain that

AN ⊆ σ−(N−n)(An) ∪ σ−(N−n)Ω.

Thus

(4.8.4) An+m ⊆ σ−m(Ω ∪ An) ∩ (An ∪ σ−nΩ)

for any n, m ≥ 1. In particular,

Cn+m ⊆ σ−m(Ω ∪ Cn) ∩ (Cn ∪ σ−nΩ)

for all n, m ≥ 1.

Now, {σmΩ}m∈Z is critically transverse. Thus σ−nΩ ∩ σ−mΩ is finite for m $ 0.

Further, Cn ∩ σ−mΩ and σ−mCn ∩ σ−nΩ are finite for m $ 0. Thus for m $ 0, we

have

Cn+m ⊆ Cn ∩ σ−mCn.
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Thus there is some n1 such that if n ≥ n1, then Cn = Cn1 ; further, σ(Cn1) = Cn1 .

Let C = Cn1 .

Now C is a curve in U ; let C be its closure in X. Then C is also σ-stable, and since

all orbits in W are Zariski-dense in X, we have that W ∩ C = ∅. Thus C = C ⊆ U .

For n, m ≥ n1 we have

Qn+m ⊆ An+m ⊆ σ−m(Ω ∪ C ∪Qn ∪ Pn) ∩ (Qn ∪ C ∪ Pn ∪ σ−nΩ).

As

Qn ∩ C = Qn ∩ σ−m(C) = ∅

for n ≥ n1, and Qn ∩ σk(Pm) = ∅ for all n, m, k by definition, we see that

Qn+m ⊆ σ−m(Ω ∪Qn) ∩ (Qn ∪ σ−nΩ)

for n ≥ n1 and m ≥ 1.

Choose k such that

(4.8.5) Ω ∩ σ−1Ω ∩ · · · ∩ σ−kΩ = ∅.

Such k exists because, by transversality of the data D, Ω contains no forward σ-orbits.

Choose n2 ≥ n1 such that if n ≥ n2, then we have for i = 0 . . . k that

Qn1+i ∩ σ−(n−(n1+i))(Qn1+i ∪ Ω) = ∅.

We may do this because each finite set Qn1+i is supported on infinite orbits and

{σnΩ} is critically transverse.

So we have that for i = 0 . . . k and for r ≥ n2 that

Qr ⊆ σ−(r−(n1+i))(Qn1+i ∪ Ω) ∩ (Qn1+i ∪ σ−(n1+i)Ω)

⊆ σ−(n1+i)Ω
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and so Qr = ∅ for r ≥ n2 by (4.8.5).

Finally, Ω does not contain any points of finite order, and by construction Pn is

disjoint from C and from Qn. Thus (4.8.4) implies that

Pn+m ⊆ Pn ∩ σ−mPn

for all n ≥ n1 and m ≥ 1. Thus there is some n3 ≥ n2 such that Pn3 is σ-invariant

and Pn = Pn3 if if n ≥ n3. The result is proven for m1 = n3.

Notation 4.8.6. Let m1 be the integer given by Proposition 4.8.3. Let A = Am1 ,

C = Cm1 , and P = Pm1 . Recall that Qn = ∅ for all n ≥ m1.

Corollary 4.8.7. For n ≥ m1, the only curves in Xn that are contracted by γn are

contained in the exceptional locus En of αn. In particular, the map γn is finite at all

points of Un, and βn is finite at all points of U .

Proof. Suppose that n ≥ m1 and that γn contracts some irreducible curve Γ that

is not contained in En. By assumption on the cardinality of k, Γ meets Un. By

construction, we have that Γ ∩ Un ⊆ α−1
n Cn = α−1

n C. Now, as αn is an isomorphism

away from En, the curve α−1
n (C) is closed in Xn. Thus

Γ = Γ ∩ Un ⊆ α−1
n (C) = α−1

n C.

This means that αn(Γ) ⊆ C ⊂ U , so αn(Γ) is disjoint from Bs(Rn). As βn contracts

the curve αn(Γ), Lemma 4.5.9 implies that ∆n.αn(Γ) = 0. This contradicts the

ampleness of ∆n by the Nakai-Moishezon criterion ([Har77, Theorem V.I.10]; see

[Laz04, Theorem 1.2.23] for a reference that includes singular surfaces). As αn is a

local isomorphism at all points in Un, the statement on βn follows immediately.

We recall some terminology from commutative algebra. Let R be a commutative

noetherian k-algebra, and let T be its normalization. Recall that the S2-ification of
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R is the unique minimal k-algebra S ⊆ T such that R ⊆ S and S satisfies Serre’s

condition S2. More explicitly,

S =
⋂

P∈Spec R
ht P=1

RP .

See [Kol85, Definition 2.2.2(ii)] and subsequent discussion.

We give a lemma on the domain of definition of birational maps of S2-ifications.

Lemma 4.8.8. Let T be a normal commutative domain that is a finitely generated

k-algebra, and let R, R′ ⊆ T be finitely generated subalgebras so that T is the normal-

ization of both R and R′. Let S, respectively S ′, be the S2-ification of R, respectively

R′. Suppose that the induced birational map

π : Spec R !!### Spec R′

is defined away from a locus of codimension 2. Then the induced birational map

ζ : Spec S !!### Spec S ′

is defined everywhere; that is, S ′ ⊆ S.

Proof. Because π is defined in codimension 2, for every height 1 prime P of R, π is

defined at the generic point of V (P ) ⊆ Spec R. That is, for every height 1 P , we

have R′ ⊆ RP . Thus

R′ ⊆
⋂

P∈Spec R
ht P=1

RP = S.

By definition, S ′ ⊆ S.

Proposition 4.8.9. If n $ 0, then the rational maps πn+1
n , ρn+1

n : Yn+1 → Yn are

local isomorphisms everywhere on the image of U ; in particular, they are defined

everywhere on the image of U .
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Proof. We continue to let m1, A, C, and P be as in Notation 4.8.6. In particular, if

n ≥ m1 then γn : Xn → Yn is a local isomorphism at all points in Un ! α−1
n (C ∪ P ).

Let n ≥ m1. Recall that if x ∈ U ! σ−n(Ω), then πn+1
n is defined at βn+1(x). As

σ−n(Ω) contains no points of finite order, πn+1
n is defined at all points in βn+1(P ). We

saw in Corollary 4.8.7 that βm is finite at all p ∈ U , and in particular, at all p ∈ P .

By finiteness of the integral closure, there is some m2 ≥ m1 so that if n ≥ m2, then

πn+1
n is a local isomorphism at all points in βn+1(P ).

Let n ≥ m2. Now, let x ∈ U ! A. Then βn+1 and βn are local isomorphisms at x,

and thus by Lemma 4.8.2, β−1
n+1 is defined at βn+1(x). Thus πn+1

n = βnβ
−1
n+1 is defined

and is a local isomorphism at βn+1(x).

The only points where πn+1
n may not be defined thus lie in βn+1(C ∩ σ−n(Ω)). If

x ∈ U ! (σ−n(Ω) ∩ C), then πn+1
n is defined and is a local isomorphism at βn+1(x).

The intersection σ−n(Ω)∩C is finite by transversality of Ω, since C is σ-invariant.

Thus πn+1
n is defined at the generic point of each component of βn+1(C). As γn is

finite at each point of Un, by finiteness of the integral closure there is m3 ≥ m2 such

that if n ≥ m3, then πn+1
n is an isomorphism at the generic point of each component

of βn+1(C).

For each n ≥ m3, let δn : Zn → Yn be the projective variety obtained by taking

the S2-ification of Yn at all points in βn(C). Now, Xn is normal, so the birational

morphism γn : Xn → Yn factors through Zn, and there are birational morphisms

εn : Xn → Zn and a birational map ηn : X → Zn so that the diagram

Xn

αn

""&&
&&

&&
&&

εn

%%

γn

##'
''

''
''

'

X
ηn !!###

βn

'') * + # , - .Zn
δn !! Yn

commutes. In particular, ηn is defined at all points of U .
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Let ζn+1
n : Zn+1 → Zn be the induced birational map such that the diagram

(4.8.10) X
ηn+1!!###

ηn (($
$

$
$ Zn+1

δn+1 !!

ζn+1
n

%%
(
(
(

Yn+1

πn+1
n

%%
(
(
(

Zn δn

!! Yn

commutes. We claim that for n ≥ m3, that the rational map ζn+1
n is defined at all

points of ηn+1(U).

Let p ∈ U ! (C ∪ P ). Then βn+1 and therefore ηn+1 is a local isomorphism at p,

so, using Lemma 4.8.2, ζn+1
n = ηnη

−1
n+1 is defined at ηn+1(p).

If p ∈ P and βn+1(p) *∈ βn+1(C), then by our choice of n, the map πn+1
n is a

local isomorphism at βn+1(p). Thus βn(p) *∈ βn(C). By construction δn is a local

isomorphism at ηn(p) and so ζn+1
n = δ−1

n πn+1
n δn+1 is defined at ηn+1(p).

Now let p ∈ C. We have seen that πn+1
n is defined on βn+1(U), except at a 0-

dimensional locus contained in βn+1(C). It follows from Lemma 4.8.8 that ζn+1
n is

defined at ηn+1(p). This completes the proof of the claim.

Using finiteness of the integral closure again, we may choose m4 ≥ m3 so that

ζn+1
n is a local isomorphism at all points of ηn+1(U) for n ≥ m4. For n ≥ m4, let

Fn = {p ∈ C | δn is not a local isomorphism at ηn(p)}.

As δn is finite, the set Fn is finite. Arguing as in the proof of Proposition 4.8.3, and

using the maps ζn+m
n , we have that

Fn+m ⊆
(
Fn ∪ σ−n(Ω ∩ C)

)
∩ σ−m

(
Fn ∪ (Ω ∩ C)

)

if n ≥ m4. Since Ω∩C consists of finitely many points of infinite order, for n, m $ 0

we have that

σ−n(Ω ∩ C) ∩ σ−m(Fn ∪ (Ω ∩ C)) = Fn ∩ σ−m(Ω ∩ C) = ∅.
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Thus for m, n $ 0, we have that

Fn+m ⊆ Fn ∩ σ−mFm,

and so for n $ 0, we have that Fn = Fn+1 is σ-invariant. In particular, Fn∩σ−nΩ = ∅.

This means that δn+1 is a local isomorphism at all points of ηn+1(σ−nΩ ∩ U). By

(4.8.10), πn+1
n = δnζn+1

n δ−1
n+1 is defined everywhere in βn+1(σ−nΩ ∩ U). Thus πn+1

n is

defined everywhere in βn+1(U) for n ≥ m4.

The argument that for n $ 0, ρn+1
n is defined everywhere on βn+1(U) is completely

symmetric. By finiteness of the integral closure, we see that for n $ 0 both πn+1
n

and ρn+1
n are local isomorphisms at every point of βn+1(U).

We establish some more notation, which we will use in the next few results.

Notation 4.8.11. Assume Assumption-Notation 4.7.1. Let m be such that for

n ≥ m− 1, the rational maps πn+1
n and ρn+1

n are defined and are local isomorphisms

at every point in γn+1(U). We call Ym a stable scheme for R. Let C ⊂ U be the

σ-invariant curve where γm is not a local isomorphism, and let P ⊂ U be the σ-

invariant 0-dimensional subscheme where γm is not a local isomorphism. Let F be

the σ-invariant subset of C that maps onto points where Ym does not satisfy S2.

For all n ≥ 2, we define a birational automorphism τn of Yn by setting

τn = (πn
n−1)

−1ρn
n−1.

By construction, τnγn = γnσ as birational maps. Proposition 4.8.9 implies that for

n ≥ m, τn is an automorphism of γn(Un).

For all n, m ≥ 1, we define birational maps

pn+m
n , rn+m

n : Xn+m → Xn,
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where pn+m
n = (αn)−1αn+m and rn+m

n = α−1
n σmαn+m. By construction, we have

πn+m
n γn+m = γnp

n+m
n

and

ρn+m
n γn+m = γnr

n+m
n

as birational maps from Xn+m to Yn.

Let Z be the subscheme of X defined by D. Recall that W =
⋃

p∈Z∪Λ∪Λ′ O(p) and

that U = X!W. The map βm is defined and finite at every point of U . Heuristically,

it may fold U along C or pinch U into a cusp at some point of P . At points of F , βm

does some additional cusping, since there Ym fails S2. We will construct the variety

Y by cusping and folding U along C, P , and F , and gluing in the points of W, which

correspond to orbits on which βm is not always defined, to obtain a finite morphism

from X to Y .

There is one technicality still to dispose of: in order to glue as described, we need

the sets

γm(Um) = βm(U)

and

γm(α−1
m (W))

to be disjoint, at least for large m. Proving this is the content of the next few results.

We will need to look carefully at how our various birational maps affect W, and

we establish some more notation. For any w ∈ W and n ∈ Z, we let wn = σ−n(w).

Definition 4.8.12. Let w ∈ W. Let O = OX,w, and let mn
i be the germ of RnL−1

n

at wi, regarded as an ideal in O, as usual. We say that the orbit O(w) is nice if there

is an integer j so that Ω∩O(w) ⊆ {wj} and so that there are ideals a, d, and c of O

so that for all n ≥ 1, we have
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• mn
j = a;

• if 1 ≤ i ≤ n− 1 then mn
i+j = d;

• mn
n+j = c; and

• if i < 0 or i > n then mn
i+j = O.

If O(w) is nice and j = 0, then we say that w itself is nice; by reindexing, if O(w) is

nice we may always assume that w is nice.

Niceness is a purely formal notion; if O(w) is nice, it is easier to analyze the

behavior of the loci γn(α−1
n (O(w)) for various n. We carry out this analysis in the

next three lemmas.

We first establish some more notation.

Notation 4.8.13. Let w ∈ W be a nice point. Define curves

Ea = α−1
2 (w0),

Ed = α−1
2 (w1),

and

Ec = α−1
2 (w2).

That is, Ed is the exceptional locus obtained by blowing up the ideal d and normal-

izing, and similarly for Ea and Ec.

For any n ≥ 1 and i ∈ Z, define En
i ⊆ Yn by

En
i = γn(α−1

n (wi)).

Lemma 4.8.14. Suppose that w ∈ W is nice. Then for all n, m ≥ 1 the map

pn+m
n is defined at all points in α−1

n+m(O(w) ! {wn}), and is a local isomorphism at
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all points in α−1
n+m(O(w) ! {wn, wn+1, . . . , wn+m}). Likewise, rn+m

n is defined at all

points in α−1
n+m(O(w)!{wm}) and is a local isomorphism at all points in α−1

n+m(O(w)!

{w0, . . . , wm}).

Proof. Fix n, m ≥ 1 and let w ∈ W be a nice point. By definition, Supp Wn ⊆

{w0, . . . , wn},and so the map αn is a local isomorphism at all points in α−1
n (O(w) !

{w0, . . . , wn}). Furthermore, as mn
0 = a, we have that α−1

n (w0) ∼= Ea. Likewise,

α−1
n (wn) ∼= Ec, and for 1 ≤ i ≤ n− 1, α−1

n (wi) ∼= Ed.

Therefore, if i < 0 or i > n + m, then pn+m
n = α−1

n αn+m is defined and is a local

isomorphism at the point α−1
n+m(wi). For 0 ≤ i ≤ n− 1, the stalks mn+m

i and mn
i are

isomorphic. Thus α−1
n αn+m extends to a map that is defined and a local isomorphism

at all points of α−1
n+m(wi). For n + 1 ≤ i ≤ n + m, α−1

n is defined at wi, so pn+1
n is

defined on α−1
n+m(wi), although it is not necessarily a local isomorphism.

We repeat this analysis for the maps rn+m
n . If i < 0 or i > n + m, then αn+m is

a local isomorphism at the point α−1
n+m(wi), and α−1

n is defined (and is thus a local

isomorphism) at wi−m = σm(wi). Thus rn+m
n = α−1

n σmαn+m is a local isomorphism

at α−1
n+m(wi). If m + 1 ≤ i ≤ n + m, then α−1

n+m(wi) ∼= α−1
n (wi−m) and rn+m

n extends

to a local isomorphism at all points in α−1
n+m(wi). Finally, if 0 ≤ i ≤ m− 1, then α−1

n

is defined at wi−m and so rn+m
n is defined on α−1

n+m(wi).

Lemma 4.8.15. Suppose that w ∈ W is a nice point.

(1) For m, n ≥ 1, if i *= n then πn+m
n is defined at all points in En+m

i =

γn+m(α−1
n+m(wi)), and πn+m

n (En+m
i ) = En

i .

(2) For m, n ≥ 1, if i *= m then ρn+m
n is defined at all points in En+m

i =

γn+m(α−1
n+m(wi)), and ρn+m

n (En+m
i ) = En

i−m.
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Proof. (1) On Xn+m, the rational functions in Rn+m define the morphism

γn+m : Xn+m
!! Yn+m .

The rational map induced by the rational functions in Rn is easily seen to be

γnpn+m
n = πn+m

n γn+m : Xn+m
!!### Yn ,

and the rational map induced by the rational functions in R
σn

m is

γmrn+m
m = ρn+m

m γn+m : Xn+m
!!### Ym .

If i *= n, then pn+m
n and rn+m

m are defined at all points in α−1
n+m(wi).

We wish to apply Lemma 4.5.12. To do so, we must calculate the divisors and

base loci on Xn+m associated to the vector spaces Rn+m, Rn, and R
σn

m .

For 0 ≤ i ≤ m+n, let Fi be the effective exceptional Weil divisor α−1
n+m(wi). Now,

IFi is the expansion of mn+m
i to Xn+m. By [Har77, Proposition 7.1], the expansion

of mn+m
i to X ′

n+m is Cartier; the ideal sheaf IFi is its pullback to Xn+m and is thus

also Cartier.

By Lemma 4.4.4, we have

DXn+m(Rn+m) = α∗n+mDn+m − F0 − · · · − Fn+m.

Let G3 = DXn+m(Rn+m). Let

G1 = α∗n+mDn+m − F0 − · · · − Fn−1,

and let

G2 = α∗n+mDn+m − Fn+1 · · · − Fn+m.

The niceness of w implies that G1 − DXn+m(Rn) and G2 − DXn+m(R
σn

m ) are both

effective and supported on Fn. That is, the base locus of the rational functions in Rn
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with respect to the Cartier divisor G1 is contained in Fn. Likewise, the base locus of

the rational functions in R
σn

m with respect to the Cartier divisor G2 is also contained

in Fn.

We now apply Lemma 4.5.12 to the multiplication RnR
σn

m ⊆ Rn+m. We have that

G3 −G1 −G2 = −Fn + α∗n+mσ−nΩ.

Recall that σ−nΩ ∩O(w) ⊆ {wn}. Thus by Lemma 4.5.12, the rational map

πn+m
n = (πn+m

n γn+m)γ−1
n+m : Yn+m

!!### Yn

is defined at every point of γn+m(Fi) for every i *= n. That is, if i *= n, then πn+m
n is

defined at all points of En+m
i . That the image of En+m

i is En
i is immediate.

The proof of (2) is symmetric: we use the multiplication RmR
σm

n ⊆ Rn+m.

Lemma 4.8.16. Suppose that w ∈ W is a nice point. Then there are integers n1

and b ≥ 1 so that:

(1) If n ≥ n1 and i ≤ n − b then for all m ≥ 1, πn+m
n is a local isomorphism at

all points of En+m
i .

(2) If n ≥ n1 then for all m ≥ 1 and i ≥ m + b, ρn+m
n is a local isomorphism at

all points of En+m
i .

Proof. Fix i ∈ Z. For n ≥ i + 1, the map πn+1
n is defined on En+1

i by Lemma 4.8.15,

and

πn+1
n (En+1

i ) = En
i .

We claim that for n $ 0, the map πn+1
n is finite at all points of En+1

i . This is clear

if i < 0, as then by Corollary 4.8.7 γn+1 and γnpn+1
n are finite at α−1

n+1(wi).

Now suppose that n > i ≥ 0. By Lemma 4.8.15(1), πn+1
n is defined on En+1

i . If it

is not finite on En+1
i , it must contract some component of it by Corollary 4.8.7. Let
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E = α−1
i+1(wi); thus E is isomorphic to either Ea or Ed. We have an infinite series of

surjections

(4.8.17) E

))//
//

//
//

/

%% **00
00

00
00

0

· · · !! Ei+3
i πi+3

i+2

!! Ei+2
i πi+2

i+1

!! Ei+1
i

where E surjects onto all terms. Since E has only finitely many components, for

n $ 0 the map πn+1
n must be finite at all points of En+1

i , and the claim is proved.

Fix a ∈ Z. We claim that there is some integer Na so that if n ≥ Na and i ≤ a,

then πn
n−1 is a local isomorphism at all points in En

i .

Note that if i < 0, then β1 is defined and finite at wi. Let

A = {i < 0 | β1 is not a local isomorphism at wi}.

The set A is finite. If i < 0 and i *∈ A, then OY1,β1(wi) is integrally closed. Thus

for all n ≥ 1 the map πn
1 , which is finite at the point En

i , is automatically a local

isomorphism at En
i . By finiteness of the integral closure, there is some N so that for

n ≥ N , πn
n−1 is a local isomorphism at all points in the finite point set

⋃

i∈A
En

i .

Then for any i ≤ −1 and n ≥ N , πn
n−1 is a local isomorphism at any point in En

i ,

and we may take Na = N for any a ≤ −1.

If a ≥ 0, choose N ′ so that πn
n−1 is finite at all points of En

i for 0 ≤ i ≤ a

and n ≥ N ′. By finiteness of the integral closure, there is some N ′′ ≥ N ′ so that

πn
n−1 is a local isomorphism at all points of En

i for 0 ≤ i ≤ a and n ≥ N ′′. Let

Na = max{N ′′, N−1}.

Repeating this analysis for the ρn
n−1, for any a we can find Ma so that for all

n ≥ Ma and i ≥ n− a, the map ρn
n−1 is a local isomorphism at all points in En

i .
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Let n ≥ 2. As n *= 2n − 1, by Lemma 4.8.15(1) the map π2n
2n−1 is defined at all

points of E2n
n . It maps E2n

n onto E2n−1
n . Likewise, by Lemma 4.8.15(2), as n *= 1 the

map ρ2n−1
2n−2 is defined at all points of E2n−1

n . Thus, the map

qn = ρ2n−1
2n−2π

2n
2n−1

is defined at all points of E2n
n . It is finite unless it contracts a component of E2n

n . As

Ed surjects onto all E2n
n , arguing as above we obtain that there is some b so that for

all n > b, qn is a local isomorphism at all points of E2n
n . We may take b ≥ 1.

Sublemma 4.8.18. For any m ≥ b, for all j, n with b < j ≤ m and b+j ≤ n ≤ m+j,

the map ρn
n−1 is defined and is a local isomorphism at all points of En

j . For all j, n

with b ≤ j ≤ m and b + j < n ≤ m + j, the map πn
n−1 is defined and is a local

isomorphism at all points of En
j .

Proof of Sublemma 4.8.18. We prove the sublemma by inducting on m; note that it

is vacuously true for m = b. Assume the sublemma holds for m. We show it holds

for m + 1. It suffices to prove the following:

(i) For all b ≤ j ≤ m, the map πj+m+1
j+m is defined and a local isomorphism at all

points of Ej+m+1
j .

(ii) For all b < j ≤ m + 1, the map ρj+m+1
j+m is defined and a local isomorphism at

all points of Ej+m+1
j .

(iii) For all b+m+1 < n ≤ 2m+2, the map πn
n−1 is defined and a local isomorphism

at all points of En
m+1.

(iv) For all b+m+1 ≤ n ≤ 2m+1, the map ρn
n−1 is defined and a local isomorphism

at all points of En
m+1.

By symmetry it suffices to prove only (i) and (ii). We first verify that the maps

are defined. In case (i), as m *= 0 and so j + m *= j, by Lemma 4.8.15(1) the map
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πj+m+1
j+m is defined on Ej+m+1

j . In case (ii), as j *= 1 = (j + m + 1) − (j + m), by

Lemma 4.8.15(2) the map ρj+m+1
j+m is defined on Ej+m+1

j .

Fix b ≤ j ≤ m, and consider the compositions

f = πj+m+1
j+m ρj+m+2

j+m+1 · · · ρ2m+2
2m+1

and

g = π2j+1
2j · · · πj+m

j+m−1.

(If j = m, we define g = IdY2m .) By induction, g is defined at all points of Ej+m
j ,

and we have seen that f is defined at all points of E2m+2
m+1 . Further,

f(E2m+2
m+1 ) = πj+m+1

j+m ρj+m+2
j+m+1(E

j+m+2
j+1 ) = πj+m+1

j+m (Ej+m+1
j ) = Ej+m

j .

Thus gf is defined at all points in E2m+2
m+1 . Now, the rational map qj+1 · · · qm+1 is

a local isomorphism at all points of E2m+2
m+1 . As gf and qj+1 · · · qm+1 agree where

both are defined, we see that f is a local isomorphism at all points of E2m+2
m+1 . Thus

all composition factors of f are local isomorphisms. In particular, πj+m+1
j+m is a local

isomorphism at all points of Ej+m+1
j , and ρj+m+2

j+m+1 is a local isomorphism at all points

of Ej+m+2
j+1 . This proves that (i) and (ii) hold.

We return to the proof of Lemma 4.8.16. It follows from the sublemma (by letting

m go to infinity) that if b+1 ≤ j ≤ n−b−1, both πn
n−1 and ρn

n−1 are defined and are

local isomorphisms at all points in En
j . This b is the integer we seek in the statement

of the lemma; now let n1 = max{Nb, Mb, 2b}.

Lemma 4.8.19. There is some integer k so that for all w ∈ W, the σk-orbit Ok(w)

is nice.

Proof. Clearly it suffices to prove that there is an integer k that works for all points in

one σ-orbit O(w). For one orbit, we may let k be the integer N from Lemma 4.6.6.
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We are finally ready to prove:

Proposition 4.8.20. Assume Assumption-Notation 4.7.1 and Notation 4.8.11. For

all n $ 0, the sets γn(α−1
n (W)) and γn(Un) are disjoint.

Proof. Fix t ≥ 1. It is clearly sufficient to prove that for all w ∈ W, for n $ 0 the

sets

γn(Un)

and

γn(α−1
n (Ot(w)))

are disjoint. Applying Lemma 4.8.19 and Lemma 4.6.11, by letting t be sufficiently

large we may thus reduce without loss of generality to considering nice points.

Let w ∈ W be nice, and adopt Notation 4.8.13. Let n1 and b be the integers

constructed in Lemma 4.8.16; let N ≥ max{n1, 2b} be such that for n ≥ N , τn is an

automorphism of γn(U). This exists by Proposition 4.8.9.

Suppose there is some e ∈ EN and u ∈ UN such that γN(e) = γN(u) = x. As e

and u are in different connected components of γ−1
N (x), clearly x is of finite order,

say k, under τ . Let i be such that αN(e) = wi.

First suppose that i ≤ N−b. If i ≥ 0, let n = N +(i+1)k; if i < 0, let n = N +k.

As i < N < n, (pn
N)−1 is defined at e; let e′ = (pn

N)−1(e). Let u′ = (pn
N)−1(u). Then

πn
Nγn(u′) = γNpn

N(u′) = x = γNpn
N(e′) = πn

Nγn(e′).

Note that i < N , so πn
N is defined at γn(e′). By the choice of N and n, πn

N is

one-to-one on γn(Un) ∪ En
i and so

γn(e′) = γn(u′).
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But now, as (τn)k(x) = x, we have

x = πn
Nγn(u′) = πn

N(τn)n−Nγn(u′) = ρn
Nγn(u′) = ρn

Nγn(e′) = γNrn
N(e′).

Our assumption on i ensures that n−N *= i and so rn
N(e′) is well-defined. As

αNrn
N(e′) = wi−(n−N),

we see that rn
N(e′) *∈ {e′, u}. We have produced a new point in γ−1

N (x). Continuing,

we may produce infinitely many such points, which is impossible. Thus i > N − b.

Arguing symmetrically, we obtain that i < b. Since N ≥ 2b, we see that no such

e can exist.

Theorem 4.8.21. Assume Assumption-Notation 4.7.1. Then there are a projective

variety Y and a finite birational morphism θ : X → Y such that for all n $ 0

the rational map from Y to PNn induced by the rational functions Rn is a closed

immersion at every point of Y ! θ(W). Further, there are a numerically trivial

automorphism φ of Y such that θσ = φθ, an ample and φ-ample invertible sheaf L′

on Y so that θ∗L′ = L, and a locally principal subscheme Ω′ of Y so that Ω = θ∗Ω′.

Furthermore, for n $ 0, the rational functions in Rn correspond to sections of the

invertible sheaf IΩ′ ⊗ L′(L′)φ · · · (L′)φn−1
, and their base locus is equal to θ(Wn).

Proof. We continue to use Notation 4.8.1 and Notation 4.8.11, so m is such that Ym

is stable, and C ∪ P is the subset of U on which βm is not a local isomorphism. By

Proposition 4.8.20, by increasing m if necessary we may assume also that

(4.8.22) γm(α−1
m (W)) ∩ γm(U) = ∅.

Let τ be the birational automorphism τm of Ym.

Let H ⊆ W be the set

{x ∈ W | either βm is undefined at x or βm is not a local isomorphism at x}.
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Thus H = {h1, . . . , hs} is the finite set of “bad points” of βm that do not lie on

C ∪ P . Let G = α−1
m (H).

We claim that the sets βm(U!(C∪P )), βm(C∪P ), γmα−1
m (H), and γmα−1

m (W!H)

are pairwise disjoint. To see this, recall that βm is a local isomorphism at all points

of X ! (C ∪ P ∪ H). Thus if x ∈ U ! (C ∪ P ), then β−1
m is defined at βm(x). As

α−1
m is defined at x, if x′ ∈ Xm with γm(x′) = βm(x), then x′ = α−1

m (x). Thus

βm(U ! (C ∪ P )) is disjoint from the other three sets. That βm(C ∪ P ) is disjoint

from the other sets follows; recall that βm(U) ∩ γmα−1
m (W) = ∅.

If x ∈ α−1
m (W ! H) and x′ ∈ α−1

m (W) with γm(x) = γm(x′), then note that β−1
m is

defined at γm(x). Therefore,

αm(x′) = β−1
m γm(x) = αm(x)

and x′ *∈ α−1
m (H). This completes the proof of the claim.

To construct Y , let

V1 = X ! (C ∪ P )

and let

V2 = Ym ! γm(G).

Let V12 = V1∩(αmγ−1
m (V2)), and let V21 = V2∩γmα−1

m (V1). By the claim just previous,

V12 = V1 − H and V21 = V2 − βm(C ∪ P ). Further, βm(V12) = V21; note that βm is

defined and is a local isomorphism at all x ∈ V12.

As βm defines a bijection between V12 and V21 that is a local isomorphism at each

point, it is an isomorphism between V12 and V21. By [Har77, Example 2.3.5] there is

a scheme Y given by glueing V1 and V2 along the isomorphism βm : V12 → V21. For

i = 1, 2 let ψi be the induced map from Vi to Y .
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We now construct the automorphism φ of Y . Let

V22 = V2 ! γm(α−1
m (σ−1(H))).

We define morphisms

φ1 = ψ1σ : V1 → Y,

φ21 = ψ1σβ−1
m : V21 → Y,

and

φ22 = ψ2τ : V22 → Y.

We check that φ1, φ21, and φ22 are well-defined; that is, that they are in fact

morphisms. First, V1 is σ-invariant by construction, so σ(V1) ⊆ V1 and φ1 is well-

defined. Since β−1
m (V21) = V12 ⊆ V1, φ21 is also well-defined. Now, if y ∈ V22∩γm(Um),

then, using (4.8.22), we have that τ(y) ∈ γm(Um) ⊆ V2 and so φ22 is defined at

y. Finally, if y ∈ V22 ∩ γmα−1
m (W), then β−1

m is defined at y. Let x = β−1
m (y) ∈

W ! H ! σ−1(H). As σ(x) *∈ H, the map τ = βmσβ−1
m is defined at y. Further, βm

is a local isomorphism at σ(x), and so βmσ(x) *∈ γm(G) and τ(y) ∈ V2. Thus ψ2 is

defined at τ(y).

We next claim that V21∪V22 = V2. To see this, let y ∈ V2 !V22 = γmα−1
m (σ−1H)∩

V2. Then there is x ∈ σ−1(H) so that y ∈ γmα−1
m (x); as y ∈ V2, therefore x *∈ H. As

x is certainly not in C ∪ P , we see that x ∈ V12, and βm(x) = y ∈ V21.

The diagram

V2
σβ−1

m

++1
1

1
1

τ

##"
"

"
"

X
βm !!#######

ψ1 ##"
"

"
" Ym

ψ2,,!
!

!
!

Y
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of rational maps commutes by construction. Note that the left side of this diagram

gives φ21 and the right side gives φ22, considered as rational maps from V2 to Y .

Thus φ21 and φ22 agree where both are defined; in particular, they agree on V21∩V22.

By [Har77, page 88], the morphisms φ21 and φ22 glue to give a birational morphism

φ2 : V2 → Y . It is clear that φ1 = φ2βm on V12, and so φ1 and φ2 glue via βm : V12 →

V21 to give a morphism φ : Y → Y . As φ is a local isomorphism at every point of Y ,

it is an automorphism of Y by Lemma 4.8.2.

Now let V3 = X !H. Note that βm is defined on V3, and βm(V3) = V2, by (4.8.22).

Define

ψ3 = ψ2βm : V3 → Y.

Now, V3∪V1 = X, and V3∩V1 = V12. By construction, ψ3 = ψ1 on V12. Thus we may

glue ψ1 and ψ3 to obtain a morphism θ : X → Y . Clearly θσ = φθ. Furthermore, as

both ψ3 and ψ1 are finite maps, θ is finite.

Clearly Y is integral. We claim that Y is also separated. To see this, consider the

diagonal ∆Y = {(y, y)} ⊆ Y × Y . This is the image of the diagonal ∆X ⊆ X × X

under the finite morphism θ × θ. As X is separated, ∆X is closed. By [Har77,

Exercise 3.5] the finite morphism θ × θ is closed. Thus ∆Y is also closed, and so Y

is separated. Thus Y is a variety.

For all n ≥ 1, the rational functions Rn induce a rational map µn : Y → PNn .

By construction, for n ≥ m, the indeterminacy locus of µn is equal to θ(Wn). In

particular, it is contained in θ(W) and so supported at smooth points of Y . Further,

note that if n ≥ m and x ∈ θ(U), that locally at x the rational map µn factors

through the local isomorphism

(πn
m)−1ψ−1

2 : Y !!### Yn ⊆ PNn .
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Thus µn is locally a closed immersion at any point of Y ! θ(W).

By resolving the indeterminacy locus of µn, we obtain a variety Y ′
n, a morphism

ξn : Y ′
n → Y and a morphism νn : Y ′

n → PNn so that the diagram

Y ′
n

νn

((22
22

22
22

ξn

%%
Y

µn !!### PNn

commutes. For all n, let Nn = ν∗nO(1) and let

Kn =
(
(ξn)∗Nn

)∗∗
.

Away from the indeterminacy locus of µn, Kn is isomorphic to µ∗nO(1) and is in-

vertible. As any rank 1 reflexive module over a regular local ring is invertible, Kn

is invertible on the indeterminacy locus of µn as well, and therefore is an invertible

sheaf on Y for all n ≥ m. Thus Rn ⊆ H0(Kn), and the (set-theoretic) base locus of

the sections Rn of Kn is precisely θ(Wn) for n ≥ m.

For n ≥ m, consider the Weil divisor corresponding to the invertible sheaf θ∗Kn

on X. Away from the finitely many points in Supp Wn, this is equal to ∆n − Ω. As

X is smooth at all points of Supp Wn, by extending this equality to all of X, we

obtain that

IΩLn = OX(∆n − Ω) = θ∗Kn

for n ≥ m.

Let L′ =
(
Km(Km+1)−1

)φ−m

, and let M = K−1
m ⊗L′⊗(L′)φ⊗· · ·⊗ (L′)φm−1

. Then

θ∗L′ =
(
(IΩLm)(IΩLm+1)

−1
)σ−m ∼=

(
Lσm)σ−m ∼= L,

and

θ∗M = (IΩLm)−1Lm
∼= (IΩ)−1.
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As θ∗M corresponds to an effective Cartier divisor, so does M; that is, M−1 is an

ideal sheaf defining a locally principal curve on Y . We will denote this curve by Ω′;

by construction, θ∗Ω′ = Ω. Note that Kn
∼= IΩ′(L′)n.

Recall that L is ample. As θ is finite, L′ is ample by [Gro61, Proposition 2.6.2].

Thus Y carries an ample line bundle and so is projective. The numeric action of φ

is clearly still trivial, and so L′ is also φ-ample by [AV90, Theorem 1.7].

We remark that the fact that Y is a projective variety may also be deduced from

[RS06, Proposition 7.4].

4.9 The proof of the main theorem

At this point, we are very close to finishing the proof of Theorem 4.1.4. Starting

with a birationally commutative projective surface R, we have produced transverse

surface data D = (X,L, σ,A,D, C, Ω, Λ, Λ′) so that (after replacing R by a Veronese

subring) R is contained in T (D), and the bimodule algebras R(X) and T (D) are

equal. We then showed that there are another surface Y and a finite birational

morphism θ : X → Y , so that Y has an automorphism φ conjugate to σ and carries

a φ-ample line bundle L′ that pulls back under θ to L. We further showed that the

rational functions in Rn define a closed immersion at any point of Y ! θ(W) = θ(U)

for n $ 0.

We claim that we may construct transverse surface data

E = (Y,L′, φ,A′,D′, C ′, Ω′, Φ, Φ′)

on Y so that some Veronese of R is actually equal to the ring T (E). We do this in

the next few propositions. We then combine our results to prove Theorem 4.1.4.

Let D = (X,L, σ,A,D, C, Ω, Λ, Λ′) be transverse surface data, and suppose that

R ⊆ T (D) is a graded ring. We begin by establishing sufficient conditions for R
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to actually be equal to T (D) in large degree. Our methods involve reducing the

question to one involving subrings of twisted homogeneous coordinate rings of σ-

invariant curves in X. We wish to use the results of [AS95] on subrings of idealizer

rings on curves; however, as those were proved only for reduced and irreducible

curves, we repeat the proofs here in a more general context.

Theorem 4.9.1. Suppose that the surface data

D = (X,L, σ,A,D, C, Ω, Λ, Λ′)

is transverse. Let T = T (D) and let T = T (D). Let R be a subalgebra of T with

R1 *= 0, and fix 0 *= z ∈ R1. Let Rn = Rnz−1 and let Rn(X) = Rn · OX .

Suppose that Rn(X) = Tn for n $ 0. Let Z be the cosupport of D and let

W =
⋃

p∈Λ∪Λ′∪Z

O(p).

Further assume that for all n $ 0, the rational map defined on X by the rational

functions in Rn is birational onto its image and is a closed immersion at each point

in X ! W. Then Rn = Tn for n $ 0.

We will prove Theorem 4.9.1 in several steps. We first establish some notation.

If Σ is a σ-invariant proper subscheme of X, then σ restricts to an automorphism

of Σ, which we also denote by σ. For any such Σ, let BΣ = B(Σ,L|Σ, σ). We may

consider T and R to be subrings of B(X,L, σ); we will let TΣ, respectively RΣ, be

the image of T , respectively R, under the natural map from B(X,L, σ) to BΣ.

Proof of Theorem 4.9.1. By Lemma 4.2.7, the sequence of bimodules {(Rn)σn} is left

and right ample; thus by Lemma 4.7.5, T is a finitely generated left and right R-

module. Let Jl = l.annR(T/R) and let Jr = r.annR(T/R). Note that Jl is a graded

right ideal of T and that Jr is a graded left ideal of T . Our assumptions imply that
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R and T have the same graded quotient ring, and thus Jl and Jr are nonzero. Let

K = JrJl. Then K *= 0 is a nonzero graded ideal both of R and of T . Note also that

by Proposition 4.2.13, both T and T are left and right noetherian.

By Corollary 4.2.25, there is a σ-invariant ideal sheaf K on X such that for n $ 0,

we have that Kn = H0(KRn)zn. Let Σ be the σ-invariant closed subscheme defined

by K; then dim Σ ≤ 1. By transversality of the defining data for R, the σ-invariant

subscheme Σ is disjoint from W, and Ω ∩ Σ consists of points of infinite order.

Let J be the ideal sheaf on Σ of the scheme-theoretic intersection Ω ∩ Σ. Since

TorX
1 (OΩ,OΣ) = 0 by critical transversality of {σnΩ}, the natural map from

IΩLn ⊗OΣ → Ln ⊗OΣ

is injective, and we see that Rn|Σ = J (Ln|Σ) for n ≥ 1.

Note that R/K and RΣ are equal in large degree, and T/K and TΣ are equal in

large degree. Note also that as for n $ 0 the rational functions in Rn define a closed

immersion at all points of X ! W, that their restrictions to Σ ⊆ X ! W also define

a closed immersion for n $ 0.

We claim that RΣ and TΣ are equal in large degree. Before proving this claim, we

give a lemma generalizing a result of Artin and Stafford.

Lemma 4.9.2. (cf. [AS95, Lemma 4.6]) Suppose, in addition, that there are no

proper σ-invariant subschemes Y of Σ so that (TY )/(RY ) is infinite-dimensional,

and that there are σ-invariant ideal sheaves I1, . . . , I% ⊆ OΣ so that I1I2 · · · I% = 0

on Σ. Then TΣ/RΣ is finite-dimensional.

Proof. The proof is similar to the proof of [AS95, Lemma 4.6]; we give it in detail

because some of the details are different in our slightly more general context.
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Suppose, in contrast, that TΣ/RΣ is infinite-dimensional. We first note that if J

is a nonzero graded ideal of TΣ, then there is a graded ideal J ′ ⊇ K of T so that

J = J ′/K in large degree. By Corollary 4.2.25, in large degree J ′ consists of sections

of Rn that vanish on some σ-invariant proper subscheme Y of Σ, and so (in large

degree) TΣ/J = TY . If J were also an ideal of RΣ, then as by hypothesis RY and TY

are equal in large degree, we would have that RΣ and TΣ are equal in large degree.

Thus RΣ and TΣ have no nonzero ideals in common. By induction, we may assume

that , = 2. Let Z1 and Z2, respectively, be the subschemes of Y defined by I1 and

I2, respectively. Let M = L|Σ and let B = B(Σ,M, σ). For i = 1, 2, let

Ki = Γ∗(Ii) =
⊕

n≥0

H0(Σ; IiMn)zn ⊆ B,

and let Mi = Ki ∩ TΣ. Note that the Mi are two-sided ideals of TΣ. As I1 is an

OZ2-module, the right and left actions of TΣ on M1 factor through T2 = TΣ/M2.

Now, M1 is a finitely generated left and right T2-module, because T2 is a factor

of the noetherian ring T and is therefore noetherian. Let R2 = (RΣ + M2)/M2 ⊆ T2.

By hypothesis, R2 and T2 are equal in large degree. Thus R2 is noetherian, and both

M1 and N = RΣ ∩M1 are finitely generated left and right R2-modules. Let N ′ =

T2NT2 ⊆ M1. Let V be a finite-dimensional subspace of N such that T2V T2 = N ′.

Then, as R2 and T2 are equal in large degree, we have that (T2V T2)n = (R2V R2)n

for n $ 0. Thus for n $ 0, we have

Nn ⊆ N ′
n = (T2V T2)n = (R2V R2)n ⊆ Nn.

Thus N ′/N is finite-dimensional. There is thus some n0 so that N≥n0 = N ′
≥n0

is

a left and right T2-module. That is, N≥n0 is an ideal of TΣ. As N≥n0 ⊆ RΣ and RΣ

and TΣ have no nonzero ideals in common, N≥n0 = 0.



217

Therefore, (RΣ)≥n0 ∩ Γ∗(I1) = 0. That is, (RΣ)≥n0 ↪→ T1. This implies that the

map defined by the sections (RΣ)n of Mn factors through Z1 for n ≥ n0, and so is

not an embedding. This gives a contradiction.

We return to the proof of Theorem 4.9.1. We show that RΣ and TΣ are equal

in large degree. By noetherian induction on Σ, we may assume that for any proper

σ-invariant closed subscheme Y ⊆ Σ, that RY has finite codimension in TY .

We first suppose that Σ is not irreducible. Let k be such that σk fixes all irreducible

components of Σ. The hypotheses of Lemma 4.9.2 thus hold for R(k)
Σ and T (k)

Σ .

Applying Lemma 4.9.2, we see that T (k)
Σ /R(k)

Σ is finite-dimensional.

We show that this implies that TΣ/RΣ is finite-dimensional. Let Fn = Rn|Σ, and

let

F =
⊕

n≥0

(Fn)σn .

The noetherian property of T descends to the OΣ-bimodule algebra F , and so F

and its Veronese F (k) are noetherian. As the restriction of an ample sequence to a

σ-invariant subscheme, the sequence of bimodules {(Frk)σrk} is left and right ample.

Recall that J = IΩOΣ ⊆ OΣ and that M = L|Σ. Fix 0 ≤ i ≤ k − 1, and let

P =
⊕

n≥0

JMi+nk.

The sheaf JMk−i is an invertible sheaf on Σ, so by Lemma 2.3.14, the submodule

lattices of the right F (k)-modules P and

(JMk−i)σk−i ⊗ P ∼=
⊕

n≥0

(JJ σk−iMnk)σnk ⊆ F (k)

are isomorphic. In particular, P is a coherent right F (k)-module.

Fix n0 so that if n ≥ i + n0k, then (RΣ)n generates Pn. Let n1 ≥ n0 be such that

Fi+n0k ⊕ · · · ⊕ Fi+n1k
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generates P≥i+n0k as a right F (k)-module. Then for r ≥ n1, we have

(TΣ)i+rk = H0(
n1∑

j=n0

Fi+jkFσi+jk

(r−j)k) =
n1∑

j=n0

H0(Fi+jkFσi+jk

(r−j)k).

By Lemma 4.7.4, for fixed , and for r $ 0, we have

(RΣ)%(TΣ)rk = H0(F%Fσ"

rk )z%+rk.

Recall that R(k)
Σ and T (k)

Σ are equal in large degree. Thus, by taking r $ 0, we obtain

that

(RΣ)i+rk ⊆ (TΣ)i+rk =
n1∑

j=n0

(RΣ)i+jk(TΣ)(r−j)k =
n1∑

j=n0

(RΣ)i+jk(RΣ)(r−j)k ⊆ (RΣ)i+rk.

Since this holds for 0 ≤ i ≤ k − 1, RΣ has finite codimension in TΣ.

Now suppose that Y is irreducible but not reduced. Then the nilradical N of

OΣ is a σ-invariant nilpotent ideal sheaf on Σ; so the hypotheses of Lemma 4.9.2

hold for RΣ and TΣ, with I1 = I2 = · · · = I% = N . We see again that TΣ/RΣ is

finite-dimensional.

Thus we have reduced to considering the case that Σ is reduced and irreducible.

Now, if Ω∩Σ = ∅, then RΣ and TΣ are equal in large degree by [AS95, Theorem 4.1];

in particular, this holds if Σ is a point. If Ω∩Σ is nonempty, and Σ is a reduced and

irreducible curve, then TΣ/RΣ is finite-dimensional by [AS95, Proposition 5.4].

We have thus shown that there is an ideal K of T that is contained in R and so

that (RK)n = (RΣ)n = (TΣ)n = (T/K)n for n $ 0. Thus Rn = Tn for n $ 0.

We now prove Theorem 4.1.4.

Proof of Theorem 4.1.4. One direction is Proposition 4.2.13. For the other direction,

suppose that R is a birationally commutative projective surface. By Corollary 4.7.13,

there are a positive integer , and transverse surface data

D = (X,L, σ,A,D, C, Ω, Λ, Λ′)
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so that X is normal, R% *= 0, R% generates K, and

R(X)(%) = T (D).

Note that Assumption-Notation 4.7.1 holds for R(%).

Let Z be the cosupport of D. Recall that for any p ∈ X, we denote the σ%-orbit

of p by O%(p). Let

W =
⋃

p∈Λ∪Λ′∪Z

O%(p).

By Theorem 4.8.21 there are a projective variety Y , a numerically trivial automor-

phism φ of Y , an ample invertible sheaf L′ on Y , a locally principal subscheme Ω′ of

Y , and a finite birational morphism θ : X → Y so that for n $ 0 the rational func-

tions Rn% induce a closed immersion into projective space at every point of Y !θ(W)

and so that θσ% = φθ, θ∗L′ = L%, and θ∗Ω′ = Ω; further, set-theoretically the base

locus of the sections Rn% of IΩ′(L′)n on Y is equal to θ(Wn%).

Now, θ is a local isomorphism at every point of W. Let A′ be the ideal sheaf

on Y that is cosupported on θ(Z) and so that for every w ∈ Z, the stalks Aw and

A′θ(w) are isomorphic; similarly define ideal sheaves D′ and C ′. The ideal sheaves

A′, D′, and C ′ on Y pull back to A,D, and C respectively. Furthermore, by working

locally at each point of θ(Z), we see that A′C ′ ⊆ D′, and the pair (A′, C ′) is maximal

with respect to this property. As distinct points in the cosupport of D have distinct

σ-orbits, distinct points in the cosupport of D′ have distinct φ-orbits.

Let Φ be the scheme-theoretic image of Λ under θ, and let Φ′ be the scheme-

theoretic image of Λ′. Let

D′ = (Y,L′, φ,A′,D′, C ′, Ω′, Φ, Φ′).

By construction, R(Y )(%) = T (D′). We claim that the data D′ is transverse.
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Let Z ′ be the subscheme of Y defined by D′. We first show that {φn(Φ)}n≥0,

{φn(Z ′)}n∈Z, and {φn(Φ′)n≤0 are critically transverse. Applying Corollary 3.3.15

and using symmetry, it suffices to show that if w ∈ Λ ∪ Z, then {φnθ(w)}n≥0 is

critically dense. Fix w ∈ Λ ∪ Z, and suppose there is some nonzero curve Γ ⊂ Y so

that for infinitely many n ≥ 0, φnθ(w) ∈ Γ. Therefore, for infinitely many n ≥ 0,

σn%(w) ∈ θ−1(Γ). This contradicts the transversality of the data D on X.

We now show that {φnΩ′}n∈Z is critically transverse. By Lemma 3.3.12, it suffices

to prove that

(4.9.3) {n | TorY
1 (OΩ′ ,OφnΓ) *= 0}

is finite for all reduced and irreducible Γ ⊆ Y . As Ω′ is locally principal and Γ is

reduced and irreducible, (4.9.3) is equal to

(4.9.4) {n | φnΓ ⊆ Ω′}

for any reduced and irreducible Γ ⊆ Y .

Suppose that (4.9.4) is infinite for some reduced and irreducible Γ ⊆ Y . Pulling

back to X, we obtain that

{n | σn%Γ′ ⊆ Ω}

is infinite for some irreducible component Γ′ of θ−1Γ. This does not happen, by

transversality of D. Thus (4.9.4) is finite for all Γ, and {φnΩ′}n∈Z is critically trans-

verse. Thus the surface data (Y,L′, φ,A′,D′, C ′, Ω′, Φ, Φ′) is transverse.

We have seen that for n $ 0, the sections in Rn% define a closed immersion at all

points of Y ! θ(W). Theorem 4.9.1 now implies that there is some k ≥ 1 so that

Rn% = Tn
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for n ≥ k. Thus if D′′ is the surface data given by Lemma 4.6.11 so that

T (D′)(k) = T (D′′),

then

R(k%) = T (D′′).

This is precisely what we sought to prove.

To end this chapter, we make a few remarks on a possible extension of Theo-

rem 4.1.4 to rings of GK-dimension 5: that is, to graded noetherian domains R

whose graded quotient ring is of the form

K[z, z−1; σ]

for some field K of transcendence degree 2 and geometric, but non-quasi-trivial

automorphism σ of K. (Recall from Theorem 4.3.2 that such a ring must have

GK-dimension 5.)

There some significant technical issues involved in extending Theorem 4.1.4 to

the GK-dimension 5 case. For example, Lemma 4.5.5, where we prove that the

coordinate divisor is, in fact, nef, depends on the quasi-triviality of σ. Although this

result is elementary in the GK-dimension 3 case, we have not been able to extend it

to GK-dimension 5. The GK 3 assumption is also used in Theorem 4.5.13, to show

that the set of curves contracted by ∆n is σ-invariant.

We conjecture that a similar result to Theorem 4.1.4 holds in this case; that is, that

all such R correspond (up to a Veronese, of course) to quasi-transverse surface data.

One possible avenue of approach is to use the Enriques classification of projective

surfaces, which we have not so far used significantly. This puts strong constraints on

the situations where GK 5 automorphisms can occur. We plan to pursue this further

in future work.



CHAPTER V

A general homological Kleiman-Bertini theorem

5.1 Introduction

All schemes that we consider in this chapter are of finite type over a fixed field,

which we denote in this chapter by k; we make no assumptions on the characteristic,

cardinality, or algebraic closure of k.

Recall that two subschemes Y and Z of X are homologically transverse if, for all

j ≥ 1, we have that TorX
j (OY ,OZ) = 0. In this chapter, we investigate geometric

questions relating to homological transversality. These questions were motivated by

the investigations of idealizers in Chapter III. In that chapter, we saw that if X is a

projective variety, σ an automorphism of X, L a σ-ample invertible sheaf on X, and

Z a closed subscheme of X, then one may form the geometric idealizer

R(X,L, σ, Z) ⊆ B(X,L, σ),

and that the properties of R(X,L, σ, Z) are controlled by the critical transversality

of the set {σnZ}: for any closed subscheme Y of X, one wants σnZ and Y to be

homologically transverse for all but finitely many n. One is naturally, then, led to

ask how often homological transversality can be considered “generic” behavior, and

what conditions on Z ensure this.

Our intuition leads us to believe that two subvarieties in general position, in the

222
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appropriate sense, will be homologically transverse. This is often true, and can be

made more precise in many situations by the following Bertini-type result of Miller

and Speyer. We will say that two coherent sheaves E and F on X are homologically

transverse if their higher Tor sheaves all vanish.

Theorem 5.1.1. [MS06] Let X be a variety with a transitive left action of a smooth

algebraic group G. Let F and E be coherent sheaves on X, and for all k-points g ∈ G,

let gF denote the pushforward of F along multiplication by g. Then there is a dense

Zariski open subset U of G such that, for all k-rational points g ∈ U , the sheaves gF

and E are homologically transverse.

As Miller and Speyer remark, their result is a homological generalization of the

Kleiman-Bertini theorem: in characteristic 0, if F = OZ and E = OY are struc-

ture sheaves of smooth subvarieties of X and G acts transitively on X, then gZ

and Y meet transversally for generic g, implying that gZ and Y are homologically

transverse.

Homological transversality has a geometric meaning if F = OZ and E = OY are

structure sheaves of closed subschemes of X. If P is a component of Y ∩ Z, then

Serre’s formula for the multiplicity of the intersection of Y and Z at P [Har77, p. 427]

is:

i(Y, Z; P ) =
∑

j≥0

(−1)j lenP (TorX
j (F , E)),

where the length lenP ( ) is taken over the local ring at P . Thus if Y and Z are

homologically transverse, their intersection multiplicity at P is simply the length of

their scheme-theoretic intersection over the local ring at P .

It is natural to ask what conditions on the action of G are necessary to conclude

that homological transversality holds generically in the sense of Theorem 5.1.1. In

particular, the restriction to transitive actions is unfortunately strong, as it excludes
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important situations such as the torus action on Pn. On the other hand, suppose

that F is the structure sheaf of the closure of a non-dense orbit. Then for all k-

points g ∈ G, we have TorX
1 (gF ,F) = TorX

1 (F ,F) *= 0, and so the conclusion of

Theorem 5.1.1 fails (as long as G(k) is dense in G). Thus for non-transitive group

actions some additional hypothesis is necessary.

The main result of this chapter is that there is a simple condition for homological

transversality to be generic. This is:

Theorem 5.1.2. Let X be a variety with a left action of a smooth algebraic group

G, and let F be a coherent sheaf on X. Let k be an algebraic closure of k. Consider

the following conditions:

(1) For all closed points x ∈ X × k, the pullback of F to X × k is homologically

transverse to the closure of the G(k)-orbit of x;

(2) For all coherent sheaves E on X, there is a Zariski open and dense subset U of

G such that for all k-rational points g ∈ U , the sheaf gF is homologically transverse

to E.

Then (1) ⇒ (2). If k is algebraically closed, then (1) and (2) are equivalent.

If g is not k-rational, the sheaf gF can still be defined; in Section 5.2 we give

this definition and a generalization of (2) that is equivalent to (1) in any setting (see

Theorem 5.2.1).

If G acts transitively on X in the sense of [MS06], then the action is geometri-

cally transitive, and so (1) is trivially satisfied. Thus Theorem 5.1.1 follows from

Theorem 5.1.2. Since transversality of smooth subvarieties in characteristic 0 im-

plies homological transversality, Theorem 5.1.2 also generalizes the following result

of Robert Speiser:
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Theorem 5.1.3. [Spe88, Theorem 1.3] Suppose that k is algebraically closed of char-

acteristic 0. Let X be a smooth variety, and let G be a (necessarily smooth) algebraic

group acting on X. Let Z be a smooth closed subvariety of X. If Z is transverse to

every G-orbit in X, then for any smooth closed subvariety Y ⊆ X, there is a dense

open subset U of G such that if g ∈ U , then gZ and Y are transverse.

We remark that for the set U we construct in Theorem 5.1.2, for any extension

k′ of k and any k′-rational g ∈ U × k′, then gF will be homologically transverse to

E on X × k′. Further, in many situations U will automatically contain a k-rational

point of G. This holds, in particular, if k is infinite, G is connected and affine, and

either k is perfect or G is reductive, by [Bor91, Corollary 18.3].

We make some remarks on notation. If x is any point of a scheme X, we denote

the skyscraper sheaf at x by kx. For schemes X and Y , we will write X × Y for the

product X ×k Y . If k′ is a field containing k, then we write X × k′ for X × Spec k′.

Finally, if X is a scheme with a (left) action of an algebraic group G, we will always

denote the multiplication map by µ : G×X → X.

5.2 Generalizations

We begin this section by defining homological transversality more generally. If W

and Y are schemes over a scheme X, with (quasi)coherent sheaves F on W and E on Y

respectively, then for all j ≥ 0 there is a (quasi)coherent sheaf TorX
j (F , E) on W ×X

Y . This sheaf is defined locally. Suppose that X = Spec R, W = Spec S and Y =

Spec T are affine. Let ( )̃ denote the functor that takes an R-module (respectively

S- or T -module) to the associated quasicoherent sheaf on X (respectively W or Y ).

If F is an S-module and E is a T -module, we define TorX
j (F̃ , Ẽ) to be (TorR

j (F, E))̃ .

That these glue properly to give sheaves on W ×X Y for general W , Y , and X is
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[Gro63, 6.5.3]. As before, we will say that F and E are homologically transverse if

the sheaf TorX
j (F , E) is zero for all j ≥ 1.

We caution the reader that the maps from W and Y to X are implicit in the

definition of TorX
j (F , E); at times we will write TorW→X←Y

j (F , E) to make this more

obvious. We also remark that if Y = X, then TorX
j (F , E) is a sheaf on W×X X = W .

As localization commutes with Tor, for any w ∈ W lying over x ∈ X we have in this

case that TorX
j (F , E)w = Tor

OX,x

j (Fw, Ex).

Now suppose that f : W → X is a morphism of schemes and G is an algebraic

group acting on X. Let F be a (quasi)coherent sheaf on W and let g be any point

of G. We will denote the pullback of F to {g} ×W by gF . There is a map

{g} ×W !! G×W
1×f !! G×X

µ !! X.

If Y is a scheme over X and E is a (quasi)coherent sheaf on Y , we will write

TorX
j (gF , E) for the (quasi)coherent sheaf Tor {g}×W→X←Y

j (gF , E) on W×X Y ×k(g).

Note that if W = X and g is k-rational, then gF is simply the pushforward of F

along multiplication by g.

In this context, we prove the following relative version of Theorem 5.1.2:

Theorem 5.2.1. Let X be a scheme with a left action of a smooth algebraic group

G, let f : W → X be a morphism of schemes, and let F be a coherent sheaf on W .

We define maps:

G×W
ρ !!

p

%%

X

W

where ρ is the map ρ(g, w) = gf(w) induced by the action of G and p is projection

onto the second factor.

Then the following are equivalent:
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(1) For all closed points x ∈ X × k, the pullback of F to W × k is homologically

transverse to the closure of the G(k)-orbit of x;

(2) For all schemes r : Y → X and all coherent sheaves E on Y , there is a Zariski

open and dense subset U of G such that for all closed points g ∈ U , the sheaf gF on

{g} ×W is homologically transverse to E.

(3) The sheaf p∗F on G×W is ρ-flat over X.

A related relative version of Theorem 5.1.3 is given in [Spe88].

Our general approach to Theorem 5.2.1 mirrors that of [Spe88], although the proof

techniques are quite different. We first generalize Theorem 5.1.1 to apply to any flat

map f : W → X; this is a homological version of [Kle74, Lemma 1] and may be of

independent interest.

Theorem 5.2.2. Let X, Y , and W be schemes, let A be a generically reduced scheme,

and suppose that there are morphisms:

Y

r
%%

W
f !!

q

%%

X

A.

Let F be a coherent sheaf on W that is f -flat over X, and let E be a coherent sheaf

on Y . For all a ∈ A, let Wa denote the fiber of W over a, and let Fa = F ⊗W OWa

be the fiber of F over a.

Then there is a dense open U ⊆ A such that if a ∈ U , then Fa is homologically

transverse to E.

We note that we have not assumed that X, Y , W , or A is smooth.
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5.3 Proofs

In this section we prove Theorem 5.1.2, Theorem 5.2.1, and Theorem 5.2.2. We

begin by establishing some preparatory lemmas.

Lemma 5.3.1. Let

X1
α !! X2

γ !! X3

be morphisms of schemes, and assume that γ is flat. Let G be a quasicoherent sheaf

on X1 that is flat over X3. Let H be any quasicoherent sheaf on X3. Then for all

j ≥ 1, we have TorX2
j (G, γ∗H) = 0.

Proof. We may reduce to the local case. Thus let x ∈ X1 and let y = α(x) and

z = γ(y). Let S = OX2,y and let R = OX3,z. Then (γ∗H)y
∼= S ⊗R Hz. Since S is

flat over R, we have

TorR
j (Gx,Hz) ∼= TorS

j (Gx, S ⊗R Hz) = TorX2
j (G, γ∗H)x

by flat base change. The left-hand side is 0 for j ≥ 1 since G is flat over X3. Thus

for j ≥ 1 we have TorX2
j (G, γ∗H) = 0.

To prove Theorem 5.2.2, we show that a suitable modification of the spectral

sequences used in [MS06] will work in our situation. Our key computation is the

following lemma; compare to [MS06, Proposition 2].

Lemma 5.3.2. Given the notation of Theorem 5.2.2, there is an open dense U ⊆ A

such that for all a ∈ U and for all j ≥ 0 we have

TorW
j (F ⊗X E , q∗ka) ∼= TorX

j (Fa, E)

as sheaves on W ×X Y .
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Note that F ⊗X E is a sheaf on W ×X Y and thus TorW
j (F ⊗X E , q∗ka) is a sheaf

on W ×X Y ×W W = W ×X Y as required.

Proof. Since A is generically reduced, we may apply generic flatness to the morphism

q : W → A. Thus there is an open dense subset U of A such that both W and F

are flat over U . Let a ∈ U . Away from q−1(U), both sides of the equality we seek

to establish are zero, and so the result is trivial. Since F|q−1(U) is still flat over X,

without loss of generality we may replace W by q−1(U); that is, we may assume that

both W and F are flat over A.

The question is local, so assume that X = Spec R, Y = Spec T , and W = Spec S

are affine. Let E = Γ(Y, E) and let F = Γ(W,F). Let Q = Γ(W, q∗ka); then

Γ(W,Fa) = F ⊗S Q. We seek to show that

TorS
j (F ⊗R E,Q) ∼= TorR

j (F ⊗S Q, E)

as S ⊗R T -modules.

We will work on W × X. For clarity, we lay out the various morphisms and

corresponding ring maps in our situation. We have morphisms of schemes

W ×X

p

%%

Y

r
%%

W

φ

--

f
!! X

where p is projection onto the first factor and the morphism φ splitting p is given by

the graph of f . Letting B = S ⊗k R, we have corresponding maps of rings

B

φ#

..

T

S

p#

//

R,

r#

//

f#
00
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where p#(s) = s⊗ 1 and φ#(s⊗ r) = s · f#(r). We make the trivial observation that

B ⊗R E = (S ⊗k R)⊗R E ∼= S ⊗k E.

Let K• → F be a projective resolution of F , considered as a B-module via the

map φ# : B → S. As E is an R-module via the map r# : R → T , there is a B-action

on S ⊗k E; let L• → S ⊗k E be a projective resolution over B.

Let P•,• be the double complex K• ⊗B L•. We claim the total complex of P•,•

resolves F ⊗B (S ⊗k E). To see this, note that the rows of P•,•, which are of the

form K•⊗B Lj, are acyclic, except in degree 0, where the homology is F ⊗B Lj. The

degree 0 horizontal homology forms a vertical complex whose homology computes

TorB
j (F, S ⊗k E). But S ⊗k E ∼= B ⊗R E, and B is a flat R-module. Therefore

TorB
j (F, S ⊗k E) ∼= TorB

j (F, B ⊗R E) ∼= TorR
j (F, E) by the formula for flat base

change for Tor. Since F is flat over R, this is zero for all j ≥ 1. Thus, via the

spectral sequence

Hv
j (Hh

i P•,•) ⇒ Hi+j Tot P•,•

we see that the total complex of P•,• is acyclic, except in degree 0, where the homology

is F ⊗B S ⊗k E ∼= F ⊗R E.

Consider the double complex P•,• ⊗S Q. Since Tot P•,• is a B-projective and

therefore S-projective resolution of F ⊗R E, the homology of the total complex of

this double complex computes TorS
j (F ⊗R E,Q).

Now consider the row K• ⊗B Lj ⊗S Q. As Lj is B-projective and therefore B-

flat, the i’th homology of this row is isomorphic to TorS
i (F, Q)⊗B Lj. Since W and

F are flat over A, by Lemma 5.3.1 we have TorS
i (F, Q) = 0 for all i ≥ 1. Thus

this row is acyclic except in degree 0, where the homology is F ⊗B Lj ⊗S Q. The

vertical differentials on the degree 0 homology give a complex whose j’th homology
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is isomorphic to TorB
j (F ⊗S Q, S ⊗k E). As before, this is simply TorR

j (F ⊗S Q, E).

Thus (via a spectral sequence) we see that the homology of the total complex of

P•,•⊗S Q computes TorR
j (F⊗S Q, E). But we have already seen that the homology of

this total complex is isomorphic to TorS
j (F ⊗R E,Q). Thus the two are isomorphic.

Proof of Theorem 5.2.2. By generic flatness, we may reduce without loss of generality

to the case where W is flat over A. Since F and E are coherent sheaves on W and

Y respectively, F ⊗X E is a coherent sheaf on W ×X Y . Applying generic flatness

to the composition W ×X Y → W → A, we obtain a dense open V ⊆ A such that

F ⊗X E is flat over V . Therefore, by Lemma 5.3.1, if a ∈ V and j ≥ 1, we have

TorW
j (F ⊗X E , q∗ka) = 0.

We apply Lemma 5.3.2 to choose a dense open U ⊆ A such that for all j ≥ 1, if

a ∈ U , then TorW
j (F ⊗X E , q∗ka) ∼= TorX

j (Fa, E). Thus if a is in the dense open set

U ∩ V , then for all j ≥ 1 we have

TorX
j (Fa, E) ∼= TorW

j (F ⊗X E , q∗ka) = 0,

as required.

We now turn to the proof of Theorem 5.2.1; for the remainder of this section, we

will adopt the hypotheses and notation given there.

Lemma 5.3.3. Let R, R′, S, and T be commutative rings, and let

R′ !! T

R

//

!! S

//

be a commutative diagram of ring homomorphisms, such that R′
R and TS are flat.
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Let N be an R-module. Then for all j ≥ 0, we have that

TorR′

j (N ⊗R R′, T ) ∼= TorR
j (N, S)⊗S T.

Proof. Let P• → N be a projective resolution of N . Consider the complex

(5.3.4) P• ⊗R R′ ⊗R′ T ∼= P• ⊗R T ∼= P• ⊗R S ⊗S T.

Since R′
R is flat, P• ⊗R R′ is a projective resolution of N ⊗R R′. Thus the j’th

homology of (5.3.4) computes TorR′

j (N ⊗R R′, T ). Since TS is flat, this homology is

isomorphic to Hj(P• ⊗R S)⊗S T . Thus TorR′

j (N ⊗R R′, T ) ∼= TorR
j (N, S)⊗S T .

Lemma 5.3.5. Let x be a closed point of X. Consider the multiplication map

µx : G× {x} → X.

Then for all j ≥ 0 we have

(5.3.6) TorX
j (F ,OG×{x}) ∼= TorG×X

j (p∗F , µ∗kx)

If k is algebraically closed, then we also have

(5.3.7) TorG×X
j (p∗F , µ∗kx) ∼= TorX

j (F ,OGx)⊗X OG×{x}.

All isomorphisms are of sheaves on G×W .

Proof. Note that µx maps G× {x} onto a locally closed subscheme of X, which we

will denote Gx. Since all computations may be done locally, without loss of generality

we may assume that Gx is in fact a closed subscheme of X.

Let ν : G → G be the inverse map, and let ψ = ν×µ : G×X → G×X. Consider

the commutative diagram:

(5.3.8) G×W

p

%%

1×f !! G×X

p

%%

G× {x}ψ00

π

%%

µx

1133333333333

W
f

!! X Gx
⊇00
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where π is the induced map and p is projection onto the second factor. Since ψ2 =

IdG×X and µ = p ◦ ψ, we have that µ∗kx
∼= ψ∗p∗kx

∼= ψ∗OG×{x}, considered as

sheaves on G × X. Then the isomorphism (5.3.6) is a direct consequence of the

flatness of p and Lemma 5.3.3. If k is algebraically closed, then π is also flat, and so

the isomorphism (5.3.7) also follows from Lemma 5.3.3.

Proof of Theorem 5.2.1. (3) ⇒ (2). Assume (3). Let E be a coherent sheaf on Y .

Consider the maps:

Y

r
%%

G×W
ρ !!

q

%%

X

G,

where q is projection on the first factor.

Since G is smooth, it is generically reduced. Thus we may apply Theorem 5.2.2

to the ρ-flat sheaf p∗F to obtain a dense open U ⊆ G such that if g ∈ U is a closed

point, then ρ makes (p∗F)g homologically transverse to E . But ρ|{g}×W is the map

used to define TorX
j (gF , E); that is, considered as sheaves over X, (p∗F)g

∼= gF .

Thus (2) holds.

(2) ⇒ (3). The morphism ρ factors as

G×W
1×f !! G×X

µ !! X.

Since the multiplication map µ is the composition of an automorphism of G×X and

projection, it is flat. Therefore for any quasicoherent N on X and M on G×W and

for any closed point z ∈ G×W , we have

(5.3.9) TorG×X
j (M, µ∗N )z

∼= Tor
OX,ρ(z)

j (Mz,Nρ(z)),

as in the proof of Lemma 5.3.1.
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If p∗F fails to be flat over X, then flatness fails against the structure sheaf of some

closed point x ∈ X, by the local criterion for flatness [Eis95, Theorem 6.8]. Thus

to check that p∗F is flat over X, it is equivalent to test flatness against structure

sheaves of closed points of X. By (5.3.9), we see that p∗F is ρ-flat over X if and

only if

(5.3.10) TorG×X
j (p∗F , µ∗kx) = 0 for all closed points x ∈ X and for all j ≥ 1.

Applying Lemma 5.3.5, we see that the flatness of p∗F is equivalent to the vanishing

(5.3.11) TorX
j (F ,OG×{x}) = 0 for all closed points x ∈ X and for all j ≥ 1.

Assume (2). We will show that (5.3.11) holds for all x ∈ X. Fix a closed point

x ∈ X and consider the morphism µx : G × {x} → X. By assumption, there is a

closed point g ∈ G such that gF is homologically transverse to OG×{x}. Let k′ = k(g)

and let g′ be the canonical k′-point of G × k′ lying over g. Let G′ = G× k′ and let

X ′ = X×k′. Let F ′ be the pullback of F to W ′ = W×k′. Consider the commutative

diagram

G× {x} × k′
µx×1 !!

%%

X ′

%%

{g′} ×k′ W ′ρ00

∼=
%%

G× {x} µx !! X {g} ×W.
ρ00

Since the vertical maps are faithfully flat and the left-hand square is a fiber square,

by Lemma 5.3.3 we have that g′F ′ is homologically transverse to

G× {x} × k′ ∼= G′ × {x}.

By G(k′)-equivariance, F ′ is homologically transverse to (g′)−1G′ × {x} = G′ × {x}.

Since

G′ × {x} !! X ′ W ′f00
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is base-extended from

G× {x} !! X W,
f00

we obtain that F is homologically transverse to G× {x}. Thus (5.3.11) holds.

(1) ⇒ (3). The ρ-flatness of F is not affected by base extension, so without loss

of generality we may assume that k is algebraically closed. Then (3) follows directly

from Lemma 5.3.5 and the criterion (5.3.10) for flatness.

(3) ⇒ (1). As before, we may assume that k is algebraically closed. Let x be a

closed point of X. We have seen that (3) and (2) are equivalent; by (2) applied to E =

OGx there is a closed point g ∈ G such that gF and Gx are homologically transverse.

By G(k)-equivariance, F and g−1Gx = Gx are homologically transverse.

Proof of Theorem 5.1.2. If F is homologically transverse to orbit closures upon ex-

tending to k, then, using Theorem 5.2.1(2), for any E there is a dense open U ⊆ G

such that, in particular, for any k-rational g ∈ U we have that gF and E are homo-

logically transverse.

The equivalence of (1) and (2) in the case that k is algebraically closed follows

directly from Theorem 5.2.1.

5.4 Applications to critical transversality

We have seen repeatedly in this thesis that the algebraic properties of birationally

commutative rings defined by geometric data are largely controlled by the motion

of the defining data under σ. In particular, recall (Definition 3.3.8) that if X is a

projective variety, σ ∈ Aut X, and Z is a closed subscheme of X, that the set

{σnZ}n∈Z.

is critically transverse if for any closed subscheme Y of X, we have that σnZ and Y are

homologically transverse for all but finitely many n. We saw in Chapter III that the
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properties of the idealizer R(X,L, σ, Z) are controlled by the critical transversality of

the set {σnZ}. In this section, we apply Theorem 5.1.2 to obtain a simple criterion

for critical transversality, at least in characteristic 0. It turns out that in many

situations, critical transversality is, in a suitable sense, generic behavior.

We will use the following result of Cutkosky and Srinivas.

Theorem 5.4.1. ([CS93, Theorem 7]) Let G be a connected abelian algebraic group

defined over a field k of characteristic 0. Suppose that g ∈ G is such that the cyclic

subgroup 〈g〉 is dense in G. Then any infinite subset of 〈g〉 is dense in G.

Theorem 5.4.2. Let k be an algebraically closed field of characteristic 0, let X be

a variety of finite type over k, let Z be a closed subscheme of X, and let σ be an

element of an algebraic group G that acts on X. Then {σnZ} is critically transverse

if and only if Z is homologically transverse to all reduced σ-invariant subschemes of

X.

Proof. If {σnZ} is critically transverse, then Z is obviously homologically transverse

to σ-invariant subschemes. We prove the converse. Assume that Z is homologically

transverse to all σ-invariant subschemes of X. We consider the abelian subgroup

H = 〈σn〉 ⊆ G

Now, the closures of H-orbits in X are σ-invariant and reduced. Thus, by assump-

tion, Z is homologically transverse to all H-orbit closures, and we may apply Theo-

rem 5.1.2. Fix a closed subscheme Y of X. By Theorem 5.1.2, there is a dense open

U ⊆ H such that if g ∈ U , then gZ and Y are homologically transverse.

Let Ho be the connected component of the identity in H, so the components of

H are Ho, σHo, . . . , σc−1Ho for some c ≥ 1. As 〈σc〉 is dense in Ho, it is critically

dense by Theorem 5.4.1.
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Fix 0 ≤ j ≤ c− 1. The set

Uj = σ−j(U ∩ σjHo)

is an open dense subset of Ho. By critical density, the set

{m | σmc *∈ Uj}

is finite. Thus

{n | σn *∈ U} =
c−1⋃

j=0

{n | n ≡ j (mod c) and σn−j *∈ Uj}

is also finite. That is to say, for all but finitely many n, σn ∈ U and σnZ is homo-

logically transverse to Y . As Y was arbitrary, {σnZ} is critically transverse.

We note that the case of Theorem 5.4.2 where Z is a point is proved in [KRS05,

Theorem 11.2].

Suppose that k is uncountable and that X is a variety over k. We say that x ∈ X

is very general if there are proper subvarieties {Yi | i ∈ Z} so that

x *∈
⋃

i

Yi.

Corollary 5.4.3. Assume that k is uncountable and algebraically closed and that

char k = 0. Let Z be a subscheme of Pd, and let X be the PGLd+1-orbit of Z in the

Hilbert scheme of Pd. Let Y = PGLd+1×X . Then if (σ, Z ′) is a very general element

of Y, then the set {σnZ ′} is critically transverse.

Proof. By avoiding a countable union of proper subvarieties of PGLd+1, we may

ensure that the eigenvalues of σ are distinct and algebraically independent over Q.

This implies that the Zariski closure of {σn} in PGLd+1 is the torus Td, and that

the only reduced subschemes fixed by σ are unions of coordinate linear subspaces.
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There are finitely many of these; by repeated applications of Theorem 5.1.1 we see

that there is a dense open U ⊆ PGLd+1 such that for all τ ∈ U , the subscheme

Z ′ = τZ is homologically transverse to all unions of coordinate linear subspaces. By

Theorem 5.4.2, the set {σnZ ′} is critically transverse.

Corollary 5.4.4. Let k be an algebraically closed field of characteristic 0, let X be

a projective variety, and let σ be an element of an algebraic group G that acts on

X. Let L be a σ-ample invertible sheaf on X. Let Z be a closed subscheme of X

such that the components of Zred have infinite order under σ. Then the idealizer ring

R(X,L, σ, Z) is noetherian if and only if Z is homologically transverse to all reduced

σ-invariant subschemes of X.

Proof. First suppose that there is x ∈ X so that {n ≥ 0 | σn(x) ∈ Z} is infinite. Then

by Proposition 3.5.2, R is not right noetherian. Furthermore, {σnZ}n∈Z is certainly

not critically transverse, and so by Theorem 5.4.2 there is a reduced σ-invariant

subscheme that is not homologically transverse to Z. Thus the result holds.

Thus we may assume that no such x exists; by Proposition 3.5.2, R is right

noetherian. Note also that Assumption-Notation 3.3.1 is satisfied.

If there is a σ-invariant subvariety Y such that Z is not homologically transverse to

Y , then by Proposition 3.5.6 R(X,L, σ, Z) is not left noetherian. If Z is homologically

transverse to all reduced σ-invariant subschemes, then by Theorem 5.4.2, {σnZ}n∈ZZ

is critically transverse. By Proposition 3.5.5, R(X,L, σ, Z) is left noetherian.

Theorem 5.4.2 suggests the following conjecture:

Conjecture 5.4.5. Let k be an algebraically closed field of characteristic 0, and let

X be a projective variety defined over k. Let σ ∈ Aut X and let Z ⊆ X be a closed

subvariety. Then {σnZ} is critically transverse if and only if Z is homologically
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transverse to all σ-invariant subschemes of X.

If Z is 0-dimensional, then this conjecture reduces to Bell’s recent result [Bel08,

Corollary 1.3] that in characteristic 0, the orbit of a point under an automorphism is

dense exactly when it is critically dense. If σ is an element of an algebraic group that

acts on X, the conjecture is Theorem 5.4.2. In positive characteristic, the conjecture

is known to be false; see [Rog04a, Example 12.9] for an example of an automorphism

σ ∈ PGLn in positive characteristic with a dense but not critically dense orbit.
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[Gab62] P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323–448.

[Gro57] A. Grothendieck, Sur quelques points d’algèbre homologique, Tohoku Math. J. 9 (1957),
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