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Abstract 

Background 

Seasonal influenza has a higher infection rate in winter. 

Objective 

To describe how H1N1 influenza varied in the Southern Hemisphere from April to November 2009 

and examine the seasonality of the infection rate.  

Methods 

We used and modified Euler’s methods to find a closed form of the SIR model and applied the 

maximum likelihood estimation (MLE) method to determine the parameters in the solution. To 

examine seasonality, we compared the constant infection rate case, the linear time-dependent 

infection rate case and the quadratic time-dependent infection rate case, using MLE and 

Generalised Likelihood Ratio Test. 

Results 

There is strong evidence (p-value= 5.0099 × 10−37 ) suggesting that the infection rate α is a 

quadratic function of time. 

Conclusions 

The infection rate of H1N1 influenza is highly likely to be seasonal. This time-varying pattern of the 

influenza suggests seasonality need to be taken into consideration for flu preparedness planning. 

1. Introduction 

The H1N1 virus is the subtype of influenza A virus that was the most common cause of human influenza 

(flu) in 2009. It was first identified in April 2009 in Mexico and California[1][2], and became so pandemic 

that about 17,000 deaths were reported by the start of 2010[3]. As this virus is highly infectious, it is 

essential to develop strategies to mitigate and control this threat. Mathematical modelling of an 

epidemic has an important role in understanding the various complexities associated with an infectious 

disease and its control. This report is based on laboratory confirmed H1N1 cases in the Southern 

Hemisphere. With available data, a S-I-R (susceptible–infected–recovered) model and MLE (maximum 

likelihood estimation) methods have been applied to simulate the mechanisms underlying observed 

epidemiological patterns. A detailed analysis of the transmission among the susceptible, the infected 

and the recovered group—especially the first two groups, i.e. the infection rate—has been undertaken.  

2. Materials and Method 

2.1  Mathematical Model 
The S-I-R model was developed by Kermack and McKendrick in 1927[4]. The model assumes that when 

an infectious disease strikes a community, the total population can be divided to three different classes: 

S, who are at risk of infection, I, who are infected and R, who have been removed from the first two 



groups, either through recovery, death, immunity or isolation. In this paper, only the transmission 

between classes S and I has been analysed, thus the model is of the form 

𝑑𝑆/𝑑𝑡 = − 𝛼𝑆𝐼            𝑆(0) = 1       (1) 

𝑑𝐼/𝑑𝑡 = 𝛼𝑆𝐼 − 𝛽𝐼       𝐼(0) = 𝐼0       (2) 

Generally, by Euler’s method, (1) and (2) can be derived into the form 

𝑆𝑡+1 = 𝑆𝑡 − 𝛼𝑆𝑡𝐼𝑡                           (3) 

𝐼𝑡+1 = 𝐼𝑡 + 𝛼𝑆𝑡𝐼𝑡 − 𝛽𝐼𝑡                 (4) 

The equations can produce negative solutions, but in the current case 𝑆𝑡  and 𝐼𝑡 must be positive. 

Hence, it is better to approximate the dynamics over ∆𝑡 using an approximating exponential growth 

or decline model. By applying this approach to (1) and (2) separately, a pair of discrete time equations 

has been obtained 

𝑆𝑡+1 = 𝑆𝑡𝑒−𝛼𝐼𝑡                  𝑆(0) = 1        (7) 

𝐼𝑡+1 = 𝐼𝑡𝑒𝛼𝑆𝑡 + 𝐼𝑡𝑒−𝛽     𝐼(0) = 𝐼0        (8) 

When dealing with equation (2), it is of critical importance to treat 𝛼𝑆𝐼 and – 𝛽𝐼 separately, as the 

former determines the inflow of individuals from S to I, while the latter determines the outflow of 

individuals from I to R. Since the number of individuals leaving the susceptible class should match the 

number entering the infective class 

𝑆𝑡 − 𝑆𝑡+1 = 𝐼𝑡𝑒𝛼𝑆𝑡                                     (9) 

The final discretisation has been obtained 

𝑆𝑡+1 = 𝑆𝑡𝑒−𝛼𝐼𝑡                                  𝑆(0) = 1 

𝐼𝑡+1 = 𝑆𝑡(1 − 𝑒−𝛼𝐼𝑡 ) + 𝐼𝑡𝑒−𝛽       𝐼(0) = 𝐼0 

The model has become more mature than one approximated through Euler’s method, as it now can be 

fitted in continuous time which is in line with reality. 

2.2 Distributional Assumption 

The Poisson distribution is a discrete probability distribution for the counts of events that occur 

randomly in a given interval of time (or space). Therefore, the number of the laboratory confirmed cases 

in each week, 𝑦𝑡 , can be assumed to be observations of independent 𝑃𝑜𝑖(𝜇𝑡)  random variables. 

Moreover, given the information that the expected number of lab confirmed cases is proportional to 

the actual number of cases each week, 𝐸(𝑦𝑡) =  𝜙𝐼(𝑡), it is reasonable to assume that  

𝑦𝑡~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜙𝐼(𝑡)) 

where 𝐼(𝑡) denotes the weekly predicted case and 𝜙 denotes some unknown parameter relating to 

the sizes of 𝑦𝑡  and 𝐼(𝑡).  

2.3 Maximum Likelihood Estimation 

Given the model specification, the Poisson log likelihood function of parameter 𝜃 =

log (𝜙, 𝛼, 𝛽, 𝐼0)𝑇   can be constructed, where log parameterization ensures positive 𝜙, 𝛼, 𝛽, and 𝐼0 . 

Now the Quasi-Newton Method can be applied to minimise the negative log likelihood, which is 

identical to maximising the log likelihood.  

From the plot of data, we can find that the number of confirmed cases first increases with time, 

indicating a larger rate of transmission than of recovery. Moreover, 𝜙 should be large enough to 



compensate for the scaled number of diseased and infective individuals, 𝐼(t), while 𝐼0 should be 

small enough to fit 𝑦0 . Therefore, starting from an initial guess,  𝜃[0] = (8, 1, −1, −6)𝑇  , the 

optimized parameter values were returned as  

𝜙̂ = 6015.3760  𝛼1̂ = 1.1715  𝛽̂ = 0.6383  𝐼0̂ = 0.0023 

with the likelihood of  𝑒−447.4638. Figure a overlays the curve of fitted numbers of cases against 

week over the raw data, and the model looks reasonable. 

 

 

 

 

 

 

 

 

 

 

2.4 Model Checking 

Before investigating the estimates further, it is important to check that the model assumptions 

are plausible. In the case of Poisson model, deviance residuals can be used for model checking. 

Deviance residuals are defined as 

𝑒𝑡
𝑑 = 𝑠𝑖𝑔𝑛(𝑒𝑡)√𝑑𝑡 for all t 

where et = 𝑦𝑡 − 𝜇𝑡̂  are the raw residuals, and 𝑑𝑡 = 2{𝑙(𝑦𝑡|𝑦𝑡) − 𝑙(𝜇𝑡̂|𝑦𝑡)} are the components of 

the deviance contributed by the 𝑡𝑡ℎ observation. For a well-fitting model, a single deviance 

residual should behave like a standard normal variable. The plot of deviance residuals against 

fitted values and the normal QQ-plot are shown in Figure b. The results suggest that the 

distributional assumption of the Poisson is rational. 

 

 

 

 

 

 

 

Figure b Checking plots 

Left: deviance residuals against fitted values. There is no special pattern in the mean or 

variance. Right: normal QQ-plot of deviance residuals. It is close enough to a straight 

line to follow normal distribution. 

Figure a Data on number of cases against week. The symbols 

show raw data, while the red curve is the best fit model.  

 

 



3. Modified Model: Time-varying infective rate 𝛂 

The previous result has been deduced based on a constant infective rate and Figure a suggests 

these maximum likelihood estimators regress the data well. It is possible for the infection rate to 

change according to time. Intuitively, people are more likely to be infected by the influenza virus in 

winter for many reasons, such as a weaker immune system in low temperatures. It could be 

examined whether this model will be improved by using a time-varying parameter 𝛼. This session 

will discuss two plausible forms of the infectious rate 𝛼, one from a linear function of time and the 

other from a quadratic function. 

3.1 Modified Model I: 𝛂𝟐 = 𝒂𝟐𝒕 + 𝒄𝟐  

In this case, the infective rate has been modelled as a linear function of time, denoted as 𝛼2, where 

𝑎2 and 𝑐2 are parameters to be estimated. The method for estimation here is again the maximum 

likelihood estimation and the result suggests that 𝑎2̂  is approximately -0.0320 and 𝑐2̂ 

approximately 1.3964. The associated likelihood is 𝑒−441.5251. 

3.2 Modified Model II: 𝜶𝟑 = 𝒂𝟑𝒕 + 𝒃𝟑𝒕𝟐 + 𝒄𝟑 

In the second case, a quadratic function of time has been used to model the time-varying infection rate, 

which is denoted as 𝛼3, and 𝑎3, 𝑏3 and 𝑐3 are parameters to be estimated. Again, the use of MLE 

suggests that 𝑎3̂ ≈ −0.9713, 𝑏3̂ ≈ 0.0838 and  𝑐3̂ ≈ 3.5066. The associated likelihood is 𝑒−360.7154. 

3.3 Model Comparison: constant, linear time-varying and quadratic time-varying 

infective rates 

This section will compare the three models with different infective rates using likelihood, a graph, and 

generalised likelihood ratio test. 

Using R, the likelihoods were calculated for all three models, which are 𝑒−447.4638 , 𝑒−441.5251  and 

𝑒−360.7154 for the constant model, linear model and quadratic model, respectively. It is clear that the 

quadratic model generates the largest likelihood, followed by the linear model, and finally the constant 

model. This result is also illustrated in Figure c, where the quadratic model (the black curve) has the 

best fit, especially at the peak. As can be seen from the graph, Model I fitted a curve (the red line) in a 

similar manner to the previous result (the green line), both of which fit the data well at the tails but not 

so satisfactorily at the peak. A generalised likelihood ratio test has been performed comparing the two 

models, and it suggests there is strong evidence (p=0.00057) to believe that the infection rate is a 

function of time.  

However, the quadratic time-dependent model clearly fits the data better than the other two 

options, especially at the peak. Another generalised likelihood ratio test was performed, comparing 

the quadratic case with the linear case. This yielded a p-value of 5.0099 × 10−37, a relatively small 

value, so there is very strong evidence against the linear model. In addition, the Akaike Information 

Criterion has been used to examine the three models and the results (902.9277, 893.0502 and 

733.4308, respectively) suggest that the quadratic infection rate, 𝛼3, best balances the fitting result 

and the complexity. Therefore, the quadratic time-varying infection rate 𝛼3 is more likely for the 

proposed model with better fit. The estimated infective rate 𝛼3̂ is shown in Figure d. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

4. Conclusion 

In this report, a SIR model has been proposed and solved. In addition, a maximum likelihood 

estimation has been used to find possible parameters. This was followed by model modification to 

confirm the existence of the time-varying infection rate. There is significant evidence showing that 

the infection rate is a quadratic function of time, which increases in summer and decreases in 

winter. This result suggests this influenza has a different seasonal pattern to common seasonal 

influenza, since the latter is most likely to have higher infection rate in low temperatures. This 

H1N1 virus had a varied influence on different age groups, attacking more children and young 

people than seniors, unlike seasonal influenza[5]. This might explain this unusual seasonal pattern 

of H1N1, or this seasonality might not be a reflection of weakened immune systems due to low 

temperatures. More evidence and experiments should be done to confirm this seasonality and 

examine the reasons for it. In addition, this unusual seasonal pattern of H1N1’s infection rate 

should be taken into account for pandemic planning, such as vaccine and antiviral medication 

preparedness. 

 

 

 

Figure d 𝛼3̂ = −0.9713(𝑡 − 17) + 0.0838(𝑡 − 17)2 + 3.5066 

Figure c fitted curve by 𝛼1̂，𝛼2̂，𝛼3̂ 
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