
Some matrix revision
Ability to do and understand simple matrix algebra is central to understanding the theory of statistical modelling

and inference. These notes revise what is essential for this course. We will be concerned only with real matrices.

1 Matrices and vectors
• A n dimensional vector is an ordered array of n numbers. We will write v for the whole vector and vi for

its ith element.

• An r × c matrix is a 2 dimensional array of numbers, with r rows, c columns and rc elements in total. We
will write M for the whole matrix, and Mij for the element in row i, column j. The indices are always row
followed by column.

The following give examples of a 3 vector and a 3× 2 matrix:

v =

 v1
v2
v3

 =

 π
−2
5.6

 , M =

 M11 M12

M21 M22

M31 M32

 =

 −2 4.3
0.5 45
0 0.1


Notice that by default a vector is treated as a column vector, so that an n vector is an n × 1 matrix. A matrix for
which the number of rows is equal to the number of columns is called a square matrix.

2 Partitioning matrices
It is sometimes necessary to partition matrices into sub matrices. For example, I might want to partition 3 × 5
matrix A into [A0 : A1] where A0 has 2 columns and A1 has 3. Here is exactly what this means

A = [A0 : A1] =

 A11 A12 A13 A14 A15

A21 A22 A23 A24 A25

A31 A32 A33 A34 A35

 so A0 =

 A11 A12

A21 A22

A31 A32

 & A1 =

 A13 A14 A15

A23 A24 A25

A33 A34 A35


Of course we can also partition row-wise.

3 Products
• The inner product of two n vectors a and b is < a,b >=

∑n
i aibi.

• The product of r× n matrix A and n× c matrix B is the r× c matrix C with elements Cij =
∑n

k AikBkj .
Notice that this only exists when the number of columns of A equals the number of rows of B. Basically
Cij is the inner product of row i of A with column j of B. It is very important to have a mental picture of
this. The following example should help. . .

. . . . .

. . . . .

. C32 = 8 . . .

. . . . .

 =


. . .
. . .

A31 = 1 A32 = 3 A33 = 2
. . .


 . B12 = 3 . . .

. B22 = 1 . . .

. B32 = 1 . . .


• Note the special case that the product of a matrix and a vector is always a vector.
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4 Transposition
The transpose of n×m matrix A is the m×n matrix AT whose ith row(column) is given by the ith column(row)
of A. Here is an example

A =

 1 3
2 8
1 0

⇒ AT =

(
1 2 1
3 8 0

)
.

A symmetric matrix is one for which A = AT. The inner product of vectors a and b can be written as aTb. It is
essential to know one easily proven identity: (AB)T = BTAT.

5 Euclidean norm of a vector
The squared Euclidean norm of a vector, v, is just its squared length, i.e. the sum of squares of its elements

∑
i v

2
i ,

which is also its inner product with itself. It can be written ‖v‖2 and we have

‖v‖2 = vTv =
∑
i

v2i .

6 Matrix rank
The rank of an r × c matrix, A, is the number of linearly independent rows or columns it has. A set of
rows(columns) is linearly independent if none can be made as a linear combination of the others. rank(A) ≤
min(r, c). Equivalently, the rank of a matrix is the number of non-zero eigenvalues it possesses. The rank of the
product of two matrices is at most the smaller of their two individual ranks. A has full rank if rank(A) = min(r, c).

7 Matrix inversion
Let A be an n × n matrix with full rank (i.e. rank(A) = n). Then there exists a matrix A−1 such that A−1A =
AA−1 = I, where I is the n× n identity matrix, i.e.

Iij =

{
0 i 6= j
1 i = j

A−1 is the inverse of A. Notice that it only exists for A square and full rank (so obviously these notes assume
these conditions whenever an inverse is written). In R, solve(A) will produce the inverse of A.

8 Orthogonal matrices

An orthogonal matrix Q is a matrix for which Q−1 = QT. That is QQT = QTQ = I. Clearly Q must be square,
but we will sometimes be interested in non-square matrices made up of just some columns of an orthogonal matrix.
For example, U might be the first p < n columns of n × n orthogonal matrix Q, in which case UTU = Ip, the
p× p indentity matrix, but UUT will not produce an identity matrix (since U does not have orthogonal rows).

Consider the (squared) Euclidean length of the vector Qy, where y is any vector. We have

‖Qy‖2 = yTQTQy = yTIy = yTy = ‖y‖2.

So Qy has the same length as y. i.e. Qy can be viewed as a rotation and or reflection of y. The product of
two n× n orthogonal matrices is an n× n orthogonal matrix (the result of two successive rotation/reflections is a
rotation/reflection).
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9 QR decomposition of a matrix
Any real r× c matrix A can always be decomposed into the product of an orthogonal r× r matrix Q and an upper
triangular matrix, as follows

A = Q
(

R
0

)
where R is c× c upper triangular (meaning that Rij = 0 if i > j). Here 0 denotes an (r− c)× c matrix of zeroes.

Here is an example of a QR decomposition 1
√
1/2

0 1

1
√
2

 =


√
1/2 −

√
1/10

√
2/5

0
√

4/5
√
1/5√

1/2
√

1/10 −
√

2/5

 √2 3/2

0
√
5/4

0 0


This course only requires you to know what a QR decomposition is, not how it is computed. However, if you are
curious, it works like this. Given any two vectors a and b, of the same length, it is easy to write down a simple
symmetric orthogonal matrix, known as a Housholder matrix, such that a = Hb∗. Armed with this fact, we can
construct the QR decomposition. First find H1 to rotate the first column of A to a vector containing a single non-
zero entry in its first row, and zeroes elsewhere. H1 will also rotate all the other columns of A, but we don’t care
about that. Now create H2 which is a rotation that leaves the first element of any vector unchanged, but rotates
the second column of H1A so that it has non-zeroes only in its first two elements. Clearly H2 has no effect on
the first column of H1A, since it can’t change it’s length, and leaves the only element contributing to that length
unchanged! Continuing in this way for c steps we can always reduce A to upper triangular form, accumulating QT

on the way. At the end Q = H1H2 · · ·Hc. Here is how the process works for the above example.

H1A =

 √
1/2 0

√
1/2

0 −1 0√
1/2 0 −

√
1/2

 1
√

1/2
0 1

1
√
2

 =

 √2 3/2
0 −1
0 −1/2


H2H1A =

 1 0 0

0 −
√

4/5 −
√
1/5

0 −
√

1/5
√
4/5

 √2 3/2
0 −1
0 −1/2

 =

 √2 3/2

0
√

5/4
0 0


In other courses you may have covered the Gram-Schmidt process for producing a QR decomposition, but this is
not as stable as the Householder method so is not used for practical numerical computation.

10 Choleski decomposition of a matrix: a matrix ‘square root’
Positive definite matrices are the ‘positive real numbers’ of matrix algebra. They have particular computational
advantages and occur frequently in statistics, because covariance matrices are usually positive definite (and always
positive semi-definite). To see why matrix square roots might be useful, consider the following.

Example Generating multivariate normal random variables. There exist very quick and reliable methods for
simulating i.i.d. N(0, 1) random deviates, but suppose that N(µ,Σ) random vectors are required. Clearly we can
generate vectors z fromN(0, I). If we could find a matrix R such that RTR = Σ, then y ≡ RTz+µ ∼ N(µ,Σ),
because the covariance matrix of y is RTIR = RTR = Σ and E(y) = E(RTz + µ) = µ.

In general the square root of a positive definite matrix is not uniquely defined, but there is a unique upper
triangular square root of any positive definite matrix: its Choleski factor. The algorithm for finding the Choleski
factor is easily derived. Consider a 4× 4 example first. The defining matrix equation is

R11 0 0 0
R12 R22 0 0
R13 R23 R33 0
R14 R24 R34 R44




R11 R12 R13 R14

0 R22 R23 R24

0 0 R33 R34

0 0 0 R44

 =


A11 A12 A13 A14

A12 A22 A23 A24

A13 A23 A33 A34

A14 A24 A34 A44

 .

∗You really don’t need to know this for this course, but H = I− 2uuT/‖u‖2 where u = b− a

3



If the component equations of this expression are written out and solved in the right order, then each contains only
one unknown, as the following illustrates (unknowns are in bold):

A11 = R11
2

A12 = R11R12

A13 = R11R13

A14 = R11R14

A22 = R2
12 + R22

2

A23 = R12R13 +R22R23

.

.

Generalising to the n× n case, and using the convention that
∑0

k=1 xi ≡ 0, we have

Rii =

√√√√Aii −
i−1∑
k=1

R2
ki, and Rij =

Aij −
∑i−1

k=1RkiRkj

Rii
, j > i.

Working through these equations in row order, from row one, and starting each row from its leading diagonal
component, ensures that all right-hand-side quantities are known at each step. Choleski decomposition requires
n3/3 flops and n square roots. In R it is performed by function chol†.

†Actually, numerical analysts do not consider the Choleski factor to be a square root in the strict sense, because of the transpose in A =
RTR.
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