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Applied scienti¢c disciplines use mathematical models to make predictions. In the majority of cases these
models are constructed using plausible mathematical characterizations of various component processes of
the modelled system, rather than being based entirely on exact mathematical descriptions of proven
mechanisms.We use general arguments and a speci¢c example from applied ecology to demonstrate that
model predictions can show alarming sensitivity to apparently tiny changes in model speci¢cation, in a
manner that is counter-intuitive and entirely invisible to conventional model sensitivity analysis. This
result has serious implications for practical prediction using biological models.
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1. INTRODUCTION

Mathematical models are widely used to make predictions
about modelled systems. In the majority of cases for
which predictions are required, it is not possible to
construct models every element of which can be compre-
hensively justi¢ed on the basis of proven mechanism.
Rather, the process of model construction is an attempt to
arrive at a parsimonious and robust characterization of
the system under study. Elements of this characterization
will necessarily be `phenomenological': they are bits of
mathematical machinery that behave in accordance with
what is known about a system without constituting any
sort of explanation of that behaviour.

When evaluating models, it is standard practice to
perform sensitivity analyses, in which the sensitivity of
model predictions to parameter changes is assessed. It is
quite usual for a model to display very high sensitivity to
parameter variation in some directions in the model
parameter space, while displaying robustness to variation
in other directions. Similarly, it is well known that
predictions from nonlinear models can display extreme
sensitivity to small perturbations of state variables: the
phenomenon of chaos. This paper is about a third way in
which predictions can be fragile, which may occur in
models that are non-chaotic and display no great
sensitivity to parameter variation: predictions may
display extreme sensitivity to apparently minor changes
in model speci¢cation.

It has, of course, long been recognized (e.g. Morris
1990) that, given very noisy data, radically di¡erent
models may appear equally plausible and that the substan-
tial model misidenti¢cation that this fact permits can lead
to serious errors in predictions. In a general statistical
context such model misspeci¢cation error has recently

received attention (e.g. Buckland et al. 1997), but it has
again been assumed that the level of misspeci¢cation has
to be fairly large to matter.This turns out not to be so.

In the interests of clarity, we will ¢rst give a speci¢c
applied example of super-sensitivity to speci¢cation and
then present a general explanation.

2. SUPER-SENSITIVITY TO STRUCTURE: AN

EXAMPLE

The example concerns an attempt to predict the
success or failure of a biocontrol programme for grasshop-
pers and locusts, which have had a high pro¢le as pest
species for a long time (Exodus, chapter 10) and continue
to be pests of global importance (Steedman 1990). Such
predictive problems are central to applied ecology: losses
to insect pests are estimated to account for between 20
and 30% of worldwide crop production (i.e. to around
US$300 billion annually) (Hill 1997). Building on
previous work (Thomas et al. 1995; Wood & Thomas
1996), we constructed a model to predict the outcome of a
biological control programme against grasshoppers or
locusts in a seasonal environment. The model was para-
meterized using ¢eld experiments in which the rice grass-
hopper, Hieroglyphus daganensis, was infected with the
fungal entomopathogen Metarhizium £avoviride. The basic
ecology of the system can be characterized as follows.
Grasshoppers hatch from dormant eggs at the start of the
rainy season. During the rainy season they grow, eat and
are susceptible to fungal infection. At the end of the rainy
season surviving adults lay eggs and die. Fungal infection
(initially from spray application) causes grasshoppers to
die some days after infection: cadavers then act as sources
of further infection. A typical cadaver goes through an
initial phase of increasing infectivity as the fungus
develops, followed by a slower decline as the resources in
the cadaver are exhausted and it physically decays. A
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¢rst-order gamma function provides a good description of
the infectivity pro¢le (Thomas et al. 1995), leading to the
following simple set of delay di¡erential equations
governing the healthy host (grasshopper) density (mÿ2)
H within a rainy season:

dH
dt
� ÿf (A1)H ,

dA1

dt
� c(A0 ÿ A1),

dA0

dt
� c( f (A1(t ÿ �))H(t ÿ �)ÿ A0).

A1 and A0 are auxilliary variables used to obtain the
desired build-up and decline in individual infectivity
(Thomas et al. 1995; Wood & Thomas 1996). A1 is an
index of pathogen density (mÿ2). � is the time lag (in
days) from infection to death. f (.) is a function used to
model the saturation of pathogen infectivity at high densi-
ties. c controls the rate of build-up and decay of individual
cadaver infectivity. Between rainy seasons the healthy
host density is multiplied by a ¢nite rate of increase, F,
and supplemented by some small amount of immigration,
m; the pathogen density, as represented by A0 and A1, is
multiplied by a small survival rate . For the work
reported here � � 12 d, F � 4, m � 0:1mÿ2 and
 � 0:02. A full discussion of this model for the case
f �A1� � �A1 can be found inThomas et al. (1995).
Experimental data suggest a saturating form for infec-

tivity as a function of pathogen density. In the absence of
a detailed mechanistic model of the infection process, we
characterized the nonlinear transmission function f ,
using three di¡erent models suggested in the literature
(Hochberg 1991; Briggs & Godfray 1995). These are
detailed in table 1. To parameterize f , transmission
experiments were performed in the ¢eld as detailed in
Appendix A. Model parameters were estimated by
directly ¢tting the population dynamic model to the
resulting data on the proportions surviving three days of
exposure to di¡ering pathogen levels: details of the ¢tting
method are also given in Appendix A.

It was statistically impossible to separate the three
models in terms of goodness of ¢t, a result that is unsur-
prising when one examines the shape of the best ¢t func-
tions in each case (¢gure 1). In order to investigate the
distribution of dynamic behaviour implied by parameter
uncertainty, 99 replicate parameter sets were produced by
bootstrapping of the survival proportions data (Efron &
Tibshirani 1993; Davison & Hinkley 1997). These repli-
cate parameter sets represent parameter combinations
consistent with the nonlinear transmission data. Model

predictions that are consistent across all replicates hold at
the 98% con¢dence level. Details of the bootstrapping
method used are given in Appendix A.
Despite substantial variability in the parameter sets the

qualitative predictions made by each model were unaf-
fected by parameter variation. Given the unusual amount
of care devoted to estimating the uncertainty in para-
meters and its consequences, one might expect to be able
to have reasonable con¢dence in the predictions of any of
the models. By implication, given the statistical equiva-
lence of the models one would expect their predictions to
be in close agreement. They are not. Hochberg's (1991)
model predicted sustained control at low levels after a
single pathogen application for all replicates: ¢gure 2a
shows a typical replicate. The other two models predicted
that repeated pathogen application would be necessary
for all replicates: ¢gure 2b,c shows typical replicates for
the Briggs & Godfray (1995) model and the Michaelis^
Menten model (with only repeated pathogen application
holding the host populations in check).

As can be seen from ¢gure 3, the variability introduced by
parameter variation was substantial and on most measures
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Table 1. The three nonlinear transmission models compared

(Parameter estimates are given with 95% con¢dence intervals following in parentheses.)

source model equation best ¢t r 2 parameter estimates

Hochberg (1991) �A1�q
1 0.73 c � 0:077(0:069,0:082), � � 0:40(0:36; 0:44)

q � ÿ0:32(ÿ 0:39,ÿ 0:27)
Briggs & Godfray (1995) k log (1� �A1=k) 0.72 c � 0:078(0:071,0:085), � � 1:10(0:97,1:50)

k � 0:16(0:10,0:19)
Michaelis^Menten aA1=(b� A1) 0.72 c � 0:077(0:070,0:085), a � 0:43(0:33,0:50)

b � 0:41(0:24,0:55)

Figure 1. Comparison of the shapes of the best ¢tting
nonlinear transmission models, over the range of pathogen
density index present in the experiment (the Hochberg (1991)
model pathogen density index range was 0^0.3; other models
went as high as 0.8 for short periodsöalthough one can
repeat the entire analysis presented in this paper with lower
spray action thresholds to bring this ¢gure below 0.5:
conclusions are unaltered). The index of pathogen density is
the quantity A1 in the model equations and is proportional to
the density of fungal spores (mÿ2). See table 1 for model
descriptions and parameter values. Infectivity is an
individual's instantaneous daily infection risk.



greatly exceeded the variability between alternative models
with their best ¢t parameters: however, predictions that
were completely robust to substantial parameter variation
given a particular model speci¢cation were not robust to
small changes in that speci¢cation. This result demon-
strates a key point: quantitatively similar models need not
give even qualitatively similar predictions. Ecologists
have tended to assume that, provided a model is
constructed to capture the essence of a process or inter-
action qualitatively, then its qualitative conclusions will
be correct, while in other disciplines it has generally been
assumed that examination of the sensitivity of model

predictions to parameter variation is su¤cient to ensure
probity of predictions: both beliefs appear suspect.
The models employed in the example all demonstrated

non-chaotic dynamics that were robust to parameter
variation on the scale implied by the amount of para-
meter uncertainty consistent with the experimental data.
At the same time, the di¡erence in speci¢cation between
the models appeared negligible, particularly when
compared to the range of variation that was consistent
with experiment. Yet the model predictions were
completely di¡erent. While most modellers would expect
that changes in model speci¢cation would change
predictions somewhat, such extreme sensitivity to speci¢-
cation relative to the commonly considered sensitivities is
counter-intuitive.

3. HOW DOES THE PHENOMENON COME ABOUT?

Having observed the phenomenon of extreme sensi-
tivity to model structure, the obvious questions are what
causes it and how general is it likely to be? Two levels of
explanation are possible and we give both below. The ¢rst
is more intuitive than the second, but also less general.

First, suppose that providence has seen ¢t to reveal `the
correct model': in common with most models, it displays
great sensitivity to variation in some directions in its
parameter space and robustness in other directions. Any
practical model constructed without this perfect knowl-
edge will be an approximation to the full model. In terms
of the full model, the practical model acts to restrict the
combination of values which the full model's parameters
can assume. In principle the practical model could be
rewritten as the correct model and some (possibly very
complicated) constraints on the correct model's para-
meters. The source of speci¢cation super-sensitivity is
now clear: it is quite possible for two practical models to
both constrain the correct model's parameters in such a
way that both models give robust predictions. However, it
is also possible that the di¡erences between the two prac-
tical models amount to parameter changes of the correct
model to which predictions are extremely sensitive.
For a more formal explanation (illustrated schemati-

cally in ¢gure 4), consider a model intended to make
quantitative predictions p. Suppose that the model
combines some established mechanisms, with some
phenomenological characterizations described by func-
tions f1, f2 . . . and that the model may additionally
depend on some parameters and other quantities, such as
initial conditions, that can be written as a vector b. The
model embodiment of the known mechanisms can be
viewed as a nonlinear functional, M, from the (product
of ) spaces containing all possible fis and all possible bs to
the space of all possible predictions.

p �M( f1, f2, . . . ,b).

The sensitivity of p to the elements of b has received
much attention and nonlinear dynamicists have explored
the consequences of extreme sensitivity to initial condi-
tions in depth. Indeed, the analysis of the sensitivity of
predictions to model parameters is a routine and impor-
tant part of serious predictive modelling. Sensitivity to
the fis has been ignored except in the very limited sense
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Figure 2. Dynamics implied by the best ¢t parameter sets for
each alternative model. These dynamics are qualitatively
similar to those observed in every bootstrap replicate run for
their respective models. The vertical axes are healthy host
densities (mÿ2). The time axes are days within wet seasons:
discontinuities occur for between-season dynamics. It
is assumed that host densities above 10 mÿ2 trigger
spraying, with an initial contact rate of 15% and a decay in
residual infectivity as measured in Thomas et al. (1997).
(a) Hochberg's (1991) model predicts sustained control with
a single pathogen application in the ¢rst season. (b) The
Briggs & Godfray (1995) model predicts that pathogen must
be applied every six years. (c) The Michaelis^Menten model
makes almost identical predictions to the Briggs & Godfray
(1995) model. Note the change in vertical scale between (a)
and the other plots. We also ran stochastic simulations in
which the transmission model parameters were reset at the
beginning of each rainy season by sampling from the
population of parameter sets obtained by bootstrapping: the
qualitative results were unchanged. Hochberg's (1991) model
gives sustained control after a single application of pathogen,
while the other two models require regular and frequent
spraying to prevent population explosions.



that it can be explored by varying the parameters of some
particular functional form for particular fis.
The importance of sensitivity to the structure of the fis

can be seen by considering the straightforward case in
which

p �M( f ).

Let P denote the space of possible predictions and let F
denote the space of plausible f s and assume that appro-
priate metrics can be associated with both spaces. Now
consider perturbing some f0 in F which corresponds to p0
in P, with two perturbations that are equal according to
the metric on F : only in exceptional special cases will
these two perturbations give rise to equal perturbations of
p0 as judged by P's metric. Indeed, since F will almost
always be of higher dimension than P, it will usually be
the case that an in¢nite number of perturbations exist
which will lead to no change in p0, while an in¢nite
number also exist that will change p0. In short, although
p0 may show great sensitivity to some changes in f0 there
will almost always exist an extensive manifold containing
f0 corresponding to a very small region around p0. If a
phenomenological function used for f restricts variation
in F to such a manifold, then predictions may appear
very robust, even if p is very sensitive to other changes of
similar magnitude within F. In general this means that
model predictions can be very sensitive to changes in the
parametric form of functions, despite being insensitive to
variation in the parameters of any given function, even if
the variability induced by the latter appears to dwarf the
variability induced by the former (according to F 's
metric).

It is fairly straightforward to demonstrate how this
explanation applies to the example in } 2. To do so we
must ¢rst construct a space of functions that is a better
description of our state of knowledge about the correct
functional form for transmission than any of the indivi-
dual models used. We then examine the sensitivity of

model predictions to variations in function shape that are
con¢ned to the manifold representing a single functional
form, relative to the sensitivity to movements in the rest
of the space.

Let fH be Hochberg's (1991) function and f *B be the
Briggs & Godfray (1995) function with the best ¢t
parameters given in table 1. We now construct a space F
of functions on �0,0:5� of the form
fH(A1)� � (1ÿ �) f *B (A1) 04 �4 1,

with metric

d( f ,g) �
Z
j f (x)ÿ g(x)jdx.

d measures the distance between two functions ( f and g,
for example) in F. For illustrative purposes we have made
this space quite restrictive, but it is clearly a better candi-
date for the space of all plausible model functions than
that implied by any of the individual models used.

Having constructed the space F, we can investigate
variation within the manifold implied by Hochberg's
(1991) model, by variation of the parameters � and q of
that model and investigate other sensitivities by variation
of �. We use the peak of the limit cycle of host density as
the quantity to be predicted by the model, since this
relates directly to whether control is achieved or not.

Starting from the best ¢t parameters of the Hochberg
(1991) model with � � 1, we perturbed �, q and � so as to
produce perturbations of equal size according to d, the
metric of F. We then measured the change in predictions
that each of these perturbations produced. This procedure
was repeated for a range of perturbations up to the point
at which control was lost altogether for the � perturbation
(according to the criterion used in } 2). Figure 5 shows the
results of this exercise. Clearly the model predictions are
much more sensitive to changes in function shape o¡ the
manifold of the Hochberg (1991) model, than to changes
on that manifold.

4. DISCUSSION

The preceding sections reveal a new type of model
sensitivity to add to the well-known and well-studied
phenomena that model predictions can be highly sensitive
to their parameters and to initial conditions. This
sensitivity may be of little signi¢cance in the physical
sciences for models built on a well-tested mechanism, but
in the biological sciences the implications are quite
serious. Here it is rarely the case that models are so
solidly mechanistic that there is no doubt as to the most
appropriate speci¢cation of model terms and, in many
cases, models contain elements that are purely
phenomenological. As the general arguments of the last
section indicate, the potential for extreme sensitivity to
speci¢cation is very wide. Furthermore, the example
illustrates that the issue is not merely theoretical. As both
theory and example demonstrate, the crucial problem is
that even the most careful conventional sensitivity
analysis can completely fail to reveal the extreme struc-
tural fragility of a model's predictions.

Super-sensitivity to structural speci¢cation may provide
partial explanation for the chequered record of attempts to
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Figure 3. The 98% con¢dence bands obtained by parametric
bootstrapping for the three models. The level and type of
shading indicates the three bands and the regions of overlap
of the di¡erent bands. (It may be helpful when viewing this
¢gure to imagine that the bands are made of light-polarizing
material whose polarization direction is given by the
directions of the shading lines.)



use models for prediction in ¢elds such as applied ecology.
What the results indicate very clearly is that considerable
caution is required when predicting with models that are
not entirely mechanistic, unless they have been extensively
validated using data with a time span that is lengthy in
relation to the time-scale of prediction.

This paper has concentrated on the implications of
extreme sensitivity to structure for predicting with bio-

logical models, but there is another implication. The
results indicate that apparently small changes to the
mechanisms governing a system could have major e¡ects
on the behaviour of that system, which could be very
di¤cult to predict given the original unaltered mechan-
isms. Again, while physical mechanisms are usually ¢xed,
biological mechanisms may not be.
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APPENDIX A

(a) The transmission experiments
The transmission experiments were performed at a

¢eld site in Northern Benin during the 1994 rainy season.
Cadavers of grasshoppers that had just died from
infection were placed in ¢eld plots at densities of 2mÿ2,
4mÿ2, 8mÿ2 and 16mÿ2 (four replicates at each density).
On six occasions over the next 51 days the infectivity of
the cadavers was assessed by a bioassay in which ¢eld
cages containing a cohort of 20 initially healthy grasshop-
pers were placed over the plots for three days. These
exposed grasshoppers were then held in a laboratory for
21 days and monitored for infection (Thomas et al. 1996,
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Figure 4. Approximate schematic representation of how
super-sensitivity to structure is generated. The mechanistic
elements of a model can be thought of as a way of combining
phenomenological model elements and other model inputs to
produce predictions. In the diagrams the space F of all
plausible phenomenological elements is a space of
one-dimensional functionsöeach `point' in this space is one
such function (a functional form and parameter values). The
panels show functions that are ¢ve elements of the space.
The arrows illustrate how incorporating a particular function
from F into the model generates a particular prediction, with
the type of dashing on the arrows indicating which function
gives which prediction. In general, the change in predictions
made by the model as we move within F will depend not only
on how far we move, but also in which direction. (a) How
substantial movement in F along the path generated by
varying the parameters of a particular functional form might
make little di¡erence to predictions. (b) A contrasting scenario
in which comparatively small movements within F, o¡ the
manifold of the particular functional form, produce large
changes in predictions.

Figure 5. Relative sensitivity of predictions of the model of } 2
to perturbations of equal magnitude, produced by di¡erent
parameters. The vertical axis is the predicted increase in peak
host population. The horizontal axis is the magnitude of the
perturbation as measured by the metric d given in } 3. These
perturbations were produced by variation of �, � and q, so
each perturbation represents a di¡erent direction in the space
of functions used in the model. Perturbations of � and q
restrict variation to the manifold of the Hochberg (1991)
model, while perturbation of � causes variation o¡ that
manifold. Clearly predictions are much more sensitive to �
than to the other parameters.



1997). During any such incubation some grasshoppers
inevitably die of miscellaneous causes, so an estimator of
infected proportion is required which corrects for this: let
ni be the number of live grasshoppers at start of incuba-
tion day i, and di be the number of deaths by pathogen on
day i. An estimator of the probability of dying on day i
given survival until then is pi � di=(di � ni), the estimated
probability of surviving that long is Piÿ1 �

Qiÿ1
j�1 (1ÿ pj).

So the estimator for probability of death by pathogen isP
i Piÿ1 pi.

(b) Model solution and ¢tting
The model was ¢tted to data as follows. The population

model was used to predict the proportion of each experi-
mental cohort that would become infected. Using a least-
squares objective, the parameters of the model were
adjusted to achieve the best ¢t between model predicted
proportions and experimentally determined predictions.
This was achieved using a constrained quasi-Newton
method (Gill et al. 1981), but best ¢t parameters were also
checked using a Gauss^Newton method backed by stee-
pest descent. Care must be taken in integrating delay
di¡erential equation models, in order to meet the conti-
nuity assumptions of the optimization methods. Integra-
tion with an (adaptive) RK2(3) scheme, coupled to
interpolation of delay variables by cubic hermite polyno-
mials ensures numerical probity (Highman 1993).
General methodology for ¢tting this sort of population
model is given inWood (1999).

(c) Bootstrapping
The bootstrapping was performed parametrically using

an approximating normal error model (Davison &
Hinkley 1997), with variance estimated individually for
each cadaver density treatment (a non-parametric boot-
strap leads to similar results). By re¢tting the population
model to each of the 99 bootstrap replicate data sets (once
for each of the three di¡erent transmission models), we
obtained bootstrap replicate parameter sets which could be
used to examine both the degree of overlap in the sampling
distributions of the competing transmission models and the
robustness of their predictions. To evaluate this robustness
each model was run for 3000 within-season days with
each of its 99 replicate parameter sets and qualitative
dynamic features were checked (3000 within-season days
is more than 30 model years, which is more than enough
time for transient e¡ects to have become undetectable).

Initial healthy host population densities of 10mÿ2 were
used, but separate tests over the density range 1^20mÿ2

demonstrated insensitivity of long-term dynamics to
initial conditions, using the best ¢t parameter values for
each model. For Hochberg's (1991) model the exercise
was also repeated using a version slightly modi¢ed to
have ¢nite gradient at zero populationöthe conclusions
were not altered.
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