
Core Statistics

Simon N. Wood



iii iv



Contents

Preface viii

1 Random variables 1
1.1 Random variables 1
1.2 Cumulative distribution functions 1
1.3 Probability (density) functions 2
1.4 Random vectors 3
1.5 Mean and variance 6
1.6 The multivariate normal distribution 9
1.7 Transformation of random variables 11
1.8 Moment generating functions 12
1.9 The central limit theorem 13
1.10 Chebyshev, Jensen and the law of large numbers 13
1.11 Statistics 16

Exercises 16

2 Statistical models and inference 18
2.1 Examples of simple statistical models 19
2.2 Random effects and autocorrelation 21
2.3 Inferential questions 25
2.4 The frequentist approach 26
2.5 The Bayesian approach 36
2.6 Design 44
2.7 Useful single-parameter normal results 45

Exercises 47

3 R 48
3.1 Basic structure of R 49
3.2 R objects 50
3.3 Computing with vectors, matrices and arrays 53
3.4 Functions 62
3.5 Useful built-in functions 66

v

vi Contents

3.6 Object orientation and classes 67
3.7 Conditional execution and loops 69
3.8 Calling compiled code 72
3.9 Good practice and debugging 74

Exercises 75

4 Theory of maximum likelihood estimation 78
4.1 Some properties of the expected log likelihood 78
4.2 Consistency of MLE 80
4.3 Large sample distribution of MLE 81
4.4 Distribution of the generalised likelihood ratio statistic 82
4.5 Regularity conditions 84
4.6 AIC: Akaike’s information criterion 84

Exercises 86

5 Numerical maximum likelihood estimation 87
5.1 Numerical optimisation 87
5.2 A likelihood maximisation example in R 97
5.3 Maximum likelihood estimation with random effects 101
5.4 R random effects MLE example 105
5.5 Computer differentiation 112
5.6 Looking at the objective function 120
5.7 Dealing with multimodality 123

Exercises 124

6 Bayesian computation 126
6.1 Approximating the integrals 126
6.2 Markov chain Monte Carlo 128
6.3 Interval estimation and model comparison 142
6.4 An MCMC example: algal growth 147
6.5 Geometry of sampling and construction of better proposals 151
6.6 Graphical models and automatic Gibbs sampling 162

Exercises 176

7 Linear models 178
7.1 The theory of linear models 179
7.2 Linear models in R 189
7.3 Extensions 201

Exercises 204

Appendix A Some distributions 207
A.1 Continuous random variables: the normal and its relatives 207
A.2 Other continuous random variables 209



Contents vii

A.3 Discrete random variables 211

Appendix B Matrix computation 213
B.1 Efficiency in matrix computation 213
B.2 Choleski decomposition: a matrix square root 215
B.3 Eigen-decomposition (spectral-decomposition) 218
B.4 Singular value decomposition 224
B.5 The QR decomposition 225
B.6 Sparse matrices 226

Appendix C Random number generation 227
C.1 Simple generators and what can go wrong 227
C.2 Building better generators 230
C.3 Uniform generation conclusions 231
C.4 Other deviates 232
References 235
Index 238

Preface

This book is aimed at the numerate reader who has probably taken an in-
troductory statistics and probability course at some stage and would like
a brief introduction to the core methods of statistics and how they are ap-
plied, not necessarily in the context of standard models. The first chapter
is a brief review of some basic probability theory needed for what fol-
lows. Chapter 2 discusses statistical models and the questions addressed by
statistical inference and introduces the maximum likelihood and Bayesian
approaches to answering them. Chapter 3 is a short overview of the R pro-
gramming language. Chapter 4 provides a concise coverage of the large
sample theory of maximum likelihood estimation and Chapter 5 discusses
the numerical methods required to use this theory. Chapter 6 covers the
numerical methods useful for Bayesian computation, in particular Markov
chain Monte Carlo. Chapter 7 provides a brief tour of the theory and prac-
tice of linear modelling. Appendices then cover some useful information
on common distributions, matrix computation and random number genera-
tion. The book is neither an encyclopedia nor a cookbook, and the bibliog-
raphy aims to provide a compact list of the most useful sources for further
reading, rather than being extensive. The aim is to offer a concise coverage
of the core knowledge needed to understand and use parametric statistical
methods and to build new methods for analysing data. Modern statistics ex-
ists at the interface between computation and theory, and this book reflects
that fact. I am grateful to Nicole Augustin, Finn Lindgren, the editors at
Cambridge University Press, the students on the Bath course ‘Applied Sta-
tistical Inference’ and the Academy for PhD Training in Statistics course
‘Statistical Computing’ for many useful comments, and to the EPSRC for
the fellowship funding that allowed this to be written.
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Random variables

1.1 Random variables

Statistics is about extracting information from data that contain an inher-
ently unpredictable component. Random variables are the mathematical
construct used to build models of such variability. A random variable takes
a different value, at random, each time it is observed. We cannot say, in
advance, exactly what value will be taken, but we can make probability
statements about the values likely to occur. That is, we can characterise
the distribution of values taken by a random variable. This chapter briefly
reviews the technical constructs used for working with random variables,
as well as a number of generally useful related results. See De Groot and
Schervish (2002) or Grimmett and Stirzaker (2001) for fuller introductions.

1.2 Cumulative distribution functions

The cumulative distribution function (c.d.f.) of a random variable (r.v.), X ,
is the function F (x) such that

F (x) = Pr(X ≤ x).

That is, F (x) gives the probability that the value of X will be less than
or equal to x. Obviously, F (−∞) = 0, F (∞) = 1 and F (x) is mono-
tonic. A useful consequence of this definition is that if F is continuous then
F (X) has a uniform distribution on [0, 1]: it takes any value between 0 and
1 with equal probability. This is because

Pr(X ≤ x) = Pr{F (X) ≤ F (x)} = F (x)⇒ Pr{F (X) ≤ u} = u

(if F is continuous), the latter being the c.d.f. of a uniform r.v. on [0, 1].
Define the inverse of the c.d.f. as F−(u) = min(x|F (x) ≥ u), which is

just the usual inverse function of F if F is continuous. F− is often called
the quantile function of X . If U has a uniform distribution on [0, 1], then
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F−(U) is distributed as X with c.d.f. F . Given some way of generating
uniform random deviates, this provides a method for generating random
variables from any distribution with a computable F−.

Let p be a number between 0 and 1. The p quantile of X is the value
that X will be less than or equal to, with probability p. That is, F−(p).
Quantiles have many uses. One is to check whether data, x1, x2, . . . , xn,
could plausibly be observations of a random variable with c.d.f. F . The xi
are sorted into order, so that they can be treated as ‘observed quantiles’.
They are then plotted against the theoretical quantiles F−{(i − 0.5)/n}
(i = 1, . . . , n) to produce a quantile-quantile plot (QQ-plot). An approx-
imately straight-line QQ-plot should result, if the observations are from a
distribution with c.d.f. F .

1.3 Probability (density) functions

For many statistical methods a function that tells us about the probability
of a random value taking a particular value is more useful than the c.d.f. To
discuss such functions requires some distinction to be made between ran-
dom variables taking a discrete set of values (e.g. the non-negative integers)
and those taking values from intervals on the real line.

For a discrete random variable, X , the probability function (or probabil-
ity mass function), f(x), is the function such that

f(x) = Pr(X = x).

Clearly 0 ≤ f(x) ≤ 1, and since X must take some value,
∑

i f(xi) = 1,
where the summation is over all possible values of x (denoted xi).

Because a continuous random variable, X , can take an infinite number
of possible values, the probability of taking any particular value is usually
zero, so that a probability function would not be very useful. Instead the
probability density function, f(x), gives the probability per unit interval of
X being near x. That is, Pr(x−∆/2 < X < x+∆/2) ≃ f(x)∆. More
formally, for any constants a ≤ b,

Pr(a ≤ X ≤ b) =

∫ b

a

f(x)dx.

Clearly this only works if f(x) ≥ 0 and
∫∞
−∞ f(x)dx = 1. Note that∫ b

−∞ f(x)dx = F (b), so F ′(x) = f(x) when F ′ exists. Appendix A pro-
vides some examples of useful standard distributions and their probability
(density) functions.
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Figure 1.1 The example p.d.f (1.2). Left: over the region
[−0.5, 1.5]× [−0.5, 1.5]. Right: the nonzero part of the p.d.f.

The following sections mostly consider continuous random variables,
but except where noted, equivalent results also apply to discrete random
variables upon replacement of integration by an appropriate summation.
For conciseness the convention is adopted that p.d.f.s with different argu-
ments usually denote different functions (e.g. f(y) and f(x) denote differ-
ent p.d.f.s).

1.4 Random vectors

Little can usually be learned from single observations. Useful statistical
analysis requires multiple observations and the ability to deal simultane-
ously with multiple random variables. A multivariate version of the p.d.f.
is required. The two-dimensional case suffices to illustrate most of the re-
quired concepts, so consider random variables X and Y .

The joint probability density function of X and Y is the function f(x, y)
such that, if Ω is any region in the x− y plane,

Pr{(X,Y ) ∈ Ω} =
∫∫

Ω

f(x, y)dxdy. (1.1)

So f(x, y) is the probability per unit area of the x − y plane, at x, y. If
ω is a small region of area α, containing a point x, y, then Pr{(X,Y ) ∈
ω} ≃ fxy(x, y)α. As with the univariate p.d.f. f(x, y) is non-negative and
integrates to one over R2.
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Figure 1.2 Evaluating probabilities from the joint p.d.f. (1.2),
shown in grey. Left: in black is shown the volume evaluated to
find Pr[X < .5, Y > .5]. Right: Pr[.4 < X < .8, .2 < Y < .4].

Example Figure 1.1 illustrates the following joint p.d.f.

f(x, y) =

{
x+ 3y2/2 0 < x < 1 & 0 < y < 1
0 otherwise.

(1.2)

Figure 1.2 illustrates evaluation of two probabilities using this p.d.f.

1.4.1 Marginal distribution

Continuing with the X,Y case, the p.d.f. of X or Y , ignoring the other
variable, can be obtained from f(x, y). To find the marginal p.d.f. of X ,
we seek the probability density of X given that−∞ < Y <∞. From the
defining property of a p.d.f., it is unsurprising that this is

f(x) =

∫ ∞

−∞
f(x, y)dy,

with a similar definition for f(y).

1.4.2 Conditional distribution

Suppose that we know that Y takes some particular value y0. What does
this tell us about the distribution of X? BecauseX andY have joint density
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Figure 1.3 The conditional density f(y|.2). The joint density
f(x, y) is shown as a grey surface. The thin black curve shows
f(.2, y). The thick black curve shows f(y|.2) = f(.2, y)/fx(.2).

f(x, y), we would expect the density of x, given Y = y0, to be propor-
tional to f(x, y0). That is, we expect

f(x|Y = y0) = kf(x, y0),

where k is a constant. Now if f(x|y) is a probability density function, then
it must integrate to 1. So,

k

∫ ∞

−∞
f(x, y0)dx = 1 ⇒ kf(y0) = 1⇒ k =

1

f(y0)
,

where f(y0) denotes the marginal density of y at y0. Hence we have:

Definition If X and Y have joint density f(x, y) then the conditional
density of X , given Y = y0, is

f(x|Y = y0) =
f(x, y0)

f(y0)
, (1.3)

assuming f(y0) > 0.

Notice that this is a p.d.f. for random variable X: y0 is now fixed. To
simplify notation we can also write f(x|y0) in place of f(x|Y = y0),
when the meaning is clear. Of course, symmetric definitions apply to the

6 Random variables

conditional distribution of Y given X: f(y|x0) = f(x0, y)/f(x0). Figure
1.3 illustrates the relationship between joint and conditional p.d.f.s.

Manipulations involving the replacement of joint distributions with con-
ditional distributions, using f(x, y) = f(x|y)f(y), are common in statis-
tics, but not everything about generalising beyond two dimensions is com-
pletely obvious, so the following three examples may help.

1. f(x, z|y) = f(x|z, y)f(z|y).
2. f(x, z, y) = f(x|z, y)f(z|y)f(y).
3. f(x, z, y) = f(x|z, y)f(z, y).

1.4.3 Bayes theorem

From the previous section it is clear that

f(x, y) = f(x|y)f(y) = f(y|x)f(x).
Rearranging the last two terms gives

f(x|y) = f(y|x)f(x)
f(y)

.

This important result, Bayes theorem, leads to a whole school of statistical
modelling, as we see in chapters 2 and 6.

1.4.4 Independence and conditional independence

If random variables X and Y are such that f(x|y) does not depend on
the value of y, then x is statistically independent of y. This has the conse-
quence that

f(x) =

∫ ∞

−∞
f(x, y)dy =

∫ ∞

−∞
f(x|y)f(y)dy

= f(x|y)
∫ ∞

−∞
f(y)dy = f(x|y),

which in turn implies that f(x, y) = f(x|y)f(y) = f(x)f(y). Clearly
the reverse implication also holds, since f(x, y) = f(x)f(y) leads to
f(x|y) = f(x, y)/f(y) = f(x)f(y)/f(y) = f(x). In general then:

Random variables X and Y are independent if and only if their joint p.(d.)f. is given by
the product of their marginal p.(d.)f.s: that is, f(x, y) = f(x)f(y).
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Modelling the elements of a random vector as independent usually sim-
plifies statistical inference. Assuming independent identically distributed
(i.i.d.) elements is even simpler, but much less widely applicable.

In many applications, a set of observations cannot be modelled as inde-
pendent, but can be modelled as conditionally independent. Much of mod-
ern statistical research is devoted to developing useful models that exploit
various sorts of conditional independence in order to model dependent data
in computationally feasible ways.

Consider a sequence of random variablesX1,X2, . . . Xn, and letX−i =
(X1, . . . ,Xi−1,Xi+1, . . . ,Xn)

T. A simple form of conditional indepen-
dence is the first order Markov property,

f(xi|x−i) = f(xi|xi−1).

That is, Xi−1 completely determines the distribution of Xi, so that given
Xi−1, Xi is independent of the rest of the sequence. It follows that

f(x) = f(xn|x−n)f(x−n) = f(xn|xn−1)f(x−n)

= . . . =
n∏

i=2

f(xi|xi−1)f(x1),

which can often be exploited to yield considerable computational savings.

1.5 Mean and variance

Although it is important to know how to characterise the distribution of a
random variable completely, for many purposes its first- and second-order
properties suffice. In particular the mean or expected value of a random
variable, X, with p.d.f. f(x), is defined as

E(X) =

∫ ∞

−∞
xf(x)dx.

Since the integral is weighting each possible value of x by its relative fre-
quency of occurrence, we can interpret E(X) as being the average of an
infinite sequence of observations of X .

The definition of expectation applies to any function g of X:

E{g(X)} =
∫ ∞

−∞
g(x)f(x)dx.

Defining µ = E(X), then a particularly useful g is (X − µ)2, measuring

8 Random variables

the squared difference between X and its average value, which is used to
define the variance of X:

var(X) = E{(X − µ)2}.
The variance of X measures how spread out the distribution of X is. Al-
though computationally convenient, its interpretability is hampered by hav-
ing units that are the square of the units of X . The standard deviation is
the square root of the variance, and hence is on the same scale as X .

1.5.1 Mean and variance of linear transformations

From the definition of expectation it follows immediately that if a and b are
finite real constants E(a + bX) = a + bE(X). The variance of a + bX
requires slightly more work:

var(a+ bX) = E{(a+ bX − a− bµ)2}
= E{b2(X − µ)2} = b2E{(X − µ)2} = b2var(X).

If X and Y are random variables then E(X + Y ) = E(X) + E(Y ).
To see this suppose that they have joint density f(x, y); then,

E(X + Y ) =

∫
(x+ y)f(x, y)dxdy

=

∫
xf(x, y)dxdy +

∫
yf(x, y)dxdy = E(X) + E(Y ).

This result assumes nothing about the distribution of X and Y . If we
now add the assumption that X and Y are independent then we find that
E(XY ) = E(X)E(Y ) as follows:

E(XY ) =

∫
xyf(x, y)dxdy

=

∫
xf(x)yf(y)dxdy (by independence)

=

∫
xf(x)dx

∫
yf(y)dy = E(X)E(Y ).

Note that the reverse implication only holds if the joint distribution of X
and Y is Gaussian.

Variances do not add as nicely as means (unless X and Y are indepen-
dent), and we need the notion of covariance:

cov(X,Y ) = E{(X − µx)(Y − µy)} = E(XY )−E(X)E(Y ),
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where µx = E(X) and µy = E(Y ). Clearly var(X) ≡ cov(X,X),
and if X and Y are independent cov(X,Y ) = 0 (since then E(XY ) =
E(X)E(Y )).

Now let A and b be, respectively, a matrix and a vector of fixed finite
coefficients, with the same number of rows, and let X be a random vector.
E(X) = µx = {E(X1), E(X2), . . . , E(Xn)}T and it is immediate that
E(AX + b) = AE(X) + b. A useful summary of the second-order
properties of X requires both variances and covariances of its elements.
These can be written in the (symmetric) variance-covariance matrix Σ,
where Σij = cov(Xi,Xj), which means that

Σ = E{(X − µx)(X− µx)T}. (1.4)

A very useful result is that

ΣAX+b = AΣAT, (1.5)

which is easily proven:

ΣAX+b = E{(AX + b−Aµx − b)(AX+ b−Aµx − b)T}
= E{(AX −Aµx)(AX−Aµx)

T)

= AE{(X − µx)(X− µx)T}AT = AΣAT.

So if a is a vector of fixed real coefficients then var(aTX) = aTΣa ≥ 0:
a covariance matrix is positive semi-definite.

1.6 The multivariate normal distribution

The normal or Gaussian distribution (see Section A.1.1) has a central place
in statistics, largely as a result of the central limit theorem covered in Sec-
tion 1.9. Its multivariate version is particularly useful.

Definition Consider a set of n i.i.d. standard normal random variables:
Zi ∼

i.i.d
N(0, 1). The covariance matrix for Z is In and E(Z) = 0. Let B

be an m× n matrix of fixed finite real coefficients and µ be an m- vector
of fixed finite real coefficients. The m-vector X = BZ+µ is said to have
a multivariate normal distribution. E(X) = µ and the covariance matrix
of X is just Σ = BBT. The short way of writing X’s distribution is

X ∼ N(µ,Σ).

In Section 1.7, basic transformation theory establishes that the p.d.f. for

10 Random variables

this distribution is

fx(x) =
1√

(2π)m|Σ|
e−

1
2 (x−µ)TΣ−1(x−µ) for x ∈ Rm, (1.6)

assumingΣ has full rank (if m = 1 the definition gives the usual univariate
normal p.d.f.). Actually there exists a more general definition in which Σ is
merely positive semi-definite, and hence potentially singular: this involves
a pseudoinverse of Σ.

An interesting property of the multivariate normal distribution is that
if X and Y have a multivariate normal distribution and zero covariance,
then they must be independent. This implication only holds for the normal
(independence implies zero covariance for any distribution).

1.6.1 A multivariate t distribution

If we replace the random variables Zi ∼
i.i.d

N(0, 1) with random variables

Ti ∼
i.i.d

tk (see Section A.1.3) in the definition of a multivariate normal, we

obtain a vector with a multivariate tk(µ,Σ) distribution. This can be use-
ful in stochastic simulation, when we need a multivariate distribution with
heavier tails than the multivariate normal. Note that the resulting univariate
marginal distributions are not t distributed. Multivariate t densities with t
distributed marginals are more complicated to characterise.

1.6.2 Linear transformations of normal random vectors

From the definition of multivariate normality, it immediately follows that
if X ∼ N(µ,Σ) and A is a matrix of finite real constants (of suitable
dimensions), then

AX ∼ N(Aµ,AΣAT). (1.7)

This is because X = BZ + µ, so AX = ABZ +Aµ, and hence AX
is exactly the sort of linear transformation of standard normal r.v.s that
defines a multivariate normal random vector. Furthermore it is clear that
E(AX) = Aµ and the covariance matrix of AX is AΣAT.

A special case is that if a is a vector of finite real constants, then

aTX ∼ N(aTµ,aTΣa).

For the case in which a is a vector of zeros, except for aj , which is 1, (1.7)
implies that

Xj ∼ N(µj ,Σjj) (1.8)
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(usually we would write σ2
j for Σjj). In words:

If X has a multivariate normal distribution, then the marginal distribution of any Xj is
univariate normal.

More generally, the marginal distribution of any subvector of X is multi-
variate normal, by a similar argument to that which led to (1.8).

The reverse implication does not hold. Marginal normality of the Xj

is not sufficient to imply that X has a multivariate normal distribution.
However, if aTX has a normal distribution, for all (finite real) a, then X
must have a multivariate normal distribution.

1.6.3 Multivariate normal conditional distributions

Suppose that Z and X are random vectors with a multivariate normal joint
distribution. Partitioning their joint covariance matrix

Σ =

[
Σz Σzx

Σxz Σx

]
,

then

X|z ∼ N(µx +ΣxzΣ
−1
z (z− µz),Σx −ΣxzΣ

−1
z Σzx).

Proof relies on a result for the inverse of a symmetric partitioned matrix:

[
A C
CT B

]−1

=

[
A−1 +A−1CD−1CTA−1 −A−1CD−1

−D−1CTA−1 D−1

]

where D = B−CTA−1C (this can be checked easily, if tediously). Now
find the conditional p.d.f. of X givenZ. Defining Q = Σx−ΣxzΣ

−1
z Σzx,

z̃ = z − µz, x̃ = x− µx and noting that terms involving only z are part
of the normalising constant,

f(x|z) = f(x, z)/f(z)

∝ exp

{
− 1

2

[
z̃
x̃

]T [
Σ−1

z + Σ−1
z ΣzxQ

−1ΣxzΣ
−1
z −Σ−1

z ΣzxQ
−1

−Q−1ΣxzΣ
−1
z Q−1

] [
z̃
x̃

]}

∝ exp
{
−x̃TQ−1x̃/2 + x̃TQ−1ΣxzΣ

−1
z z̃+ z terms

}

∝ exp
{
−(x̃ − ΣxzΣ

−1
z z̃)TQ−1(x̃ − ΣxzΣ

−1
z z̃)/2 + z terms

}
,

which is recognisable as a N(µx+ΣxzΣ
−1
z (z−µz),Σx−ΣxzΣ

−1
z Σzx)

p.d.f.
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1.7 Transformation of random variables

Consider a continuous random variable Z , with p.d.f. fz. Suppose X =
g(Z) where g is an invertible function. The c.d.f of X is easily obtained
from that of Z:

Fx(x) = Pr(X ≤ x)

=

{
Pr{g−1(X) ≤ g−1(x)} = Pr{Z ≤ g−1(x)}, g increasing
Pr{g−1(X) > g−1(x)} = Pr{Z > g−1(x)}, g decreasing

=

{
Fz{g−1(x)}, g increasing
1− Fz{g−1(x)}, g decreasing

To obtain the p.d.f. we simply differentiate and, whether g is increasing or
decreasing, obtain

fx(x) = F ′
x(x) = F ′

z{g−1(x)}
∣∣∣∣
dz

dx

∣∣∣∣ = fz{g−1(x)}
∣∣∣∣
dz

dx

∣∣∣∣ .

If g is a vector function and Z and X are vectors of the same dimension,
then this last result generalises to

fx(x) = fz{g−1(x)} |J| ,

where Jij = ∂zi/∂xj (again a one-to-one mapping between x and z is as-
sumed). Note that if fx and fz are probability functions for discrete random
variables then no |J| term is needed.

Example Use the definition of a multivariate normal random vector to
obtain its p.d.f. Let X = BZ+ µ, where B is an n× n invertible matrix
andZ a vector of i.i.d. standard normal random variables. So the covariance
matrix of X is Σ = BBT, Z = B−1(X − µ) and the Jacobian here is
|J| = |B−1|. Since the Zi are i.i.d. their joint density is the product of their
marginals, i.e.

f(z) =
1√
2π

n e
−zTz/2.

Direct application of the preceding transformation theory then gives

f(x) =
|B−1|√
2π

n e
−(x−µ)TB−TB−1(x−µ)/2

=
1√

(2π)n|Σ|
e−(x−µ)TΣ−1(x−µ)/2.
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1.8 Moment generating functions

Another characterisation of the distribution of a random variable, X , is its
moment generating function (m.g.f.),

MX(s) = E
(
esX
)
,

where s is real. The kth derivative of the m.g.f. evaluated at s = 0 is the
kth (uncentered) moment of X:

dkMX

dsk

∣∣∣∣
s=0

= E(Xk).

So MX(0) = 1, M ′
X(0) = E(X), M ′′

X(0) = E(X2), etc.
The following three properties will be useful in the next section:

1. If MX(s) = MY (s) for some small interval around s = 0, then X and
Y are identically distributed.

2. If X and Y are independent, then

MX+Y (s) = E
{
es(X+Y )

}
= E

(
esXesY

)
= E

(
esX
)
E
(
esY
)

= MX(s)MY (s).

3. Ma+bX(s) = E(eas+bXs) = easMX(bs).

Property 1 is unsurprising, given that the m.g.f. encodes all the moments
of X .

1.9 The central limit theorem

Consider i.i.d. random variables, X1,X2, . . . Xn, with mean µ and finite
variance σ2. Let X̄n =

∑n
i=1 Xi/n. In its simplest form, the central limit

theorem says that in the limit n→∞,

X̄n ∼ N(µ, σ2/n).

Intuitively, consider a Taylor expansion of l(x̄n) = log f(x̄n) where f is
the unknown p.d.f. of X̄n, with mode x̂n:

f(x̄) ≃ exp{l(x̂n) + l′′(x̄n − x̂n)
2/2 + l′′′(x̄n − x̂n)

3/6 + · · · }
as n → ∞, x̄n − x̂n → 0, so that the right hand side tends to an
N(x̂,−1/l′′) p.d.f. This argument is not rigorous, because it makes im-
plicit assumptions about how derivatives of l vary with n.
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A proper proof uses moment generating functions. Define

Yi =
Xi − µ

σ
and Zn =

1√
n

n∑

i=1

Yi =
X̄n − µ

σ/
√
n

.

Now express the m.g.f. of Zn in terms of the Taylor expansion of the m.g.f.
of Yi (noting that M ′

Y (0) = 0 and M ′′
Y (0) = 1):

MZn
(s) =

{
MY (s/

√
n)
}n

=

{
MY (0) +M ′

Y (0)
s√
n
+M ′′

Y (0)
s2

2n
+ o(n−1)

}n

=

{
1 +

s2

2n
+ o(n−1)

}n
= exp

[
n log

{
1 +

s2

2n
+ o(n−1)

}]

→ exp

(
s2

2

)
as n→∞.

The final expression is the m.g.f. of N(0, 1), completing the proof.
The central limit theorem generalises to multivariate and non-identical

distribution settings. There are also many non-independent situations where
a normal limiting distribution occurs. The theorem is important in statistics
because it justifies using the normal as an approximation in many situations
where a random variable can be viewed as a sum of other random variables.
This applies in particular to the distribution of statistical estimators, which
very often have normal distributions in the large sample limit.

1.10 Chebyshev, Jensen and the law of large numbers

Some other general results are useful in what follows.

1.10.1 Chebyshev’s inequality

If X is a random variable and E(X2) <∞, then

Pr(|X| ≥ a) ≤ E(X2)

a2
. (1.9)

Proof: From the definition of expectation we have

E(X2) = E(X2 | a ≤ |X|)Pr(a ≤ |X|)
+ E(X2 | a > |X|)Pr(a > |X|)
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and because all the terms on the right hand side are non-negative it follows
that E(X2) ≥ E(X2 | a ≤ |X|)Pr(a ≤ |X|). However if a ≤ |X|, then
obviously a2 ≤ E(X2 | a ≤ |X|) so E(X2) ≥ a2Pr(|X| ≥ a) and (1.9)
is proven.

1.10.2 The law of large numbers

Consider i.i.d. random variables, X1, . . . Xn, with mean µ, and E(|Xi|) <
∞. If X̄n =

∑n
i=1 Xi/n then the strong law of large numbers states that,

for any positive ǫ

Pr
(
lim
n→∞

|X̄n − µ| < ǫ
)
= 1

(i.e. X̄n converges almost surely to µ).
Adding the assumption var(Xi) = σ2 < ∞, it is easy to prove the

slightly weaker result

lim
n→∞

Pr
(
|X̄n − µ| ≥ ǫ

)
= 0,

which is the weak law of large numbers (Xn converges in probability to
µ). A proof is as follows:

Pr
(
|X̄n − µ| ≥ ǫ

)
≤ E(X̄n − µ)2

ǫ2
=

var(X̄n)

ǫ2
=

σ2

nǫ2

and the final term tends to 0 as n → ∞. The inequality is Chebyshev’s.
Note that the i.i.d. assumption has only been used to ensure that var(X̄n) =
σ2/n. All that we actually needed for the proof was the milder assumption
that limn→∞ var(X̄n) = 0.

To some extent the laws of large numbers are almost statements of the
obvious. If they did not hold then random variables would not be of much
use for building statistical models.

1.10.3 Jensen’s inequality

This states that for any random variable X and concave function c,

c{E(X)} ≥ E{c(X)}. (1.10)

The proof is most straightforward for a discrete random variable. A con-
cave function, c, is one for which

c(w1x1 + w2x2) ≥ w1c(x1) + w2c(x2) (1.11)
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for any real non-negative w1 and w2 such that w1+w2 = 1. Now suppose
that it is true that

c

(
n−1∑

i=1

w′
ixi

)
≥

n−1∑

i=1

w′
ic(xi) (1.12)

for any non-negative constants w′
i such that

∑n−1
i=1 w′

i = 1. Consider any
set of non-negative constants wi such that

∑n
i=1 wi = 1. We can write

c

(
n∑

i=1

wixi

)
= c

(
(1−wn)

n−1∑

i=1

wixi
1− wn

+ wnxn

)

≥ (1− wn)c

(
n−1∑

i=1

wixi
1− wn

)
+ wnc(xn) (1.13)

where the final inequality is by (1.11). Now from
∑n

i=1 wi = 1 it follows
that

∑n−1
i=1 wi/(1− wn) = 1, so (1.12) applies and

c

(
n−1∑

i=1

wixi
1− wn

)
≥

n−1∑

i=1

wic(xi)

1− wn
.

Substituting this into the right hand side of (1.13) results in

c

(
n∑

i=1

wixi

)
≥

n∑

i=1

wic(xi). (1.14)

For n = 3 (1.12) is just (1.11) and is therefore true. It follows, by induc-
tion, that (1.14) is true for any n. By setting wi = f(xi), where f(x) is the
probability function of the r.v. X , (1.10) follows immediately for a discrete
random variable. In the case of a continuous random variable we need to
replace the expectation integral by the limit of a discrete weighted sum,
and (1.10) again follows from (1.14)

1.11 Statistics

A statistic is a function of a set of random variables. Statistics are them-
selves random variables. Obvious examples are the sample mean and sam-
ple variance of a set of data, x1, x2, . . . xn:

x̄ =
1

n

n∑

i=1

xi, s2 =
1

n− 1

n∑

i=1

(xi − x̄)2.
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The fact that formal statistical procedures can be characterised as functions
of sets of random variables (data) accounts for the field’s name.

If a statistic t(x) (scalar or vector) is such that the p.d.f. of x can be
written as

fθ(x) = h(x)gθ{t(x)},
where h does not depend on θ and g depends on x only through t(x),
then t is a sufficient statistic for θ, meaning that all information about θ
contained in x is provided by t(x). See Section 4.1 for a formal definition
of ‘information’. Sufficiency also means that the distribution of x given
t(x) does not depend on θ.

Exercises
1.1 Exponential random variable, X ≥ 0, has p.d.f. f(x) = λ exp(−λx).

1. Find the c.d.f. and the quantile function for X.
2. Find Pr(X < λ) and the median of X.
3. Find the mean and variance of X.

1.2 Evaluate Pr(X < 0.5, Y < 0.5) if X and Y have joint p.d.f. (1.2).
1.3 Suppose that

Y ∼ N

([
1

2

]
,

[
2 1

1 2

])
.

Find the conditional p.d.f. of Y1 given that Y1 + Y2 = 3.
1.4 If Y ∼ N(µ, Iσ2) and Q is any orthogonal matrix of appropriate dimension,

find the distribution of QY. Comment on what is surprising about this result.
1.5 If X and Y are independent random vectors of the same dimension, with

covariance matrices Vx and Vy , find the covariance matrix of X+Y.
1.6 Let X and Y be non-independent random variables, such that var(X) = σ2

x,
var(Y ) = σ2

y and cov(X,Y ) = σ2
xy . Using the result from Section 1.6.2,

find var(X + Y ) and var(X − Y ).
1.7 Let Y1, Y2 and Y3 be independent N(µ, σ2) r.v.s. Somehow using the matrix




1/3 1/3 1/3

2/3 −1/3 −1/3

−1/3 2/3 −1/3




show that Ȳ =
∑3
i=1 Yi/3 and

∑3
i=1(Yi − Ȳ )2 are independent random

variables.
1.8 If log(X) ∼ N(µ, σ2), find the p.d.f. of X.
1.9 Discrete random variable Y has a Poisson distribution with parameter λ if

its p.d.f. is f(y) = λye−λ/y!, for y = 0, 1, . . .
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a. Find the moment generating function for Y (hint: the power series repre-
sentation of the exponential function is useful).

b. If Y1 ∼ Poi(λ1) and independently Y2 ∼ Poi(λ2), deduce the distribu-
tion of Y1 + Y2, by employing a general property of m.g.f.s.

c. Making use of the previous result and the central limit theorem, deduce
the normal approximation to the Poisson distribution.

d. Confirm the previous result graphically, using R functions dpois, dnorm,
plot or barplot and lines. Confirm that the approximation improves
with increasing λ.
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Statistical models and inference

Statistics aims to extract information from data: specifically, information
about the system that generated the data. There are two difficulties with
this enterprise. First, it may not be easy to infer what we want to know
from the data that can be obtained. Second, most data contain a component
of random variability: if we were to replicate the data-gathering process
several times we would obtain somewhat different data on each occasion.
In the face of such variability, how do we ensure that the conclusions drawn

statistical modelknowns

unknowns

data

statistical modelγ, x

θ

y

Figure 2.1 Left: a statistical model is a mathematical description
of how the values of some knowns and unknowns could have
been used to generate observed data and other stochastically
similar replicates. Right: the model unknowns are written in a
parameter vector θ and the model knowns may include fixed data,
x and parameters γ. The data are observations, y, of a random
vector. At minimum a statistical model must allow random data to
be simulated that are stochastically similar to y: explicitly or
implicitly it specifies the distribution of y in terms of x, γ and θ.
Statistical methods aim to reverse the direction of the vertical
arrows: to infer the unknown θ from the observed data y.
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from a single set of data are generally valid, and not a misleading reflection
of the random peculiarities of that single set of data?

Statistics provides methods for overcoming these difficulties and mak-
ing sound inferences from inherently random data. For the most part this
involves the use of statistical models, which are like ‘mathematical car-
toons’ describing how our data might have been generated, if the unknown
features of the data-generating system were actually known. So if the un-
knowns were known, then a decent model could generate data that resem-
bled the observed data, including reproducing its variability under replica-
tion. The purpose of statistical inference is then to use the statistical model
to go in the reverse direction: to infer the values of the model unknowns
that are consistent with observed data.

Mathematically, let y denote a random vector containing the observed
data. Let θ denote a vector of parameters of unknown value. We assume
that knowing the values of some of these parameters would answer the
questions of interest about the system generating y. So a statistical model
is a recipe by which y might have been generated, given appropriate values
for θ. At a minimum the model specifies how data like y might be simu-
lated, thereby implicitly defining the distribution of y and how it depends
on θ. Often it will provide more, by explicitly defining the p.d.f. of y in
terms of θ. Generally a statistical model may also depend on some known
parameters, γ, and some further data, x, that are treated as known and are
referred to as covariates or predictor variables. See Figure 2.1.

In short, if we knew the value of θ, a correct statistical model would
allow us to simulate as many replicate random data vectors y∗ as we like,
which should all resemble our observed data y (while almost never being
identical to it). Statistical methods are about taking models specified in this
unknown parameters to known data way and automatically inverting them
to work out the values of the unknown parameters θ that are consistent
with the known observed data y.

2.1 Examples of simple statistical models

1. Consider the following 60-year record of mean annual temperatures in
New Haven, Connecticut (in ◦F, and available as nhtemp in R).
49.9 52.3 49.4 51.1 49.4 47.9 49.8 50.9 49.3 51.9 50.8 49.6 49.3 50.6
48.4 50.7 50.9 50.6 51.5 52.8 51.8 51.1 49.8 50.2 50.4 51.6 51.8 50.9
48.8 51.7 51.0 50.6 51.7 51.5 52.1 51.3 51.0 54.0 51.4 52.7 53.1 54.6
52.0 52.0 50.9 52.6 50.2 52.6 51.6 51.9 50.5 50.9 51.7 51.4 51.7 50.8
51.9 51.8 51.9 53.0

A simple model would treat these data as independent observations
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from an N(µ, σ2) distribution, where µ and σ2 are unknown param-
eters (see Section A.1.1). Then the p.d.f. for the random variable corre-
sponding to a single measurement, yi, is

f(yi) =
1√
2πσ

e
−(yi−µ)2

2σ2 .

The joint p.d.f. for the vector y is the product of the p.d.f.s for the
individual random variables, because the model specifies independence
of the yi, i.e.

f(y) =
60∏

i=1

f(yi).

2. The New Haven temperature data seem to be ‘heavy tailed’ relative to
a normal: that is, there are more extreme values than are implied by a
normal with the observed standard deviation. A better model might be

yi − µ

σ
∼ tα,

where µ, σ and α are unknown parameters. Denoting the p.d.f. of a tα
distribution as ftα , the transformation theory of Section 1.7, combined
with independence of the yi, implies that the p.d.f. of y is

f(y) =
60∏

i=1

1

σ
ftα{(yi − µ)/σ}.

3. Air temperature, ai, is measured at times ti (in hours) spaced half an
hour apart for a week. The temperature is believed to follow a daily
cycle, with a long-term drift over the course of the week, and to be
subject to random autocorrelated departures from this overall pattern.
A suitable model might then be

ai = θ0 + θ1ti + θ2 sin(2πti/24) + θ3 cos(2πti/24) + ei,

where ei = ρei−1 + ǫi and the ǫi are i.i.d. N(0, σ2). This model im-
plicitly defines the p.d.f. of a, but as specified we have to do a little
work to actually find it. Writing µi = θ0 + θ1ti + θ2 sin(2πti/24) +
θ3 cos(2πti/24), we have ai = µi + ei. Because ei is a weighted
sum of zero mean normal random variables, it is itself a zero mean
normal random variable, with covariance matrix Σ such that Σi,j =
ρ|i−j|σ2/(1− ρ2). So the p.d.f. of a,1 the vector of temperatures, must

1 For aesthetic reasons I will use phrases such as ‘the p.d.f. of y’ to mean ‘the p.d.f. of the
random vector of which y is an observation’.
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be multivariate normal,

fa(a) =
1√

(2π)n|Σ|
e−

1
2 (a−µ)TΣ−1(a−µ),

whereΣ depends on parameter ρ and σ, whileµ depends on parameters
θ and covariate t (see also Section 1.6).

4. Data were collected at the Ohio State University Bone Marrow Trans-
plant Unit to compare two methods of bone marrow transplant for 23
patients suffering from non-Hodgkin’s lymphoma. Each patient was
randomly allocated to one of two treatments. The allogenic treatment
consisted of a transplant from a matched sibling donor. The autogenic
treatment consisted of removing the patient’s marrow, ‘cleaning it’ and
returning it after a high dose of chemotherapy. For each patient the time
of death, relapse or last follow up (still healthy) is recorded. The ‘right-
censored’ last follow up times are marked with an over-bar.

Time (Days)

Allo 28 32 49 84 357 933 1078 1183 1560 2114 2144
Auto 42 53 57 63 81 140 176 210 252 476 524 1037

The data are from Klein and Moeschberger (2003). A reasonable model
is that the death or relapse times are observations of independent ran-
dom variables having exponential distributions with parameters θl and
θu respectively (mean survival times are θ−1

u/l). Medically the interesting
question is whether the data are consistent with θl = θu.

For the allogenic group, denote the time of death, relapse or censor-
ing by ti. So we have

fl(ti) =

{
θle

−θlti uncensored∫∞
ti

θle
−θltdt = e−θlti censored

where fl is a density for an uncensored ti (death) or a probability of
dying after ti for a censored observation. A similar model applies for
the autogenic sample. For the whole dataset we then have

f(t) =
11∏

i=1

fl(ti)
23∏

i=12

fu(ti).

2.2 Random effects and autocorrelation

For the example models in the previous section, it was relatively straight-
forward to go from the model statement to the implied p.d.f. for the data.
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Often, this was because we could model the data as observations of in-
dependent random variables with known and tractable distributions. Not
all datasets are so amenable, however, and we commonly require more
complicated descriptions of the stochastic structure in the data. Often we
require models with multiple levels of randomness. Such multilayered ran-
domness implies autocorrelation in the data, but we may also need to in-
troduce autocorrelation more directly, as in Example 3 in Section 2.1.

Random variables in a model that are not associated with the indepen-
dent random variability of single observations,2 are termed random effects.
The idea is best understood via concrete examples:

1. A trial to investigate a new blood-pressure reducing drug assigns male
patients at random to receive the new drug or one of two alternative
standard treatments. Patients’ age, aj , and fat mass, fj , are recorded
at enrolment, and their blood pressure reduction is measured at weekly
intervals for 12 weeks. In this setup it is clear that there are two sources
of random variability that must be accounted for: the random variability
from patient to patient, and the random variability from measurement to
measurement made on a single patient. Let yij represent the ith blood-
pressure reduction measurement on the jth patient. A suitable model
might then be

yij = γk(j)+β1aj+β2fj+bj+ǫij, bj ∼ N(0, σ2
b ), ǫij ∼ N(0, σ2),

(2.1)
where k(j) = 1, 2 or 3 denotes the treatment to which patient j has
been assigned. The γk, βs and σs are unknown model parameters. The
random variables bj and ǫij are all assumed to be independent here.

The key point is that we decompose the randomness in yij into two
components: (i) the patient specific component, bj , which varies ran-
domly from patient to patient but remains fixed between measurements
on the same patient, and (ii) the individual measurement variability, ǫij ,
which varies between all measurements. Hence measurements taken
from different patients of the same age, fat mass and treatment will usu-
ally differ more than measurements taken on the same patient. So the
yij are not statistically independent in this model, unless we condition
on the bj .

On first encountering such models it is natural to ask why we do
not simply treat the bj as fixed parameters, in which case we would be
back in the convenient world of independent measurements. The rea-

2 and, in a Bayesian context, are not parameters.
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son is interpretability. As stated, (2.1) treats patients as being randomly
sampled from a wide population of patients: the patient-specific effects
are simply random draws from some normal distribution describing the
distribution of patient effects over the patient population. In this setup
there is no problem using statistics to make inferences about the pop-
ulation of patients in general, on the basis of the sample of patients in
the trial. Now suppose we treat the bj as parameters. This is equivalent
to saying that the patient effects are entirely unpredictable from patient
to patient — there is no structure to them at all and they could take any
value whatsoever. This is a rather extreme position to hold and implies
that we can say nothing about the blood pressure of a patient who is not
in the trial, because their bj value could be anything at all. Another side
of this problem is that we lose all ability to say anything meaningful
about the treatment effects, γk, since we have different patients in the
different treatment arms, so that the fixed bj are completely confounded
with the γk (as can be seen by noting that any constant could be added to
a γk, while simultaneously being subtracted from all the bj for patients
in group k, without changing the model distribution of any yij).

2. A population of cells in an experimental chemostat is believed to grow
according to the model

Nt+1 = rNt exp(−αNt + bt), bt ∼ N(0, σ2
b ),

where Nt is the population at day t; r, α, σb and N0 are parameters;
and the bt are independent random effects. A random sample of 0.5%
of the cells in the chemostat is counted every 2 days, giving rise to
observations yt, which can be modelled as independent Poi(0.005Nt).
In this case the random effects enter the model nonlinearly, introducing
a complicated correlation structure into Nt, and hence also the yt.

The first example is an example of a linear mixed model.3 In this case it
is not difficult to obtain the p.d.f. for the vector y. We can write the model
in matrix vector form as

y = Xβ + Zb+ ǫ, b ∼ N(0, Iσ2
b ), ǫ ∼ N(0, Iσ2), (2.2)

where βT = (γ1, γ2, γ3, β1, β2). The first three columns of X contain
0, 1 indicator variables depending on which treatment the row relates to,

3 It is a mixed model because it contains both fixed effects (the γ and β terms in the
example) and random effects. Mixed models should not be confused with mixture
models in which each observation is modelled as having some probability of being
drawn from each of a number of alternative distributions.
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and the next two columns contain the age and fat mass for the patients. Z
has one column for each subject, each row of which contains a 1 or a 0
depending on whether the observation at this data row relates to the subject
or not. Given this structure it follows (see Section 1.6.2) that the covariance
matrix fory is Σ = Iσ2+ZZTσ2

b and the expected value of y isµ = Xβ,
so that y ∼ N(µ,Σ), with p.d.f. as in (1.6). So in this case the p.d.f. for y
is quite easy to write down. However, computing with it can become very
costly if the dimension of y is beyond the low thousands. Hence the main
challenge with these models is to find ways of exploiting the sparsity that
results from having so many 0 entries in Z, so that computation is feasible
for large samples.

The second example illustrates the more usual situation in which the
model fully specifies a p.d.f. (or p.f.) for y, but it is not possible to write
it down in closed form, or even to evaluate it exactly. In contrast, the joint
density of the random effects, b, and data, y, is always straightforward to
evaluate. From Sections 1.4.2 and 1.4.3 we have that

f(y,b) = f(y|b)f(b),
and the distributions f(y|b) and f(b) are usually straightforward to work
with. So, for the second example, let f(y;λ) denote the p.f. of a Poisson
random variable with mean λ (see Section A.3.2). Then

f(y|b) =
∏

t

f(yt;Nt/200),

while f(b) is the density of a vector of i.i.d. N(0, σ2
b ) deviates.

For some statistical tasks we may be able to work directly with f(y,b)
without needing to evaluate the p.d.f. of y: this typically applies when tak-
ing the Bayesian approach of Section 2.5, for example. However, often we
cannot escape the need to evaluate f(y) itself. That is, we need

f(y) =

∫
f(y,b)db,

which is generally not analytically tractable. We then have a number of
choices. If the model has a structure that allows the integral to be bro-
ken down into a product of low-dimensional integrals then numerical in-
tegration methods (so-called quadrature) may be feasible; however, these
methods are usually impractical beyond somewhere around 10 dimensions.
Then we need a different approach: either estimate the integral statistically
using stochastic simulation or approximate it somehow (see Section 5.3.1).
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2.3 Inferential questions

Given some data, y, and a statistical model with parameters θ, there are
four basic questions to ask:

1. What values for θ are most consistent with y?

2. Is some prespecified restriction on θ consistent with y?

3. What ranges of values of θ are consistent with y?

4. Is the model consistent with the data for any values of θ at all?

The answers to these questions are provided by point estimation, hypoth-
esis testing, interval estimation and model checking, respectively. Ques-
tion 2 can be somewhat generalised to: which of several alternative mod-
els is most consistent with y? This is the question of model selection
(which partly incorporates question 4). Central to the statistical way of do-
ing things is recognising the uncertainty inherent in trying to learn about θ
from y. This leads to another, often neglected, question that applies when
there is some control over the data-gathering process:

5. How might the data-gathering process be organized to produce data that
enables answers to the preceding questions to be as accurate and precise
as possible?

This question is answered by experimental and survey design methods.
There are two main classes of methods for answering questions 1-4,

and they start from different basic assumptions. These are the Bayesian
and frequentist approaches, which differ in how they use probability to
model uncertainty about model parameters. In the frequentist approach,
parameters are treated as having values that are fixed states of nature, about
which we want to learn using data. There is randomness in our estimation
of the parameters, but not in the parameters themselves. In the Bayesian
approach parameters are treated as random variables, about which we want
to update our beliefs in the light of data: our beliefs are summarised by
probability distributions for the parameters. The difference between the
approaches can sound huge, and there has been much debate about which
is least ugly. From a practical perspective, however, the approaches have
much in common, except perhaps when it comes to model selection. In
particular, if properly applied they usually produce results that differ by
less than the analysed models are likely to differ from reality.
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2.4 The frequentist approach

In this way of doing things we view parameters, θ, as fixed states of nature,
about which we want to learn. We use probability to investigate what would
happen under repeated replication of the data (and consequent statistical
analysis). In this approach probability is all about how frequently events
would occur under this imaginary replication process.

2.4.1 Point estimation: maximum likelihood

Given a model and some data, then with enough thought about what the
unknown model parameters mean, it is often possible to come up with a
way of getting reasonable parameter value guesses from the data. If this
process can be written down as a mathematical recipe, then we can call the
guess an estimate, and we can study its properties under data replication
to get an idea of its uncertainty. But such model-by-model reasoning is
time consuming and somewhat unsatisfactory: how do we know that our
estimation process is making good use of the data, for example? A general
approach for dealing with all models would be appealing.

There are a number of more or less general approaches, such as the
method of moments and least squares methods, which apply to quite wide
classes of models, but one general approach stands out in terms of practical
utility and nice theoretical properties: maximum likelihood estimation. The
key idea is simply this:

Parameter values that make the observed data appear relatively probable are more likely
to be correct than parameter values that make the observed data appear relatively im-
probable.

For example, we would much prefer an estimate of θ that assigned a prob-
ability density of 0.1 to our observed y, according to the model, to an
estimate for which the density was 0.00001.

So the idea is to judge the likelihood of parameter values using fθ(y),
the model p.d.f. according to the given value of θ, evaluated at the ob-
served data. Because y is now fixed and we are considering the likelihood
as a function of θ, it is usual to write the likelihood as L(θ) ≡ fθ(y). In
fact, for theoretical and practical purposes it is usual to work with the log
likelihood l(θ) = logL(θ). The maximum likelihood estimate (MLE) of
θ is then

θ̂ = argmax
θ

l(θ).
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There is more to maximum likelihood estimation than just its intuitive ap-
peal. To see this we need to consider what might make a good estimate, and
to do that we need to consider repeated estimation under repeated replica-
tion of the data-generating process.

Replicating the random data and repeating the estimation process results
in a different value of θ̂ for each replicate. These values are of course ob-
servations of a random vector, the estimator or θ, which is usually also
denoted θ̂ (the context making clear whether estimate or estimator is being
referred to). Two theoretical properties are desirable:

1. E(θ̂) = θ or at least |E(θ̂) − θ| should be small (i.e. the estimator
should be unbiased, or have small bias).

2. var(θ̂) should be small (i.e. the estimator should have low variance).

Unbiasedness basically says that the estimator gets it right on average: a
long-run average of the θ̂, over many replicates of the data set, would tend
towards the true value of the parameter vector. Low variance implies that
any individual estimate is quite precise. There is a tradeoff between the
two properties, so it is usual to seek both. For example, we can always
drive variance to zero if we do not care about bias, by just eliminating the
data from the estimation process and picking a constant for the estimate.
Similarly it is easy to come up with all sorts of unbiased estimators that
have enormous variance. Given the tradeoff, you might reasonably wonder
why we do not concern ourselves with some direct measure of estimation
error such as E{(θ̂−θ)2}, the mean square error (MSE). The reason is that
it is difficult to prove general results about minimum MSE estimators, so
we are stuck with the second-best option of considering minimum variance
unbiased estimators.4

It is possible to derive a lower limit on the variance that any unbiased es-
timator can achieve: the Cramér-Rao lower bound. Under some regularity
conditions, and in the large sample limit, it turns out that maximum like-
lihood estimation is unbiased and achieves the Cramér-Rao lower bound,
which gives some support for its use (see Sections 4.1 and 4.3). In addition,
under the same conditions,

θ̂ ∼ N(θ,I−1), (2.3)

4 Unless the gods have condemned you to repeat the same experiment for all eternity,
unbiasedness, although theoretically expedient, should not be of much intrinsic interest:
an estimate close to the truth for the data at hand should always be preferable to one that
would merely get things right on average over an infinite sequence of data replicates.
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where Iij = −E(∂2l/∂θi∂θj) (and actually the same result holds substi-
tuting Îij = −∂2l/∂θi∂θj for Iij).

2.4.2 Hypothesis testing and p-values

Now consider the question of whether some defined restriction on θ is
consistent with y?

p-values: the fundamental idea
Suppose that we have a model defining a p.d.f., fθ(y), for data vector y
and that we want to test the null hypothesis, H0 : θ = θ0, where θ0
is some specified value. That is, we want to establish whether the data
could reasonably be generated from fθ0(y). An obvious approach is to ask
how probable data like y are under H0. It is tempting to simply evaluate
fθ0(y) for the observed y, but then deciding what counts as ‘probable’ and
‘improbable’ is difficult to do in a generally applicable way.

A better approach is to assess the probability, p0 say, of obtaining data
at least as improbable as y under H0 (better read that sentence twice). For
example, if only one dataset in a million would be as improbable as y,
according to H0, then assuming we believe our data, we ought to seriously
doubt H0. Conversely, if half of all datasets would be expected to be at least
as improbable as y, according to H0, then there is no reason to doubt it.

A quantity like p0 makes good sense in the context of goodness of
fit testing, where we simply want to assess the plausibility of fθ0 as a
model without viewing it as being a restricted form of a larger model.
But when we are really testing H0 : θ = θ0 against the alternative H1 :
‘θ unrestricted’ then p0 is not satisfactory, because it makes no distinction
between y being improbable under H0 but probable under H1, and y being
improbable under both.

A very simple example illustrates the problem. Consider independent
observations y1, y2 from N(µ, 1), and the test H0 : µ = 0 versus H0 : µ 6=
0. Figure 2.2 shows the p.d.f. under the null, and, in grey, the region over
which the p.d.f. has to be integrated to find p0 for the data point marked by
•. Now consider two alternative values for y1, y2 that yield equal p0 = 0.1.
In one case (black triangle) y1 = −y2, so that the best estimate of µ is 0,
corresponding exactly to H0. In the other case (black circle) the data are
much more probable under the alternative than under the null hypothesis.
So because we include points that are more compatible with the null than
with the alternative in the calculation of p0, we have only weak discrimi-
natory power between the hypotheses.
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Figure 2.2 Why the alternative hypothesis is needed in defining
the p-value, and p0 will not do. Contour plot of the joint p.d.f. for
the null model that y1, y2 are independent N(0, 1). The dashed
line illustrates the possible values for the expected values of y1
and y2, under the alternative model that they are independent
N(µ, 1). The black triangle and black circle show two possible
values for y1, y2, while the grey region shows the region of at
least as improbable y1, y2 pairs, corresponding to p0 = 0.1. The
problem is that although the black circle is much more probable
under the alternative model, it has the same p0 value as the black
triangle, for which y1 = −y2 and the estimated µ would be
exactly the null model value of zero. The dotted line is y1 = −y2.

Recognizing the problems with p0, a possible solution is to standardise
fθ0(y) by the highest value that fθ(y) could have taken for the given y.
That is, to judge the relative plausibility of y under H0 on the basis of
fθ0(y)/fθ̂(y) where θ̂ is the value maximising fθ(y) for a given y. In the
context of the example in Figure 2.2 this approach is much better. The black
triangle now has relative plausibility 1, reflecting its compatibility with the
H0, whereas the black circle has much lower plausibility, reflecting the fact
that it would be much more probable under a model with a mean greater
than zero. So we could now seek a revised measure of consistency of the
data and null hypothesis:
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p is the probability, under the null hypothesis, of obtaining data at least as relatively
implausible as that observed.

Actually the reciprocal of this relative plausibility is generally known as
the likelihood ratio fθ̂(y)/fθ0(y) of the two hypotheses, because it is a
measure of how likely the alternative hypothesis is relative to the null, given
the data. So we have the more usual equivalent definition:

p is the probability, under the null hypothesis, of obtaining a likelihood ratio at least as
large as that observed.

p is generally referred to as the p-value associated with a test. If the null
hypothesis is true, then from its definition, the p-value should have a uni-
form distribution on [0, 1] (assuming its distribution is continuous). By
convention p-values in the ranges 0.1 ≥ p > 0.05, 0.05 ≥ p > 0.01,
0.01 ≥ p > 0.001 and p ≤ 0.001 are sometimes described as providing,
respectively, ‘marginal evidence’, ‘evidence’, ‘strong evidence’ and ‘very
strong evidence’ against the null model, although the interpretation should
really be sensitive to the context.

Generalisations
For the purposes of motivating p-values, the previous subsection consid-
ered only the case where the null hypothesis is a simple hypothesis, speci-
fying a value for every parameter of f , while the alternative is a composite
hypothesis, in which a range of parameter values are consistent with the
alternative. Unsurprisingly, there are many situations in which we are in-
terested in comparing two composite hypotheses, so that H0 specifies some
restrictions of θ, without fully constraining it to one point. Less commonly,
we may also wish to compare two simple hypotheses, so that the alternative
also supplies one value for each element of θ. This latter case is of theo-
retical interest, but because the hypotheses are not nested it is somewhat
conceptually different from most cases of interest.

All test variants can be dealt with by a slight generalisation of the like-
lihood ratio statistic to fθ̂(y)/fθ̂0(y) where fθ̂0(y) now denotes the max-
imum possible value for the density of y under the null hypothesis. If the
null hypothesis is simple, then this is just fθ0(y), as before, but if not then
it is obtained by finding the parameter vector that maximises fθ(y) subject
to the restrictions on θ imposed by H0.

In some cases the p-value can be calculated exactly from its definition,
and the relevant likelihood ratio. When this is not possible, there is a large
sample result that applies in the usual case of a composite alternative with
a simple or composite null hypothesis. In general we test H0 : R(θ) = 0
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against H1 : ‘θ unrestricted’, where R is a vector-valued function of θ,
specifying r restrictions on θ. Given some regularity conditions and in the
large sample limit,

2{log fθ̂(y) − log fθ̂0(y)} ∼ χ2
r, (2.4)

under H0. See Section 4.4.
fθ̂(y)/fθ̂0(y) is an example of a test statistic, which takes low values

when the H0 is true, and higher values when H1 is true. Other test statistics
can be devised in which case the definition of the p-value generalises to:

p is the probability of obtaining a test statistic at least as favourable to H1 as that ob-
served, if H0 is true.

This generalisation immediately raises the question: what makes a good
test statistic? The answer is that we would like the resulting p-values to be
as small as possible when the null hypothesis is not true (for a test statistic
with a continuous distribution, the p-values should have a U(0, 1) distribu-
tion when the null is true). That is, we would like the test statistic to have
high power to discriminate between null and alternative hypotheses.

The Neyman-Pearson lemma
The Neyman-Pearson lemma provides some support for using the likeli-
hood ratio as a test statistic, in that it shows that doing so provides the
best chance of rejecting a false null hypothesis, albeit in the restricted con-
text of a simple null versus a simple alternative. Formally, consider testing
H0 : θ = θ0 against H1 : θ = θ1. Suppose that we decide to reject
H0 if the p-value is less than or equal to some value α. Let β(θ) be the
probability of rejection if the true parameter value is θ — the test’s power.

In this accept/reject setup the likelihood ratio test rejects H0 if y ∈ R =
{y : fθ1(y)/fθ0(y) > k} and k is such that Prθ0(y ∈ R) = α. It is
useful to define the function φ(y) = 1 if y ∈ R and 0 otherwise. Then
β(θ) =

∫
φ(y)fθ(y)dy. Note that β(θ0) = α.

Now consider using an alternative test statistic and again rejecting if the
p-value is ≤ α. Suppose that the test procedure rejects if

y ∈ R∗ where Prθ0(y ∈ R∗) ≤ α.

Let φ∗(y) and β∗(θ) be the equivalent of φ(y) and β(θ) for this test. Here
β∗(θ0) = Prθ0(y ∈ R∗) ≤ α.

The Neyman-Pearson Lemma then states that β(θ1) ≥ β∗(θ1) (i.e. the
likelihood ratio test is the most powerful test possible).
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Proof follows from the fact that

{φ(y) − φ∗(y)}{fθ1(y)− kfθ0(y)} ≥ 0,

since from the definition of R, the first bracket is non-negative whenever
the second bracket is non-negative, and it is non-positive whenever the sec-
ond bracket is negative. In consequence,

0 ≤
∫
{φ(y) − φ∗(y)}{fθ1(y)− kfθ0(y)}dy

= β(θ1)− β∗(θ1)− k{β(θ0)− β∗(θ0)} ≤ β(θ1)− β∗(θ1),

since {β(θ0) − β∗(θ0)} ≥ 0. So the result is proven. Casella and Berger
(1990) give a fuller version of the lemma, on which this proof is based.

2.4.3 Interval estimation

Recall the question of finding the range of values for the parameters that
are consistent with the data. An obvious answer is provided by the range
of values for any parameter θi that would have been accepted in a hypoth-
esis test. For example, we could look for all values of θi that would have
resulted in a p-value of more than 5% if used as a null hypothesis for the
parameter. Such a set is known as a 95% confidence set for θi. If the set is
continuous then its endpoints define a 95% confidence interval.

The terminology comes about as follows. Recall that if we reject a hy-
pothesis when the p-values is less than 5% then we will reject the null on
5% of occasions when it is correct and therefore accept it on 95% of oc-
casions when it is correct. This follows directly from the definition of a
p-value and the fact that it has a U(0, 1) distribution when the null hypoth-
esis is correct.5 Clearly if the test rejects the true parameter value 5% of the
time, then the corresponding confidence intervals must exclude the true pa-
rameter value on those 5% of occasions as well. That is, a 95% confidence
interval has a 0.95 probability of including the true parameter value (where
the probability is taken over an infinite sequence of replicates of the data-
gathering and intervals estimation process). The following graphic shows
95% confidence intervals computed from 20 replicate datasets, for a single
parameter θ with true value θtrue.

5 again assuming a continuously distributed test statistic. In the less common case of a
discretely distributed test statistic, then the distribution will not be exactly U(0, 1).
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θtrue

As expected on average, 19 of the intervals include the true value, and 1
does not. In general,

A γ100% confidence interval for θ is (an observation of) a random interval designed to
have a probability γ of including the true value of θ.

Again, maximum likelihood theory provides general recipes for com-
puting intervals that will be correct in the large sample limit. We can either
base intervals on result (2.3) and Section 2.7 or search for the range of θi
values giving p-values above 1− γ, in a test using (2.4). The latter profile
likelihood intervals have the advantage that parameters inside the interval
have higher likelihood than those outside it.

2.4.4 Model checking

Ultimately a statistical model says that our data, y, are observations of a
random vector with probability density function fθ(y). That is, the model
says that y ∼ fθ(y). The aim of model checking is to show that

y ≁ fθ(y),

i.e. to show that the model is wrong in some serious and detectable way.
In most cases we know that the model is wrong: it is a model, not reality.

The point is to look for ways in which the model is so wrong that any con-
clusions we might want to draw from it become questionable. The idea is
that if we cannot detect that the model is wrong statistically, then statistical
conclusions drawn with its aid are likely to be reasonably reliable.6

No single test or informal check can detect all possible ways in which a
model might be wrong. Model checking calls for judgement and ‘quantita-
tive scepticism’. Often the most useful checks are graphical ones, because
6 More cautiously, if we can statistically detect that the model is wrong, then statistical

conclusions drawn from it are very likely to be wrong.
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when they indicate that a model is wrong, they frequently also indicate
how it is wrong. One plot that can be produced for any model is a quantile-
quantile (QQ) plot of the marginal distribution of the elements of y, in
which the sorted elements of y are plotted against quantiles of the model
distribution of y. Even if the quantile function is not tractable, replicate y
vectors can be repeatedly simulated from fθ̂(y), and we can obtain empir-
ical quantiles for the marginal distribution of the simulated yi. An approxi-
mately straight line plot should result if all is well (and reference bands for
the plot can also be obtained from the simulations).

But such marginal plots will not detect all model problems, and more is
usually needed. Often a useful approach is to examine plots of standardised
residuals. The idea is to remove the modelled systematic component of the
data and to look at what is left over, which should be random. Typically
the residuals are standardised so that if the model is correct they should ap-
pear independent with constant variance. Exactly how to construct useful
residuals is model dependent, but one fairly general approach is as follows.
Suppose that the fitted model implies that the expected value and covari-
ance matrix of y areµθ̂ and Σθ̂. Then we can define standardised residuals

ǫ̂ = Σ
−1/2

θ̂
(y − µθ̂),

which should appear to be approximately independent, with zero mean and
unit variance, if the model is correct. Σ−1/2

θ̂
is any matrix square root of

Σ−1

θ̂
, for example its Choleski factor (see Appendix B). Of course, if the

elements of y are independent according to the model, then the covariance
matrix is diagonal, and the computations are very simple.

The standardised residuals are then plotted against µθ̂, to look for pat-
terns in their mean or variance, which would indicate something missing in
the model structure or something wrong with the distributional assumption,
respectively. The residuals would also be plotted against any covariates in
the model, with similar intention. When the data have a temporal element
then the residuals would also be examined for correlations in time. The ba-
sic idea is to try to produce plots that show in some way that the residuals
are not independent with constant/unit variance. Failure to find such plots
increases faith in the model.

2.4.5 Further model comparison, AIC and cross-validation

One way to view the hypothesis tests of Section 2.4.2 is as the comparison
of two alternative models, where the null model is a simplified (restricted)
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version of the alternative model (i.e where the models are nested). The
methods of Section 2.4.2 are limited in two major respects. First, they pro-
vide no general way of comparing models that are not nested, and second,
they are based on the notion that we want to stick with the null model until
there is strong evidence to reject it. There is an obvious need for model
comparison methods that simply seek the ‘best’ model, from some set of
models that need not necessarily be nested.

Akaike’s information criterion (AIC; Akaike, 1973) is one attempt to
fill this need. First we need to formalise what ‘best’ means in this context:
closest to the underlying true model seems sensible. We saw in Section
2.4.2 that the likelihood ratio, or its log, is a good way to discriminate
between models, so a good way to measure model closeness might be to
use the expected value of the log likelihood ratio of the true model and the
model under consideration:

K(fθ̂, ft) =

∫
{log ft(y) − log fθ̂(y)}ft(y)dy

where ft is the true p.d.f. of y. K is known as the Kullback-Leibler di-
vergence (or distance). Selecting models to minimise an estimate of the
expected value of K (expectation over the distribution of θ̂) is equivalent
to selecting the model that has the lowest value of

AIC = −2l(θ̂) + 2dim(θ).

See Section 4.6 for a derivation.
Notice that if we were to select models only on the basis of which has

the highest likelihood, we would encounter a fundamental problem: even if
a parameter is not in the true model, the extra flexibility it provides means
that adding it never decreases the maximised likelihood and almost always
increases it. So likelihood almost always selects the more complex model.
AIC overcomes this problem by effectively adding a penalty for adding
parameters: if a parameter is not needed, the AIC is unlikely to decrease
when it is added to the model.

An alternative recognises that the KL divergence only depends on the
model via−

∫
log fθ̂(y)ft(y)dy, the expectation of the model maximised

log likelihood, where the expectation is taken over data not used to estimate
θ̂. An obvious direct estimator of this is the cross-validation score

CV = −
∑

i

log fθ̂[−i](yi),

where θ̂[−i] is the MLE based on the data with yi omitted (i.e. we measure
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the average ability of the model to predict data to which it was not fitted).
Sometimes this can be computed or approximated efficiently, and variants
are possible in which more than one data point at a time are omitted from
fitting. However, in general it is more costly than AIC.

2.5 The Bayesian approach

The other approach to answering the questions posed in Section 2.3 is the
Bayesian approach. This starts from the idea that θ is itself a random vec-
tor and that we can describe our prior knowledge about θ using a prior
probability distribution. The main task of statistical inference is then to up-
date our knowledge (or at any rate beliefs) about θ in the light of data y.
Given that the parameters are now random variables, it is usual to denote
the model likelihood as the conditional distribution f(y|θ). Our updated
beliefs about θ are then expressed using the posterior density

f(θ|y) = f(y|θ)f(θ)
f(y)

, (2.5)

which is just Bayes theorem from Section 1.4.3 (again f with different ar-
guments are all different functions here). The likelihood, f(y|θ), is speci-
fied by our model, exactly as before, but the need to specify the prior, f(θ),
is new. Note one important fact: it is often not necessary to specify a proper
distribution for f(θ) in order for f(θ|y) to be proper. This opens up the
possibility of using improper uniform priors for θ; that is, specifying that
θ can take any value with equal probability density.7

Exact computation of (2.5) is rarely possible for interesting models, but
it is possible to simulate from f(θ|y) and often to approximate it, as we
see later. For the moment we are interested in how the inferential questions
are answered under this framework.

2.5.1 Posterior modes

Under the Bayesian paradigm we do not estimate parameters: rather we
compute a whole distribution for the parameters given the data. Even so,
we can still pose the question of which parameters are most consistent
with the data. A reasonable answer is that it is the most probable value of

7 This is not the same as providing no prior information about θ. e.g. assuming that θ has
an improper uniform prior distribution is different from assuming the same for log(θ).
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θ according to the posterior: the posterior mode,

θ̂ = argmax
θ

f(θ|y).

More formally, we might specify a loss function quantifying the loss as-
sociated with a particular θ̂ and use the minimiser of this over the poste-
rior distribution as the estimate. If we specify an improper uniform prior
f(θ) = k, then f(θ|y) ∝ f(y|θ) and the posterior modes are exactly
the maximum likelihood estimates (given that f(y) does not depend on
θ). In fact, for data that are informative about a fixed dimension parameter
vector θ, then as the sample size tends to infinity the posterior modes tend
to the maximum likelihood estimates in any case, because the prior is then
dominated by the likelihood.

2.5.2 Model comparison, Bayes factors, prior sensitivity, BIC, DIC

Hypothesis testing, in the sense of Section 2.4.2, does not fit easily with
the Bayesian approach, and a criterion somehow similar to AIC is also
not straightforward. The obvious approach to Bayesian model selection
is to include all possible models in the analysis and then to compute the
marginal posterior probability for each model (e.g. Green, 1995). This
sounds clean, but it turns out that those probabilities are sensitive to the
priors put on the model parameters, which is problematic when these are
‘priors of convenience’ rather than well-founded representations of prior
knowledge. Computing such probabilities is also not easy. This section ex-
amines the issue of sensitivity to priors and then covers two of the attempts
to come up with a Bayesian equivalent to AIC. See Section 6.6.4 for an
alternative approach based on posterior simulation.

Marginal likelihood, the Bayes factor and sensitivity to priors
In the Bayesian framework the goal of summarising the evidence for or
against two alternative models can be achieved by the Bayes factor (which
therefore plays a somewhat similar role to frequentist p-values). A natural
way to compare two models, M1 and M0, is via the ratio of their prob-
abilities.8 As a consequence of Bayes theorem, the prior probability ratio
transforms to the posterior probability ratio as

Pr(M1|y)
Pr(M0|y)

=
f(y|M1)Pr(M1)

f(y|M0)Pr(M0)
= B10

Pr(M1)

Pr(M0)
,

8 If M1 and M0 are the only two possibilities then the probability ratio is also the odds of
M1; that is, the probability of M1 over the probability of not M1.
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by definition of B10, which is known as the Bayes factor for comparing
M1 with M0. So B10 measures the amount by which the data have shifted
the prior probability ratio in favour of M1. As with p-values, there are
conventions about how to describe the degree of evidence that different
magnitudes of Bayes factor represent (Kass and Raftery, 1995). Working
with 2 logB10 (for comparability with the log likelihood ratio) we have

2 logB10 Evidence against M0

0− 2 Barely worth mentioning
2− 6 Positive
6− 10 Strong
> 10 Very strong

To actually compute B10 we need to obtain the marginal density of y
given each model, also known as the marginal likelihood. For example,

f(y|M1) =

∫
f(y|θ1)f(θ1)dθ1, (2.6)

where θ1 denotes the parameters of M1. The need to integrate over all pos-
sible parameter values is a major difference between the Bayes factor and
the likelihood ratio statistic for model comparison, but integration gives
the Bayes factor some advantage. The likelihood ratio statistic is a ratio of
maximised likelihoods evaluated at both models’ best fit parameters, giving
the larger model an inevitable advantage, which we then have to allow for
in interpreting the ratio; hence the need for p-values or AIC. By integrating
over all possible parameter values, the marginal likelihood does not suffer
from this bias towards large models — irrelevant flexibility can decrease
the marginal likelihood. Computing (2.6) is generally not straightforward,
with two main lines of attack being via stochastic simulation (see Section
6.3.1), or Laplace approximation of the integral. However, there is also a
more fundamental problem to consider.

Examination of (2.6) indicates an immediate problem with the use of
vague, uninformative or improper priors (i.e. with any prior that is chosen
to represent a broad statement of ignorance, rather than a precise character-
isation of prior knowledge). The difficulty is that the value of (2.6) is very
sensitive to the prior. It is easy to see the problem by example. Suppose the
likelihood indicates that a single parameter θ is almost certain to lie in the
interval (0, 1), but because we had no real prior information on θ, we used
a U(−100, 100) prior, obtaining a value for the marginal likelihood of k.
Now suppose that we replace the prior with U(−1000, 1000). This pro-
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duces a negligible change in the posterior for θ, but reduces the marginal
likelihood to approximately k/10 (corresponding to a ‘positive’ change in
the Bayes factor in the earlier table). If we had used an improper prior
then it would only have been possible to compute the marginal likelihood
to within an arbitrary multiplicative constant, rendering the Bayes factor
completely useless unless the same improper priors apply to both models.

Another way of seeing the problem with the marginal likelihood is to
recognise that it is the likelihood for the fixed parameters of the prior (that
is, for those parameter values we chose during model specification), all
other parameters having been integrated out. Choosing between models on
the basis of the relative likelihood of the fixed parameters of the prior is not
always a natural approach. Indeed it is completely arbitrary if those values
were selected merely to be as uninformative as possible about θ.

In summary, because the prior is inescapably part of the model in the
Bayesian approach, marginal likelihoods, Bayes factors and posterior model
probabilities are inescapably sensitive to the choice of prior. In conse-
quence, it is only when those priors that differ between alternative mod-
els are really precise and meaningful representations of prior knowledge
that we can justify using Bayes factors and posterior model probabilities
for model selection. Even then, the computation of the marginal likelihood
is often difficult. These difficulties are part of the motivation for attempt-
ing to produce AIC-like model selection criteria (see Section 2.4.5) in the
Bayesian setting. But before looking at these, let us consider fixing the
Bayes Factor.

Intrinsic, fractional and partial Bayes factors

Given that Bayes factors require meaningfully informative priors, which
are often not available at the model formulation stage, it is worth consid-
ering the alternative of using part of the data to generate priors. The basic
idea is to split the data y into two parts x and z, and to use f(θ|x) as the
prior for computing the marginal likelihood based on z. That is, marginal
likelihoods of the form

f(z|Mi,x) =

∫
f(z|θi,x)f(θi|x)dθi

are used to form a sort of partial Bayes factor. To see why this improves
matters, substitute f(θi|x) = f(x|θi)f(θi)/

∫
f(x|θi)f(θi)dθi into the
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preceding expression to get

f(z|Mi,x) =

∫
f(z|θi,x)f(x|θi)f(θi)dθi∫

f(x|θi)f(θi)dθi

=

∫
f(y|θi)f(θi)dθi∫
f(x|θi)f(θi)dθi

. (2.7)

Since we have the same prior on the top and bottom of this last expres-
sion, the sensitivity to priors seen in the full marginal likelihood is much
reduced.

Two variants of this basic idea are intrinsic and fractional Bayes factors.
Intrinsic Bayes factors (Berger and Pericchi, 1996) use a subset x just large
enough to ensure that f(θi|x) is proper, and then average the resulting par-
tial Bayes factors over all such subsets to remove the arbitrariness attendant
on any particular choice of x. The required averaging can be somewhat
computationally costly. Hence fractional Bayes factors (O’Hagan, 1995)
use the fact that if b = dim(x)/dim(y), then f(x|θi) ≈ f(y|θi)b (at least
for large dimensions and exchangeable observations) and this approxima-
tion can be plugged into (2.7). Note that if the fractional Bayes factors are
to select the right model in the large sample limit, then b → 0 as the sam-
ple size tends to infinity. This consistency is automatic for intrinsic Bayes
factors. Hence the Bayesian cross-validation approach of setting x to y
with one datum omitted, and then averaging the results over each possible
z, will not give consistent model selection, but then neither does AIC (see
Section 4.6). See Section 6.3.1 for fractional Bayes factor computation.

BIC: the Bayesian information criterion

An older approach, avoiding the difficulties of sensitivity to priors, is due
to Schwarz (1978). Dropping the notation relating to particular models in
the interests of clarity, the computation of the Bayes factor requires the
evaluation of the marginal likelihood,

P =

∫
f(y|θ)f(θ)dθ,

for each model. Let n be the dimension of y and p be the dimension of θ,
and define fp(θ) = f(y|θ)f(θ) (y is the observed data vector here). Let
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θ̃ be the value of θ maximising fp. A Taylor expansion gives

log fp(θ) ≃ log fp(θ̃)−
1

2
(θ − θ̃)T

(
−∂2 log fp

∂θ∂θT

)
(θ − θ̃)

⇒ fp(θ) ≃ fp(θ̃) exp

{
−1

2
(θ − θ̃)T

(
−∂2 log fp

∂θ∂θT

)
(θ − θ̃)

}
.

Recognising the term in {} from the multivariate normal p.d.f., we have

P =

∫
fp(θ)dθ ≃ fp(θ̃)(2π)

p/2

∣∣∣∣−
∂2 log fp
∂θ∂θT

∣∣∣∣
−1/2

.

Now assume, at least in the n → ∞ limit, that −∂2 log fp/∂θ∂θ
T =

nI0, where I0 is a matrix such that |I0|, is bounded above and below by
finite positive constants, independent of n (and ideally close to 1). In the
case of i.i.d. data, then I0 is the (fixed) information matrix for a single
observation. Under this assumption we have

∣∣∣∣−
∂2 log fp
∂θ∂θT

∣∣∣∣ = np|I0|

and so

log P ≃ log f(y|θ̃) + log f(θ̃) +
p

2
log(2π) − p

2
log n− 1

2
log |I0|.

Now as n→∞, θ̃ → θ̂ (the MLE) while the terms that do not depend on
n become negligible compared to those that do. So we arrive at

BIC = −2 log f(y|θ̂) + p log n (≈ −2 log P ).

Hence the difference in BIC between two models is a crude approximation
to twice the log Bayes factor, and all other things being equal, we would
select the model with the lowest BIC. Notice some arbitrariness here: there
is really nothing in the preceding derivation to stop us from multiplying n
in BIC by the finite positive constant of our choice. One interesting feature
of BIC is that because it drops the prior, it is not susceptible to the problem
with sensitivity to priors that affects the Bayes factor itself, but on the other
hand the justification for dropping the prior seems somewhat artificial.

DIC: the deviance information criterion
In complex Bayesian models it is not always clear how to count the number
of free parameters in the model. For example, the distinction between ran-
dom effects and parameters in models is really terminological rather than
formal in the Bayesian setting. This makes application of BIC problematic,



2.5 The Bayesian approach 43

as does BIC’s dependence on knowledge of the posterior modes, which are
not directly available via simulation.

In essence, the problem with counting free parameters is the introduction
of priors. A prior restricts the freedom of a parameter to vary. In the limit in
which the prior was a Dirac delta function, then the corresponding param-
eter would behave as a fixed constant, insensitive to the data, and should
clearly not count in the tally of free parameters at all. Moving smoothly
from this extreme to the other extreme of a fully uninformative prior, it
seems reasonable that the contribution of the corresponding parameter to
the free parameter count should increase smoothly from 0 to 1. This idea
leads us to the notion of effective degrees of freedom.

Spiegelhalter et al. (2002) suggest a measure of the effective degrees
of freedom of a Bayesian model that is readily computed from simulation
output. They first define the deviance as

D(θ) = −2 log f(y|θ) + c,

where c is a neglectable constant depending only on the y (and hence not
varying between models of a given y). Using the notation x̄ for ‘mean of
x’, the proposed definition of the effective degrees of freedom is

pD = D(θ)−D(θ̄).

The definition is appealing because in the large sample limit in which the
likelihood dominates the prior and the posteriors are approximately Gaus-
sian, then D(θ) − D{E(θ)} ∼ χ2

r, by the same argument that leads to
(2.4). But pD is a direct estimate of E[D(θ)−D{E(θ)}], andE(χ2

r) = r.
The deviance information criterion is then

DIC = D(θ̄) + 2pD,

which clearly has a somewhat similar form to AIC. Derivation of DIC in the
context of approximately Gaussian posteriors is relatively straightforward,
but it is applied much more widely, with some associated controversy. In
any case the DIC cannot be justified if pD is not small relative to the num-
ber of data in y. It has the pragmatic appeal of being readily computable
from simulation output, while being much less sensitive to the choice of
vague priors than the marginal likelihood.

2.5.3 Interval estimation

The Bayesian approach to answering the question of what range of param-
eter values is consistent with the data is to pick out the range of values with
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high posterior probability. For example, a γ100% credible set for θi is

Ω = {θi :
∫

Ω

f(θi|y)dθi = γ; f(θi ∈ Ω|y) > f(θi 6∈ Ω|y)}

(i.e. it is the set containing the γ100% of θi values with highest posterior
probability). If the set is continuous then its endpoints define a γ100%
credible interval. Notice the difference from frequentist confidence inter-
vals. Here the interval is fixed and the parameter is random, which is the
opposite of the frequentist interpretation. Despite this difference, in the
large sample limit, with informative data, Bayesian credible intervals and
frequentist confidence intervals coincide.

2.5.4 Model checking

A particularly extreme Bayesian argument states that you should not check
models, because doing so implies that you did not properly specify your
uncertainty when setting up the Bayesian analysis and are therefore being
‘incoherent’. This argument is somewhat impractical, and it is usually more
pragmatic to view both models and priors as approximate representations
of reality that it would be wise to check for gross infelicities. In part this
checking can be done as in Section 2.4.4, but it is also wise to check the
sensitivity of results to the specification of the prior, especially if it was
chosen more or less arbitrarily, as is often the case. Simulation of replicate
data implied by draws from the posterior distribution of the parameters
can also be helpful, in order to check whether the posterior simulated data
deviate in some systematic way from the observed data, indicating a prob-
lematic model (see e.g. Section 6.6.4).

2.5.5 The connection to MLE

We have already seen the large sample coincidence between posterior modes
and MLEs and the large sample correspondence of Bayesian credible in-
tervals and frequentist credible intervals. In fact, in many circumstances, in
the large sample limit,

θ|y ∼ N(θ̂,I−1),

where θ̂ and I are as in (2.3).
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2.6 Design

Statistical design theory is concerned with the design of surveys and ex-
periments so as to obtain data that will be best able to answer the statistical
questions of interest. This is a large topic with a rich theory, and much is
known about how to go about producing practically useful designs. This
section simply introduces two important design ideas.

The first key idea is randomisation. To make things concrete, consider
the example of conducting an experiment to test whether a drug is effective
at reducing blood pressure, relative to a standard treatment. In addition to
the drug there are many other variables that may control blood pressure,
such as age, percentage body fat, sex and so on. Because these factors are
not of direct interest here, they are referred to as confounding variables.
Strictly, a confounding variable is any variable that is associated with both
the response variable and other predictor variables of interest, but in prac-
tice it is often difficult to rule out confounding for any variable that might
affect the response. To know what the effect of the drug is, we must al-
low for the presence of the confounders. To see why, imagine we treated
almost all women in the study with the new drug, and almost all the men
with the standard treatment: now try to work out how you would disentan-
gle the effect of sex from the effect of the drug. One solution is to measure
the confounders and include them in the statistical model used to analyse
the data. This is useful, but we cannot measure all possible confounders,
because we do not even know what some of them might be. In the face of
unmeasured confounders, how can we hope to make valid inferences about
the effect of the drug?

The answer is randomisation. If patients are randomly allocated to drug
type, then we break all possible association between the treatment the pa-
tient receives and the value of the confounding variables, so they cease to
be confounders. In effect the part of the patient’s blood pressure change
that is due to these other variables can now be treated as patient-specific
random error. This random error can easily be accounted for in the statisti-
cal modelling, and valid conclusions can be drawn about the drug’s effect.

The key point is that the randomisation of experimental units (e.g. pa-
tients) to experimental treatments (e.g. drug treatment) turns the effects of
unmeasured confounder variables into effects that can be modelled as ran-
dom noise. It is this effect of randomisation that allows experiments to be
used to test for causal effects in a way that is impossible with observa-
tional or survey data, where we cannot eliminate the systematic effects of
unmeasured (and possibly unknown) confounders.
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The second big idea in design is that we can adjust how experiments or
surveys are done to improve the parameter estimates made using the result-
ing data. The idea is often to try to optimise some measure of the average
variance of the parameter estimators (or of θ|y for a Bayesian analysis).
If we are using maximum likelihood estimation then the approximate co-
variance matrix for θ̂ is I−1. The leading diagonal elements of this matrix
give the approximate estimator variances. Two of the most common design
criteria are then as follows:

1. A-optimality, which seeks to minimise the average estimator variance,
which is equivalent to minimising tr(I−1).

2. D-optimality, which seeks to minimise the determinant of the approxi-
mate covariance matrix, |(I−1| = 1/|I |.

The idea is that the design is adjusted to minimise the chosen criterion.
Sometimes this can be achieved analytically, but otherwise a numerical op-
timisation may be required. See Cox (1992) for an introduction to design.

2.7 Useful single-parameter normal results

The approximate normality of many estimators, as a result of the central
limit theorem and large sample maximum likelihood results, means that
some basic computations involving single normally distributed estimators
are required repeatedly.

Suppose we know that θ̂ ∼ N(θ, σ2
θ), where σθ is known, but θ is not.

We might want to test H0 : θ = θ0 versus H1 : θ 6= θ0, for some specified
value θ0. A moment’s thought, or contemplation of the likelihood ratio
statistic, leads to the test statistic

θ̂ − θ0
σθ

,

which will obviously have a N(0, 1) distribution if H0 is true.9 Since the
null distribution is symmetric, and large magnitude values of the statistic
support H1, the p-value is

p = Pr

(
|Z| ≥

∣∣∣∣∣
θ̂ − θ0
σθ

∣∣∣∣∣

)
where Z ∼ N(0, 1). (2.8)

In obvious notation, here is some R code to compute this (three variants,
giving identical results):
9 With even shorter contemplation of the likelihood ratio we could equally have used

(θ̂ − θ0)2/σ2
θ , which has a χ2

1 distribution under H0: the p-value is unchanged.
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z.obs <- (theta.hat - theta.0)/sigma
pnorm(abs(z.obs),lower.tail=FALSE) + pnorm(-abs(z.obs))
pnorm(-abs(z.obs))*2 ## use symmetry of N(0,1)
pchisq(z.obs^2,lower.tail=FALSE,df=1) ## equivalent

In fact we seldom know σθ, and it is much more common that θ̂ ∼
N(θ, c2σ2), where c is a known constant and σ2 is unknown but can be
estimated by σ̂2. One option is just to plug cσ̂ in place of σθ and use (2.8).
This is fine in the large sample limit, but at finite sample sizes we can
usually do a bit better by not ignoring the variability in σ̂2.

Suppose that σ̂2 is statistically independent of θ̂ and that σ̂2/σ2 ∼ χ2
k/k

for some positive integer k. In that case, from the definition of the tk dis-
tribution (see Section A.1.3),

θ̂ − θ0
cσ̂

∼ tk.

The p-value computation for H0 : θ = θ0 versus H1 : θ 6= θ0 now uses

p = Pr

(
|T | ≥

∣∣∣∣∣
θ̂ − θ0
cσ̂

∣∣∣∣∣

)
where T ∼ tk.

In R something like the following would be used:

t.obs <- (theta.hat - theta.0)/(const*sigma.hat)
pt(-abs(z.obs),df=k)*2 ## use symmetry of t_k

The assumptions about σ̂2 may look restrictive, but there are quite wide
classes of model estimation problems for which they hold. For example,
they hold exactly in the case of linear regression models (see Chapter 7),
and approximately for generalised linear models (in these cases k is the
number of data less the number of estimated parameters, excluding σ̂2).
Even when the conditions only hold approximately, use of tk is usually an
improvement on simply ignoring the variability in σ2 and using N(0, 1).
In any case as k →∞, tk tends to N(0, 1).

Now consider confidence interval (CI) estimation, first in the known
variance case. Suppose that we would accept H0, above, for any θ0 re-
sulting in a p-value≥ α. In that case we would have accepted all θ0 values
such that

zα/2 ≤
θ̂ − θ0
σθ

≤ z1−α/2,

where zφ is the φ quantile of the N(0, 1) distribution: the value such that
Pr(Z ≤ zφ) = φ. By symmetry zα/2 = −z1−α/2 (zα/2 will be negative).
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Rearrangement of the inequality leads to

θ̂ + zα/2σθ < θ0 < θ̂ − zα/2σθ

(i.e. a (1 − α)100% confidence interval for θ is θ̂ ± zα/2σθ). Here is one
possible piece of R code, implementing this for a 95% CI:
theta.hat + qnorm(c(.025,.975))*sigma

When the variance is estimated, the derivation is identical, except that
the tk distribution is used in place of N(0, 1). Letting tk,α/2 denote the
α/2 quantile of tk, the endpoints of the (1 − α)100% CI for θ become
θ̂ ± tk,α/2cσ̂. R code to implement this might be

theta.hat + qt(c(.025,.975),df=k)*const*sigma.hat

Although the results here all relate to single parameters, nothing in the
preceding arguments requires that the model only contains one unknown
parameter. θ could be a single element from a parameter vector.

Exercises
2.1 Find the maximum likelihood estimates of µ and σ for Example 1, Section

2.1. Find an exact 95% confidence interval for µ. Compare it to the approxi-
mation based on (2.3). Compute an approximate confidence interval for σ.

2.2 By appropriate use of the qnorm, sort, plot and abline functions in R,
check the model fit produced in question 2.1. Is the model adequate?

2.3 Using R, produce a contour plot of the log likelihood for the second model
for the temperature data in Section 2.1, against µ and σ for α = 3. Approxi-
mately find the MLE of µ and σ for the given α.

2.4 Using R, write a function to evaluate the log likelihood of θl for Example
4 in Section 2.1 (hint: see ?dexp). Plot the log likelihood against θl over a
suitable range, and by making use of (2.4) and the definition of a confidence
interval, find a 95% confidence interval for θl (pchisq is also useful).

2.5 Write an R function to evaluate the log likelihood of model (2.2) in Section
2.2 by making use of the chol function in R (see Section B.2).

2.6 Consider simulated data x <-rnorm(10)+1, for which the Bayesian model
xi ∼ N(µ, 1), µ ∼ U(−k, k) (i.e. the prior for µ is a uniform distribution
on [−k, k]). Making use of the R function integrate, investigate the sen-
sitivity of the marginal likelihood for this model, when k is changed from 2
to 20. Vectorize may be useful for converting your joint density function
to a form suitable for integrate.

2.7 Show that if independent observations xi have an exponential distribution
with parameter λ, and λ has a gamma distribution as a prior, then the poste-
rior distribution of λ is also a gamma distribution (see Section A.2.2).



3

R

Statistical analysis of interesting datasets is conducted using computers.
Various specialised computer programmes are available to facilitate statis-
tical work. For using general statistical theory directly with custom-built
models, R is probably the most usefully flexible of such programmes.

R (R Core Team, 2012) is a progamming language and environment de-
signed for statistical analysis. It is free (see http://cran.r-project.org
to obtain a copy) and is written and maintained by a community of statisti-
cians. A major design feature is extendibility. R makes it very straightfor-
ward to code up statistical methods in a way that is easy to distribute and
for others to use. The first place to look for information on getting started
with R is http://cran.r-project.org/manuals.html. I will assume
that you have installed R, can start it to obtain a command console, and
have at least discovered the function q() for quitting R.1

The following web resources provide excellent guides to the R language
at different levels.

• http://cran.r-project.org/doc/contrib/Short-refcard.pdf

is a four page summary of key functions and functionality.
• http://cran.r-project.org/doc/contrib/R_language.pdf

is a very concise introduction to and reference for the structure of the
language.

• http://cran.r-project.org/doc/manuals/R-lang.html

is the main reference manual for the language.

A huge amount of statistical functionality is built into R and its extension
packages, but the aim of this chapter is simply to give a brief overview of
R as a statistical programming language.

1 When you quit R, it will ask you if you want to save the workspace image. If you reply
‘yes’ then all the objects created and not subsequently destroyed in your session will be
saved to disk and reloaded next time you start R. Usually you do not want to do this.
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3.1 Basic structure of R

When you start R (interactively) two important things are created: a com-
mand prompt at which to type commands telling R what to do, and an
environment, known interchangeably as the ‘global environment’ or ‘user
workspace’ to hold the objects created by your commands. Unlike the com-
mand prompt, you do not see the global environment directly, but it is there
as an extendible chunk of computer memory for holding your data, com-
mands and other objects.

Generically in R an ‘environment’ consists of two things. The first,
known in R jargon as a frame, is a set of symbols used to refer to ob-
jects, along with the data defining those objects. The second is a pointer to
an enclosing environment. As we will see, R makes use of different envi-
ronments arranged in a tree structure when organising the evaluation and
manipulation of objects. In a slightly Zen manner, the base environment
of the tree contains nothing at all. For the most part environments act as
seamless computational infrastructure that the programmer is largely un-
aware of, but for some purposes it is important to know about them.

Everything in R is an object living in an environment, including R com-
mands themselves. Here is a line of R code to create an object called ‘a’
and to assign it the value 2 (using the assignment operator <-):

> a <- 2

As soon as I press return, the text “a <-2” is sent to the parser to be
checked for correctness (i.e. whether it is a valid statement in R) and to
be converted to an internal representation for evaluation, known as an ex-
pression object. The expression is then evaluated, which has the effect of
creating an object in the user workspace referred to by the symbol a and
containing the single number 2.

Once an object is created, it can be referred to by name and used to
create other objects. For example,

> b <- 1/a

Having created objects you often need to check their contents. Just typ-
ing the name of an object causes R to print it (actually to call the print

function for the class of object concerned):

> b
[1] 0.5

ls() lists all the objects in the global environment and rm(b) would re-
move the object called b.
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R is a functional programming language: it is structured around func-
tions that take objects as arguments and produce other objects as results.
Even basic operators such as + and * are actually implemented as func-
tions. Within R we can create objects that are functions. Suppose we want
to create a function foo that takes arguments a and b and returns the value
of b log(a)− 1/2. Here is how to define such a function object:

foo <- function(a,b) {
b * log(a) - 0.5

}

The curly brackets { and } enclose the R commands defining how the ar-
guments a and b are converted into the result returned by the function.
Whatever is evaluated on the last line of the function is taken to be its
return value. So

> foo(2,3)
[1] 1.579442

prints the value of foo evaluated at a = 2, b = 3.
R evaluates commands once they appear complete and a line end has

been encountered. Commands can be split over several lines, but you then
need to be careful that they could not be interpreted as being complete at
the end of one of the lines, before they really are. Conversely, if several
complete commands are to be included on a single line then they must be
separated by ‘;’. Commands can be grouped using curly brackets, { and
}. Once you have started a group of commands with a {, it will not be
complete and ready to be parsed and evaluated until you close it with a }.

You will have noticed from this discussion that R is an interpreted lan-
guage. Commands are interpreted and executed as they are encountered
(rather than being converted en masse into binary instructions and then
executed, as in a compiled language, such as C). This has two important
consequences. First, we will have to worry about achieving efficiency in
repetitive tasks, to ensure that interpretation of what we want R to do does
not take longer than actually doing it. Second, it means that it is possible
to write R code that itself writes R code and runs it.

3.2 R objects

Objects in R are either language objects of some sort or are the result of a
function call. Therefore, in contrast to many programming languages, we
do not need to explicitly declare the type of a variable before using it: the
type is determined by the function creating the variable. There are a number
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of basic object types (classes) in R, of which the most important for data
handling are vectors and arrays. Lists are used to create objects containing
several different sorts of object.

As well as their class, objects in R carry around information about the
basic type of thing that they are made up of. Somewhat confusingly, they
actually carry around three different classifications of the sort of basic thing
they are made up of: their type, mode and storage mode. The following
code illustrates this by creating the vector (1, 2, 3, 4) and examining its
type, mode and storage mode:
> b <- 1:4
> typeof(b)
[1] "integer"
> mode(b)
[1] "numeric"
> storage.mode(b)
[1] "integer"

Usually it is not necessary to worry much about the modes and type of
an object: for example, the conversion between real and integer numbers
is automatic and need seldom concern the programmer. The exception is
when calling code written in other languages, when it is essential to know
the storage mode of data being passed to the external code from R.

Objects can also carry a variety of extra information as attributes. At-
tributes have a name and can be an object of any type. They behave rather
like a whole bunch of notes stuck onto the object and carried around with
it. The attributes function lets you access all the attributes of an ob-
ject, whereas the attr function allows individual attributes to be set and
extracted. As an example, let’s give the vector b, above, an attribute con-
sisting of a 2× 2 matrix (and then print it):
> attr(b,"mat") <- matrix(1:4,2,2)
> attr(b,"mat")

[,1] [,2]
[1,] 1 3
[2,] 2 4

You can add as many attributes as you like, and they are used by R itself
in many ways, including in the implementation of matrices and higher di-
mensional arrays. The class of an object is somewhat like a special attribute
and is used in R’s basic object orientation mechanism (see Section 3.6).

Here are the basic sorts of objects that are needed for manipulating data
in R. For a complete list see the sources listed at the start of the chapter.

• Vectors are the default structures for storing real, complex, integer, log-
ical and character data. Scalars are simply vectors of length 1. Here is
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some code to create a numeric vector d, check how many elements it
has, and print the third element:

> d <- c(1,3.56,9)
> length(d)
[1] 3
> d[3]
[1] 9

• Arrays are vectors with a dim attribute and are of class "array". The
following creates a three dimensional array, displays its dim attribute,
and prints its element 2, 1, 3:

> b <- array(1:24,c(2,3,4))
> attributes(b)
$dim
[1] 2 3 4
> b[2,1,3]
[1] 14

Array elements can be accessed by providing an index for each dimen-
sion, as just shown, or by providing a single index for accessing elements
of the underlying vector. Arrays are stored in the underlying vector in
‘column major’ order, so if d is the dim attribute b[i, j, k] is equivalent
to b[i+ (j − 1)d1 + (k − 1)d1d2]; that is b[2,1,3] refers to the same
location as b[14], in this case.

• Matrices are two dimensional arrays of class "matrix". They are treated
as a separate class to facilitate numerical linear algebra with matrices.

• Factors are, conceptually, vectors of labels that serve to group other data.
They have a special place in statistical modelling (see e.g. Chapter 7)
and as such require special handling. In R, factors have class "factor"
and another attribute "levels", which is a vector of the unique labels
occurring in the factor object. If you print a factor variable, then what is
printed is the label given in each element of the vector. However, what is
actually stored is a set of integers indexing the "levels" attribute, and
it is the print function that is actually doing the conversion from stored
integer to corresponding label.

• Data.frames are matrices of data, where each column has a name, but not
necessarily the same type. (e.g. having a mixture of logical, numeric,
factor and character columns is no problem). This format is a natural
way of storing statistical datasets. Here is a short example:

> dat <- data.frame(y=5:7,lab=c("um","er","er"))
> dat
y lab

1 5 um
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2 6 er
3 7 er

By default the character vector lab was converted to a factor variable.2

Data frames can be accessed like any other matrix, but also by variable
name and as a list (see next). In consequence, dat[2,1], dat$y[2] and
dat[[1]][2] all access the same entry (6).

• Lists are the basic building blocks for all sorts of complicated objects
in R. Lists consist of any number of numbered, and optionally named,
items, each of which can be an object of any type. For example,

> li <- list(a="fred",1:3,M=matrix(1,2,2))

Elements can be accessed by number, starting from 1, using double
square brackets (e.g. li[[1]] accesses "fred"). If the item has a name
then this provides an alternative access method using $. For example,
li$a also accesses "fred".

3.3 Computing with vectors, matrices and arrays

Data manipulation in R is vector based. That is, wherever possible we work
with whole vectors, rather than with individual elements of vectors, be-
cause the former is much more efficient in an interpreted language. So
standard operators and mathematical functions in R are defined in a vector
oriented manner, as best illustrated by an example.

Suppose we have vectors x and y and want to evaluate the vector z, the
elements of which are defined as zi = sin(xi)yi − yxi

i / exp(xi). If x and
y are the vectors in R, then

> z <- sin(x)*y - y^x/exp(x)

computes z. The key point is that the functions and operators are operating
elementwise on the vector components.

There are built-in functions for a number of common vector operations
that are not purely elementwise. For example:

sum(x) to evaluate
∑

i xi.
prod(x) to evaluate

∏
i xi.

cumsum(x) to evaluate zi =
∑i

j=1 xj .
cumprod(x) to evaluate zi =

∏i
j=1 xj .

2 See ?data.frame for how to turn off this conversion.
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3.3.1 The recycling rule

When working with vectors we often want to perform operations involving
a scalar and a vector (such as multiplying all the elements of a vector by
two). In R, scalars are simply vectors of length one: there is nothing special
about them. However, R has a recycling rule, which is a vector-oriented
generalisation of what happens when a scalar is multiplied by a vector. The
recycling rule states that when two vectors of different length appear in an
operation, then the shorter is replicated as many times as is necessary to
produce a vector of the length of the longer vector, and this recycled vector
is what is used in computation.

So conceptually if x <-c(1,2,3), then z <-2*x results in 2 being re-
cycled three times to produce a vector of three 2s, which is then multiplied
by x elementwise to produce z. Here is an example of recycling in action:

> a <- 1:4
> b <- 1:2
> a + b
[1] 2 4 4 6

Recycling can be very useful once you get used to it. For example, suppose
that we want to form A = WX where W is a diagonal matrix with diag-
onal elements w, and X is some n×n matrix. One option for doing this is
to form W explicitly and then multiply X by it:

W <- diag(w); A <- W%*%X

This uses something like 2n3 arithmetic operations, most of which involve
products with zero, and make no contribution to the final result. But recall-
ing that matrices are actually stored columnwise in vectors, we can simply
exploit the recycling rule to compute the result with n2 operations and no
wasted products with zero:

A <- w * X

R will produce a warning if the number of elements in the longer vector is
not an integer multiple of the number of elements in the shorter vector. It
will also refuse to recycle vectors with a dimension attribute.

3.3.2 Matrix algebra

Clearly, vectorised elementwise operations mean that A*B does not perform
matrix multiplication and A/B does not produce AB−1. Instead these and
other matrix operations have special functions and operators:
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• %*% is the matrix multiplication operator. A %*%B performs the matrix
multiplication AB, checking for compatible dimensions. This is also
used for matrix-vector multiplication.

• %x% is the Kronecker product. So A %x% B produces A⊗B.
• t(A) returns the transpose of its argument.
• solve(A,B) formsA−1B. To formAB−1 use t(solve(t(B),t(A)))

since AB−1 = (B−TAT)T. solve(A) returns A−1, but should rarely
be used, because it is usually more expensive and less stable to compute
the inverse explicitly.

• crossprod(A) produces ATA at least twice as quickly as t(A)%*%A

would do.

When computing with these basic operations you need to be very careful
about the ordering of operations. An interesting feature of numerical linear
algebra is that many expressions can be evaluated in a number of different
orders, all of which give the same result, but can differ in their compu-
tational speed by several orders of magnitude. To see this, consider com-
puting BCy, where, from left to right the matrix dimensions are n ×m,
m× n and n× 1 (a vector). R function system.time lets us examine the
effect of operation ordering, while n and m are set to 1000 and 2000.

> system.time(z <- B%*%C%*%y)
user system elapsed
2.706 0.009 2.720

> system.time(z <- B%*%(C%*%y))
user system elapsed
0.013 0.000 0.013

Both lines compute the same quantity here, but the second is much faster.
Why? In the first case R simply evaluates the expression left to right: the
matrix produced by BC is formed first at the cost of 2n2m arithmetic
operations, after which the result is multiplied by y at a further cost of 2n2

operations. In the second case the brackets force R to compute the vector
Cy first using 2mn operations, and then to multiply it by B at the cost
of 2mn more operations. So the latter approach involves something like
a factor of n fewer operations.3. This is clearly an issue that can not be
ignored, but it is also rather straightforward to deal with (see Appendix B)

Functions chol, qr,4 eigen and svd produce the Choleski, QR, eigen
and singular value decompositions of their arguments, respectively. In the
case of qr the decomposition is returned in a compact form, which can

3 We do not see quite that speed up here because of other overheads in both calculations.
4 Beware of the default tol argument for qr in R: it is set quite high for some purposes.
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then be manipulated with helper functions (see ?qr). forwardsolve and
backsolve are versions of solve to use with, respectively, lower and up-
per triangular first arguments: for an n × n argument they are a factor
of n more efficient than using solve in these cases. Functions det and
determinant are also provided for evaluating determinants, but for many
statistical applications determinants should rather be computed directly
from the triangular QR or Choleski factor, which is likely to be needed any-
way. Appendix B provides more information on matrix decompositions.

Functions ncol and nrow return the number of rows or columns of their
argument, whereas rowSums and colSums return vectors of sums for each
row or each column, respectively. kappa efficiently estimates the condition
number of a matrix (see Section B.3.3), and norm computes various matrix
norms. apply and its relatives, covered next, are also useful with matrices.

Matrices consisting mainly of zeroes are known as sparse matrices. The
Matrix package supplied with R provides the facilities for working with
sparse matrices, but be warned that you need to understand pivoting and
the issue of infil in order to make good use of it (see Davis, 2006).

3.3.3 Array operations and apply

Beyond matrices, many array operations are accomplished using vector
arithmetic and the indexing and subsetting facilities to be covered next.
However, there are two common array-oriented tasks that deserve special
mention: applying a function to some margins of an array, using the apply
function, and forming array products by ‘summing over array indices’, us-
ing Jonathon Rougier’s tensor5 package.

The apply function takes a single array as its first argument, a vector of
dimension indices as the next argument, and then a function to be applied
to the data given by the indices. Here is a simple example using apply to
sum over the rows and columns of a 2×3 matrix (a two dimensional array).

> A <- matrix(1:6,2,3);A
[,1] [,2] [,3]

[1,] 1 3 5
[2,] 2 4 6
> apply(A,1,sum)
[1] 9 12
> apply(A,2,sum)
[1] 3 7 11

5 In physics and geometry a vector has a magnitude and an associated direction, requiring
a one-dimensional array of numbers to represent it. A tensor has a magnitude and d

associated directions, and it requires a d-dimensional array of numbers to represent it.
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The first call to apply specifies that the sum function should be applied to
each row (the first dimension) of A in turn, and the results returned. The
second call applies sum to each column (the second dimension) of A. To be
clear about what apply is doing, it helps to see what happens if we specify
rows and columns in the second argument:

> apply(A,c(1,2),sum)
[,1] [,2] [,3]

[1,] 1 3 5
[2,] 2 4 6

So apply has taken the data given by each combination of row and column
index (a single number in the case of a two dimensional array) and applied
sum to that, giving the matrix result shown, which is just the original A here.

apply can be used in the same way with arrays of any dimension: see
?apply for more. Furthermore there are versions of apply for lists (see
?lapply), and for applying functions over subsets of vectors (see ?tapply).
Related functions aggregate and sweep are also useful.

Now consider array products. We have a c-dimensional array A and a
d-dimensional array B and want to find the array that results by forming
inner products of some of their dimensions. For example,

Cipqvw =
∑

jkl

AijklpqBkjlvw .

If we write some indices as superscripts, then this can be written more com-
pactly using Einstein’s summation convention as C ipq

vw = AijklpqBkjlvw .
The idea is that we sum over the product of the elements given by shared
indices. Here is a concrete example forming AijkBkjl in R:

> A <- array(1:24,c(2,3,4))
> B <- array(1:72,c(4,3,5))
> require(tensor) ## load the tensor library
> tensor(A,B,c(2,3),c(2,1))

[,1] [,2] [,3] [,4] [,5]
[1,] 1090 2818 4546 6274 8002
[2,] 1168 3040 4912 6784 8656

tensor takes the arrays as arguments, followed by two vectors giving the
dimensions to be summed over.

3.3.4 Indexing and subsetting

Operations often have to be applied to only a subset of a vector or array
or to only some dimensions of an array. To facilitate this efficiently, R has
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a rich variety of indexing and subsetting operations that can be applied to
arrays and vectors. First let us consider vectors.

Vectors can be indexed using a vector of integers giving the locations
of the required elements within the indexed vector, or by a logical array
of the same length as the indexed vector, having a TRUE for each required
element. Here is an example:
> x <- c(0,-1,3.4,2.1,13)
> ii <- c(1,4,5)
> x[ii]
[1] 0.0 2.1 13.0
> il <- c(TRUE,FALSE,FALSE,TRUE,TRUE)
> x[il]
[1] 0.0 2.1 13.0

The index version is somewhat more flexible than the logical version, in
that elements can be selected more than once and in any order. For example,
> ii <- c(5,4,1,1)
> x[ii]
[1] 13.0 2.1 0.0 0.0

However, the logical version is better for extracting values according to
some condition. For example, the values of x less than 2.5 can be extracted
as follows:
> il <- x < 2.5
> il
[1] TRUE TRUE FALSE TRUE FALSE
> x[il]
[1] 0.0 -1.0 2.1

or with the single command x[x < 2.5]. It is often helpful to convert the
logical version to the index version, and the which function does this:
> ii <- which(x < 2.5); ii
[1] 1 2 4

(ii <-(1:5)[x < 2.5] is equivalent).
Index vectors of either type can also appear on the ‘left-hand side’ of an

assignment6. This example resets any element of x to 1 if it is less than 2:
> x[x < 2] <- 1; x
[1] 1.0 1.0 3.4 2.1 13.0

The examples so far have involved only simple conditions, but often
more complicated subsetting is required. This can be achieved using ele-
mentwise logical ‘or’ and ‘and’ operators, ‘|’ and ‘&’. For example, con-
sider selecting the elements of a vector z that are between -1 and 2:
6 Actually the assignment arrow can point in either direction, so this really means ‘at the

pointy end of the assignment operator’.
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> z <- c(3.6,-1.2,1,1.6,2,20)
> z[z >= -1 & z <= 2]
[1] 1.0 1.6 2.0

z[z < -1 | z > 2] extracts the complement of this subset, as does the
alternative z[!(z >= -1 &z <= 2)], which uses the ‘not’ operator, ‘!’.

Another common task is to apply some function to all of several non-
overlapping subsets of a vector, a task which tapply accomplishes. The
vector of data, X, is its first argument, followed by a vector or list of vectors,
INDEX, containing one or more factor variables, each of the same length as
X. All elements of X sharing the same combination of factor levels from
INDEX are in the same group, and the subvectors containing these groups
supply the argument to tapply’s third argument, the function FUN. For
example, suppose that the means of the first two, the next three and the
final element of z are required:
> fac <- factor(c(1,1,2,2,2,3))
> tapply(z,fac,mean)

1 2 3
1.200000 1.533333 20.000000

Matrices and arrays generally require one further sort of subsetting: the
extraction of particular rows and columns. Actually this works by mak-
ing use of the fact that the absence of an indexing array is taken to mean
that the whole vector is required. For example, x and x[] both return the
whole vector, x. Similarly, X[i,] and X[,j] extract, respectively, row i

and column j of matrix X.
Indexing vectors and missing indices can be mixed in any way you like;

for example,
> a <- array(1:24,c(2,3,4))
> a[1,,2:3]

[,1] [,2]
[1,] 7 13
[2,] 9 15
[3,] 11 17

Notice, however, that the task of extracting scattered elements of a ma-
trix or array is more difficult. Suppose I want to extract the three elements
(1, 3), (4, 2) and (2, 1) from a 4× 3 matrix B. Naively I might try
> B <- matrix(1:12,4,3)
> i <- c(1,4,2); j <- c(3,2,1)
> B[i,j]

[,1] [,2] [,3]
[1,] 9 5 1
[2,] 12 8 4
[3,] 10 6 2
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. . . not what is required at all (but completely consistent with the preceding
description of how indexing works). Here the underlying vector storage
of arrays comes to the rescue. Recalling that arrays are stored in column
major order, we can create an appropriate vector indexing the underlying
vector storage in order to extract the required elements:
> B[i+(j-1)*4]
[1] 9 8 2

One important detail of array subsetting is that if a subset results in a
single vector, then dimension attributes are dropped by default. This can
cause problems in code designed for the case where we do not know in
advance whether an array or a vector will be returned by an operation. In
this case we can force dimension attributes to be retained, as follows:
> B[1,] ## vector result
[1] 1 5 9
> B[1,,drop=FALSE] ## 1 by 3 matrix result

[,1] [,2] [,3]
[1,] 1 5 9

3.3.5 Sequences and grids

Many computations require the production of regular sequences of num-
bers (or occasionally other variables). The simplest is a sequence of num-
bers incrementing or decrementing by 1. a:b produces a sequence starting
at a and finishing at a+k where k is the largest integer such that a+ k ≤ b

if a < b or such that a − k ≥ b otherwise. Usually a and b are integers.
For example,
> i <- 1:10; i
[1] 1 2 3 4 5 6 7 8 9 10

Function seq produces sequences with increments that need not be unity.
Its first two arguments specify endpoints, while argument by specifies an
increment to apply, or alternatively length specifies how many elements
the sequence should have. For example
> x <- seq(0,1.5,length=4); x
[1] 0.0 0.5 1.0 1.5

Frequently, sequences should repeat in some way and rep facilitates
this. Its first argument is a ‘base sequence’, and the second argument spec-
ifies how its elements are to be repeated. Here are some examples:
> rep(x,2) ## whole sequence repeat
[1] 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
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> rep(x,each=2) ## element-wise repeat
[1] 0.0 0.0 0.5 0.5 1.0 1.0 1.5 1.5
> rep(x,rep(2,4)) ## element-wise (more flexible)
[1] 0.0 0.0 0.5 0.5 1.0 1.0 1.5 1.5

For the last form, the second argument is a vector of the same length as x
specifying how many times each element of x is to be repeated (its elements
may differ, of course).

Regular sequences in more than one dimension are also useful: grids.
One option for generating a grid is to use rep. However, it is often easier
to use the function expand.grid, which takes named arguments defining
the mesh points in each dimension, and returns a data frame with columns
corresponding to each margin, expanded so that the points fall on a regular
grid. For example,

> z <- seq(-1,0,length=3)
> expand.grid(z=z,x=x)

z x
1 -1.0 0.0
2 -0.5 0.0
3 0.0 0.0
4 -1.0 0.5
. . .
12 0.0 1.5

Any dimension of grid can, in principle, be generated. Often a grid is gener-
ated in order to evaluate a function of several variables over some domain.
In that case it can be more convenient to use the function outer which
generates the evaluation grid internally, and returns the function values,
evaluated on the grid, as an array.

3.3.6 Sorting, ranking, ordering

sort will return its argument sorted into ascending order (set the second
argument decreasing to TRUE to get descending order). For example,

> set.seed(0); x <- runif(5); x
[1] 0.8966972 0.2655087 0.3721239 0.5728534 0.9082078
> sort(x)
[1] 0.2655087 0.3721239 0.5728534 0.8966972 0.9082078

Often it is necessary to apply the reordering implied by sorting one vari-
able to some other variables. order will return an appropriate index vector
for doing this (see also ?sort.int), illustrated here by resorting x itself:

> io <- order(x); io
[1] 2 3 4 1 5
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> xs <- x[io]; xs
[1] 0.2655087 0.3721239 0.5728534 0.8966972 0.9082078

A related task is to find the rank of data in a vector, and rank does this.
In the absence of ties, then rank is the inverse function of order in the
following sense:
> ir <- rank(x); ir
[1] 4 1 2 3 5
> xs[rank(x)]
[1] 0.8966972 0.2655087 0.3721239 0.5728534 0.9082078

Another way of ‘inverting’ io is with
> um <- rep(0,5)
> um[io] <- 1:5; um
[1] 4 1 2 3 5

Similarly, using ir on the left-hand side results in um being io. This sort of
construction is useful when dealing with matrix pivoting (as used, option-
ally, in qr and chol, for example).

3.4 Functions

Functions were introduced in Section 3.1, but some more detail is required
to write them effectively. Formally a function consists of an argument list,
a body (the code defining what it does), and an environment (which is the
environment where it was created). Generally, functions take objects as
arguments and manipulate them to produce an object, which is returned.
There are two caveats to this general principle.

1. A function may have side effects, such as printing some output to the
console or producing a plot. Indeed a function may only produce a side
effect, and no return object. Generally side effects that modify objects
that are external to the function are to be avoided, if code is to be clean
and easy to debug.

2. A function may make use of objects not in its argument list: if R en-
counters a symbol not in the function argument list and not previously
created within the function, then it searches for it, first in the environ-
ment in which the function was defined7 (which is not necessarily the
environment from which it was called). If that fails it looks in the envi-
ronments returned by function search(). A benign use of this mech-
anism is to call other functions not in a function’s argument list, or to

7 This is known as ‘lexical scoping’, because the parent environment of the function is
where it was written down.
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access constants such as those stored in .Machine. Using this mech-
anism to provide a function with other objects that you have created
is generally bad practice, because it makes for complex hard-to-debug
code. Generally all objects that a function needs should be provided as
its arguments. If this gets unwieldy, then group the arguments into a
smaller number of list arguments.

Here is an example of a function definition. It generalises one-to-one
real functions with power series representations to symmetric matrices:
mat.fun <- function(A,fun=I) {
ea <- eigen(A,symmetric=TRUE)
ea$vectors %*% (fun(ea$values)*t(ea$vectors))

}

‘function(A,fun=I)’ indicates that a function is to be created with ar-
guments A and fun. In this case the function created is given the name
mat.fun, but functions are sometimes used without being given a name
(for example, in the arguments to other functions). The argument list gives
the names by which the function arguments will be referred to within the
function body. Arguments may be given default values to be used in the
event that the function is called without providing a value for that argu-
ment. This is done using name = default in the argument list. fun=I is
an example of this, setting the default value of fun to the identity function.

Next comes the body of the function given by the R expressions within
the curly brackets { ... } (if the function body consists of a single ex-
pression, then the brackets are not needed). The function body can contain
any valid R expressions. The object created on the last line of the function
body is the object returned by the function. Alternatively the object can
be returned explicitly using the return function. For mat.fun, the eigen
decomposition of the first argument is obtained and then used to produce
the generalised version of fun.

Now let us use the function, with a random matrix. First a sanity check:
> set.seed(1)
> m <- 3; B <- crossprod(matrix(runif(m*m),m,m))
> B; mat.fun(B)

[,1] [,2] [,3]
[1,] 0.5371320 0.8308333 0.8571082
[2,] 0.8308333 1.6726210 1.5564220
[3,] 0.8571082 1.5564220 1.7248496

[,1] [,2] [,3]
[1,] 0.5371320 0.8308333 0.8571082
[2,] 0.8308333 1.6726210 1.5564220
[3,] 0.8571082 1.5564220 1.7248496
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which confirms that the default behaviour is to return the first argument.
Now consider what actually happened when the function was called (by

mat.fun(B)). R first matches the arguments of the function to those ac-
tually supplied, adopting a rather permissive approach to so doing. First it
matches on the basis of exact matches to argument names (‘A’ and ‘fun’ in
the example). This does not mean that R is looking for B to be called A in
the example; rather it is looking for statements of the form A=B, specifying
unambiguously that object B is to be taken as argument ‘A’ of mat.fun.
After exact matching, R next tries partial matching of names on the re-
maining arguments; for example mat.fun(B,fu=sqrt) would cause the
sqrt function to be taken as the object to be used as argument fun. After
matching by name, the remaining arguments are matched by position in
the argument list: this is how R has actually matched B to A earlier. Any
unmatched argument is matched to its default value.

R next creates an evaluation frame: an extendible piece of memory in
which to store copies of the function arguments used in the function, as
well as the other objects created in the function. This evaluation frame has
the environment of the function as its parent (which is the environment
where the function was defined, remember).

Having matched the arguments, R does not actually evaluate them im-
mediately, but waits until they are needed to evaluate something in the func-
tion body: this is known as lazy evaluation. Evaluation of arguments takes
place in the environment from which the function was called, except for
arguments matched to their default values, which are evaluated in the func-
tion’s own evaluation frame.

Preliminaries over, R then evaluates the commands in the function body,
and returns a result.

Notice that arguments are effectively copied into the function’s eval-
uation frame, so nothing that is done to a function argument within the
function has any effect on the object that supplied that argument ‘outside’
the function. Within the body of mat.mod argument A could have been re-
placed by some poetry, and matrix B would have remained unaltered.

Here is an example of calling mat.mod to find a matrix inverse:

> mat.fun(A = B, fun = function(x) 1/x)
[,1] [,2] [,3]

[1,] 10.108591 -2.164337 -3.070143
[2,] -2.164337 4.192241 -2.707381
[3,] -3.070143 -2.707381 4.548381

In this case both arguments were supplied by their full name, and a function
definition was used to supply argument fun.
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3.4.1 The ‘...’ argument

Functions can also have a special argument ‘...’, which is used to create
functions that can have variable numbers of arguments. It is also used to
pass arguments to a function that may in turn be passed on to other func-
tions, without those arguments having to be declared as arguments of the
calling function: this is useful for passing arguments that control settings
of plotting functions, for example.

Any arguments supplied in the call to a function, that are not in the argu-
ment list in the function definition, are matched to its ‘...’ argument, if it
has one.8 The elements of ‘...’ can be extracted into a list. The following
simple function’s only purpose is to do this, and thereby show you all you
need to know to work with ‘...’:
dum <- function(...) {
arg <- list(...)
arg.names <- as.list(substitute(list(...)))[-1]
names(arg) <- arg.names
arg

}

The first line of the function body extracts the arguments and puts them in
a list. The next line extracts the names of the arguments (in the calling en-
vironment, obviously). Look up ?substitute to understand exactly how
it works. The names are then given to the elements of the list. Here it is in
unexciting action, with just two arguments:
> a <- 1; b <- c("um","er")
> dum(a,b)
$a
[1] 1
$b
[1] "um" "er"

As mentioned, a major use of ‘...’ is to pass arguments to a function for
it to pass on to another function. R’s optimisation function optim uses this
mechanism to pass arguments to the function that it is minimising. optim
is designed to minimise functions with respect to their first argument (a
vector). The function to be optimised may have many other arguments,
of no concern to optim, except that values for them have to be supplied.
optim does not ‘know’ what these are called nor how many of them there
are: it does not need to because they can be provided as named arguments
matched to ‘...’ and passed to the function that way. For example, here is
a function for optim to minimise, and the call to do so:
8 This has the slightly unfortunate side effect that mistyped argument names do not

generate obvious warnings.
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ff <- function(x,a,b) {
(x[1]-a/(x[2]+1))^2 + (x[2]-b/(x[1]+1))^2

}
optim(c(0,0),ff,a=.5,b=.2)

optim minimises ff w.r.t. the elements of x. It passes 0.5 and 0.2 to ff as
the values for a and b. Of course, we are not restricted to passing simple
constants: almost any R object could also be passed as an argument.

One irritation is worth being aware of.
ff <- function(res=1,...) res;f(r=2)

will return the answer 2 as a result of partial matching of argument names,
even if you meant r to be part of the ‘...’ argument. It is easy to be caught
out by this. If you want ‘...’ to be matched first, then it has to precede the
arguments it might be confused with. So the following gives the answer 1:
ff <- function(...,res=1) res;f(r=2)

3.5 Useful built-in functions

The purpose of this chapter is to provide an introductory overview, not
a reference, for R. So this section simply provides the information on
where to locate the documentation for some useful standard built-in func-
tions. R has an extensive help system, which can be accessed by typing
help.start() at the command prompt, to obtain help in navigable HTML
form, or by typing ?foo at the command line, where foo is the function or
other topic of interest.

Help topic Subject covered

?Arithmetic Standard arithmetic operators
?Logic Standard logical operators
?sqrt Square root and absolute value functions
?Trig Trigonometric functions (sin, cos, etc.)
?Hyperbolic Hyperbolic functions (tanh, etc.)
?Special Special mathematical functions (Γ function, etc.)
?pgamma Partial gamma function
?Bessel Bessel functions
?log Logarithmic functions
?max Maximum, minimum and vectorised versions
?round Rounding, truncating, etc.
?distributions Statistical distributions built into R
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The ?distributions topic requires some more explanation. R has built-
in functions for the beta, binomial, cauchy, chisquared, exponential, f,
gamma, geometric, hypergeometric, lnormal (log-normal), multinomial,
nbinomial (negative binomial), normal, poisson, t, uniform and weibull
distributions. The R identifying names for these are shown in courier font
in this list.

For each distribution, with name dist, say, there are four functions:

1. ddist is the probability (density) function of dist.
2. pdist is the cumulative distribution functions of dist.
3. qdist is the quantile function of dist.
4. rdist generates independent pseudorandom deviates from dist.

3.6 Object orientation and classes

Objects in R have classes, and R contains a mechanism by which different
versions of a function may be used depending on an object’s class. For
example, the somewhat complicated list object returned from the linear
modelling function lm has class "lm":

> set.seed(0); n <- 100
> x <- runif(n); y <- x + rnorm(n)
> b <- lm(y~x)
> class(b)
[1] "lm"

This is why if we just type b or equivalently print(b) at the command
prompt, then rather than getting a dull and lengthy printout of everything b

contains (the default for a list), we get the much prettier result:

> print(b)

Call:
lm(formula = y ~ x)

Coefficients:
(Intercept) x

-0.05697 0.92746

What has happened here is that the print method function appropriate to
the "lm" class has been invoked to do the printing. This function is called
print.lm (type stats:::print.lm at the command prompt if you want
to see what it looks like). The mechanism by which this happens involves
method dispatch via a generic print function. If we examine the print
function then it turns out to contain only a single line:
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> print
function (x, ...)
UseMethod("print")

which tells R to use a function print.foo based on the class foo of the
first argument x: there is a print.default to use if no print.foo method
is found. Common uses of this sort of approach are for print, summary and
plot functions.

At first sight it might appear that the existence of print methods is a
nuisance if you want to know exactly what is inside an object, but actually
it is no handicap. You can always call the default print method directly (e.g.
print.default(b) prints out the contents of b in tedious and overwhelm-
ing detail). str(b) is usually a better bet, giving a summary of the structure
of its argument. names(b) simply tells you the names of b’s elements.

Many object classes are quite closely related to other object classes. For
example, generalised linear models share many features of linear models,
and as a result there is much overlap in the structure of the objects returned
by lm and glm. This overlap immediately raises the question of whether
some lm methods could be used directly with glm objects without needing
to be rewritten. The idea of inheritance of classes facilitates this. An object
of one class can inherit from one or more other classes, and any method
functions missing for this class can then default to the versions for the
classes from which it inherits. For example,

> b1 <- glm(y~x)
> class(b1)
[1] "glm" "lm"

indicates that class "glm" inherits from class "lm", which could also be
tested using inherits(b1,"lm"). In the case of b1 there is a print.glm

method, but no plot.glm, so plot(b1) will actually use plot.lm(b1).
We are free to add methods for existing generic functions and to create

our own generics. As an example, the following code creates a version of
the ‘+’ operator that concatenates lines of poetry, which are given class
"poetry", and creates a print method for the class:

"+.poetry" <- function(a,b) {
d <- paste(a,b,sep="\n")
class(d) <- "poetry"
d
}

print.poetry <- function(x) cat(x,"\n")

Note that paste is a function for pasting together character strings and cat
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is a basic text output function. Having provided these methods for objects
of class "poetry", here they are in action:
> a <- "twas brillig and the slithy toves"
> b <- "Did gyre and gimble in the wabe"
> d <- "All mimsy were the borogroves"
> class(a) <- class(b) <- class(d) <- "poetry"
> a + b + d
twas brillig and the slithy toves
Did gyre and gimble in the wabe
All mimsy were the borogroves

The mechanisms described here are a quite weak form of object orienta-
tion, known as S3 classes and methods. A much fuller form of object ori-
entation is provided by S4 classes and methods in the R package methods.
The ?Methods help file contains very clear information on both approaches.

3.7 Conditional execution and loops

It is often necessary to evaluate different sets of R commands depending
on whether some condition holds or not. When working with elements of
vectors and arrays the efficient way to evaluate conditionally is to use the
logical indexing methods of Section 3.3.4; otherwise R offers this structure:

if (condition) {
statements 1

} else {
statements 2

}

If the expression condition evaluates to TRUE then the expressions cor-
responding to statements 1 are evaluated; otherwise statements 2 are
evaluated. The else { ... } part is optional: if it is omitted then nothing
is evaluated when condition is FALSE, and R simply moves on to the next
instruction. Nested if statements can be constructed in the obvious way
(see also ?switch):
if (condition 1) {
statements 1

} else if (condition 2) {
statements 2

} else {
statement 3

}

Here is a simple example to simulate the tossing of a coin:
if (runif(1) > 0.5) cat("heads\n") else cat("tails\n")
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Statements such as a <-if (condition) foo else bar are also com-
monly used.

Another essential programming task is looping. In R it is important to
avoid looping over array elements whenever possible: the methods detailed
in Section 3.3 are usually much more efficient. However, there are many
legitimate uses of looping (where each iteration of the loop is doing lots
of work), and R has five commands for loop implementation: for, while,
repeat, break and next.

for is perhaps the most commonly used. It repeats a set of R commands
once for each element of a vector. The syntax is
for (a in vec) {
R code

}

where the R code in brackets is repeated for a set equal to each element of
vec in turn. For example,
> vec <- c("I","am","bored")
> for (a in vec) cat(a," ")
I am bored

The commonest use of for is to loop over all integers between some limits.
For example, for (i in 1:10) {...} evaluates the commands in {...}
for i = 1, 2, . . . , 10.

while executes a loop until a condition is no longer met. The syntax is
while (condition) {
R code

}

So it repeatedly evaluates R code until condition no longer evaluates to
TRUE. The following example iterates a simple ecological population model
until some threshold population is exceeded:
N <- 2
while (N < 100) N <- N * exp(rnorm(1)*.1)

Notice that this is an example of a case where we cannot avoid looping by
vectorizing: the computation is fundamentally iterative.

break and next are commands for modifying the looping behaviour
from within the code being looped over. break causes an immediate exit
from the loop. next causes the loop to skip directly to the next iteration.
The existence of break facilitates R’s simplest looping instruction repeat,
which simply repeats a set of instructions until a break is encountered.
Here is a rewrite of the while population model example, using repeat.
The logic is identical.
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N <- 2
repeat {
N <- N * exp(rnorm(1)*.1)
if (N >= 100) break

}

Note the indentation of code within the loop: this is generally considered
to be good practice because it improves readability.

3.7.1 Loop efficiency

The key to efficient programming in R is to make sure that each iteration
of a loop is doing lots of work (with relatively little code). Looping over
elements of arrays, and doing only a little work on each element, is usually
very inefficient. To emphasise this, consider the example of multiplying
two square matrices. The following R code compares the timings of a naive
loop in R with use of ‘%*%’ for the same task.

> n <- 100L
> A <- matrix(runif(n^2),n,n)
> B <- matrix(runif(n^2),n,n)
> C <- B*0
> system.time({
+ for (i in 1:n) for (j in 1:n) for (k in 1:n)
+ C[i,j] <- C[i,j] + A[i,k] * B[k,j]})

user system elapsed
11.213 0.012 11.223
> system.time(C <- A%*%B)

user system elapsed
0.004 0.000 0.002

The reason that the loop is so slow is that R is an interpreted language. At
each iteration of the nested loop, C[i,j] <-C[i,j] + A[i,k] *B[k,j]

has to be interpreted and evaluated, which takes far longer than the one
addition and one multiplication that the expression actually results in. Of
course, the naive loop is particularly boneheaded. We could much improve
matters by replacing the inner loop with something vector oriented, thereby
increasing the work done at each iteration while reducing the interpretation
and evaluation overheads by a factor of around 100:

> system.time({
+ for (i in 1:n) for (j in 1:n)
+ C[i,j] <- sum(A[i,] * B[,j])})

user system elapsed
0.224 0.000 0.223

This is better, but still around 50 times slower than the single line version.
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When lengthy looping is unavoidable, as in truly iterative computations,
then some improvements can be obtained by byte-compilation of R, using
the standard package compiler. Here is an example of creating a byte-
compiled function out of the second R loop using the cmpfun function:

> require(compiler)
> bad.loop <- cmpfun(function(A,B) {
+ C <- A*0
+ for (i in 1:n) for (j in 1:n)
+ C[i,j] <- sum(A[i,] * B[,j])
+ C
+ })
> system.time(C <- bad.loop(A,B))

user system elapsed
0.108 0.000 0.108

A modest improvement, but still much slower than A%*%B.

3.8 Calling compiled code

There exist tasks for which R is simply inefficient, but this inefficiency is
often easy to overcome by calling external compiled code from R. Inter-
faces exist for Fortran, C and C++, and it is possible to call back into R
from compiled code. This section only considers the most basic interface
for calling C code from R. Windows users will need the extra software pro-
vided at http://cran.r-project.org/bin/windows/Rtools/. Most
systems based on some variety of Unix should already have the required
tools available.

Consider the example of writing C code to implement the matrix mul-
tiplication loop from the previous section. Suppose that such a function is
contained in matmult.c, as follows:

#include <math.h>
#include "matmult.h"

void matmult(double *A, double *B, double *C, int *n) {
int i,j,k;
for (i=0;i < *n;i++) for (j=0;j < *n;j++) {
C[i + *n * j] = 0;for (k=0;k < *n;k++)
C[i + *n * j] += A[i + *n * k] * B[k + *n * j];

}
}

Notice the assumption that the matrices are stored columnwise in vectors,
corresponding to R’s underlying storage convention for matrices. There is
a corresponding header file, matmult.h, containing
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void matmult(double *A, double *B, double *C, int *n);

In the directory containing these files, the command line version of R can
create a compiled version of this code, suitable for calling from R:

R CMD SHLIB matmult.c

will produce a shared object file matmult.so (matmult.dll on Windows).
From within R we can now load this compiled object (either giving the full
path to the file or using setwd to set the working directory to the directory
containing it).

> dyn.load("matmult.so")

The routine itself can now be called, via R function .C:

> res <- .C("matmult",A=as.double(A),B=as.double(B),
+ C=as.double(C*0),n=as.integer(n))
> C <- matrix(res$C,n,n)

The arguments are explicitly converted to the type that the C code is expect-
ing, using as.double, etc. For the matrices, what is passed to C is a pointer
to the underlying vector of values (stored one column after another). .C ac-
tually copies all the objects that are its arguments, before passing pointers
to these copies to the C code. .C then returns a list containing the copied
arguments, with any modification of the copies that the C code has made.9

For this example, the copy of C has been modified. In the above call, each
argument has been given a name; for example, by using A=as.double(A)

to name the first argument A. If names are omitted, then the elements of
the return list are accessed by number in the usual way. Finally, notice that
res$C had to be explicitly converted from a vector back to a matrix.

Applying system.time to the call to matmult reveals that it takes about
three times as long as A%*%B. The speed penalty occurs because the given
C code is itself inefficiently written: speeding it up by a factor of three
is fairly easy, but also beyond the scope of this book. However, even this
inefficient C code is much faster than anything we achieved using R loops
for this task.

See http://cran.r-project.org/doc/manuals/R-exts.html for
much more detail on this topic, but note that there are numerous oppor-
tunities to call R routines from C if the header file R.h is included in the
code. For example, unif_rand() and norm_rand() give access to R’s
uniform and standard normal pseudorandom number generators.

9 Hence the C code does not modify the original R objects passed as arguments to .C
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3.9 Good practice and debugging

R is enormously flexible: so flexible that it is easy to code in a very sloppy
way that is likely to create hard-to-trace errors. For this reason it is worth
imposing some self discipline when coding. Top of the list is to code for
legibility. There are four obvious aspects to this:

1. Use meaningful object names, but try to keep them concise. For exam-
ple, if coding up a model that you wrote down in terms of parameters
α, β and γ, then refer to those parameters as alpha, beta and gamma

in your code.
2. White space costs almost nothing, so use it to space out your expres-

sions for readability. It is good practice to use white space around oper-
ators to avoid ambiguity. For example, a <- 2 is unambiguous, whereas
a<-2 could be assignment or could be the logical result of testing if a is
less than -2 (R would choose assignment, but code is clearer if you do
not have to known that).

3. Use comments to explain code. Comments start with # and continue
until a line end. Use them freely.

4. When coding a complex task, take care to structure your code carefully.
Break the task down into functions, each performing a discrete, well-
defined and comprehensible part of the overall work.

The second component of self-discipline is to resist the temptation to do
everything interactively at the command prompt. R code for anything re-
motely complex should be coded up in a text file (which can be saved) and
then pasted or source’d into R. Various R-based computing environments
exist to make this way of working easier.

Finally, a word about debugging. Anyone writing remotely interesting
code makes mistakes. Being very careful about writing down exactly what
you want to do on paper before coding it can minimise the number of cod-
ing bugs, but will not eliminate them. It is good practice to assume that
code is buggy until, after strenuous effort, you fail to find any more bugs.
The temptation when confronted with a stubborn bug is to spend hours
gazing at the code. This is usually a waste of time: if you were going to
see the bug that way, you would probably have done so when first writing
the code. It is more effective to apply the approach of scientific investiga-
tion to your code. Formulate hypotheses about what might be wrong (or
even what should be right), and design experiments to test these hypothe-
ses. When doing this it is helpful to print out intermediate values of com-
puted quantities. However, to avoid wasting time, you should also learn
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how to use a debugger. In R the default debugging facilities are provided
by debug and trace (see their help files for more information). However,
I find the mtrace debugger from Mark Bravington’s debug package to be
much more useful.

You can also debug C (and other) code called from R using the GNU
gdb debugger. For C/C++ on Linux, nemiver is somewhat easier to use
than gdb (and in some respects more powerful). The valgrind mem-
ory error debugger can also be used for compiled code in R. Again, see
http://cran.r-project.org/doc/manuals/R-exts.html for details.

Exercises
3.1 Computers do not represent most real numbers exactly. Rather, a real number

is approximated by the nearest real number that can be represented exactly
(floating point number), given some scheme for representing real numbers
as fixed-length binary sequences. Often the approximation is not noticeable,
but it can make a big difference relative to exact arithmetic (e.g., imagine that
you want to know the difference between two distinct real numbers that are
approximated by the same binary sequence). One consequence of working in
finite precision arithmetic is that for any number x, there is a small number
ǫ such that for all e, |e| ≤ |ǫ|, x+ e is indistinguishable from x.

a. Try out the following code to find the size of this number, when x = 1:

eps <- 1
x <- 1
while (x+eps != x) eps <- eps/2
eps/x

b. Confirm that the final eps here is close to the largest ǫ for which x and
x+ ǫ give rise to the same floating point number.

c. 2*eps is stored in R as .Machine$double.eps. Confirm this.
d. Confirm that eps/x is the same for x = 1/8,1/4,1/2,1,2, 4 or 8.
e. Now try some numbers that are not exactly representable as modest pow-

ers of 2, and note the difference.
f. In terms of decimal digits, roughly how accurately are real numbers be-

ing represented here?

3.2 Rewrite the following to eliminate the loops, first using apply and then
using rowSums:

X <- matrix(runif(100000),1000,100); z <- rep(0,1000)
for (i in 1:1000) {
for (j in 1:100) z[i] <- z[i] + X[i,j]

}
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Confirm that all three versions give the same answers, but that your rewrites
are much faster than the original. (system.time is a useful function.)

3.3 Rewrite the following, replacing the loop with efficient code:

n <- 100000; z <- rnorm(n)
zneg <- 0;j <- 1
for (i in 1:n) {
if (z[i]<0) {
zneg[j] <- z[i]
j <- j + 1

}
}

Confirm that your rewrite is faster but gives the same result.
3.4 Run the following code:

set.seed(1); n <- 1000
A <- matrix(runif(n*n),n,n); x <- runif(n)

Evaluate xTAx, tr(A) and tr(ATWA) where W is the diagonal matrix
such that Wii = xi.

3.5 Consider solving the matrix equation Ax = y for x, where y is a known n

vector and A is a known n×n matrix. The formal solution to the problem is
x = A−1y, but it is possible to solve the equation directly, without actually
forming A−1. This question explores this direct solution. Read the help file
for solve before trying it.

a. First create an A, x and y satisfying Ax = y.

set.seed(0); n <- 1000
A <- matrix(runif(n*n),n,n); x.true <- runif(n)
y <- A%*%x.true

The idea is to experiment with solving Ax = y for x, but with a known
truth to compare the answer to.

b. Using solve, form the matrix A−1 explicitly and then form x1 =

A−1y. Note how long this takes. Also assess the mean absolute differ-
ence between x1 and x.true (the approximate mean absolute ‘error’ in
the solution).

c. Now use solve to directly solve for x without forming A−1. Note how
long this takes and assess the mean absolute error of the result.

d. What do you conclude?

3.6 The empirical cumulative distribution function for a set of measurements
{xi : i = 1, . . . n} is

F̂ (x) =
#{xi < x}

n

where #{xi < x} denotes ‘number of xi values less than x’. When an-
swering the following, try to ensure that your code is commented, clearly
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structured, and tested. To test your code, generate random samples using
rnorm, runif, etc.

a. Write an R function that takes an unordered vector of observations x

and returns the values of the empirical c.d.f. for each value, in the order
corresponding to the original x vector. See ?sort.int.

b. Modify your function to take an extra argument plot.cdf, that when
TRUE will cause the empirical c.d.f. to be plotted as a step function over
a suitable x range.

3.7 Try out the debug function on your function from the previous question.
Then install the debug package from CRAN and see how using the mtrace
function compares. To get started, take a look at the html help for the debug
package.

3.8 In an R session containing nothing important, run the following code.

rm(list=ls())
hello2 <- function(name=NULL,n=3,dum=0) {
txt <- paste(paste(rep("hello ",n),collapse=""),

name,"\n",sep="")
cat(txt)

}
hello2(foo,2)
hello2("simon",2,foo)

Why does the first call to hello2 generate an error, but not the second?
3.9 Work out the reasons for the differences and similarities in the results of

calling foo and bar in the following code:

foo <- function() {
print(parent.env(environment()))
print(parent.frame())

}
bar <- function() foo()
foo()
bar()
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Theory of maximum likelihood estimation

The use of maximum likelihood estimation rests on some general the-
ory about log likelihoods and maximum likelihood estimates. This chapter
briefly covers the derivation of the key results at a level suitable for ensur-
ing their reliable application. See Cox and Hinkley (1974), Silvey (1970)
and Davison (2003) for more detail.

4.1 Some properties of the expected log likelihood

Large sample theory for maximum likelihood estimators relies on some re-
sults for the expected log likelihood and on the observed likelihood tending
to its expected value as the sample size tends to infinity. The results for the
expected log likelihood are derived here. Recall that l(θ) = log fθ(y), and
let θt be the vector of true parameter values.

1.

E

(
∂l

∂θ

∣∣∣∣
θt

)
= 0, (4.1)

where the expectation is taken at θt. Proof is straightforward provided
that there is sufficient regularity to allow the order of differentiation and
integration to be exchanged:

E

{
∂

∂θ
log fθ(y)

}
=

∫
1

fθ(y)

∂fθ
∂θ

fθ(y)dy =

∫
∂fθ
∂θ

dy

=
∂

∂θ

∫
fθ(y)dy =

∂1

∂θ
= 0.

2.

cov

(
∂l

∂θ

∣∣∣∣
θt

)
= E

(
∂l

∂θ

∣∣∣∣
θt

∂l

∂θT

∣∣∣∣
θt

)
, (4.2)
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which follows directly from the previous result and the definition of a
covariance matrix, (1.4). Recall here that ∂l/∂θ is a column vector and
∂l/∂θT a row vector.

3.

I = E

(
∂l

∂θ

∣∣∣∣
θt

∂l

∂θT

∣∣∣∣
θt

)
= −E

(
∂2l

∂θ∂θT

∣∣∣∣
θt

)
. (4.3)

I , is known as the Fisher information matrix. The terminology relates
to the fact that a likelihood containing lots of information about θ will
be sharply peaked (I will have large magnitude eigenvalues), whereas
a less informative likelihood will be less sharply peaked.

Proof is straightforward. From (4.1) we have

∫
∂ log fθ
∂θ

fθ(y)dy = 0

⇒
∫

∂2 log fθ
∂θ∂θT

fθ(y) +
∂ log fθ
∂θ

∂fθ
∂θT

dy = 0,

but
∂ log fθ
∂θT

=
1

fθ

∂fθ
∂θT

, so
∫

∂2 log fθ
∂θ∂θT

fθ(y)dy = −
∫

∂ log fθ
∂θ

∂ log fθ
∂θT

fθ(y)dy,

and the result is proven.
4. The expected log likelihood has a global maximum at θt. i.e.

E{l(θt)} ≥ E{l(θ)} ∀ θ. (4.4)

Since log is a concave function, Jensen’s inequality (1.10) implies that

E

[
log

{
fθ(y)

fθt(y)

}]
≤ log

[
E

{
fθ(y)

fθt(y)

}]

= log

∫
fθ(y)

fθt(y)
fθt(y)dy = log

∫
fθ(y)dy = log(1) = 0,

and the result is proven.
5. The Cramér-Rao lower bound. I−1 provides a lower bound on the vari-

ance matrix of any unbiased estimator θ̃, in the sense that cov(θ̃)−I−1

is positive semi-definite.
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Proof: Since f∂ log f/∂θ = ∂f/∂θ, ∂θt/∂θ
T
t = I and θ̃ is unbi-

ased,
∫
θ̃fθt(y)dy = θt ⇒

∫
θ̃
∂ log fθt
∂θT

t

∣∣∣∣
θt

fθt(y)dy = I.

Hence, given (4.1), the matrix of covariances of elements of θ̃t with
elements of ∂ log fθt/∂θt can be obtained:

cov

(
θ̃,

∂ log fθt
∂θt

∣∣∣∣
θt

)

= E

(
θ̃
∂ log fθt
∂θT

t

∣∣∣∣
θt

)
− E(θ̃)E

(
∂ log fθt
∂θT

t

∣∣∣∣
θt

)
= I.

Combining this with (4.2) we obtain the variance-covariance matrix,

cov

[
θ̃

∂ log fθt
∂θt

∣∣∣
θt

]
=

[
cov(θ̃) I

I I
]
,

which is positive semi-definite by virtue of being a variance-covariance
matrix. It follows that

[
I −I−1

] [ cov(θ̃) I
I I

] [
I

−I−1

]
= cov(θ̃)− I−1

is positive semi-definite, and the result is proven.
If the sense in which I−1 is a lower bound is unclear, consider the

variance of any linear transformation of the form aTθ̃. By the result just
proven, and the definition of positive semi-definiteness,

0 ≤ aT{cov(θ̃)− I−1}a = var(aTθ̃)− aTI−1a,

⇒ var(aTθ̃) ≥ aTI−1a. For example, the lower bound on var(θ̃i) is
given by the ith element on the leading diagonal of I−1.

4.2 Consistency of MLE

Maximum likelihood estimators are usually consistent, meaning that as the
sample size tends to infinity, θ̂ tends to θt (provided that the likelihood
is informative about the parameters). This occurs because in regular situa-
tions l(θ)/n→ E{l(θ)}/n as the sample size, n, tends to infinity, so that
eventually the maximum of l(θ) and E{l(θ)}must coincide at θt by (4.4).
The result is easy to prove if the log likelihood can be broken down into a
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sum of independent components (usually one per observation), so that the
law of large numbers implies convergence of the log likelihood to its ex-
pectation. Consistency can fail when the number of parameters is growing
alongside the sample size in such a way that, for at least some parameters,
the information per parameter is not increasing with sample size.

4.3 Large sample distribution of MLE

Taylor’s theorem implies that

∂l

∂θ

∣∣∣∣
θ̂

≃ ∂l

∂θ

∣∣∣∣
θt

+
∂2l

∂θ∂θT

∣∣∣∣
θt

(θ̂ − θt)

with equality in the large sample limit, for which θ̂ − θt → 0. From the
definition of θ̂, the left-hand side is 0. So assuming I/n is constant (at
least in the n→∞ limit), then as the sample size tends to infinity,

1

n

∂2l

∂θ∂θT

∣∣∣∣
θt

→ −I
n
, while

∂l

∂θ

∣∣∣∣
θt

is a random vector with mean 0 and covariance matrix I by (4.2) and
(4.1).1 Therefore in the large sample limit,

θ̂ − θt ∼ I−1 ∂l

∂θ

∣∣∣∣
θt

,

implying that E(θ̂ − θt) = 0 and var (θ̂ − θt) = I−1. Hence in regular
situations in the large sample limit, maximum likelihood estimators are
unbiased and achieve the Cramér-Rao lower bound. This partly accounts
for their popularity.

It remains to establish the large sample distribution of θ̂ − θt. In the
case in which the likelihood is based on independent observations, then
l(θ) =

∑
i li(θ), where li denotes the contribution to the log likelihood

from the ith observation. In that case ∂l/∂θ =
∑

i ∂li/∂θ, so that ∂l/∂θ
is a sum of independent random variables. Hence, under mild conditions,
the central limit theorem applies, and in the large sample limit

θ̂ ∼ N(θt,I−1). (4.5)

In any circumstance in which (4.5) holds, it is also valid to use−∂2l/∂θ∂θT

1 In the limit the random deviation of n−1∂2l/∂θ∂θT from its expected value, n−1I, is
negligible relative to n−1I itself (provided it is positive definite). This is never the case
for the ∂l/∂θ, because its expected value is zero.
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in place of I itself. When the likelihood is not based on independent ob-
servations, it is very often the case that ∂l/∂θ has a limiting normal distri-
bution so that (4.5) holds anyway. The key is that the expected information
increases without limit with increasing sample size. In any case, achieve-
ment of the Cramér-Rao lower bound does not depend on normality.

4.4 Distribution of the generalised likelihood ratio statistic

Consider testing:

H0 : R(θ) = 0 vs. H1 : R(θ) 6= 0,

where R is a vector-valued function of θ, such that H0 imposes r restric-
tions on the parameter vector. If H0 is true, then in the limit as n→∞,

2λ = 2{l(θ̂)− l(θ̂0)} ∼ χ2
r, (4.6)

where l is the log-likelihood function and θ̂ is the MLE of θ. θ̂0 is the
value of θ maximising the likelihood subject to the constraint R(θ) = 0.
This result is used to calculate approximate p-values for the test.

To derive (4.6), first re-parameterise so that θT = (ψT,γT), whereψ is
r dimensional and the null hypothesis can be rewritten H0 : ψ = ψ0. Such
re-parameterisation is always possible, but is only necessary for deriving
(4.6), not for its use.

Let the unrestricted MLE be (ψ̂T, γ̂T), and let (ψT
0 , γ̂

T
0 ) be the MLE

under the restrictions defining the null hypothesis. To make progress, γ̂0

must be expressed in terms of ψ̂, γ̂ and ψ0. Taking a Taylor expansion of
l around the unrestricted MLE, θ̂, yields

l(θ) ≃ l(θ̂)− 1

2

(
θ − θ̂

)T
H
(
θ − θ̂

)
, (4.7)

where Hi,j = − ∂2l/∂θi∂θj |θ̂. Exponentiating produces

L(θ) ≃ L(θ̂) exp

[
−
(
θ − θ̂

)T
H
(
θ − θ̂

)
/2

]

(i.e. the likelihood can be approximated by a function proportional to the
p.d.f. of an N(θ̂,H−1) random vector). So, in the large sample limit and
defining Σ = H−1, the likelihood is proportional to the p.d.f. of

N

([
ψ̂
γ̂

]
,

[
Σψψ Σψγ

Σγψ Σγγ

])
.
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If ψ = ψ0 then this p.d.f. will be maximised by2 γ̂0 = E(γ|ψ0), which,
from the results of Section 1.6.3, is

γ̂0 = γ̂ +ΣγψΣ
−1
ψψ(ψ0 − ψ̂). (4.8)

If the null hypothesis is true, then in the large sample limit ψ̂ → ψ0 (in
probability) so that the approximate likelihood tends to the true likelihood,
and we can expect (4.8) to hold for the maximisers of the true likelihood.

It helps to express (4.8) in terms of the partitioned version of H. Writing
ΣH = I in partitioned form

[
Σψψ Σψγ

Σγψ Σγγ

] [
Hψψ Hψγ

Hγψ Hγγ

]
=

[
I 0
0 I

]
,

and multiplying out, results in two useful equations:

ΣψψHψψ +ΣψγHγψ = I and ΣψψHψγ +ΣψγHγγ = 0. (4.9)

Rearranging (4.9) while noting that, by symmetry,HT
ψγ = Hγψ andΣT

ψγ =
Σγψ, yields

Σ−1
ψψ = Hψψ −HψγH

−1
γγHγψ (4.10)

and −H−1
γγHγψ = ΣγψΣ

−1
ψψ. Substituting the latter into (4.8), we obtain

γ̂0 = γ̂ +H−1
γγHγψ(ψ̂ −ψ0). (4.11)

Now provided that the null hypothesis is true so that ψ̂ is close toψ0, we
can reuse the expansion (4.7) and write the log likelihood at the restricted
MLE as

l(ψ0, γ̂0) ≃ l(ψ̂, γ̂)− 1

2

[
ψ0 − ψ̂
γ̂0 − γ̂

]T
H

[
ψ0 − ψ̂
γ̂0 − γ̂

]
.

Hence

2λ = 2{l(ψ̂, γ̂)− l(ψ0, γ̂0)} ≃
[
ψ0 − ψ̂
γ̂0 − γ̂

]T
H

[
ψ0 − ψ̂
γ̂0 − γ̂

]
.

Substituting for γ̂0 from (4.11) and writing out H in partitioned form gives

2λ ≃
[

ψ0 − ψ̂
H−1
γγHγψ(ψ̂ −ψ0)

]T [
Hψψ Hψγ

Hγψ Hγγ

] [
ψ0 − ψ̂

H−1
γγHγψ(ψ̂ −ψ0)

]

= (ψ̂ −ψ0)
T
[
Hψψ −HψγH

−1
γγHγψ

]
(ψ̂ −ψ0)

= (ψ̂ −ψ0)
TΣ−1

ψψ(ψ̂ −ψ0),

2 See Section 1.4.2 and Figure 1.3 if this is unclear.
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where the final equality follows from (4.10). If H0 is true, then as n→∞
this expression will tend towards exactness as ψ̂ → ψ0. Furthermore,
provided H → I as n → ∞, then Σ tends to I−1, and hence Σψψ

tends to the covariance matrix of ψ̂, by (4.5). Hence, by the asymptotic
normality of the MLE ψ̂, 2λ ∼ χ2

r, under H0.

4.5 Regularity conditions

The preceding results depend on some assumptions.

1. The densities defined by distinct values of θ are distinct. If this is not the
case the parameters need not be identifiable, and there is no guarantee
of consistency.

2. θt is interior to the space of possible parameter values. This is neces-
sary in order to be able to approximate the log likelihood by a Taylor
expansion in the vicinity of θt.

3. Within some neighbourhood of θt, the first three derivatives of the log
likelihood exist and are bounded, while the Fisher information matrix
satisfies (4.3) and is positive definite and finite. The various Taylor ex-
pansions and the arguments leading to (4.5) depend on this.

When these assumptions are met the results of this section are very general
and apply in many situations well beyond the i.i.d setting. When they are
not met, some or all of the results of Sections 4.2 to 4.4 will fail.

4.6 AIC: Akaike’s information criterion

As briefly introduced in Section 2.4.5, an appealing approach to model
selection is to select the model that appears to be as close to the truth as
possible, in the Kullback-Leibler sense of minimising

K(fθ, ft) =

∫
{log ft(y) − log fθ(y)} ft(y)dy, (4.12)

where ft is the true density of y and fθ is the model approximation to it.
To make this aspiration practical, we need to choose some version of K
that can be estimated, and it turns out that the expected value of K(fθ̂, ft)

is tractable, where θ̂ is the MLE.
Although we cannot compute it, consider the value of θ that would min-
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imise (4.12), and denote it by θK . Now consider the Taylor expansion

log fθ̂(y) ≃ log fθK(y) + (θ̂ − θK)T
∂ log fθ
∂θ

∣∣∣∣
θK

+
1

2
(θ̂ − θK)T

∂2 log fθ
∂θ∂θT

∣∣∣∣
θK

(θ̂ − θK). (4.13)

If θK minimises K then
∫
∂ log fθ/∂θ|θKftdy = 0, so substituting (4.13)

into K(fθ̂, ft), while treating θ̂ as fixed3 results in

K(fθ̂, ft) ≃ K(fθK , ft) +
1

2
(θ̂ − θK)TIθK (θ̂ − θK), (4.14)

where IθK is the information matrix at θK . Now assume that the model is
sufficiently correct that E(θ̂) ≃ θK and cov(θ̂) ≃ IθK , at least for large
samples. In this case, and reusing results from the end of Section 4.4,

E{l(θ̂)− l(θK)} ≃ E

{
1

2
(θ̂ − θK)TIθK (θ̂ − θK)

}
≃ p/2 (4.15)

where p is the dimension of θ. So taking expectations of (4.14) and substi-
tuting an approximation from (4.15),

EK(fθ̂, ft) ≃ K(fθK , ft) + p/2. (4.16)

Since this still involves the unknownable ft, consider

E{−l(θ̂)} = E[−l(θK)− {l(θ̂)− l(θK)}]
≃ −

∫
log{fθK (y)}ft(y)dy − p/2 by (4.15)

= K(fθK , ft)− p/2−
∫

log{ft(y)}ft(y)dy.

Using this result to eliminate K(fθK , ft) from (4.16) suggests the estimate

̂EK(fθ̂, ft) = −l(θ̂) + p+

∫
log{ft(y)}ft(y)dy.

Since the last term on the right-hand side only involves the truth, this last
estimate is minimised by whichever model minimises

AIC = −2l(θ̂) + 2p,

where the factor of 2 is by convention, to put AIC on the same scale as 2λ

3 By treating θ̂ as fixed we are effectively assessing the expected likelihood ratio between
model and truth for new data.
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from Section 4.4. A possible concern here is that (4.15) is not justified if
the model is oversimplified and hence poor, but in practice this is unprob-
lematic, because the log likelihood decreases sharply as the approximation
deteriorates. See Davison (2003) for a fuller derivation.

An objection to AIC is that it is not consistent: as n → ∞, the proba-
bility of selecting the correct model does not tend to 1. For nested models
(4.6) states that the difference in −2l(θ̂) between the true model and an
overly complex model follows a χ2

r distribution, where r is the number of
spurious parameters. Neither χ2

r nor 2p depends on n, so the probability of
selecting the overly complex model by AIC is nonzero and independent of
n (for n large). The same objection could also be made about hypothesis
testing, unless we allow the accept/reject threshold to change with n.4

Exercises
4.1 The double exponential distribution has p.d.f. f(x) = e−|x−µ|/σ/(2σ) where

µ and σ are parameters. Obtain maximum likelihood estimates of µ and σ,
given observations x1, x2, . . . , xn. (assume that n is even, the xi are unique
and xi 6= µ). Comment on the uniqueness of your estimates.

4.2 A random variable X has p.d.f. f(x) = (b − a)−1 if a ≤ x ≤ b and 0
otherwise. Given observations x1, x2, . . . , xn, find the maximum likelihood
estimates of a and b. Are the corresponding estimators unbiased? Why is
(4.5) inapplicable in this case?

4.3 Random variables X and Y have joint p.d.f. f(x, y) = kxαyβ 0 ≤ x ≤
1, 0 ≤ y ≤ 1. Assume that you have n independent pairs of observations
(xi, yi). (a) Evaluate k in terms of the α and β. (b) Find the maximum like-
lihood estimators of α and β. (c) Find approximate variances of α̂ and β̂

4.4 Suppose that you have n independent measurements of times between major
aircraft disasters, ti, and believe that the probability density function for the
ti’s is of the form: f(t) = ke−λt

2

t ≥ 0 where λ and k are the same for all
i. (a) By considering the normal p.d.f., show that k =

√
4λ/π. (b) Obtain a

maximum likelihood estimator for λ. (c) Given observations of Ti (in days)
of: 243, 14, 121, 63, 45, 407 and 34 use a generalised likelihood ratio test to
test H0 : λ = 10−4 against the alternative of no restriction on λ at the 5%
significance level. Note that if V ∼ χ2

1 then Pr[V ≤ 3.841] = 0.95.

4 The inconsistency of AIC is not in itself the reason for the empirical observation that
AIC tends to select increasingly complex models as n increases. If the true model is
among those considered then (4.6) does not imply that the probability of rejecting it
increases with sample size. However, if all the models under consideration are wrong,
then we will tend to select increasingly complex approximations as the sample size
increases and the predictive disadvantages of complexity diminish.

5

Numerical maximum likelihood estimation

The theory of maximum likelihood estimation provides very general tools
for inference using statistical models, provided we can evaluate the log
likelihood and its first two derivatives and maximise the likelihood with
respect to its parameters. For most interesting models we can not do this
entirely analytically, and must use numerical methods for parts of the en-
terprise. The second-order Taylor expansion is again pivotal.1

5.1 Numerical optimisation

Most optimisation literature and software, including in R, concentrates on
the minimisation of functions. This section follows this convention, bearing
in mind that our goal of maximising log likelihoods can always be achieved
by minimising negative log likelihoods. Generically, then, we are interested
in automatic methods for finding

θ̂ = argmin
θ

f(θ). (5.1)

There are some very difficult problems in this class, so some restrictions
are needed. Specifically, assume that the objective function, f , is a suffi-
ciently smooth function, bounded below, and that the elements of θ are
unrestricted real parameters. So f might be a negative log likelihood, for
example. f may also depend on other known parameters and data, but there
is no need to clutter up the notation with these. The assumption that θ is
unrestricted means that, if we want to put restrictions on θ, we need to be
able to implement them by writing θ = r(θr), where r is a known func-
tion and θr is a set of unrestricted parameters. Then the problem becomes
minθr f{r(θr)}.

Even given these assumptions, it is not possible to guarantee finding a

1 Some numerical matrix algebra is also taken for granted here, but Appendix B
introduces most of what is needed.
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solution to (5.1) unless we know that f is convex, which is generally an
assumption too far. Pragmatically, the best we can hope for is to develop
methods to find a local minimum; that is, a point θ̂ such that f(θ̂ +∆) ≥
f(θ̂), for any sufficiently small perturbation ∆. The resulting methods are
adequate for many statistical problems.

5.1.1 Newton’s method

A very successful optimisation method is based on iteratively approximat-
ing f by a truncated Taylor expansion and seeking the minimum of the ap-
proximation at each step. With a little care, this can be made into a method
that is guaranteed2 to converge to a local minimum. Taylor’s theorem states
that if f is a twice continuously differentiable function of θ, and ∆ is of
the same dimension as θ, then for some t ∈ (0, 1),

f(θ +∆) = f(θ) +∇f(θ)T∆+
1

2
∆T∇2f(θ + t∆)∆ (5.2)

where ∇f(θ∗) =
∂f

∂θ

∣∣∣∣
θ∗

and ∇2f(θ∗) =
∂2f

∂θ∂θT

∣∣∣∣
θ∗
.

From (5.2), the condition f(θ̂ + ∆) ≥ f(θ̂), for any sufficiently small
perturbation ∆, is equivalent to

∇f(θ̂) = 0 and ∇2f(θ̂) positive semi-definite, (5.3)

which are the useful conditions for a minimum.
A second consequence of (5.2) is that for sufficiently small α, a θ that

is not a turning point, and any positive definite matrix H of appropriate
dimension, then f{θ − αH∇f(θ)} < f(θ). Under the given conditions
we can approximate f by a first-order Taylor approximation. Hence, in the
small α limit, f{θ−αH∇f(θ)} = f(θ)−α∇f(θ)TH∇f(θ) < f(θ),
where the inequality follows from the fact that ∇f(θ)TH∇f(θ) > 0
since H is positive definite and∇f(θ) 6= 0. In short,

∆ = −H∇f(θ) (5.4)

is a descent direction if H is any positive definite matrix. After Taylor’s
theorem, this is probably the second most important fact in the optimisation
of smooth functions.
2 The statistical literature contains many statements about the possibility of Newton’s

method diverging, and the consequent difficulty of guaranteeing convergence. These
statements are usually outdated, as a look at any decent textbook on optimisation shows.
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Now consider Newton’s method itself. Suppose that we have a guess, θ′,
at the parameters minimising f(θ). Taylor’s theorem implies that

f(θ′ +∆) ≃ f(θ′) +∇f(θ′)T∆+
1

2
∆T∇2f(θ′)∆.

Provided that∇2f(θ′) is positive semi-definite, the right-hand-side of this
expression can be minimised by differentiating with respect to ∆ and set-
ting the result to zero, which implies that

∇2f(θ′)∆ = −∇f(θ′). (5.5)

So, in principle, we simply solve for ∆ given θ′ and update θ′ ← θ′ +∆
repeatedly until the conditions (5.3) are met. By Taylor’s theorem itself,
this process must converge if we start out close enough to the minimising
θ̂. But if we knew how to do that we perhaps would not need to be using
Newton’s method in the first place.

The method should converge when started from parameter guesses that
are a long way from θ̂, requiring two modifications of the basic iteration:

1. ∇2f(θ′) is only guaranteed to be positive (semi) definite close to θ̂. So
∇2f(θ′) must be modified to make it positive definite, if it is not. The
obvious alternatives are (i) to replace∇2f(θ′) by∇2f(θ′)+δI, where
δ is chosen to be just large enough to achieve positive definiteness;3

or (ii) take the symmetric eigen-decomposition ∇2f(θ′) = UΛUT,
where Λ is the diagonal matrix of eigenvalues, and replace ∇2f(θ′)
by UΛ̃UT, where Λ̃ is Λ with all nonpositive eigenvalues replaced by
positive entries (e.g. |Λii|). Using the perturbed version in (5.5), results
in a step of the form (5.4), so if we are not at a turning point, then a
sufficiently small step in the direction ∆ is guaranteed to reduce f .

2. The second-order Taylor approximation about a point far from θ̂ could
be poor at θ̂, so that there is no guarantee that stepping to its minimum
will lead to a reduction in f . However, given the previous modification,
we know that the Newton step is a descent direction. A small enough
step in direction ∆ must reduce f . Therefore, if f(θ′ +∆) > f(θ′),
repeatedly set ∆←∆/2, until a reduction in f is achieved.

With these two modifications each step of Newton’s method must reduce
f until a turning point is reached.
3 Positive definiteness can be tested by attempting a Choleski decomposition of the matrix

concerned: it will succeed if the matrix is positive definite and fail otherwise. Use a
pivoted Choleski decomposition to test for positive semi-definiteness. Alternatively,
simply examine the eigenvalues returned by any symmetric eigen routine.



5.1 Numerical optimisation 91

In summary, starting with k = 0 and a guesstimate θ[0], iterate these steps:

1. Evaluate f(θ[k]),∇f(θ[k]) and∇2f(θ[k]).
2. Test whether θ[k] is a minimum using (5.3), and terminate if it is.4

3. If H = ∇2f(θ[k]) is not positive definite, perturb it so that it is.
4. Solve H∆ = −∇f(θ[k]) for the search direction ∆.

5. If f(θ[k] +∆) is not < f(θ[k]), repeatedly halve ∆ until it is.
6. Set θ[k+1] = θ[k] +∆, increment k by one and return to step 1.

In practice∇f is not tested for exact equality to zero at 2, and we instead
test whether ‖∇f(θ[k])‖ < |f(θ[k])|ǫr+ ǫa, for small constants ǫr and ǫa.

Newton’s method examples
As a single-parameter example, consider an experiment on antibiotic effi-
cacy. A 1-litre culture of 5 × 105 cells is set up and dosed with antibiotic.
After 2 hours, and then every subsequent hour up to 14 hours after dosing,
0.1ml of the culture is removed and the live bacteria in this sample counted
under a microscope, giving counts, yi, and times, ti (hours). The data are

ti 2 3 4 5 6 7 8 9 10 11 12 13 14
yi 35 33 33 39 24 25 18 20 23 13 14 20 18

A simple model for the sample counts, yi, is that their expected value is
E(Yi) = µi = 50e−δti , where δ is an unknown ‘death rate’ parameter
(per hour) and ti is the sample time in hours. Given the sampling protocol,
it is reasonable to assume that the counts are observations of independent
Poi(µi) random variables (see Section A.3.2), with probability function
f(yi) = µyii e

−µi/yi! So the log likelihood is

l(δ) =
n∑

i=1

{yi log(µi)− µi − log(yi!)}

=
n∑

i=1

yi{log(50)− δti} −
n∑

i=1

50e−δti −
n∑

i=1

log(yi!),

where n = 13. Differentiating w.r.t. δ,

∂l

∂δ
= −

n∑

i=1

yiti +
n∑

i=1

50tie
−δti and

∂2l

∂δ2
= −50

n∑

i=1

t2i e
−δti .

4 If the objective function contains a saddlepoint, then theoretically Newton’s method
might find it, in which case the gradient would be zero and the Hessian indefinite: in this
rare case further progress can only be made by perturbing the Newton step directly.
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Figure 5.1 Newton’s method for the antibiotic example of
Section 5.1.1. Each panel shows one step of Newton’s method,
with the log likelihood (black) and the second-order Taylor
approximation about • (dashed). Vertical lines show the estimated
value of δ at the start and end of the step. Each panel title gives
the end estimate. a starts from δ[0] = 0. b to d show subsequent
iterations until convergence.

The presence of the ti term in e−δti precludes a closed-form solution for
∂l/∂δ = 0, and Newton’s method can be applied instead. Figure 5.1 illus-
trates the method’s progression. In this case the second derivatives do not
require perturbation, and no step-length halving is needed.

Now consider an example with a vector parameter. The following data
are reported AIDS cases in Belgium, in the early stages of the epidemic.

Year (19–) 81 82 83 84 85 86 87 88 89 90 91 92 93
Cases 12 14 33 50 67 74 123 141 165 204 253 246 240

One important question, early in such epidemics, is whether control
measures are beginning to have an impact or whether the disease is con-
tinuing to spread essentially unchecked. A simple model for unchecked
growth leads to an ‘exponential increase’ model. The model says that the
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Figure 5.2 Newton’s method for the AIDS example of Section
5.1.1. Each panel shows one step, with the log likelihood
contoured in black, the second order Taylor approximation about
• in grey, and the quadratic given by the positive definite
corrected Hessian as dotted. ◦ gives the Newton method proposed
parameter values at the end of each step, which are also given in
the panel caption. The iteration starts at the top left and has
converged by the lower right.

number of cases, yi, is an observation of an independent Poisson r.v., with
expected value µi = αeβti where ti is the number of years since 1980. So
the log likelihood is

l(α, β) =
n∑

i=1

yi{log(α) + βti} −
n∑

i=1

(αeβti − yi!),

and hence,

∇l =
[ ∑

yi/α−
∑

exp(βti)∑
yiti − α

∑
ti exp(βti)

]

and ∇2l =

[ −∑ yi/α
2 −∑ tie

βti

−∑ tie
βti −α∑ t2i e

βti .

]
.

A swift glance at the expression for the gradients should be enough to
convince you that numerical methods will be required to find the MLEs of
the parameters. Starting from an initial guess α[0] = 4, β[0] = .35, here is
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the first Newton iteration:
[
α[0]

β[0]

]
=

[
4
.35

]
⇒ ∇l =

[
88.4372
1850.02

]
,

∇2l =

[ −101.375 −3409.25
−3409.25 −154567

]
⇒ (∇2l)−1∇l =

[ −1.820
0.028

]

⇒
[
α[1]

β[1]

]
=

[
α[0]

β[0]

]
− (∇2l)−1∇l =

[
5.82
0.322

]
.

After eight more steps the likelihood is maximised at α̂ = 23.1, β̂ =
0.202. Figure 5.2 illustrates six Newton steps, starting from the more in-
teresting point α̂0 = 4, β̂0 = 0.35. Perturbation to positive definiteness is
required in the first two steps, but the method converges in six steps.

Newton variations: avoiding f evaluation and the expected Hessian
Occasionally we have access to∇f and∇2f , but f itself is either unavail-
able or difficult to compute in a stable way. Newton’s method only requires
evaluation of f in order to check that the Newton step has led to a reduc-
tion in f . It is usually sufficient to replace the condition f(θ+∆) ≤ f(θ)
with the condition that f must be non-increasing in the direction ∆ at
θ′ + ∆. That is, ∇f(θ′ + ∆)T∆ ≤ 0. In many circumstances, step-
length control based on this condition ensures convergence in cases where
the iteration would otherwise have diverged, but unlike the function-value
based control, pathological cases can easily be dreamt up to defeat it. Such
step-length reduction should only be applied after testing that the step has
not already met the convergence criteria. See Section 5.4.3 for an example.

Another common variation on the method, used in maximum likelihood
estimation, is to replace−∇2l(θ) by−E{∇2l(θ)} (so-called Fisher scor-
ing). Because the replacement is always positive (semi-)definite, perturba-
tion to positive definiteness is not required and by the arguments surround-
ing (5.4) the method converges when used with simple step-length control.

5.1.2 Quasi-Newton

Newton’s method is very effective and in the maximum likelihood setting
has the nice property of being based on exactly the derivatives of the log
likelihood that are required to use the large sample result (2.3). However,
there are cases where the derivative vector ∇f is available, but the Hes-
sian matrix, ∇2f , is tedious or difficult to evaluate. If the dimension of
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θ is large, numerically solving for the Newton direction can also become
prohibitively costly. These considerations raise the question of what can be
done based only on f and∇f .

The obvious approach is to apply the strategy that led to Newton’s method
again, but based on the first-order Taylor expansion of f . However, the re-
sulting steepest descent method is really a nonstarter. The problem is that
the first-order Taylor expansion ceases to be a good model of f at exactly
the point we are most interested in. At the minimum of f , ∇f = 0 and
we lose all justification for having neglected the second-order terms in the
Taylor expansion in favour of the first order terms, since the latter have van-
ished. This theoretical concern is borne out in practice: the steepest descent
method often becomes excruciatingly slow as it approaches a minimum.

A less obvious approach is to build up a local quadratic model of f from
the first derivative information accumulated as the optimisation proceeds.
This leads to quasi-Newton methods, which update an approximation to
the Hessian, ∇2f , based entirely on evaluations of ∇f . In principle, this
approximation can be used instead of the Hessian in Newton’s method, but
it is also possible to work directly on an approximation to the inverse of
the Hessian, thereby reducing the cost of calculating the step, ∆. It is also
possible to ensure that the approximate Hessian is always positive definite.

Quasi-Newton methods were invented in the mid 1950s by W. C. Davi-
don (a physicist). In the mathematical equivalent of not signing the Beat-
les, his paper on the method was rejected (it was eventually published in
1991). There are now many varieties of the quasi-Newton method, but the
most popular is the BFGS variant,5 which is briefly covered here.

Suppose that H[k+1] is the approximate positive definite Hessian at the
(k + 1)th step, so that

f(θ) ≃ f(θ[k+1]) +∇f(θ[k+1])T(θ − θ[k+1])

+
1

2
(θ − θ[k+1])TH[k+1](θ − θ[k+1]).

The basic requirement of a quasi Newton method is that this approximation
should exactly match∇f(θ[k]); that is, it should get the gradient vector at
the previous point, θ[k], exactly right. So

∇f(θ[k+1]) +H[k+1](θ[k] − θ[k+1]) = ∇f(θ[k]),

5 BFGS is named after Broyden, Fletcher, Goldfarb and Shanno all of whom discovered
and published it, independently, around 1970. ‘Big Friendly Giant Steps’ is the way all
Roald Dahl readers remember the name, of course (M. V. Bravington, pers. com.).
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which can be compactly re-written as

H[k+1]sk = yk, (5.6)

where sk = θ[k+1]−θ[k] andyk = ∇f(θ[k+1])−∇f(θ[k]). Equation (5.6)
will only be feasible for positive definite H[k+1] under certain conditions
on sk and yk, but these can always be met by choosing the step-length to
meet the Wolfe conditions, covered shortly.

Now let us work in terms of the inverse approximate Hessian, B[k] ≡(
H[k]

)−1
. Equation (5.6) alone does not define a unique B[k+1], and some

extra conditions are needed. A B[k+1] is sought that

1. satisfies (5.6) so that B[k+1]yk = sk;
2. is as close as possible to B[k];
3. is positive definite.

‘Close’ in condition 2 is judged using a particular matrix norm, that is not
covered here. The unique solution to this problem is the BFGS update

B[k+1] = (I− ρksky
T
k )B

[k](I− ρkyks
T
k ) + ρksks

T
k ,

where ρ−1
k = sTk yk. The BFGS method then works exactly like Newton’s

method, but with B[k] in place of the inverse of ∇2f(θ[k]), and without
the need for evaluation of second derivatives or for perturbing the Hessian
to achieve positive definiteness. A finite difference approximation to the
Hessian is often used to start the method (see Section 5.5.2).

The only detail not required by Newton’s method is that step-length se-
lection must now be carried out more carefully. We must ensure that the
step-length is such that ∆ satisfies the sufficient decrease condition

f(θ[k] +∆) ≤ f(θ[k]) + c1∇f(θ[k])T∆,

c1 ∈ (0, 1), and the curvature condition

∇f(θ[k] +∆)T∆ ≥ c2∇f(θ[k])T∆,

c2 ∈ (c1, 1). Collectively these conditions are known as the Wolfe con-
ditions. The first seeks to ensure that the step results in a decrease that is
reasonable relative to the gradient of f in the direction of ∆ and guards
against overly long steps. The second says that there should have been a
sufficient decrease in the gradient of the function along ∆ (otherwise why
not take a longer step, given that the function is still decreasing fast in
this direction). For a full discussion see Nocedal and Wright (2006, §3.1),
where c1 = 10−4 and c2 = 0.9 are suggested as typical.

When performing maximum likelihood estimation, it is tempting to use
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Figure 5.3 BFGS quasi-Newton method applied to the AIDS
example of Section 5.1.1. Each panel shows one step, with the
negative log likelihood as black contours, and the quadratic
implied by the current gradient and approximate inverse Hessian
about • as dashed contours. ◦ gives the updated parameter values
at the end of each step, which are given numerically in each panel
caption. The iteration starts at the top left. The MLE is reached in
about six more steps.

the converged B matrix as an estimate of I−1, but caution is required.
Because of the arguments surrounding (5.4), quasi Newton methods work
even when B is a poor approximation to the inverse Hessian of f . B may
be a poor representation of the shape of f in directions that the BFGS
iteration has not explored recently.

Quasi-Newton example
Figure 5.3 illustrates the first 6 steps of BFGS applied to the AIDS in Bel-
gium model of Section 5.1.1. Compared to the Newton method in Figure
5.2, progress is slightly slower, but convergence is still reached in about
12 steps, despite only requiring function values and first derivatives to be
evaluated.

5.1.3 The Nelder-Mead polytope method

What if even gradient evaluation is too taxing, or if our objective is not
smooth enough for Taylor approximations to be valid? What can be done
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with function values alone? The Nelder-Mead polytope6 method provides
an elegant answer.

Let p be the dimension of θ. At each stage of the method we maintain
p + 1 distinct θ vectors, defining a polytope in the parameter space (e.g.
for a two-dimensional θ, the polytope is a triangle). The following steps
are iterated until a minimum is reached/ the polytope collapses to a point.

1. The search direction is defined as the vector from the worst point (the
vertex of the polytope with the highest objective value) through the av-
erage of the remaining p points.

2. The initial step-length is set to twice the distance from the worst point
to the centroid of the others. If it succeeds (meaning that the new point
is no longer the worst point), then a step-length of 1.5 times that is tried,
and the better of the two accepted.

3. If the previous step did not find a successful new point, then step-lengths
of half and one and a half times the distance from the worst point to the
centroid are tried.

4. If the last two steps failed to locate a successful point, then the poly-
tope is reduced in size by linear rescaling towards the current best point
(which remains fixed.)

Variations are possible, in particular with regard to the step-lengths and
shrinkage factors. Figure 5.4 illustrates the polytope method applied to the
negative log likelihood of the AIDS data example of Section 5.1.1. Each
polytope is plotted, with the line style cycling through, black, grey and
dashed black. The worst point in each polytope is highlighted with a circle.

In this case it took 24 steps to reach the MLE. This is a somewhat higher
number of steps than the Newton or BFGS methods, but given that we need
no derivatives in this case, the amount of computation is actually less.

On the basis of this example you might be tempted to suppose that
Nelder-Mead is all you ever need, but this is generally not the case. If you
need to know the optimum very accurately (for example, for the inner opti-
misation in a nested optimisation), then Nelder-Mead will often take a long
time to get an answer that Newton based methods would give very quickly.
Also, the polytope can get ‘stuck’, so that it is usually a good idea to restart
the optimisation from any apparent minimum (with a new polytope having
the apparent optimum as one vertex), to check that further progress is re-
ally not possible. The Nelder-Mead method is good if the answer does not
need to be too accurate and derivatives are hard to come by.
6 also known as the downhill simplex method, but not to be confused with the completely

different simplex method of linear programming.
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Figure 5.4 The Nelder-Mead method applied to the AIDS
example of Section 5.1.1. All 24 steps to convergence are shown,
from a starting point at α = 10, β = 0.35. Polytope (triangle) line
styles cycle through black, grey and dashed black. The worst
vertex of each polytope is highlighted with a symbol.

5.2 A likelihood maximisation example in R

Echinus affinis is a species of deep sea urchin. Gage and Tyler (1985) re-
ported data on the growth of E. affinis collected from the Rockall Trough,
which are shown in Figure 5.5. Gurney and Nisbet (1998) suggested sim-
ple energy-budget based arguments to arrive at a model for volume, V , as
a function of age, a, which is

dV

da
=

{
γV V < φ/γ
φ otherwise,

where γ and φ are parameters. The initial volume is ω, also a model param-
eter. Growth is in two phases: in the first the animal grows as fast as it can,
given the food it can obtain, and in the second it grows less quickly, putting
the surplus food energy into reproduction. The age at onset of reproduction
is therefore

am =
1

γ
log

(
φ

γω

)
,
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Figure 5.5 Data on urchin volume against age. Symbols show
raw data. The black curve is the best fit model from Section 5.2.

and the model can be solved analytically:

V (a) =

{
ω exp(γa) a < am
φ/γ + φ(a− am) otherwise.

Clearly the data do not follow the model exactly, so denoting the ith volume
measurement as vi, one possible model is that

√
vi ∼ N(

√
V (ai), σ

2)
where the observations are independent (a reasonable assumption because
each datum relates to one individual).

5.2.1 Maximum likelihood estimation

Given the model specification, it is straightforward to code up an R function
evaluating the negative log likelihood of θ = log(ω, γ, φ, σ)T , where the
log parameterisation ensures that ω, γ, φ and σ remain positive:

urchin.vol <- function(theta,age) {
## get volumes at ‘age’ given log params in ‘theta’
omega <- exp(theta[1]); gamma <- exp(theta[2])
phi <- exp(theta[3]); V <- age*0
am <- log(phi/(gamma*omega))/gamma
ind <- age < am
V[ind] <- omega*exp(gamma*age[ind])
V[!ind] <- phi/gamma + phi*(age[!ind]-am)
V

}



5.2 A likelihood maximisation example in R 101

ll <- function(theta,age,vol) {
rV <- sqrt(urchin.vol(theta,age)) ## expected sqrt vol.
sigma <- exp(theta[4])
-sum(dnorm(sqrt(vol),rV,sigma,log=TRUE)) ## -ve log lik.

}

Now let us minimise ll (i.e. maximise the log likelihood) with respect
to θ, using the BFGS method available in R function optim (because no
gradient function is supplied, optim will approximate gradients by finite
differencing: see Section 5.5.2). Assume that the data are in a data frame,
uv, with columns vol and age:

> th.ini <- c(0,0,0,0) ## initial parameter values
> fit <- optim(th.ini,ll,hessian=TRUE,method="BFGS",
+ age=uv$age,vol=uv$vol)
> fit
$par
[1] -4.0056322 -0.2128199 0.1715547 -0.7521029
$value
[1] 94.69095
$counts
function gradient

74 25
$convergence
[1] 0
...

The first argument to optim provides initial parameter values from which
to start the optimisation. The next argument is the objective function. The
first argument of the objective function must be the vector of parame-
ters with respect to which optimisation is required. The objective func-
tion may depend on other fixed arguments, which can be provided, named,
via optim’s ‘...’ argument: this is how age and vol get passed to ll.
hessian=TRUE tells optim to return an approximate Hessian matrix at
convergence, and method="BFGS" selects the BFGS optimisation method.
The default method is Nelder-Mead.

The returned object, fit, contains several elements. par contains the
minimising parameter values; here the MLE, θ̂. value contains the value
of the objective function at the minimum (the negative of the maximised
log likelihood in this case). counts indicates how many function and gradi-
ent evaluations have been required (the latter by finite differencing, in this
case). convergence contains a numeric code: 0 for convergence or other
integers indicating some problem (see ?optim). message (not shown) con-
tains any diagnostic message returned from the underlying optimisation
code. hessian (not shown) contains the Hessian matrix.
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Figure 5.6 Checking plots for the urchin model from Section 5.2.
Left: standardised residuals against fitted values. The lack of
pattern in the mean or variance suggests that the assumptions are
reasonable. Right: normal QQ-plot of standardised residuals; it is
close enough to a straight line to accept the normality assumption.

5.2.2 Model checking

Before investigating the estimates further it is important to check that the
model assumptions are plausible. Figure 5.5 overlays the estimated curve
of V (a) against a over the raw data. As a characterisation of the expected
volume the model looks reasonable, but what of the distributional assump-
tions on which further inference is based? For this model is it easy to com-
pute standardised residuals:

ǫ̂i =

{√
vi −

√
V (ai)

}
/σ,

which should be close to i.i.d. N(0, 1) deviates if the model is correct.
Then a plot of residuals against fitted values and a normal QQ-plot are
useful.

theta <- fit$par ## MLE
v <- urchin.vol(theta,uv$age)
rsd <- (uv$vol^.5-v^.5)/exp(theta[4])
plot(v,rsd);qqnorm(rsd);abline(0,1);

The results are shown in Figure 5.6, and suggest no problem with the dis-
tributional assumptions.
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5.2.3 Further inference

Now let us use (4.5) to obtain approximate 95% confidence intervals for
the model parameters on the original scale. Notice that we already have the
Hessian of the negative log likelihood, and at this level of approximation
1.96 ≈ 2.

> V <- solve(fit$hessian) ## approx. cov matrix
> sd <- diag(V)^.5 ## standard errors
> ## now get 95% CIs for all 4 parameters...
> rbind(exp(theta - 2*sd),exp(theta + 2*sd))

[,1] [,2] [,3] [,4]
[1,] 7.049868e-05 0.2138756 1.092046 0.4186246
[2,] 4.705125e+00 3.0548214 1.290534 0.5307708

The intervals for ω and γ are very wide, but computing the estimated cor-
relation matrix of θ̂ using diag(1/sd)%*%V%*%(diag(1/sd)), we find a
correlation of 0.997 between logω and log γ, which explains the width.

As a simple example of model selection, suppose that we want to test the
hypothesis that σ = 0.4. The above interval for σ suggests rejecting this
hypothesis at the 5% level, but a generalised likelihood ratio test could also
be used for this purpose, using (2.4). To implement this we need a modified
version of ll, ll0, say, in which the line sigma <-exp(theta[4]) is
removed and replaced with a function argument sigma = 0.4, so that the
null hypothesis is imposed. It remains to optimise ll0, evaluate the log
likelihood ratio statistic and compute the p-value using (2.4):

> fit0 <- optim(rep(0,3),ll0,method="BFGS",
+ age=uv$age,vol=uv$vol,sigma=0.4)
> llr <- fit0$value - fit$value
> pchisq(2*llr,1,lower.tail=FALSE)
[1] 0.003421646

This suggests rather more evidence against the null than the interval might
have implied. We could also search for the range of σ values acceptable in
a generalised likelihood ratio test. The following code does this.

llf <- function(sigma,ll.max,uv) # zero on accept boundary
-2*(ll.max-optim(rep(0,3),ll0,method="BFGS",age=uv$age,

vol=uv$vol,sigma=sigma)$value)-qchisq(.95,1)
uniroot(llf,c(.2,.47),uv=uv,ll.max=fit$value)$root # lower
uniroot(llf,c(.47,1),uv=uv,ll.max=fit$value)$root # upper

The resulting 95% profile likelihood interval for σ is (0.421, 0.532).
AIC also suggests that the simplified model is not as good as the original:

> 2*fit$value + 2*4; 2*fit0$value + 2*3 ## AIC
[1] 197.3819
[1] 203.9497
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However, in its current form the model is somewhat unbiological. Measure-
ment errors in the urchin volumes are likely to be rather small, and much of
the observed variability is likely to result from variation between individu-
als in their realized growth parameters γ and φ, suggesting a reformulation
with random effects.

5.3 Maximum likelihood estimation with random effects

When random effects are present it is usually straightforward to write down
the joint density, fθ(y,b), of the observed data, y, and unobserved random
effects, b, which depends on parameters θ. However, the likelihood is the
marginal density of the data evaluated at the observed data values,

L(θ) = fθ(y) =

∫
fθ(y,b)db, (5.7)

and the integral is usually analytically intractable. We then have several
options:

1. Use numerical integration (also known as ‘quadrature’). This is usually
impractical unless the integral can be decomposed into a product of
low-dimensional integrals or b is low-dimensional.

2. Estimate the integral by Monte Carlo methods. This can be effective, but
is not always easy to combine with numerical likelihood maximisation,
and accuracy considerations mean that we must typically simulate many
times as many b values as we have data in y.

3. Approximate the integral with one that we can do.
4. Avoid the integral altogether by finding an easier to evaluate function

whose maximum will coincide with the maximum of the likelihood.

The following sections consider options 3 and 4, looking in particular at
Laplace approximation, the EM algorithm, and the combination of the two.

5.3.1 Laplace approximation

Let b̂y be the value of b maximising f(y,b) for a giveny (the dependence
on θ has been dropped from the notation to avoid clutter). Then a second-
order Taylor expansion of log f , about b̂y, gives

log f(y,b) ≃ log f(y, b̂y)−
1

2
(b− b̂y)

TH(b− b̂y),
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where H = −∇2
b log f(y, b̂y). Hence,

f(y,b) ≃ f(y, b̂y) exp

{
−1

2
(b− b̂y)

TH(b− b̂y)

}
.

However, writing nb for the dimension of b,
∫

1

(2π)nb/2|H−1|1/2 exp
{
−1

2
(b− b̂y)

TH(b− b̂y)

}
db = 1,

since the integrand is the p.d.f. of an N(b̂y,H
−1) random vector and

p.d.f.s integrate to 1. It follows that
∫

f(y,b)db ≃ f(y, b̂y)

∫
exp

{
−1

2
(b− b̂y)

TH(b− b̂y)

}
db

= f(y, b̂y)
(2π)nb/2

|H|1/2 , (5.8)

the right-hand side being the first order Laplace approximation to the in-
tegral. Careful accounting of the approximation error shows it to generally
be O(n−1) where n is the sample size (assuming a fixed length for b).

Notice how the problem of evaluating the integral has been reduced to
the problem of finding ∇2 log f(y, b̂y) and b̂y. If we can obtain the for-
mer then the latter is always obtainable by Newton’s method. Of course
optimising the approximate likelihood that results from the Laplace ap-
proximation will also require numerical optimisation, so nested optimisa-
tion loops will usually be needed; but this is usually preferable to a brute
force attack on (5.7).

5.3.2 The EM algorithm

A rather ingenious method avoids the integral in (5.7) altogether, replac-
ing it with an integral that is sometimes more analytically tractable; in any
case it can readily be approximated to greater accuracy than is straightfor-
ward for (5.7) itself. The method starts from a parameter guess, θ′, and the
standard decomposition:

log fθ(y,b) = log fθ(b|y) + log fθ(y).

The idea is then to take the expectation of log fθ(y,b) with respect to
fθ′(b|y) (pay close attention to when θ is primed and when it is not). For
some models this expectation can readily be computed, but otherwise we
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can approximate it to relatively high accuracy. In any case we obtain

Eb|y,θ′ log fθ(y,b) = Eb|y,θ′ log fθ(b|y) + log fθ(y),

which it is convenient to rewrite as

Qθ′(θ) = Pθ′(θ) + l(θ) (5.9)

by definition of Q and P and recognising that the final term is simply the
log likelihood l(θ). Now precisely the same argument that leads to (4.4)
in Section 4.1 implies that Eb|y,θ′ log fθ(b|y) is maximised when θ =
θ′. So Pθ′ is maximised at Pθ′(θ′). It follow that if Qθ′(θ) > Qθ′(θ

′),
then l(θ) > l(θ′), since we know that Pθ′(θ) < Pθ′(θ

′). That is, any
θ value that increases Qθ′(θ) relative to Qθ′(θ

′) must result from l(θ)
having increased, because Pθ′(θ) will have decreased. So any change we
make to θ that increases Qθ′(θ) must increase l(θ).

Qθ̂(θ) has a maximum at θ̂, because both Pθ̂(θ) and l(θ) have maxima
at θ̂. Further, Qθ′(θ) can only be maximised at θ′, if l(θ′) is a turning
point: otherwise Pθ′(θ) is maximised at θ′ while l(θ) is not.

Taken together these properties of Q imply that if we repeatedly find
θ∗ = argmaxθQθ′(θ), and then set θ′ ← θ∗, the resulting sequence of θ′

values leads to a monotonic increase in the likelihood and eventually con-
verges on a turning point of l(θ): hopefully θ̂. This iteration is known as
the EM algorithm from the two steps of first obtaining the function Qθ′(θ)
by taking an Expectation and then Maximising it with respect to θ.

In its basic form the EM algorithm is somewhat slow to converge when
close to θ̂, but Q also allows us to compute the gradient and Hessian of l
from it, thereby facilitating the application of Newton’s method to l, with-
out actually evaluating l. Differentiating (5.9) with respect to θ and evalu-
ating at θ = θ′ we find that

∂Qθ′(θ)

∂θ

∣∣∣∣
θ=θ′

=
∂Pθ′(θ)

∂θ

∣∣∣∣
θ=θ′

+
∂l(θ)

∂θ

∣∣∣∣
θ=θ′

=
∂l(θ)

∂θ

∣∣∣∣
θ=θ′

(5.10)

since Pθ′(θ) has a maximum at θ = θ′, and hence its derivatives vanish.
Some more work (e.g Davison, 2003, §5.5.2) establishes a result that is
also useful with (2.3):

∂2l(θ)

∂θ∂θT

∣∣∣∣
θ=θ′

=
∂2Qθ′(θ)

∂θ∂θT

∣∣∣∣
θ=θ′

+
∂2Qθ′(θ)

∂θ∂θ′T

∣∣∣∣
θ=θ′

. (5.11)

Equation (5.11) also enables maxima of l(θ) to be distinguished from other
turning points that the EM algorithm might discover, since the Hessian will
be indefinite in the latter cases (having positive and negative eigenvalues).



5.3 Maximum likelihood estimation with random effects 107

Higher order Laplace approximation for the E step
At this point the reader may reasonably object that the EM method require-
ment to evaluate

Eb|y,θ′ log fθ(y,b) =

∫
log fθ(y,b)fθ′(b|y)db (5.12)

involves an integral that in general looks no more tractable than the integral
(5.7) we are trying to avoid. In fact, there are many special cases where the
expectation is much easier than (5.7), which is where the real strength of
the approach lies. However it also turns out that a simple Laplace approxi-
mation (e.g. Steele, 1996) to (5.12) can be much more accurate than (5.8).

The key work is by Tierney et al. (1989), who consider approximation
of conditional expectations of the form

E{g(b)} =
∫
g(b)fθ(y,b)db∫
fθ(y,b)db

,

via-first order Laplace approximation of both integrals. This fails if g is not
strictly positive, so consider estimating the moment generating function
M(s) = E[exp{sg(b)}] and using E(g) = d logM(s)/ds|s=0.

M(s) =

∫
exp{sg(b)}fθ(y,b)db∫

fθ(y,b)db

=

∫
exp{sg(b) + log fθ(y,b)}db∫

exp{log fθ(y,b)}db
=

∫
ehs(b)db∫
eh(b)db

by definition of hs and h. Let b̂ maximise h and b̂s maximise hs. Fur-
thermore define H = −∇2h(b̂) and Hs = −∇2hs(b̂s). A standard first
order Laplace approximation of both integrals yields

M̂(s) =
|H|1/2fθ(y, b̂s)esg(b̂s)

|Hs|1/2fθ(y, b̂)
. (5.13)

Tierney et al. (1989) show that the error in this approximation is O(n−2)
provided that h/n and hs/n are of constant order (i.e. have magnitudes
that do not depend on n). Ê(g) = d log M̂ (s)/ds|s=0 is now the estimate
of E(g), which Tierney et al. (1989) also show has O(n−2) error. Using
the fact that b̂s = b̂ when s = 0, and the fact that the first derivatives of
fθ w.r.t. bs are therefore zero at s = 0, then evaluating the derivative of
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the log of (5.13) at s = 0 gives

Ê(g) = g(b̂)− 1

2

d

ds
log |Hs|

∣∣∣∣
s=0

. (5.14)

To avoid requiring third derivatives w.r.t. b, Tierney et al. (1989) suggest
using centred finite differencing to approximate the derivative w.r.t. s. In
the context of the EM algorithm, g(b) = log fθ(y,b), and all other quan-
tities are evaluated at θ = θ′. So hs = s log fθ(y,b)+ log fθ′(y,b), and
the approximation then gives us Qθ′(θ) with O(n−2) error.

5.4 R random effects MLE example

Consider again the urchin growth model from Section 5.2. A more biolog-
ically realistic model for the variability in these data might be that

Vi =

{
ω exp(giai) ai < ami
pi/gi + pi(ai − ami) otherwise

where ami = log {pi/(giω)} /gi, log gi ∼ N(µg, σ
2
g) and log pi ∼

N(µp, σ
2
p) (all independent), so that

√
vi ∼ N(

√
Vi, σ

2). So in this model
each urchin has its own growth rates, drawn from log-normal distributions,
and the model parameters are ω, µg, σg , µp, σp and σ. Clearly the joint
density of the data and random effects is easy to evaluate here, but the
integral required to obtain the likelihood is intractable.

5.4.1 Direct Laplace approximation

To use Laplace approximation for the likelihood requires that we find the
maximum of the log joint density of random effects and data w.r.t. the
random effects, along with the corresponding Hessian. This entails writing
a routine to evaluate the joint density, and its gradient and Hessian w.r.t.
the random effects. An easy way to do this is to write out the joint density
as an R expression and then have the deriv function do the heavy lifting
(see Section 5.5.3). The only snag in the current case is that the urchins for
which ai < ami have to be dealt with separately from the others.

Here is R code for producing a function v0 with the arguments listed
in function.arg, which will return predicted volumes for not yet ma-
ture urchins, given values for the parameters and random effects, as well
as gradient and Hessian w.r.t. the random effects. Notice the use of log
parameterisations here.
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v0e <- expression(-log(2*pi*sigma^2)/2 -
(sqrt(y) - sqrt(exp(w)*exp(exp(g)*a)))^2/(2*sigma^2)
- log(2*pi) - log(sig.g*sig.p) -
(g-mu.g)^2/(2*sig.g^2) - (p-mu.p)^2/(2*sig.p^2))

v0 <- deriv(v0e,c("g","p"), hessian=TRUE,function.arg=
c("a","y","g","p","w","mu.g","sig.g","mu.p",

"sig.p","sigma"))

Similarly tedious code produces a function v1 for volumes of mature urchins.
Only the expression for the mean volume changes to produce this. Next we
need a function to evaluate the log joint density and its derivatives, suitable
for optimising. Let b denote the vector containing the random effects: gis
first, then pis. y is volume data and a contains the ages.
lfyb <- function(b,y,a,th) {
## evaluate joint p.d.f. of y and b + grad. and Hessian.
n <- length(y)
g <- b[1:n]; p <- b[1:n+n]
am <- (p-g-th[1])/exp(g)
ind <- a < am
f0 <- v0(a[ind],y[ind],g[ind],p[ind],

th[1],th[2],th[3],th[4],th[5],th[6])
f1 <- v1(a[!ind],y[!ind],g[!ind],p[!ind],

th[1],th[2],th[3],th[4],th[5],th[6])
lf <- sum(f0) + sum(f1)
g <- matrix(0,n,2) ## extract gradient to g...
g[ind,] <- attr(f0,"gradient") ## dlfyb/db
g[!ind,] <- attr(f1,"gradient") ## dlfyb/db
h <- array(0,c(n,2,2)) ## extract Hessian to H...
h[ind,,] <- attr(f0,"hessian")
h[!ind,,] <- attr(f1,"hessian")
H <- matrix(0,2*n,2*n)
for (i in 1:2) for (j in 1:2) {
indi <- 1:n + (i-1)*n; indj <- 1:n + (j-1)*n
diag(H[indi,indj]) <- h[,i,j]

}
list(lf=lf,g=as.numeric(g),H=H)

}

The code for creating the full Hessian matrix H makes it clear that the Hes-
sian is very sparse (mostly zeroes). What follows would be more efficient
if the sparsity was exploited, but this would be a distraction at present.

The next step is to write an approximate log-likelihood function. Its main
element is a loop to maximise the joint density w.r.t. the random effects,
using Newton’s method. Recall that to guarantee convergence we need to
check the Hessian for positive definiteness at each step and perturb it if
necessary. One way to do this is to check whether a Choleski decomposi-
tion of the Hessian is possible and to add a multiple of the identity matrix
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to it if needed. The Choleski factor also provides an efficient way of solv-
ing for the search direction, so the following function returns the Choleski
factor of the Hessian or its positive definite modification:
pdR <- function(H,k.mult=20,tol=.Machine$double.eps^.8) {
k <- 1; tol <- tol * norm(H); n <- ncol(H)
while (inherits(try(R <- chol(H + (k-1)*tol*diag(n)),

silent=TRUE),"try-error")) k <- k * k.mult
R

}

Finally, here is the approximate negative log likelihood:
llu<-function(theta,vol,age,tol=.Machine$double.eps^.8){
## Laplace approximate log likelihood for urchin model.
ii <- c(3,5,6)
theta[ii] <- exp(theta[ii]) ## variance params
n <- length(vol)
if (exists(".inib",envir=environment(llu))) {
b <- get(".inib",envir=environment(llu))

} else b <- c(rep(theta[2],n),rep(theta[4],n)); ## init
lf <- lfyb(b,vol,age,theta)
for (i in 1:200) { ## Newton loop...
R <- pdR(-lf$H) ## R’R = (perturbed) Hessian
step <- backsolve(R,forwardsolve(t(R),lf$g)) ## Newton
conv <- ok <- FALSE
while (!ok) { ## step halving
lf1 <- lfyb(b+step,vol,age,theta);
if (sum(abs(lf1$g)>abs(lf1$lf)*tol)==0) conv <- TRUE
kk <- 0
if (!conv&&kk<30&&

(!is.finite(lf1$lf) || lf1$lf < lf$lf)) {
step <- step/2;kk <- kk+1

} else ok <- TRUE
}
lf <- lf1;b <- b + step
if (kk==30||conv) break ## if converged or failed

} ## end of Newton loop
assign(".inib",b,envir=environment(llu))
R <- pdR(-lf$H,10)
ll <- lf$lf - sum(log(diag(R))) + log(2*pi)*n
-ll

}

We can save computer time by having llu save the maximising random
effects, b̂, between calls, and use the previously stored b̂ as starting values
next time it is called: this is achieved by the calls to get and assign, which
store and retrieve b̂ from the environment of llu. Notice the assumption
that a log parameterisation is used for the variance parameters.

Fitting can now be accomplished by optim, exactly as for the simpler
likelihood in Section 5.2.
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> th <- c(-4,-.2,log(.1),.2,log(.1),log(.5)) ## initial
> fit <- optim(th,llu,method="BFGS",vol=uv$vol,
+ age=uv$age,hessian=TRUE)
> 2*fit$value + 2*length(fit$par) ## AIC
[1] 196.5785

So all the extra work for a more biologically plausible model has at least
not increased the AIC.

5.4.2 EM optimisation

Now consider fitting the same model using the EM algorithm. Analytic
evaluation of the expectation step does not look feasible, so let us use the
method of Section 5.3.2. Direct Laplace approximation is based on differ-
entiation and maximisation of the log joint density of random effects and
data, log fθ(y,b). Higher order approximation of the E-step requires the
equivalent for s log fθ(y,b) + log fθ′(y,b), with arbitrary values of the
constant s. Here is a function to evaluate this, with its gradient and Hessian.

lfybs <- function(s,b,vol,age,th,thp) {
## evaluate s log f(y,b;th) + log f(y,b;thp)
lf <- lfyb(b,vol,age,thp)
if (s!=0) {
lfs <- lfyb(b,vol,age,th)
lf$lf <- lf$lf + s * lfs$lf;lf$g <- lf$g + s * lfs$g
lf$H <- lf$H + s * lfs$H

}
lf

}

Next we need a function to maximise this w.r.t. b. The following is re-
ally just a modification of llu, which returns log fθ(y, b̂) if s = 0, and
log |Hs|/2 otherwise, in accordance with the ingredients needed to com-
pute Qθ′(θ) using (5.14):

laplace <- function(s=0,th,thp,vol,age,b=NULL,
tol=.Machine$double.eps^.7) {

ii <- c(3,5,6);thp[ii] <- exp(thp[ii])
th[ii] <- exp(th[ii]) ## variance params
n <- length(vol)
## initialize b ...
if (is.null(b)) b <- c(rep(thp[2],n),rep(thp[4],n));
lf <- lfybs(s,b,vol,age,th,thp)
for (i in 1:200) { ## Newton loop to find b hat
R <- pdR(-lf$H) ## R’R = fixed Hessian, R upper tri.
step <- backsolve(R,forwardsolve(t(R),lf$g)) ## Newton
conv <- ok <- FALSE
while (!ok) {
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lf1 <- lfybs(s,b+step,vol,age,th,thp);
if (sum(abs(lf1$g)>abs(lf1$lf)*tol)==0 ||

sum(b+step!=b)==0) conv <- TRUE
kk <- 0
if (!conv&&kk<30&&(!is.finite(lf1$lf) ||

lf1$lf < lf$lf)) {
step <- step/2;kk <- kk+1

} else ok <- TRUE
}
dlf <- abs(lf$lf-lf1$lf);lf <- lf1;b <- b + step;
if (dlf<tol*abs(lf$lf)||conv||kk==30) break

} ## end Newton loop
if (s==0) {
return(list(g=lfyb(b,vol,age,th)$lf,b=b))

}
R <- pdR(-lf$H,10)
list(b=b,rldetH = sum(log(diag(R))))

}

The rest is straightforward. Here is a function to evaluate th.e Q function
(again storing b̂ to use as starting values at the next call). The derivative
required by (5.14) is obtained by finite differencing (see Section 5.5.2).

Q <- function(th,thp,vol,age,eps=1e-5) {
## 1. find b.hat maximising log joint density at thp
if (exists(".inib",envir=environment(Q))) {
b <- get(".inib",envir=environment(Q))

} else b <- NULL
la <- laplace(s=0,th,thp,vol,age,b=b)
assign(".inib",la$b,envir=environment(Q))

## 2. For s = -eps and eps find b maximising s log joint
## at th + log joint at thp along with log|H_s|.
lap <- laplace(s=eps/2,th,thp,vol,age,b=la$b)$rldetH
lam <- laplace(s= -eps/2,th,thp,vol,age,b=la$b)$rldetH
la$g - (lap-lam)/eps

}

The basic EM iteration is now routine:

> thp <- th <- rep(0,6); ## starting values
> for (i in 1:30) { ## EM loop
+ er <- optim(th,Q,control=list(fnscale=-1,maxit=200),
+ vol=uv$vol,age=uv$age,thp=thp)
+ th <- thp <- er$par
+ cat(th,"\n")
+ }
-1.30807 -0.104484 0.015933 -0.351366 -0.422658 -0.22497
-1.13297 -0.220579 0.049261 -0.240472 -0.724219 -0.42390

[7 iterations omitted]
-2.91226 -0.162600 -1.079699 -0.049739 -1.247416 -1.27902

[19 iterations omitted]
-3.39816 -0.322957 -1.550822 0.150278 -1.512047 -1.37022
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Figure 5.7 Checking plots for the full urchin model from Section
5.4. Top left: the predicted urchin volumes given the predicted
random effects are shown in black, with the raw data in grey. Top
right: Normal QQ-plot for the residual errors. Bottom left:
Normal QQ-plot for predicted random effects ĝ. Bottom right:
Normal QQ-plot for predicted random effects p̂. Both random
effects appear somewhat heavy tailed.

The Nelder-Mead method has been used to optimise Q, with a step limit
of 200 to avoid excessive refinement of an optimum that will anyway be
discarded at the next step. For the first few steps, far from the optimum, the
algorithm makes good progress, but thereafter progress is slow, which is
the main practical problem with the basic EM iteration. After the first few
steps it is better to switch to Newton based optimisation by making use of
(5.10) and (5.11).

5.4.3 EM-based Newton optimisation

Here is a simple routine to find derivatives of the log likelihood according
to (5.10) by finite differencing Q (see Section 5.5.2):
ll.grad <- function(theta,vol,age,eps=1e-4) {
q0 <- Q(theta,theta,vol,age)
n <- length(theta); g <- rep(0,n)
for (i in 1:n) {
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th <- theta; th[i] <- th[i] + eps
g[i] <- (Q(th,theta,vol,age)-q0)/eps

}
g

}

Given ll.grad we do not really need (5.11), but can simply use finite dif-
ferences of ll.grad to get the approximate Hessian of the log likelihood:

ll.hess <- function(theta,vol,age,eps=1e-4) {
g0 <- ll.grad(theta,vol,age,eps)
n <- length(theta); H <- matrix(0,n,n)
for (i in 1:n) {
th <- theta; th[i] <- th[i] + eps
H[i,] <- (ll.grad(th,vol,age,eps)-g0)/eps

}
B <- solve(H)
list(H=(H + t(H))/2,B=(B + t(B))/2)

}

Notice that the inverse Hessian is also computed, and both Hessian and in-
verse are made symmetric before returning. A Newton loop is then straight-
forward to implement: its only nonstandard feature is that step-length con-
trol must now be based on ensuring that, at the step end, the derivative in
the direction of the step is not negative (see the end of Section 5.1.1).

for (i in 1:30) {
g <- ll.grad(th,uv$vol,uv$age)
B <- ll.hess(th,uv$vol,uv$age)$B
eb <- eigen(B)
if (max(eb$values)>0) { ## force neg def.
d <- -abs(eb$values)
B <- eb$vectors%*%(d*t(eb$vectors))

}
step <- -B%*%g; step <- step/max(abs(step))
while(sum(step*ll.grad(th+step,uv$vol,uv$age))<0) {
step <- step/2 }

th <- th + step
cat(th,mean(abs(g)),"\n")
if (max(abs(g))<1e-4) break

}

Starting from the basic EM parameter estimates after 10 iterations, this
loop converges in 12 further iterations. By contrast, after 30 steps of the
basic EM iteration, some components of the log-likelihood gradient vector
still had magnitude greater than 1. The step-length limitation, so that the
maximum step component is of size 1, ensures that no ludicrously large
steps can cause numerical problems in evaluating Q. Parameter estimates
(log scale) and standard errors are as follows:
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> th;diag(-ll.hess(th,uv$vol,uv$age)$B)^.5
[1] -3.39180 -0.36804 -1.69383 0.18609 -1.50680 -1.35400
[1] 0.712693 0.188591 0.168546 0.039671 0.188626 0.257298

For practical purposes these results are indistinguishable from the first-
order Laplace approximation results. So in this case the extra effort of us-
ing higher order approximations to the log-likelihood is of little benefit,
other than to confirm the results of the first order Laplace approximation.
Actually, given that the difference between the MLE and the true parame-
ters is typically O(n−1/2) for the exact likelihood, it is not really surprising
that we often see no substantial improvement in using an O(n−2) approx-
imation in place of an O(n−1) approximation when computing the MLE.

Some model checking plots are shown in Figure 5.7. The random ef-
fects appear somewhat heavy tailed relative to normal: perhaps they should
be modelled as t distributed. Otherwise the model appears fairly convinc-
ing, with much of the variability explained by urchin-to-urchin growth rate
variability. The main practical objection is that the residual error is still a
little high to be explicable as measurement error. The way to make further
progress on this might be to seriously estimate the measurement error by
separate calibration measurements and to include this measured measure-
ment error in the model specification.

5.5 Computer differentiation

The preceding sections rely on a great deal of differentiation. If carried out
by hand this can rapidly become tedious, and anyone whose sense of self
worth is not reliant on carefully performing enormously lengthy routine
calculations will quickly find themselves looking for automated alterna-
tives. There are three possibilities:

1. Use a computer algebra system, such as Mathematica, Maple or Max-
ima7 to help with the differentiation. This works well for relatively sim-
ple models, although the results often require a certain amount of ‘hand
simplification’ before use.

2. Approximate the derivatives using finite differences. This is always pos-
sible, but is less accurate than the other methods.

3. Use automatic differentiation (AD), which computes numerically exact
derivatives directly from the computer code implementing the function
to be differentiated, by automatic application of the chain rule. Relative
to approach 1, this is feasible for much more complicated situations.

7 Maxima is free software.
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5.5.1 Computer algebra

A general discussion of computer symbolic algebra is beyond the scope
of this chapter. However, it is worth illustrating the basic symbolic differ-
entiation available in R function D, which will symbolically differentiate
R expressions with respect to single variables. As an example, consider
differentiating g(a, x) = {sin(ax)x2}−1 w.r.t. x:
> dx <- D(expression(1/(sin(a*x)*x^2)),"x"); dx
-((cos(a * x) * a * x^2 + sin(a * x) * (2 * x))/

(sin(a * x) * x^2)^2)

The expression defined by the first argument is differentiated by the vari-
able identified in the second argument (a character string). A ‘call’ is
returned, which can in turn be differentiated by D. For example, let us eval-
uate ∂2g/∂a∂x:
> D(dx,"a")
-(((cos(a * x) - sin(a * x) * x * a) * x^2 + cos(a * x)

* x * (2 * x))/(sin(a * x) * x^2)^2 - (cos(a * x) * a
* x^2 + sin(a * x) * (2 * x)) * (2 * (cos(a * x) * x
* x^2 * (sin(a * x) * x^2)))/((sin(a * x) * x^2)^2)^2)

This result would clearly benefit from some simplification.

5.5.2 Finite differences

Consider differentiating a sufficiently smooth function f(x) with respect
to the elements of its vector argument x. f might be something simple like
sin(x) or something complicated like the mean global temperature pre-
dicted by an atmospheric global circulation model, given an atmospheric
composition, forcing conditions and so on. A natural way to approximate
the derivatives is to use the finite difference (FD) approximation:

∂f

∂xi
≃ f(x+∆ei)− f(x)

∆
, (5.15)

where ∆ is a small constant and ei is a vector of the same dimension as
x, with zeroes for each element except the ith, which is 1. How big should
∆ be? As small as possible, right? Wrong. The difficulty is that computers
only store real numbers to finite precision (usually equivalent to about 16
places of decimals for a 64-bit double precision floating point number).
This means that if ∆ is too small, there is a danger that the computed
values of f(x + ∆ei) and f(x), will be identical and (5.15) will be in
error by 100%. Even in less extreme situations, almost all precision can be
lost. The following code snippet illustrates the issue:
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> a <- 1e16; b <- a + pi
> b-a; pi
[1] 4
[1] 3.141593

Clearly the exact value of b−a should be π, not 4, but π is a tiny proportion
of 1016. Hence when storing 1016 + π with about 16 places of decimals,
we lose all the information from 3.141593 after the decimal point.8. Such
loss of precision is known as cancellation error

It is possible to obtain a bound on the cancellation error involved in
(5.15). Suppose that we can calculate f to one part in ǫ−1 (the best we
can hope for here is that ǫ is the machine precision). Now let Lf be an
upper bound on the magnitude of f , and denote the computed value of f
by comp(f). We have |comp{f(x+∆ei)} − f(x+∆ei)| ≤ ǫLf and
|comp{f(x)} − f(x)| ≤ ǫLf which combine to imply that

∣∣∣∣
comp{f(x+∆ei)− f(x)}

∆
− f(x+∆ei)− f(x)

∆

∣∣∣∣ ≤
2ǫLf
∆

.

So the right hand side is an upper bound on the cancellation error resulting
from differencing two very similar quantities in finite precision arithmetic.

The cancellation error bound implies that we would like ∆ to be as large
as possible, but that would cause (5.15) to deteriorate as an approximation.
To investigate this we need a bound on the error in (5.15) that occurs even if
all the components on its right hand side are computed exactly. In a slightly
sloppy notation, Taylor’s theorem tells us that

f(x+∆ei) = f(x) +∇f(x)Tei∆+
1

2
∆2eT

i ∇2fei.

Rearranging while noting that∇f(x)Tei = ∂f/∂xi we have

f(x+∆ei)− f(x)

∆
− ∂f

∂xi
=

1

2
∆eT

i ∇2fei.

Now suppose that L is an upper bound on the magnitude of eT
i ∇2fei =

∂2f/∂x2
i . It follows that

∣∣∣∣
f(x+∆ei)− f(x)

∆
− ∂f

∂xi

∣∣∣∣ ≤
L∆

2
.

8 b-a is 4 rather than 3 as a result of representing numbers using binary, rather than
decimal.
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That is to say, we have an upper bound on the finite difference truncation9

error.
So we want ∆ to be as small as possible to minimise truncation error,

and as large as possible to minimise cancellation error. Given that the total
error is bounded as follows,

err.fd ≤ L∆

2
+

2ǫLf
∆

,

it makes sense to choose ∆ to minimise the bound. That is, we should
choose

∆ ≈
√

4ǫLf
L

.

If the typical sizes of f and its second derivatives are similar, then

∆ ≈ √ǫ

will not be too far from optimal. This is why the square root of the machine
precision is often used as the finite difference interval. If Lf 6≈ L or f is
not calculable to a relative accuracy that is a small multiple of the machine
precision, then consult §8.6 of Gill et al. (1981).

Other FD formulae
The finite difference approach just considered is forward differencing. Cen-
tred differences are more accurate, but more costly:

∂f

∂xi
≃ f(x+∆ei)− f(x−∆ei)

2∆
.

In the well-scaled case ∆ ≈ ǫ1/3 is about right.
Higher order derivatives can also be useful. For example,

∂2f

∂xi∂xj
≃ f(x+∆ei +∆ej)− f(x+∆ei)− f(x+∆ej) + f(x)

∆2
,

which in the well-scaled case will be most accurate for ∆ ≈ ǫ1/4. Obvi-
ously if exact first derivatives are available it would be preferable to differ-
ence those.

9 So called because it is the error associated with truncating the Taylor series
approximation to the function.
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5.5.3 Automatic differentiation

Automatic differentiation (AD) operates by differentiating a function based
directly on the computer code that evaluates the function. There are sev-
eral approaches, but the most elegant use the features of object-oriented
programming languages to achieve the desired end. The key feature of an
object-oriented language, from the AD perspective, is that every data struc-
ture, or object, in such a language has a class and the meaning of opera-
tors such as +, -, *, etc. depends on the class of the objects to which they
are applied. Similarly the action of a function depends on the class of its
arguments. See Section 3.6.

Suppose then, that we would like to differentiate

f(x1, x2, x3) = {x1x2 sin(x3) + ex1x2} /x3

w.r.t. its real arguments x1, x2 and x3.10 In R the code

(x1*x2*sin(x3)+ exp(x1*x2))/x3

would evaluate the function, if x1, x2 and x3 were initialised to be floating
point numbers.

Now define a new type of object of class "ad" that has a value (a float-
ing point number) and a "grad" attribute. In the current case this "grad"
attribute will be a 3-vector containing the derivatives of the value w.r.t. x1,
x2 and x3. We can now define versions of the arithmetic operators and
mathematical functions that will return class "ad" results with the correct
value and "grad" attribute, whenever they are used in an expression.

Here is an R function to create and initialise a simple class "ad" object:

ad <- function(x,diff = c(1,1)) {
## create class "ad" object. diff[1] is length of grad
## diff[2] is element of grad to set to 1.
grad <- rep(0,diff[1])
if (diff[2]>0 && diff[2]<=diff[1]) grad[diff[2]] <- 1
attr(x,"grad") <- grad
class(x) <- "ad"
x

}

Here it is in use, initialising x1 to 1, giving it a three dimensional "grad"
attribute, and setting the first element of grad to 1, since ∂x1/∂x1 = 1:

> x1 <- ad(1,c(3,1))
> x1
[1] 1
attr(,"grad")

10 This example function is taken from Nocedal and Wright (2006).
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[1] 1 0 0
attr(,"class")
[1] "ad"

Now the interesting part. We define versions of mathematical functions
and operators that are specific to class "ad" objects and correctly propagate
derivatives alongside values. Here is a sin function for class "ad":

sin.ad <- function(a) {
grad.a <- attr(a,"grad")
a <- as.numeric(a) ## avoid infinite recursion!
d <- sin(a)
attr(d,"grad") <- cos(a) * grad.a ## chain rule
class(d) <- "ad"
d

}

Here is what happens when it is applied to x1:

> sin(x1)
[1] 0.841471
attr(,"grad")
[1] 0.5403023 0.0000000 0.0000000
attr(,"class")
[1] "ad"

So the value of the result is sin(x1) and the first element of its "grad"

contains the derivative of sin(x1) w.r.t. x1 evaluated at x1 = 1.
Operators can also be overloaded in this way. For example, here is the

multiplication operator for class "ad":

"*.ad" <- function(a,b) { ## ad multiplication
grad.a <- attr(a,"grad")
grad.b <- attr(b,"grad")
a <- as.numeric(a)
b <- as.numeric(b)
d <- a*b ## evaluation
attr(d,"grad") <- a * grad.b + b * grad.a ## chain rule
class(d) <- "ad"
d

}

Continuing in the same way we can provide a complete library of mathe-
matical functions and operators for the "ad" class. Given such a library, we
can obtain the derivatives of a function directly from the code that would
simply evaluate it, given ordinary floating point arguments. For example,
here is some code evaluating the example function:

> x1 <- 1; x2 <- 2; x3 <- pi/2
> (x1*x2*sin(x3)+ exp(x1*x2))/x3
[1] 5.977259
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and here is the same code with the arguments replaced by "ad" objects:

> x1 <- ad(1,c(3,1))
> x2 <- ad(2,c(3,2))
> x3 <- ad(pi/2,c(3,3))
> (x1*x2*sin(x3)+ exp(x1*x2))/x3
[1] 5.977259
attr(,"grad")
[1] 10.681278 5.340639 -3.805241
attr(,"class")
[1] "ad"

You can check that these results are correct (actually to machine accuracy).
This simple propagation of derivatives alongside the evaluation of a

function is known as forward mode auto-differentiation. R is not the best
language in which to try to do this, and if you need AD for complex mod-
els it is often better to use existing software libraries in C++, for example,
which have done all the function and operator rewriting for you.

The deriv function in R
For functions that are not overly complex, R function deriv implements
forward mode AD using a ‘source translation’, rather than an operator over-
loading method. The expression to be differentiated is supplied as an R ex-
pression or one-sided formula, along with a character vector specifying the
variables with respect to which to differentiate. Repeating the preceding
example we have:

> f <- expression((x1*x2*sin(x3)+ exp(x1*x2))/x3)
> g <- deriv(f,c("x1","x2","x3"),
+ function.arg=c("x1","x2","x3"))
> g(1,2,pi/2)
[1] 5.977259
attr(,"gradient")

x1 x2 x3
[1,] 10.68128 5.340639 -3.805241

The argument function.arg tells deriv that we want a function (rather
than an expression) to be returned and what its arguments should be. There
is a further argument hessian, which if TRUE causes second derivatives to
be computed along with the gradients.

A caveat
For AD to work, it is not sufficient that the function being evaluated has
properly defined derivatives at the evaluated function value. It requires that
every function/operator used in the evaluation has properly defined deriva-
tives at its evaluated argument(s). This can create a problem with code
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that executes conditionally on the value of some variable. For example, the
Box-Cox transformation of a positive datum y is

B(y;λ) =

{
(yλ − 1)/λ λ 6= 0
log(y) λ = 0

.

If you code this up in the obvious way, then AD will never get the derivative
of B w.r.t. λ right if λ = 0.

Reverse-mode AD
If you require many derivatives of a scalar valued function, then forward-
mode AD will have a theoretical computational cost similar to finite differ-
encing, because at least as many operations are required for each derivative
as are required for function evaluation. In reality the overheads associated
with operator overloading make AD more expensive and alternative strate-
gies also carry overheads. Of course, the benefit of AD is higher accuracy,
and in many applications the cost is not critical.

An alternative with the potential for big computational savings is reverse-
mode AD. Again concentrate on the Nocedal and Wright (2006) example:

f(x1, x2, x3) = {x1x2 sin(x3) + ex1x2} /x3.

Any computer evaluating f must break the computation down into a se-
quence of elementary operations on one or two floating point numbers.
This can be thought of as a computational graph:

f=(x1x2sin x3+ e
x1 x2)/x3

x1

x2

x3

sin

x4

exp

x5

x6

x7 x8 f

*

* +

/
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where the nodes x4 to x8 are the intermediate quantities that will have to
be produced en route from the input values x1 to x3 to the final answer, f .
The arrows run from parent nodes to child nodes. No child can be evaluated
until all its parents have been evaluated. Simple left-to-right evaluation of
this graph results in this:

f=(x1x2sin x3+ e
x1 x2)/x3x1 = 1

x2 = 2

x3 = 1.57

sin

x4 = 2

exp

x5 = 1

x6 = 7.39

x7 = 2 x8 = 9.39 f = 5.98

*

* +

/

Now, forward-mode AD carries derivatives forward through the graph,
alongside values. For example, the derivative of a node with respect to input
variable x1 is computed using

∂xk
∂x1

=
∑

j parent of k

∂xk
∂xj

∂xj
∂x1

,

the right hand side being evaluated by overloaded functions and operators,
in the object oriented approach. The following illustrates this process, just
for the derivative w.r.t. x1:
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f=(x1x2sin x3+ e
x1 x2)/x3

x1 = 1

dx1

dx1

= 1
dx

4 dx
1 = 2

x2 = 2

dx2

dx1

= 0

dx4
dx2

= 1

x3 = 1.57

dx3

dx1

= 0 sin

dx5 dx3 = 0

df dx3 = 3.81

x4 = 2

dx4

dx1

= 2 exp

dx6 dx4 = 7.39

dx
7
dx

4 =
1

x5 = 1

dx5

dx1

= 0

dx7 dx5 = 2

x6 = 7.39

dx6

dx1

= 14.8

dx
8
dx

6 =
1

x7 = 2

dx7

dx1

= 2

dx8 dx7 = 1
x8 = 9.39

dx8

dx1

= 16.8

df dx8 = 0.64 f = 5.98

df

dx1

= 10.7

*

* +

/

Again computation runs left to right, with evaluation of a node only possi-
ble once all parent values are known.

If we require derivatives w.r.t. several input variables, then each node
will have to evaluate derivatives w.r.t. each of these variables, and this be-
comes expensive (in the previous graph, each node would contain multiple
evaluated derivatives). Reverse mode therefore does something ingenious.
It first executes a forward sweep through the graph, evaluating the function
and all the derivatives of nodes w.r.t. their parents, as follows:

f=(x1x2sin x3+ e
x1 x2)/x3x1 = 1 dx

4 dx
1 = 2

x2 = 2

dx4
dx2

= 1

x3 = 1.57

sin

dx5 dx3 = 0

df dx3 = 3.81

x4 = 2

exp

dx6 dx4 = 7.39

dx
7
dx

4 =
1

x5 = 1
dx7 dx5 = 2

x6 = 7.39

dx
8
dx

6 =
1

x7 = 2
dx8 dx7 = 1

x8 = 9.39
df dx8 = 0.64

f = 5.98

*

* +

/

The reverse sweep then works backwards from the terminal node, for
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which ∂f/∂f = 1, evaluating the derivative of f w.r.t. each node using

∂f

∂xk
=

∑

j is child of k

∂xj
∂xk

∂f

∂xj
.

f=(x1x2sin x3+ e
x1 x2)/x3

x1 = 1

df

dx1

= 10.7
dx

4 dx
1 = 2

x2 = 2

df

dx2

= 5.34

dx4
dx2

= 1

x3 = 1.57

df

dx3

= − 3.8 sin

dx5 dx3 = 0

df dx3 = 3.81

x4 = 2

df

dx4

= 5.34 exp

dx6 dx4 = 7.39

dx
7
dx

4 =
1

x5 = 1

df

dx5

= 1.27

dx7 dx5 = 2

x6 = 7.39

df

dx6

= 0.64

dx
8
dx

6 =
1

x7 = 2

df

dx7

= 0.64

dx8 dx7 = 1
x8 = 9.39

df

dx8

= 0.64

df dx8 = 0.64 f = 5.98

df

df
= 1

*

* +

/

The derivatives in grey are those calculated on the reverse sweep. The point
here is that there is only one derivative to be evaluated at each node, but
in the end we know the derivative of f w.r.t. every input variable. Reverse-
mode AD can therefore save a large number of operations relative to fi-
nite differencing or forward-mode AD. Once again, general-purpose AD
libraries automate the process for you, so that all you need to be able to
write is the evaluation code.

Unfortunately, reverse-mode efficiency comes at a heavy price. In for-
ward mode we could discard the values and derivatives associated with a
node as soon as all its children were evaluated. In reverse mode the values
of all nodes and the evaluated derivatives associated with every connec-
tion have to be stored during the forward sweep in order to be used in the
reverse sweep. This is a heavy storage requirement. For example, if f in-
volved the inversion of a 1000× 1000 matrix then we would have to store
some 2× 109 intermediate node values plus a similar number of evaluated
derivatives. That amounts to some 32 Gigabytes of storage before we even
consider the requirements for storing the structure of the graph. Much re-
search is concerned with hybrid AD strategies to simultaneously reduce the
operation and memory costs. See Griewank and Walther (2008) for more.

Using AD to improve FD
When fitting complicated or computer intensive models AD may be too ex-
pensive to use for routine derivative calculation during optimisation. How-
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ever, it can still provide a useful means for calibrating FD intervals. A ‘typ-
ical’ model run can be autodifferentiated and the finite difference intervals
adjusted to achieve the closest match to the AD derivatives. As optimisa-
tion progresses, one or two further calibrations of the FD intervals can be
carried out as necessary.

5.6 Looking at the objective function

Given the apparent generality of the preceding theory and methods, it is
easy to assume that if you can evaluate the log likelihood (or other objective
function), then it will be possible to optimise it and draw useful statistical
conclusions from the results. This assumption is not always true, and it is
prudent to produce plots to check that the objective is the well behaved
function imagined.

A simple example emphasises the importance of these checks. Consider
fitting an apparently innocuous dynamic model to a single time series by
least squares/maximum likelihood. The model is

nt+1 = rnt(1− nt/K), t = 0, 1, 2, . . . ,

where r and K are parameters and we will assume that n0 is known.
Further suppose that we have observations yt = nt + ǫt where ǫt ∼

i.i.d.

N(0, σ2) and σ is known. Estimation of r and K by least squares (or max-
imum likelihood, in this case) requires minimisation of

f(r,K) =
∑

i

{yi − ni(r,K)}2

w.r.t. r and K . We should try to get a feel for the behaviour of f . To see
how this can work, consider two simulated data examples. In each case
I used n0 = 20, K = 50 and σ = 1 for the simulations, but varied r
between the cases.

• In the first instance data were simulated with r = 2. If we now pretend
that we need to estimate r and K from such data, then we might look
at some r-transects and some K-transects through f . This figure shows
the raw data and an r-transect.
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r-transects with otherK values look equally innocuous, andK-transects
also look benign over this r range. So in this case f appears to be a nice
smooth function of r and K , and any half-decent optimisation method
ought to be able to find the optimum.

• In the second case data were simulated with r = 3.8.
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Now the objective has a minimum somewhere around 3.7, but it is sur-
rounded by other local minima in a highly irregular region, so that lo-
cating the actual minima would be a rather taxing problem. In addition
it is now unclear how we would go about quantifying uncertainty about
the ‘optimal’ θ: it will certainly be of no use appealing to asymptotic
likelihood arguments in this case.

In both of these examples, simple transects through the objective func-
tion provided useful information. In the first case everything seemed OK.
In the second case we would need to think very carefully about the pur-
pose of the optimisation, and about whether a reformulation of the basic
problem might be needed. Notice how the behaviour of the objective was
highly parameter dependent, something that emphasises the need to under-
stand models quite well before trying to fit them. In this case the dynamic
model, although very simple, can show a wide range of complicated be-
haviour, including chaos.
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5.6.1 Objective function transects are a partial view

Plotting transects through the objective function is a good idea, but they
can only give a limited and partial view when θ is multidimensional. For
example, the left hand plot, below, shows an x-transect through a function,
f(x, y), plotted on the right.
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From the left-hand plot it appears that the function has many local minima
and optimisation will be difficult. But in fact it has one local minimum, its
global minimum. Head downhill from any point x, y and you will eventu-
ally reach the minimum, as the right-hand plot shows.

The opposite problem can also occur. Here are x and y transects through
a second function g(x, y):
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From these plots you would be tempted to conclude that g is well behaved
and unimodal. The problem is that g actually looks like this:
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So, generally speaking, it is a good idea to plot transects through the ob-
jective function before optimisation, and to plot transects passing through
the apparent optimum after optimisation. However, bear in mind that tran-
sects only give partial views.

5.7 Dealing with multimodality

There is no universal prescription for dealing with multimodality, but the
following approaches may help:

• A common recommendation is to repeat optimisation a number of times
from radically different starting values, perhaps randomly generated.
This can help to indicate multimodality and to find the dominant mode.

• For relatively small-scale local optima, a bootstrapping approach can be
helpful. Suppose we have a log likelihood, l(θ), based on data vector y.
Start with a parameter guess, θ0, and iterate the following steps:

1. Starting at θ0, seek θ̂ = argmaxθ l(θ), by numerical optimisation.
2. Resample your data with replacement to produce a resampled data

vector y∗ and corresponding log-likelihood function l∗(θ).
3. Starting at θ̂, seek θ0 = argmaxθ l

∗(θ), by numerical optimisation.

Any auxiliary data are resampled alongside y (so that auxilliary data
stay with the datum to which they belong). The idea is that by randomly
perturbing the objective, it may be possible to escape local optima. For
greater perturbation, smaller re-samples can be used.

• It the objective appears pathologically multimodal, it is probably time to
reformulate the question being addressed.

Exercises
5.1 Rosenbrock’s function f(x, z) = a(z − x2)2 + (b − x)2 is a classic test

function for optimisation methods. Usually a = 100 and b = 1.

a. Write a function Rosenbrockwith vector arguments x and z and scalar
arguments a and b, with default values of 10 and 1, respectively. Using
contour and outer, produce a contour plot of f for −1.5 ≤ x ≤ 1.5

and −0.5 ≤ z ≤ 1.5.
b. Write a modified version of Rosenbrock, suitable for optimisation us-

ing optim. Optimise Rosenbrock using optim with starting values
x = −1, z = 1, and compare results using Nelder-Mead and BFGS.

c. Repeat the optimisation using nlm and nlminb.
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5.2 Write your own code to optimise Rosenbrock’s function by Newton’s method.
Optionally use R’s symbolic or automatic differentiation functions to obtain
the required gradient and Hessian.

5.3 Write your own code to optimise Rosenbrock’s function by BFGS.
5.4 Write functions suitable for use with optim to evaluate the negative log

likelihood and its gradient for the cell count example in Section 5.1.1. Hence,
find the MLE of δ using optim. Compute and compare 95% confidence
intervals for δ based on the Hessian of the log likelihood and generalised
likelihood ratio test inversion.

5.5 Write a function suitable for use with optim to evaluate the negative log
likelihood of the AIDS cases model of Section 5.1.1 (use dpois with the
log=TRUE option). Write a second function evaluating the negative log like-
lihood of an extended version of the model in which the dependence of the
log case rate on time is quadratic, rather than linear. Use a generalised likeli-
hood ratio test (GLRT) to compare the models, and also compute their AIC
values. What aspect of the GLRT might be suspect here?

5.6 R package MASS contains a dataframe geyser where geyser$waiting

gives the waiting times between eruptions of the Old Faithful geyser in Yel-
lowstone National Park. A possible model is that that the waiting times, ti,
are independently drawn from a mixture of two normal distributions, with
p.d.f.

f(ti) =
φ√
2πσ1

e
− 1

2σ2
1
(ti−µ1)

2

+
1− φ√
2πσ2

e
− 1

2σ2
2
(ti−µ2)

2

,

where parameter φ is bounded between 0 and 1. Find MLEs for the param-
eters and test whether p = 0.5. Are there any theoretical caveats on this
analysis? Produce appropriate model checking plots (not ‘residual’ plots!).

5.7 R package faraway contains data from an experiment on balance in human
subjects. There were 40 subjects, and the experiment was repeated a number
of times on each, standing on two different surfaces under three different
degrees of restriction of vision. Sex, age, height and weight of the subjects
were recorded. The following code loads the data, creates a variable indicat-
ing whether subjects were judged fully stable (1) or not (0), and converts
the subject identifiers to a factor variable:

library(faraway)
ctsib$stable <- ifelse(ctsib$CTSIB==1,1,0)
ctsib$Subject <- factor(ctsib$Subject)

Interest lies is in explaining stability in terms of the other variables. A pos-
sible model for the data involves a vector of subject-specific random effects
b, and is as follows:

stablei|b ∼ Bernoulli(µi) µi = eηi/(1 + eηi ),

where if measurement i if for subject j, of sex k, on surface m, and with
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vision restriction q, then

ηi = α+ γk + δm + φq + β̃Heighti + bj ,

where bj ∼ N(0, σ2
b ) (independent). The subject-specific random effects are

important, because we would expect subject-to-subject variability in their
balancing ability. More generally we can write the model for ηi in vector
matrix form as

η = Xβ + Zb, b ∼ N(0, Iσ2
b ).

X contains a column of Height data and columns of zeroes and ones iden-
tifying measurements to particular groups (Sex, Vision, etc.). Z contains
zeroes and ones in order to pick out the correct bj for each data row. The
following code creates suitable matrices:

X <- model.matrix(~ Sex+Height+Surface+Vision,ctsib)
Z <- model.matrix(~ Subject-1,ctsib)

a. Write an R function to evaluate the joint probability/density of stable
and the subject-specific random effects, along with its gradient and the
leading diagonal of its Hessian w.r.t. b. Only the leading diagonal of the
Hessian is required, as it turns out to be a diagonal matrix.

b. Write an R function to evaluate the negative log likelihood of the model
parameters, integrating out b by Laplace approximation.

c. Fit the model using optim to find the MLE.

6

Bayesian computation

Recall that the Bayesian approach to statistics views the model parameters,
θ, as random variables with prior p.d.f., f(θ), and then answers the basic
questions of statistical inference using the posterior p.d.f.

f(θ|y) = f(y|θ)f(θ)
f(y)

,

(see Section 2.5). The principal practical challenges are that

f(y) =

∫
f(y|θ)f(θ)dθ (6.1)

is usually intractable for interesting models and that it is usually equally
intractable integrals of f(θ|y) that are of direct interest. There are then
two main strategies for making progress: either approximate the required
integrals or find a way of simulating from f(θ|y) without requiring such
integrals. The latter strategy is based on the fact that, for many statistical
purposes, the ability to simulate from a density is as good as being able
to evaluate the density, and sometimes better. Hybrid strategies are also
useful. For much more on the topics covered here see Gamerman and Lopes
(2006), Robert and Casella (2009), Gelman et al. (2013) and, at a more
advanced level, Robert (2007).

6.1 Approximating the integrals

One possibility is to evaluate the normalising constant (6.1), and other in-
teresting integrals, using Laplace approximation. For example, integrate
out θ in exactly the same way as b was integrated out in Section 5.3.1.
This relies on the integrand having only one important mode and, in the
context of (6.1), is unlikely to result in an exactly proper posterior f(θ|y).

Another approximation is based on recognising, from (6.1), that f(y) =

132
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Eθ{f(y|θ)}, and to approximate this expectation using the simulation
technique known as importance sampling. The idea is simple. Suppose we
want to estimate α = Ef{φ(X)} where X ∼ f(x). An obvious unbiased
estimator is obtained by simulating n deviates, xi, from f(x) and setting
α̂′ =

∑
i φ(xi)/n. The problem is that φ(xi) may be very close to zero for

many of the xi, so that our estimate is really based only on the few points
for which φ was non-negligible, making the approximation inaccurate and
highly variable. If we have access to a p.d.f. g(z) that has high probability
where φ(z) is high, and low probability otherwise, then we could use the
fact that α = Ef{φ(X)} = Eg{φ(Z)f(Z)/g(Z)} to obtain the alterna-
tive unbiased estimator:

α̃ =
1

n

n∑

i=1

φ(zi)f(zi)/g(zi) where zi ∼ g(z).

This importance sampling estimator tends to improve on the naive version,
by placing the zi in better locations w.r.t. φ. The f(zi)/g(zi) are known as
importance weights. A problem in Bayesian analysis is that f(zi) is often
an un-normalised density, so it is necessary to normalise the importance
weights, leading to the modified importance sampling estimator,

α̂ =

∑n
i=1 φ(zi)f(zi)/g(zi)∑n

i=1 f(zi)/g(zi)
where zi ∼ g(z),

which can also be used directly for other integrals of more immediate in-
terest than (6.1).

In the context of (6.1), it can be attractive to use the p.d.f. of

N(θ̂, {−∇2
θ log f(y, θ̂)}−1) (6.2)

as g(θ), where θ̂ is the maximiser of f(y,θ). This is motivated by the
Laplace approximation. Alternatively, to reduce the risk of extreme weights
in the tails of the distribution, tk(θ̂, {−∇2

θ log f(y, θ̂)}−1) can be used for
g, with k set to a small integer (see Section 1.6.1). Similar proposals can
be constructed for other integrals of interest.

Usually the quantities required from the posterior are expectations of
functions of θ according to the posterior distribution. That is, we require
integrals of the form

∫
φ(θ)f(θ|y)dθ =

∫
φ(θ)f(y|θ)f(θ)dθ∫
f(y|θ)f(θ)dθ ,

and these can be estimated by direct application of (5.14) in Section 5.3.2.
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6.2 Markov chain Monte Carlo

The approximation methods just described are useful when we know that
the posterior distribution has a relatively simple form, preferably with a sin-
gle mode. However, these assumptions are doubtful in many cases where
the Bayesian approach is appealing, and more general methods are then
required. The key is to use the fact that

f(θ|y) ∝ f(θ,y) (= f(y|θ)f(θ)) ,
to devise methods for simulating from f(θ|y), which only require evalu-
ation of f(θ,y) with the observed data values plugged in for y. The re-
sulting Markov chain Monte Carlo (MCMC) methods simulate (correlated)
samples from the distribution of the model unknowns (parameters and any
random effects), given the data. Based on the unknowns at one step, a new
set of unknowns is generated in such a way that the stable distribution of
the resulting Markov chain is the distribution of interest. The development
of MCMC methods relies on being able to generate apparently random
numbers by computer: Appendix C discusses the extent to which this is
possible.

6.2.1 Markov chains

To use MCMC we do not require much theoretical background on Markov
chains, but some basic concepts are needed. A sequence of random vectors,
X1,X2,X3, . . ., constitutes a Markov chain if, for any j,

f(xj |xj−1,xj−2, . . . ,x1) = f(xj |xj−1).

For notational convenience let us rewrite the density of xj given xj−1 as
P (xj |xj−1), the transition kernel of the Markov chain. If there exists a
density fx such that

fx(xj) =

∫
P (xj |xj−1)fx(xj−1)dxj−1

(where fx denotes the same density on both sides), then this is the station-
ary distribution of the chain. Existence of a stationary distribution depends
on P being irreducible, meaning that wherever we start the chain, there is
a positive probability of visiting all possible values of X. If the chain is
also recurrent, meaning that if its length tends to infinity it will revisit any
non-negligible set of values an infinite number of times, then its station-
ary distribution is also its limiting distribution. This means that the chain
can be started from any possible value of X, and its marginal distribution
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will eventually converge on fx. In consequence as the simulation length,
J , tends to infinity,

1

J

J∑

j=1

φ(Xj)→ Efx{φ(X)}

(also known as ergodicity). This extension of the law of large numbers (see
Section 1.10.2) to this particular sort of correlated sequence is what makes
MCMC methods useful, so the methods discussed in this chapter will be
set up to produce chains with the required properties.

6.2.2 Reversibility

Now we turn to the issue of constructing Markov chains to generate se-
quences θ1,θ2, . . . from f(θ|y). An MCMC scheme will generate sam-
ples from f(θ|y), if it satisfies the detailed balance condition (also termed
reversibility). Let P (θi|θj) be the p.d.f. of θi given θj , according to the
chain. We require

P (θj |θj−1)f(θj−1|y) = P (θj−1|θj)f(θj |y). (6.3)

The left hand side of (6.3) is the joint p.d.f. of θj ,θj−1 from the chain,
if θj−1 is from f(θ|y). Integrating w.r.t. θj−1 gives the corresponding
marginal density of θj ,

∫
P (θj |θj−1)f(θj−1|y)dθj−1 =

∫
P (θj−1|θj)f(θj |y)dθj−1

= f(θj |y).
That is, given θj−1 from f(θ|y), the chain generates θj also from f(θ|y)
as result of (6.3). So provided that we start with a θ1 that is not impossible
according to f(θ|y), then the chain will generate from the target distribu-
tion. How quickly it will converge to the high-probability region of f(θ|y)
is another matter.

6.2.3 Metropolis Hastings

The Metropolis-Hastings method constructs a chain with an appropriateP .
It works as follows:

1. Pick a proposal distribution q(θj |θj−1) (e.g. a normal centred on θj−1).
Then pick a value θ0, set j = 1 and iterate steps 2 and 3:
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2. Generate θ′
j from q(θj |θj−1).

3. Set θj = θ′
j with probability

α = min

{
1,

f(y|θ′
j)f(θ

′
j)q(θj−1|θ′

j)

f(y|θj−1)f(θj−1)q(θ
′
j |θj−1)

}
, (6.4)

otherwise setting θj = θj−1. Increment j.

Note that the q terms cancel if q depends only on the magnitude of θj −
θj−1 (e.g. if q is a normal centred on θj−1). The same goes for the prior
densities, f(θ), if they are improper uniform. If both of these simplifica-
tions hold then we have α = min

{
1, L(θ′

j)/L(θj−1)
}
, so that we are

accepting or rejecting on the basis of the likelihood ratio.
An important consideration is that θ1 may be very improbable so that

the chain may take many iterations to reach the high-probability region
of f(θ|y). For this reason we usually need to discard a burn-in period
consisting of the first few hundred or thousand θj vectors simulated.

6.2.4 Why Metropolis Hastings works

As we saw in Section 6.2.2, the Metropolis-Hastings (MH) method will
work if it satisfies detailed balance. It does, and proof is easy. To simplify
notation let π(θ) = f(θ|y) ∝ f(y|θ)f(θ), so that the MH acceptance
probability from θ to θ′ is

α(θ′,θ) = min

{
1,

π(θ′)q(θ|θ′)

π(θ)q(θ′|θ)

}
.

We need to show that π(θ)P (θ′|θ) = π(θ′)P (θ|θ′). This is trivial if
θ′ = θ. Otherwise we know that P (θ′|θ) = q(θ′|θ)α(θ′,θ), from which
it follows that

π(θ)P (θ′|θ) = π(θ)q(θ′|θ)min

{
1,

π(θ′)q(θ|θ′)

π(θ)q(θ′|θ)

}

= min {π(θ)q(θ′|θ), π(θ′)q(θ|θ′)} = π(θ′)P (θ|θ′),

where the final equality is by symmetry of the third term above.

6.2.5 A toy example with Metropolis Hastings

To illustrate the basic simplicity of the approach, consider an example for
which simulation is certainly not required. Suppose we have 20 indepen-
dent observations xi, that can each be modelled as N(µ, σ2) random vari-
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ables, and we are interested in inference about µ and σ. In the absence of
real prior knowledge about these parameters, suppose that we decide on
prior independence and improper prior densities, so that f(µ) ∝ k and
f(log σ) ∝ c where k and c are constants (values immaterial). We work
with log σ, because σ is inherently positive.1

This specification sets up the Bayesian model. To simulate from the cor-
responding posterior for the parameters using MH we also need a proposal
distribution. In this case let us choose independent scaled t3 distributions
centred on the current parameter values for both parameters. This means
that we will propose new parameter values by simply adding a multiple of
t3 random deviates to the current parameter values: this is an example of a
random walk proposal. The proposed values are then accepted or rejected
using the MH mechanism.

Here is some R code to implement this example, using simulated x
data from N(1, 2). The parameters are assumed to be in vectors θ =
(µ, log σ)T to be stored columnwise in a matrix theta.

set.seed(1);x <- rnorm(20)*2+1 ## simulated data
n.rep <- 10000; n.accept <- 0
theta <- matrix(0,2,n.rep) ## storage for sim. values
ll0 <- sum(dnorm(x,mean=theta[1,1],

sd=exp(theta[2,1]),log=TRUE))
for (i in 2:n.rep) { ## The MH loop
theta[,i] <- theta[,i-1] + rt(2,df=3)*.5 ## proposal
ll1 <- sum(dnorm(x,mean=theta[1,i],

sd=exp(theta[2,i]),log=TRUE))
if (exp(ll1-ll0)>runif(1)) { ## MH accept/reject
ll0 <- ll1; n.accept <- n.accept + 1 ## accept

} else theta[,i] <- theta[,i-1] ## reject
}
n.accept/n.rep ## proportion of proposals accepted

Working on the log probability scale is a sensible precaution against prob-
abilities underflowing to zero (i.e. being evaluated as zero, merely because
they are smaller than the smallest number the computer can represent).
The acceptance rate of the chain is monitored, to try to ensure that it is
neither too high, nor too low. Too low an acceptance rate is obviously a
problem, because the chain then stays in the same state for long periods,
resulting in very high correlation and the need for very long runs in order
to obtain a sufficiently representative sample. A low acceptance rate may
result from a proposal that tries to make very large steps, which are al-
most always rejected. Less obviously, very high acceptance rates are also a
1 Note that a uniform prior on log σ puts a great deal of weight on σ ≈ 0, which can cause

problems in cases where the data contain little information on σ.
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Figure 6.1 Results of the Metropolis-Hastings method applied to
the toy model in Section 6.2.5. The left panels show the simulated
values for the parameters at each step of the chain, joined by
lines. The chains converge very rapidly and mix well in this case.
The right panels show histograms of the simulated values of the
parameters after discarding the first 1000 steps as burn-in.

problem because they only tend to occur when the proposal is making very
small steps, relative to the scale of variability suggested by the posterior.
This again leads to excessively autocorrelated chains and the need for very
long runs. It turns out that in many circumstances it is near optimal to ac-
cept about a quarter of steps (Roberts et al., 1997). Here we can control the
acceptance rate through the standard deviation of the proposal distribution:
some experimentation was needed to find that setting this to 0.5 gave an
acceptance rate of about 23%.

We need to look at the output. The following code nicely arranges plots
of the chain components against iteration, and histograms of the chain com-
ponents after discarding a burn-in period of 1000 iterations:

layout(matrix(c(1,2,1,2,3,4),2,3))
plot(1:n.rep,theta[1,],type="l",xlab="iteration",

ylab=expression(mu))
plot(1:n.rep,exp(theta[2,]),type="l",xlab="iteration",

ylab=expression(sigma))
hist(theta[1,-(1:1000)],main="",xlab=expression(mu))
hist(exp(theta[2,-(1:1000)]),main="",

xlab=expression(sigma))
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The results are shown in Figure 6.1. The left-hand plots show that the
chains appear to have reached a stable state very quickly (rapid conver-
gence) and then move rapidly around that distribution (good mixing). The
right-hand histograms illustrate the shape of the marginal distributions of
the parameters according to the posterior.

6.2.6 Designing proposal distributions

The catch with Metropolis-Hastings is the proposal distribution. To get the
chain to mix well we have to get it right, and for complex models it is
seldom the case that we can get away with updating all elements of the pa-
rameter vector with independent random steps, all with the same variance,
as in the toy example from the last section. In most practical applications,
several pilot runs of the MH sampler will be needed to ‘tune’ the proposal
distribution, along with some analysis of model structure. In particular:

1. With simple independent random walk proposals, different standard de-
viations are likely to be required for different parameters.

2. As its dimension increases it often becomes increasingly difficult to up-
date all elements of θ simultaneously, unless uselessly tiny steps are
proposed. The difficulty is that a purely random step is increasingly un-
likely to land in a place where the posterior is non-negligible as dimen-
sion increases. In addition it is hard to tune componentwise standard
deviations if all elements are proposed together. A solution is to break
the proposal down into smaller parts and to only update small mutually
exclusive subsets of the parameter vector at each step. The subset to up-
date can be chosen randomly, or we can systematically work through all
subsets in some order.2 This approach only affects the computation of
the proposal; the computation of the acceptance ratio is unchanged. But
notice that we increase the work required to achieve an update of the
whole vector, because the computations required for the accept/reject
decision have to be repeated for each subset of parameters.

3. It may be necessary to use correlated proposals, rather than updating
each element of θ independently. Bearing in mind the impractical fact
that the perfect proposal would be the posterior itself, it is tempting to
base the proposal on (6.2), when this is available (or its tk variant). One
can either use it as a static proposal distribution in an MH iteration or
simply use a scaled version of the covariance matrix as the basis for

2 In some rare cases working through all subsets in order can lead to undesirable cycles,
or irreversibility of moves: random ordering or random subset selection fixes this.
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taking multivariate normal or t distributed steps (with expectation 0).
Of course, in many cases we are simulating because other methods fail,
and there is little choice but to try and learn the appropriate correlation
structure from pilot runs or from the run itself, although this latter op-
tion takes us into the realm of adaptive MCMC and beyond the scope
of this book.

The issue of proposal design is discussed again in Section 6.5, after exam-
ining an example where slow mixing is evident.

6.2.7 Gibbs sampling

When considering the design of proposal distributions, two facts were im-
portant. First, it is often necessary to update parameters in blocks. Second,
the perfect proposal is the posterior itself: substituting it for q in (6.4), we
find that α = 1, so that such proposals would always be accepted. On its
own the second fact is impractical, but applied blockwise it can result in a
very efficient scheme known as Gibbs sampling.3

The basic idea is this. Suppose we have a random draw from the joint
posterior distribution of θ[−1] = (θ2, θ3, . . . θq)

T, and would like a draw
from the joint posterior distribution of the whole of θ. This is easy given
that f(θ|y) = f(θ1|θ[−1],y)f(θ[−1]|y) (see sections 1.4.2 or 1.4.3): sim-
ulate θ1 from f(θ1|θ[−1],y), append the result to θ[−1] and we are done.
There is nothing special about θ1 in this process. The same thing would
have worked for any other θi, or indeed for several θi simultaneously. In
fact, if we have access to the conditional distributions for all elements of
θ then we could simply cycle through the θi updating each in turn and
thereby generating a (correlated) sequence of draws from f(θ|y).

In general then, suppose that the parameter row vector is partitioned into
subvectors θ = (θ[1],θ[2], . . . ,θ[K]). Further define

θ̃
[−k]
j = (θ

[1]
j+1,θ

[2]
j+1, . . . ,θ

[k−1]
j+1 ,θ

[k+1]
j , . . . ,θ

[K]
j ).

Then, given an initial θ1, J steps of the Gibbs sampler proceed as follows

1. For j = 1, . . . , J repeat. . .
2. For k = 1, . . . ,K simulate θ[k]

j+1 ∼ f(θ[k]|θ̃[−k]
j ,y).

Notice from the definition of θ̃[−k]
j that we always condition on the most

recently simulated values.

3 In honour of the physical model to which it was first applied.
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At this point, the obvious question is how all those conditional distri-
butions are to be found. It is often natural to specify a model in terms of
a hierarchy of conditional dependencies, but these dependencies all run in
one direction, leaving the problem of working out the conditional depen-
dencies in the other direction. Alternatively, if we attempt to specify the
model directly in terms of all its conditional distributions, we will have the
no less tricky problem of checking that our specification actually corre-
sponds to a properly defined joint distribution.

Actually, the problem of identifying the conditionals is less daunting
than it first seems, and even if we cannot recognise the conditionals as be-
longing to some standard distribution, it is always possible to devise some
way of simulating from them, as the last resort simply using a Metropolis
Hastings step for the component. The main trick for recognising condition-
als is to use the fact that, for any p.d.f., multiplicative factors that do not
involve the argument of the p.d.f. must be part of the normalising constant.
To identify a p.d.f. it therefore suffices to recognise its form, to within a
normalising constant. The following example helps to clarify this.

6.2.8 Toy Gibbs sampling example

Consider again the toy example from Section 6.2.5, but this time with
proper priors on the parameters of the normal model. So we have n = 20
observations of a N(µ, φ) random variable, where 1/φ ∼ G(a, b) (a
gamma random variable, with p.d.f. f(y) = baya−1e−by/Γ(a)) and (in-
dependently) µ ∼ N(c, d). a, b, c and d are constants to be specified. The
joint density is given by the product of the three densities involved:

f(x, µ, φ) ∝ 1

φn/2
e−

∑
i(xi−µ)2/(2φ)e−(µ−c)2/(2d) 1

φa−1
e−b/φ

where factors not involving x, φ or µ have been omitted because they only
contribute to the normalising constant. As we saw in Section 1.4.2, the con-
ditional densities are proportional to the joint density, at the conditioning
values. So we can read off the conditional for 1/φ, again ignoring factors
that do not contain φ (and hence contribute only to the normalising con-
stant):

f(1/φ|x, µ) ∝ 1

φn/2+a−1
e−

∑
i(xi−µ)2/(2φ)−b/φ.

If this is to be a p.d.f., then it is recognisable as a G(n/2 + a,
∑

i(xi −
µ)2/2 + b) p.d.f.
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Figure 6.2 Results of Gibbs sampling applied to the toy model in
Section 6.2.8. The left panels show the simulated values for the
parameters at each step of the chain, joined by lines. The right
panels show histograms of the simulated values of the parameters
after discarding the first 1000 steps.

The conditional for µ is more tedious,

f(µ|x, φ) ∝ e−
∑

i(xi−µ)2/(2φ)−(µ−c)2/(2d)

∝ e−(nµ2−2x̄nµ)/(2φ)−(µ2−2µc)/(2d)

= e−
1

2φd (dnµ
2−2x̄dnµ+φµ2−2µφc) = e−

dn+φ
2φd (µ2−2µ dnx̄+φc

dn+φ )

∝ e−
dn+φ
2φd (µ− dnx̄+φc

dn+φ )
2

,

where terms involving only
∑

i x
2
i and c2 were absorbed into the normal-

ising constant at the second ‘∝’, and the constant required to complete the
square at the final ‘∝’ has been taken from the normalising constant. From
the final line, we see that

µ|x, φ ∼ N

(
dnx̄+ φc

dn+ φ
,

φd

dn+ φ

)
.

Now it is easy to code up a Gibbs sampler:
n <- 20;set.seed(1);x <- rnorm(n)*2+1 ## simulated data

n.rep <- 10000;
thetag <- matrix(0,2,n.rep)

a <- 1; b <- .1; c <- 0; d <- 100 ## prior constants
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Figure 6.3 Results of Metropolis within Gibbs sampling applied
to the toy model of Section 6.2.8. The left panels show the
simulated values for the parameters at each step of the chain,
joined by lines. The right panels show histograms of the
simulated values of the parameters after discarding the first 1000
steps as a burn-in period.

xbar <- mean(x) ## store mean
thetag[,1] <- c(mu <- 0,phi <- 1) ## initial guesses
for (j in 2:n.rep) { ## the Gibbs sampling loop
mu <- rnorm(1,mean=(d*n*xbar+phi*c)/(d*n+phi),

sd=sqrt(phi*d/(d*n+phi)))
phi <- 1/rgamma(1,n/2+a,sum((x-mu)^2)/2+b)
thetag[,j] <- c(mu,phi) ## store results

}

The equivalent of Figure 6.1 is shown in Figure 6.2. Notice the rather lim-
ited effect of the change in prior between the two figures. This is because
even the proper priors used for the Gibbs sampler are very vague, provid-
ing very limited information on the probable parameter values (plot the
Γ(1, .1) density to see this), while the data are informative.

6.2.9 Metropolis within Gibbs example

As mentioned previously, we can substitute MH steps for any conditional
that we cannot obtain, or cannot be bothered to obtain. Recycling the toy
example one more time, let us suppose that the conditional for µ is simply
too much effort:
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a <- 1; b <- .1; c <- 0; d <- 100
mu <- 0; phi <- 1; n.accept <- 0
thetamg[,1] <- c(mu,phi)
for (j in 2:n.rep) {
mup <- mu + rnorm(1)*.8 ## proposal for mu
log.a <- sum(dnorm(x,mup,sqrt(phi),log=TRUE)) +

dnorm(mup,c,sqrt(d),log=TRUE) -
sum(dnorm(x,mu,sqrt(phi),log=TRUE)) -
dnorm(mu,c,sqrt(d),log=TRUE)

if (runif(1) < exp(log.a)) { ## MH accept?
mu <- mup;n.accept <- n.accept + 1

}
## Gibbs update of phi...
phi <- 1/rgamma(1,n/2+a,sum((x-mu)^2)/2+b)
thetamg[,j] <- c(mu,phi) ## store results

}
n.accept/n.rep

The acceptance rate is about 50% (actually about optimal in the single-
parameter case). Figure 6.3 shows the results. The µ chain is not quite as
impressive as in the pure Gibbs case, but beats the pure MH results.

6.2.10 Limitations of Gibbs sampling

Gibbs sampling largely eliminates the difficulty of choosing a good pro-
posal that complicates Metropolis Hastings, but this is not quite the free
lunch that it might appear. The catch is that Gibbs sampling produces
slowly moving chains if parameters have high posterior correlation, be-
cause sampling from the conditionals then produces very small steps. Some-
times updating parameters in blocks or re-parameterising to reduce poste-
rior dependence can then help to improve mixing. The other practical con-
sideration is that if improper priors are used with Gibbs sampling then it
is important to check that the posterior is actually proper: it is not always
possible to detect impropriety from the output of the sampler.

6.2.11 Random effects

A beauty of the Bayesian simulation approach is that there is almost noth-
ing to say about random effects: for simulation purposes they are simply
treated as if they were parameters. The point here is that if we have a sample
from the joint posterior f(θ,b|y) of the parameters and random effects,
then simply discarding the random effects from the sample leaves us with a
sample from the marginal posterior density f(θ|y). The only caveat is that
one would not usually specify values for the parameters of the distribution
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of the random effects directly, but instead would choose to place priors on
those parameters (often of a rather vague nature).

6.2.12 Checking for convergence

The great appeal of MCMC methods is their impressive generality. In prin-
ciple we can work with almost any model, and if we are prepared to simu-
late for enough iterations, then we will generate a sample from its posterior.
The difficulty is in identifying what is enough iterations. Well-designed
samplers for relatively benign posteriors may require only several thousand
or several hundred thousand iterations. In other situations all the computer
power on earth running for the age of the universe might be required to ade-
quately sample from the posterior: for example, when the posterior consists
of several well-separated and compact modes in a high-dimensional space,
where proposing a move that will take us from one mode to another is all
but impossible, let alone doing it often enough to sample from the modes in
the correct proportion. To appreciate the problem, suppose that your pos-
terior is like the final plot in Section 5.6.1, but without the middle peak.
In the MH setting, any proposal with a nonvanishing chance of making the
transition from one mode to another would lead to tiny acceptance rates. In
the Gibbs setting the conditionals would look like the penultimate plot in
Section 5.6.1, and it would be virtually impossible for Gibbs sampling to
make the transition from one peak to another.

So it is important to check for apparent convergence of MCMC chains.
Obvious checks are the sort of plots produced in the left-hand panels of
Figures 6.1 to 6.3, which give us some visual indication of convergence
and how well the chain is mixing. If there is any suspicion that the pos-
terior could be multimodal, then it is sensible to run multiple chains from
radically different starting points to check that they appear to be converg-
ing to the same distribution. If interest is actually in some scalar valued
function of the parameters h(θ), then it makes sense to produce the plots
and other diagnostics directly for this quantity.

One step up in sophistication from the simple trace plots is to examine
how specific quantiles of the sample, up to iteration j, behave when plotted
against j. For example, the following code produces plots that overlay the
0.025, 0.5 and 0.975 quantiles of the sample so far, on top of a simple line
plot of the chain’s progress:
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Figure 6.4 Basic MCMC checking plots, relating to the example
from Section 6.2.5 as discussed in Section 6.2.12. The left panels
show trace plots for the two chain components (grey) overlaid
with the evolution of the chain median (continuous), 0.025 and
0.975 quantiles (dashed). Everything is stabilising nicely here.
The right-hand panels show the equivalent autocorrelation
function plots for the chains, illustrating the substantial degree of
autocorrelation when using this sampler, which is higher for the µ
component than for the σ component.

qtplot <- function(theta,n.plot=100,ylab="") {
## simple MCMC chain diagnostic plot
cuq <- Vectorize(function(n,x) ## cumul. quantile func.

as.numeric(quantile(x[1:n],c(.025,.5,.975))),
vectorize.args="n")

n.rep <- length(theta)
plot(1:n.rep,theta,col="lightgrey",xlab="iter",

ylab=ylab,type="l")
iter <- round(seq(1,n.rep,length=n.plot+1)[-1])
tq <- cuq(iter,theta)
lines(iter,tq[2,])
lines(iter,tq[1,],lty=2);lines(iter,tq[3,],lty=2)

}

A call to qtplot(theta[1,],ylab=expression(mu)) produces the up-
per left plot in Figure 6.4, with a slightly modified call producing the lower
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left plot. In both cases it appears that the median and both the other quan-
tiles stabilise rapidly.

For slightly more formal checking it helps to have some idea of the effec-
tive sample size of the chains. Roughly speaking, what size of independent
sample from f(θ|y) would be equivalent to the correlated sample from our
MCMC scheme? Or, if we were to retain only every kth sample from the
chain, how large would k have to be before we could reasonably treat the
resulting thinned sample as approximately independent? To answer these
questions it is helpful to examine the autocorrelation function (ACF) of the
chain components, as shown in the plots on the right hand side of Figure
6.4, which are produced by, for example, acf(theta[1,]) in R. Appar-
ently retaining every 25th µ value and every 20th σ value from the chain
would give us almost independent samples.

Actually the acf function also returns the estimated correlations at each
lag (silently). For example,

> mu.ac <- acf(theta[1,])[[1]][,,1];mu.ac
[1] 1.0000000 0.8831924 0.7777484 0.6863556 0.6096274
[6] 0.5406225 0.4834136 0.4303171 0.3796966 0.3389512
. . . . . .

The autocorrelation length associated with a chain is defined as twice the
sum of the correlations minus 1. The summation is strictly over all lags
up to infinity, but in practice we can sum over the lags up to the point at
which autocorrelation appears to have vanished (see R package coda for a
better method). The corresponding effective sample size is then defined as
the sequence length divided by the autocorrelation length. For example,

> acl <- 2*sum(mu.ac)-1; acl
[1] 16.39729
> n.rep/acl ## effective sample size
[1] 609.8569

So the effective sample size for the µ component is about 600 (although
usually we would discard the burn-in period before computing this). Re-
peating the exercise for σ gives an autocorrelation length of around 10 and
an effective sample size of about 1000. For the Metropolis within Gibbs
sampler, considered previously, the autocorrelation length is only 6 for µ
and 1.3 for σ. For pure Gibbs the figure for µ drops to close to 1.

Armed with this information, more formal tests are possible. For ex-
ample, given multiple chains, we can subsample to obtain approximately
independent samples between each chain and then apply ANOVA meth-
ods to see if there appear to be variance components associated with the
difference between chains. With a single chain, we might want to divide
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the apparently converged chain into two parts and formally test whether
the two samples appear to come from the same distribution. A two-sample
Kolmogorov-Smirnov test is appropriate here, provided that the two sam-
ples are of independent draws from the two distributions, so again sub-
sampling is needed. Here is an example, for the simple µ chain:

> th0 <- theta[1,1001:5500]
> th1 <- theta[1,5501:10000]
> ind <- seq(1,4500,by=16) ## subsampling index
> ks.test(th0[ind],th1[ind])

Two-sample Kolmogorov-Smirnov test

data: th0[ind] and th1[ind]
D = 0.0745, p-value = 0.4148
alternative hypothesis: two-sided

With a p-value of 0.4 there is no evidence for a difference in distribution
between the two halves of the chain, so this result provides no reason to
doubt convergence. The exact choice of sampling interval is not important:
increasing the sampling interval to 25, as might be implied by simply ex-
amining the ACF, leads to the same conclusion. However, using a much
lower sampling rate is a disaster: failure to subsample at all completely
violates the independence assumption of the test, resulting in a computed
p-value around 10−13, and even a sampling interval of five results in an
erroneously low p-value of 0.016.

This section only scratches the surface of convergence checking. See
Robert and Casella (2009, Ch. 8) for more information, and the coda pack-
age in R for an extensive set of checking functions (Plummer et al., 2006).

6.3 Interval estimation and model comparison

Given reliable posterior simulations from a chain, interval estimates and
quantities for model comparison can be computed. The former is straight-
forward, because intervals can be based directly on the observed quantiles
of the simulated parameters. For example, with the simple toy model of
Section 6.2.9, it is easy to produce 95% credible intervals (CIs) for µ and
σ, as follows (discarding the first 1000 samples as burn-in):

quantile(thetamg[1,-(1:1000)],c(0.025,0.975)) ## CI mu
quantile(thetamg[2,-(1:1000)]^.5,c(0.025,0.975)) # CI sig

which yields 0.52 < µ < 2.22 and 1.39 < σ < 2.67. The next subsection
discusses model comparison.
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6.3.1 Computing the marginal likelihood and DIC

As discussed in Section 2.5.2 Bayesian model comparison presents some
fundamental difficulties, which it is important to be aware of before com-
puting anything. For now, suppose that our models are specified with mean-
ingful priors, so that marginal likelihood can form a meaningful basis for
model comparison. In that case importance sampling, as introduced in Sec-
tion 6.1, provides a reasonable way to compute the marginal likelihood,
f(y) =

∫
f(y|θ)f(θ)dθ, which is the basis for computing the Bayes

factor (introduced in Section 2.5.2) for model comparison. Recall that the
idea of importance sampling is to generate n random vectors θi from some
suitable density ∝ g(θ), and then use the estimate

f̂(y) =

∑
i f(y|θi)f(θi)/g(θi)∑

i f(θi)/g(θi)
,

where the denominator is simply replaced by n if the density g is properly
normalised. It is tempting to use the results of MCMC sampling directly
here, and set g(θi) = f(y|θi)f(θi), in which case

f̂(y) =
n∑

i 1/f(y|θi)
,

which is the harmonic mean of the likelihood over the simulations. Un-
fortunately this simple estimate is of poor quality. It need not have finite
variance, and its realised behaviour is often bizarre.4 The problem is that
the harmonic mean is dominated by the smallest values of f(y|θi) in the
sample, and the greater the sample, the smaller the smallest values become.
In consequence this estimate can depend strongly and systematically on
the simulation length n. This problem would not occur if we simply set
g(θi) = f(θi), but in the case of a highly informative likelihood and/or
diffuse priors such a scheme would put most of the simulated θi where the
integrand is negligible, resulting in high estimator variance.

An obvious solution is to base sampling on a mixture of the two ap-
proaches; that is, we simulate a sample from the prior and a sample from
the posterior and treat the combined sample as coming from the mixture
distribution g(θ) = αf(θ|y) + (1 − α)f(θ), where 0 < α < 1 and g is
now properly normalised. The difficulty, of course, is that f(θ|y) involves
the very normalising constant that we are trying to find, but plugging the

4 The poor performance is initially confusing, since from basic importance sampling
theory the proposal distribution appears to be ideal, but the pathology creeps in because
of the need to normalise the importance weights in this case.
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estimate of f̂(y) into the importance sampling estimate yields

f̂(y) =
1

n

n∑

i=1

f(y|θi)f(θi)
αf(y|θi)f(θi)/f̂(y) + (1− α)f(θi)

, (6.5)

which can be solved, numerically, for f̂(y).5

To use this importance sampling based estimate in practice requires that
some care is taken to avoid underflow or overflow problems. Letting c =
log f̂(y) and ai = log f(y|θi), (6.5) can be rewritten as

log
n∑

i

{
αe−β + (1− α)ec−ai−β)

}−1 − β − log n = 0,

where β is an arbitrary constant, which can be set to a nonzero value, if
necessary, to avoid overflow problems. Note that in practice the root c of
(6.5) may be unbounded below computationally, if the posterior probability
of the draws from the prior is vanishingly small computationally. This can
occur in high-dimensional settings and when using vague or uninforma-
tive priors, but in the latter case the marginal likelihood and Bayes factors
should anyway not be computed for the reasons given in Section 2.5.2.

To see this in action, suppose that we have generated 20,000 samples
using the Gibbs sampling code in Section 6.2.8, and that these samples are
stored in the two row matrix thetag. Now add 20,000 samples from the
prior, and compute the log likelihood for each sample:

n.prior <- 20000
thetap <- matrix(0,2,n.prior)
thetap[1,] <- rnorm(n.prior,c,sqrt(d))
thetap[2,] <- rgamma(n.prior,a,b)
th <- cbind(thetag,thetap) ## combined sample
alpha=ncol(thetag)/ncol(th)
lfy.th <- colSums(matrix(dnorm(x,rep(th[1,],each=n),

rep(sqrt(th[2,]),each=n),log=TRUE),n,n.rep+n.prior))

With these ingredients we can now solve for c = log f̂(y). The following
function implements the stabilised version of (6.5), computing a value for
β that should reduce underflow or overflow, if this is necessary:

5 It is easy to prove that the equation always has a single finite root by defining
k = 1/f̂(y) and then considering where the curve of 1/k versus k cuts the (monotonic)
curve of the right hand side against k. That the root is the marginal likelihood in the
large sample limit follows from the unbiasedness and consistency of importance
sampling when the true f(y) is substituted in the right hand side.
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fyf <- function(lfy,lfy.th,alpha,big=280) {
## log f(y) - log f(y|theta_i) = c - a_i ...
ac <- lfy - lfy.th
if (min(ac) < -big||max(ac) > big) { ## overflow?
beta <- sum(range(ac))/2
if (beta > big) beta <- big
if (beta < -big) beta <- -big

} else beta <- 0
n <- length(lfy.th)
ac <- ac - beta
ind <- ac < big ## index non-overflowing ac values
log(sum(1/(alpha*exp(-beta) + (1-alpha)*exp(ac[ind]))))-

beta - log(n)
}

The uniroot function in R can be used to solve for the log of f̂(y), as
follows:

>uniroot(fyf,interval=c(-100,0),lfy.th=lfy.th,alpha=alpha)
$root
[1] -44.64441

So the log of the marginal likelihood is approximately -44.6 here.6 If we
had two models to compare, then we could compute the log marginal likeli-
hood for the second model in the same way, form the log Bayes factor, and
then refer to Section 2.5.2 for interpretation of the result. Note, however,
that this example is really only useful for illustrating the computations: the
vague priors in this model cannot be treated as the sort of meaningful prior
information that would justify use of the Bayes factor for serious model
comparison.

Computations for the fractional Bayes factor
Recall from (2.7) in Section 2.5.2 that to compute the fractional Bayes
factor requires that the (estimated) marginal likelihood be divided by (an
estimate of)

∫
f(y|θ)bf(θ)dθ where b is constant in (0, 1). Let us call

the resulting quantity the ‘fractional marginal likelihood’ here. Given the
preceding computations it is easy to reuse (6.5) and estimate the required
integral using

∫
f(y|θ)bf(θ)dθ ≃ 1

n

n∑

i=1

f(y|θi)b
αf(y|θi)/f̂(y) + (1− α)

6 This example can also be used to illustrate the problem with the harmonic mean
estimator based on the chain samples alone: running the chain for 10 times as many
iterations increases the harmonic mean estimate of the marginal likelihood by a factor of
around 10.
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Setting b = 0.3, here is some R code for the computation:
lfy <- uniroot(fyf,interval=c(-100,0),lfy.th=lfy.th,

alpha=alpha)$root
lfyb <- log(mean(exp(.3 * lfy.th -

log(.5 * exp(lfy.th-lfy) + .5))))
frac.ml <- lfy - lfyb ## log ’fractional ML’

The result is−29.3. To illustrate the robustness of the fractional approach,
the prior parameters in this example can be changed to b=0.01 and d=1000
(making the priors more vague). The marginal likelihood then drops from
−44.6 to −47.4, whereas the fractional version only drops to −29.4.

A crude Laplace approximate marginal likelihood estimate
In the large sample limit with informative data, the posterior covariance
matrix is the inverse Hessian of the log likelihood, which dominates the
log prior. Hence if Σ̂ is the estimated covariance matrix of θ from the
chain, while f̂ is the largest value of f(y|θ)f(θ) observed in the chain,
then applying a Laplace approximation as in Section 5.3.1 yields the rough
approximation

log f̂(y) ≃ log f̂ + p log(2π)/2 + log |Σ̂|/2,
where p = dim(θ). This approximation is computable directly from a sam-
ple from the posterior. For example, continuing the example from the pre-
vious subsection,
> V <- cov(t(thetag))
> lfyth <- lfy.th[1:n.rep] +
+ dnorm(thetag[1,],c,sqrt(d),log=TRUE) +
+ dgamma(thetag[2,],a,b,log=TRUE)
> max(lfyth) + log(2*pi) + sum(log(diag(chol(V))))
[1] -44.44495

which is comparable with the previous estimate. This approach only works
in circumstances in which a Laplace approximation is expected to work,
so it will only be useful when the posterior has a single important mode,
which can be reasonably approximated by a Gaussian.

Neither of the simple methods presented here is likely to work well
in very complex modelling situations. In such cases (and again assuming
that meaningful priors have been used) more sophisticated methods will be
needed: Friel and Pettitt (2008) is a good place to start.

Computing the DIC
Relative to the marginal likelihood, computing the DIC is very easy, and it
can legitimately be used with vague priors. Continuing the same example,
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Figure 6.5 Algal cell counts in samples taken from a laboratory
chemostat experiment, against hour.

> Dthbar <- -2*sum(dnorm(x,mean(thetag[1,]),
+ mean(thetag[2,])^.5,log=TRUE))
> pD <- mean(-2*lfy.th[1:n.rep]) - lfy.thbar
> DIC <- Dthbar + 2*pD; DIC; pD
[1] 83.79534
[1] 1.851937

So the DIC is 83.8 and the effective degrees of freedom, pD, is 1.85. As
with AIC we would favour models with a smaller DIC.

6.4 An MCMC example: algal growth
This section covers a non trivial example of using Metropolis Hastings
sampling. Figure 6.5 shows counts of algal cells in samples drawn from
a laboratory chemostat experiment. A possible model for the population
growth in the chemostat is that it follows a self-damping growth model,
such as

Nt+1 = erNte
−Nt/K+et , et ∼ N(0, σ2

e), (6.6)

where the independent et terms reflect the fact that the population growth
will not be fully deterministic. This model would usually operate with a
fixed timestep (e.g. t might index hour, or two hour period). If we want to
estimate N between Nt and Nt+1 then we might use linear interpolation.
The cell population, y, is then modelled as being a noisy observation of the
underlying population N , perhaps Gaussian, with unknown variance, σ2.

The first thing to note is that the data plotted in Figure 6.5 are not evenly
spaced in time. The spacing ranges from 0.4 to 5.1 hours. Hence we will
need to interpolate the solution to (6.6) in order to use this model for the
data. Because MCMC sampling will involve doing essentially the same in-
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terpolation repeatedly, it makes sense to try and do it efficiently. So here is a
function that supposes that you have evaluatedN at m discrete times, start-
ing at t0 and spaced dt apart, and that you want to use linear interpolation
to estimate the value of N at the times given in t. The following routine
returns vectors im, ip, wm and wp, each of the same length as t, such that if
N is the m vector of evenly spaced N values, N[im] *wm + N[ip] *wp

gives the vector of interpolated N estimates, corresponding to t. It also
returns dt and an appropriate value for m:

lint <- function(t,t0=0,dt=1) {
## produce interpolation indices and weights.
n <- length(t)
ts <- seq(t0,max(t),by=dt)
ts <- c(ts,max(ts)+dt)
m <- length(ts)
im <- floor((t-t0)/dt)+1;ip <- im+1;ip[ip>m] <- m
list(im=im,ip=ip,wm=(ts[ip] - t)/dt,

wp=(t - ts[im])/dt,m=m,dt=dt)
}

Armed with this function it is now possible to write a function to evaluate
the joint density of the cell count data, random effects and model parame-
ters. The obvious way to approach this is to write down the joint density of
y and e, but actually this can make sampling very difficult indeed. Because
early et values affect the whole subsequent sequence of Nt values, it can
be very difficult to propose acceptable moves. In fact for high r values it
is essentially impossible. However, there is no such problem if we work
directly in terms of the log state, nt = logNt. It is then easy to establish a
one-to-one transformation between the state vectorn and the random effect
vector e, (with determinant 1) and hence to evaluate the joint density of the
data, state vector and parameters. This leads to a function like the following
(where improper uniform priors are assumed on all log parameters):

lfey <- function(theta,n,y,li) {
## function evaluating log p.d.f. of y, n and
## theta of Ricker model
theta <- exp(theta) ## parameters are intrinsically +ve
r <- theta[1]; n0 <- theta[2]; K <- theta[3];
sigma.e <- theta[4]; sigma <- theta[5]
n.n <- length(n); ind <- 1:(n.n-1);
## state to r.e. transform...
e <- c(n[1]-log(n0),n[ind+1]-n[ind]-r+exp(n[ind])/K)
f.ne <- sum(dnorm(e,0,sigma.e,log=TRUE)) ## r.e. density
mu <- exp(li$wm*n[li$im] + li$wp*n[li$ip]) # interpolate
f.y <- sum(dnorm(y,mu,sigma,log=TRUE)) ## f(y|n)
f.y + f.ne ## joint log density

}
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Figure 6.6 First five panels from the top left: Algal model
MCMC chains for the model of Section 6.4 sampled every 25
steps. Final panel, bottom right: the state at the final step of the
simulation (black line) overlaid on the cell data (open circles).

Finding a proposal to update the parameters and whole state vector in one
go requires further work, as described in Sections 6.5.3 and 6.5.4. A sim-
pler approach is to make proposals for each element of the parameter and
state vector separately, either choosing the element to update at random in
each step or working through each element in turn at every step. The latter
approach is the basis for the following code. It is assumed that the data are
in a data frame called alg.

li <- lint(alg$hour,t0=0,dt=4) ## interpolation weights
## Intial values...
n0 <- 10;r <- .3; K <- 3000; sig.b <- .2; sigma <- 10
theta <- log(c(r,n0,K,sig.b,sigma)) ## parameter vector

## get initial state by interpolating data...
n <- log(c(alg$cell.pop[1],approx(alg$hour,alg$cell.pop,

1:(li$m-2)*li$dt)$y,max(alg$cell.pop)))

n.mc <- 150000 ## chain length
th <- matrix(0,length(theta),n.mc)
y <- alg$cell.pop

a.th <- rep(0,length(theta)); a.n <- 0 ## accept counter
sd.theta <- c(.2,.5,.3,.3,.2); sd.n <- .05 ## prop. sd
ll <- c(-Inf,-Inf,-Inf,log(.03),log(5)) ## low param lim
ul <- c(Inf,Inf,log(25000),Inf,Inf) ## upper param lim

lf0 <- lfey(theta,n,y,li)
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for (i in 1:n.mc) { ## mcmc loop
for (j in 1:5) { ## update parameters
theta0 <- theta[j]
theta[j] <- theta[j] + rnorm(1)*sd.theta[j]
lf1 <- lfey(theta,n,y,li)
if (runif(1)<exp(lf1-lf0)&&ll[j]<theta[j]

&&ul[j]>theta[j]) { ## accept
lf0 <- lf1
a.th[j] <- a.th[j] + 1

} else { ## reject
theta[j] <- theta0
lf1 <- lf0

}
} ## parameters updated
for (j in 1:li$m) { ## update state
nj <- n[j]
n[j] <- n[j] + rnorm(1)*sd.n
lf1 <- lfey(theta,n,y,li)
if (runif(1)<exp(lf1-lf0)) { ## accept
lf0 <- lf1
a.n <- a.n + 1

} else { ## reject
n[j] <- nj
lf1 <- lf0

}
} ## states updated
th[,i] <- theta ## store theta
if (i%%1000==0) cat(".")

} ## end of mcmc loop

Notice the ll and ul vectors, which serve to impose lower and upper
bounds, respectively, on some parameters (if both are present, then the
prior becomes a proper uniform p.d.f.). Also a.n and a.th are used to
monitor acceptance rates, which allowed sd.theta and sd.n to be tuned
in pilot runs to achieve acceptance rates around the 50% level appropriate
for single-element updates.

Figure 6.6 shows the results of the simulation, along with the simulated
population vector n at the final step, overlaid on the raw data. The initial
population n0 does not appear to be well identified, but otherwise mixing
seems reasonable. Using effectiveSize(mcmc(th[i,ind])) from the
coda package, the effective sample size for r is around 1800, for n0 it is
around 370, and for the other parameters it is more than 3000. n can be
transformed into a vector of et values, and we can compute residuals to
check the sampling error distribution. Here is some code to do this:

n0 <- exp(theta[2]); r <- exp(theta[1])
K <- exp(theta[3]); n.n <- length(n)
ind <- 1:(n.n-1);
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Figure 6.7 Normal QQ-plots, residuals against order, and ACF of
residuals for et (top row) and residuals (bottom row). The middle
plot on the bottom row indicates that the measurement error
model is not quite right at the start of the experiment: the error
variance is not constant. The top row also indicates slightly
heavier than normal tails in the et.

e <- c(n[1]-log(n0),n[ind+1]-n[ind]-r+exp(n[ind])/K)
rsd <- y - exp(n[li$ip]*li$wp+n[li$im]*li$wm)
par(mfrow=c(2,3),mar=c(5,5,1,1))
qqnorm(e); plot(e); acf(e)
qqnorm(rsd); plot(rsd); acf(rsd)

Figure 6.7 shows the results. Clearly, the measurement error model is not
quite right, but otherwise the model assumptions seem reasonably plausi-
ble. Finally, here is a 90% credible interval for r (having discarded the first
30000 simulations as burn-in):
> exp(quantile(th[1,30000:n.mc],c(.05,.95)))

5% 95%
0.1689796 0.2817391

6.5 Geometry of sampling and construction of better proposals

The algal growth example of the previous section highlights the difficulty
of constructing good proposals. To be able to tune the proposals and get
reasonable movement, it was necessary to resort to single-component up-
dates. This increased the cost of each complete update but still gave slow
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Figure 6.8 Effect of posterior correlation on MCMC mixing. In
both panels the posterior for θ is contoured in grey: over most of
the area shown, the posterior density is close to zero. The left
panel shows the progress of the chain from the point (0.5, 0.5),
when θ1 and θ2 are updated separately. The right panel shows the
progress when θ is updated jointly. Both chains were run for 400
steps, and the proposal standard deviations were tuned to obtain
optimal acceptance rates. The chains make slow progress because
steps have to be kept small in order to keep the θ within the area
of high posterior probability.

mixing. To design more efficient proposals it is necessary to understand
how the twin curses of dimensionality and correlation affect proposals.

6.5.1 Posterior correlation

Suppose that the posterior density of θ (including any random effects) im-
plies that the elements of θ are highly non-independent. In this case both
single-component updates and joint updates, based on independent jumps
for each component, will give slow mixing. Neither is able to take big steps
without frequently proposing highly improbable moves. The issue is illus-
trated in Figure 6.8. Neither componentwise nor joint but independent, pro-
posals use the correlation structure in the posterior, with the result that they
can only take small steps if the region of negligible posterior probability is
to be avoided. As a result the chain moves slowly.

The issue with correlation is a fundamental limitation for Gibbs sam-
pling (although re-parameterisation and/or updating parameters in blocks
can often help), but for Metroplois-Hastings sampling it is often possible to
exploit the correlation structure in the posterior to improve the proposals.
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The simplest approaches approximate the posterior density by a multivari-
ate normal density, which is then used as the basis for making proposals.

Two alternatives for obtaining a multivariate normal approximation are
to use (6.2) from Section 6.1, or to run a pilot chain, from which to extract
µ̂ ≃ E(θ) and Σ̂ ≃ cov(θ), so that the approximation is

θ|y ∼ N(µ̂, Σ̂). (6.7)

There are then two simple alternatives for using the approximation.

1. Use the density directly to make independent proposals where the ith

proposal is θ′
i ∼ N(µ̂, Σ̂). Because this is not a symmetric proposal

the ratio q(θ|θ′)/q(θ′|θ) is no longer identically 1, but the computation
simply involves calculating the ratio of the multivariate normal density
evaluated at the two parameter vector values.

2. Use a shrunken version of Σ̂ as the basis for proposing multivariate nor-
mal jumps in a random walk. So the ith proposal is θ′

i ∼ N(θi−1, Σ̂k2).
It turns out that for high dimensions k = 2.4/

√
d is about optimal (see

e.g. Gelman et al., 2013), although in any particular case some tuning
is likely to be beneficial. In this case the probability densities of a move
and the reverse move are equal, so the q ratio is 1.

Figure 6.9 illustrates the two approaches for a posterior shown as black
contours. The left-hand panel shows option 1, in which proposals are gen-
erated directly from the normal approximation contoured in grey. The pro-
posal is good in the centre of the distribution, but visits some of the tail re-
gions very infrequently, relative to their posterior density. Metropolis Hast-
ings compensates for this deficiency by leaving the chain stuck at such tail
values for a long time, on the rare occasions that they are proposed. The
black dot at the top right of the plot is such a tail value. What causes the
stickiness of the chain is the ratio q(θ|θ′)/q(θ′|θ). Reaching the point is
highly improbable according to the proposal, so q(θ|θ′) (which actually
does not depend on θ′ here) is tiny. In contrast θ′ is typically not in the far
tails of the proposal, so that q(θ′|θ) is modest: hence the ratio is tiny, the
MH acceptance probability is tiny, and it takes many iterations to leave the
point. In consequence option 1 is only advisable when the normal approx-
imation to the posterior is expected to be good.

The right panel of Figure 6.9 illustrates option 2: random walk updates
based on a shrunken version of the covariance matrix estimate. Proposal
densities are contoured in grey for two points: the open circle in the high
posterior density region, and the black circle in the tail region. The pro-
posal is reasonable in the high-density region. Similarly, the proposal has a
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Figure 6.9 Simple proposals based on a multivariate normal
(MVN) approximation of the posterior. The true posterior is
contoured in black. Left: An MVN approximation to the posterior
is contoured in grey, based on the empirical mean and covariance
matrix of a sample from the posterior. Proposals could be made
directly from this approximation, but then the probability of ever
proposing the point shown as a black dot is very low, despite it
having non-negligible posterior probability density. Hence when
such a proposal is made, the chain tends to get stuck at this point
for many iterations. Right: the density of a random walk proposal
for the same point as grey contours, where the covariance of the
proposal is a shrunken version of the covariance from the normal
approximation. Clearly the random walk proposal has a better
chance of reaching the point in the first place and of leaving it
again. Also contoured in grey is the proposal density for the point
marked by an open circle: the random walk proposal is also
reasonable in the high posterior density region.

reasonable chance of reaching the tail point in the first place and of leaving
it again.

6.5.2 The curse of dimensionality

The attentive reader will have noticed that the random walk proposal dis-
cussed in the previous section requires that the proposal standard deviation
is proportional to 1/

√
d where d is the dimension of θ. In other words,

as dimension increases, the change proposed for each component of θ has
to be reduced in order to get optimal mixing. Figure 6.10 illustrates the
inevitability of this effect by using Metropolis Hastings to sample from a
N(0, Id) density for d = 2 and then for d = 100. A random walk proposal
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Figure 6.10 Metropolis Hastings sampling from N(0, Id) for
d = 2 (left) and d = 100 (right). In both cases proposals were of
the form θ′i+1 ∼ N(θi, Idσp). Different σp were used for d = 2
and d = 100, each tuned to give the largest possible effective
sample size. Notice how mixing is much slower for the higher
dimensional problem: a simple result of geometry.

θ′
i+1 ∼ N(θi, Idσ

2
p) is used, where σp is tuned to achieve the maximum

effective sample size, separately for each d. Clearly there is no issue with
correlation here, but mixing is still very slow for the relatively high dimen-
sional problem.

This effect is geometrically inescapable when using symmetric random
walk proposals. The fundamental problem is that, as the dimension in-
creases, a symmetric random walk proposes ever fewer jumps that actually
have increased posterior density, relative to the starting point. Figure 6.11
illustrates this dropoff when moving from d = 1 to d = 2 dimensions, con-
sidering the simple case in which the target posterior density is N(0, Id)
and the proposal is based on independent U(−

√
d,
√
d) (approx.) incre-

ments for each element of θ. As d increases, this problem becomes ever
more severe, especially near the centre of the distribution. Indeed consid-
ering such uniform proposals from points like the black blobs in Figure
6.11, it is easy to work out the probability of a proposal falling in the re-
gion of increased posterior probability. It is half the volume of an r-radius
d-ball divided by the volume of a d-dimensional hyper cube of side length
2r: πd/2/{Γ(d/2+1)2d+1}. This probability drops from 0.5 for d = 1 to
less than 1% by d = 8.

The example used here to illustrate the issue is far from pathological.
There is no correlation present, and the density is as well behaved as we
could hope. In addition, we could transform any multivariate normal den-
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Figure 6.11 Symmetric random walk proposals become less
probable with increasing dimension. Left: a one dimensional
N(0, 1) p.d.f. About 68% of draws from N(0, 1) are more
probable than the black blob, whereas 99.7% of draws are more
probable than the black square. Consider proposing a symmetric
uniformly distributed jump from the black blob that could just
reach θ = 0. The possible range of such a proposal is illustrated
by the horizontal line through the blob: 50% of such proposals
(shown in grey) have higher probability than the starting value,
and 50% lower (shown in black). The same proportions apply if
the proposal is used starting from the black square. Right: the
situation in two dimensions when the density is N(0, I2) . Again
68% of draws from N(0, I2) are more probable than the black
blob, and 99.7% are more probable than the black circle. Again
consider symmetric uniform proposals centred on the points and
just capable of reaching 0, 0 for the black blob. The regions
uniformly covered by the proposals are shown as squares centred
on the two points. For a proposal to land in an area of increased
density, it must be within the black contour passing through the
starting point (i.e within the region shaded grey). Clearly for the
black blob far fewer than 50% of proposals will end up in the grey
region of increased probability. Further out in the tails, where the
black square is, the chance is higher, but still less than 50%.

sity to this case without loss of generality, and in the large sample limit
many posteriors tend to multivariate normality.



6.5 Geometry of sampling and construction of better proposals 163

6.5.3 Improved proposals based on approximate posterior normality

These basic issues have given rise to a great deal of work on adaptive
Metropolis-Hastings schemes that use nonsymmetric proposals with an im-
proved tendency to make moves that will increase the posterior, while tak-
ing relatively large steps. Most of this work is well beyond our scope here.
Instead let us consider developing some simple improved schemes, based
on the preceding insights.

The big advantage of the fixed multivariate normal proposal is that it
tends to propose more points near the centre of the distribution than in the
tails, but its disadvantage is that it may not visit poorly approximated tails
often enough, so it gets stuck in them when it does visit. The advantage of
the random walk is that it can get into the tails without getting stuck there,
but does so by making many proposals into low-probability regions. An
obvious hybrid strategy is to propose moves from a mixture distribution.
With tunable probability γ propose from N(µ̂, Σ̂) otherwise propose from
N(θi, Σ̂k2). The probability density for the proposal and its reverse now
have to be computed from the mixture distribution to compute the MH q
ratio, but this is unproblematic.

A simpler alternative that directly addresses the tendency of symmetric
random walks to propose improbable moves in high dimensions is to move
the centre of such proposals from θi, in the direction of µ̂. Defining ‖θ −
µ̂‖2

Σ̂
= (θ − µ̂)TΣ̂−1(θ − µ̂) and

m(θ) =

{
θ − γ(θ − µ̂)/‖θ − µ̂‖Σ̂ ‖θ − µ̂‖Σ̂ > γ
θ otherwise

,

the proposal density becomes N(m(θ), Σ̂k2). We must choose γ and can
typically afford to increase k somewhat.

6.5.4 Improved proposals for the algal population example

The samplers constructed in Section 6.4 have rather disappointing perfor-
mance, in terms of effective sample size for computational effort. 150,000
iterations still only gave an effective sample size of around 370 for n0, and
each of those updates required an accept/reject computation for each ele-
ment of θ and n separately. This section compares the simple improved
updates discussed in the previous subsection based on the covariance ma-
trix of the parameters according to the first run.

If the state vectors n for each iteration are stored as columns of a matrix
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Figure 6.12 Algal model MCMC output equivalent to Figure 6.6,
for 50000 iterations using a fixed multivariate normal proposal,
based on the mean and covariance matrix from a pilot run. Notice
how the chain becomes stuck where the posterior density is
moderate but the proposal density is very low; it then takes a large
number of iterations to become unstuck: see the discussion
around Figure 6.9 for an explanation of this phenomenon.

nn, then the first step is to compute the mean and covariance matrix for the
vector b = (θT,nT)T:

## tn is params and state, discarding burn-in...
tn <- rbind(th,nn)[,-(1:20000)]
mu <- rowMeans(tn) ## mu hat
V <- cov(t(tn)) ## Sigma hat

Before going further it is important to look at pairs plots of the rows of
tn to see whether N(µ̂, Σ̂) can be expected to capture anything useful
about the posterior. In this case it can, so first consider using N(µ̂, Σ̂) as a
fixed proposal. All proposals can be generated up front, using, for example
mvrnorm from the MASS library in R:

library(MASS)
sp <- mvrnorm(n.mc,mu,V)

so sp contains one proposal per row. The q ratio in the MH acceptance
probability requires the density of each proposal, and the following will
evaluate the log of these for all rows of sp:
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Figure 6.13 Algal model MCMC output equivalent to Figure 6.6,
for 50000 iterations using a random walk proposal with correlated
multivariate normal jumps, based on a shrunken version of the
covariance matrix from a pilot run. Although much more efficient
than the chain used for Figure 6.6, the curse of dimensionality
discussed in Section 6.5.2 means that progress is still fairly slow.

dmvn <- function(x,mu,V) {
## one vec in each col of x
R <- chol(V)
z <- forwardsolve(t(R),x-mu)
-colSums(z^2)/2-sum(log(diag(R)))-log(2*pi)*length(mu)/2

}
lfsp <- dmvn(t(sp),mu,V)

Hence, if the chain is in state b = sp[i,] and the proposal is b′ = sp[j,],
then exp(lfsp[i]-lfsp[j]) gives q(b|b′)/q(b′|b). Figure 6.12 shows
output from the chain with this proposal. Notice the lengthy period in
which the chain is stuck, as discussed in Section 6.5.1 and Figure 6.9.
Clearly, these results are not satisfactory. We definitely cannot discard the
stuck section of chain, because the stuck section is the only thing ensuring
that this region of the posterior is sampled in the correct proportion. But the
facts that this section exists and that there is only one such section are clear
indications that we have not run the chain for long enough to adequately
sample this region of the posterior.

The random walk proposal in which b′ ∼ N(b, Σ̂k2) does not get
stuck in this way. sp <-mvrnorm(n.mc,rep(0,ncol(V)),V) can be used
to generate the jumps up front, so the proposals are bp <-b + sp[i,]*k.
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Now the q ratio is 1. Figure 6.13 shows results for such a chain. Minimum
effective sample sizes of around 350 from 50000 iterations indicate that this
approach is quite a bit more efficient than the original sampler of Section
6.4, which required 150,000 much more expensive steps to achieve the
same. However the curse of dimensionality still leads to slow mixing here.

Of the alternatives in Section 6.5.3, the biased random walk gives bet-
ter results than the mixture proposal for this problem and is also easier to
implement, so let us consider it here. The densities required for the q ra-
tio cannot be computed up front now, so we need to be able to compute
them efficiently during the computation. This is easy if the Choleski de-
composition of the covariance matrix is computed before the iteration, so
the following implementation does this:
rwp <- mvrnorm(n.mc,rep(0,nrow(V)),V) ## used for jumps

dmvnr <- function(x,mu,R) {
## computes log density of x~N(mu,R’R)
z <- forwardsolve(t(R),x-mu)
-sum(z^2)/2 - sum(log(diag(R))) - log(2*pi)*length(mu)/2

}

R <- chol(V) ## R’R = V
th <- matrix(0,length(ll),n.mc)
theta <- ind <- 1:5
b0 <- b <- mu ## combined theta and n
th[,1] <-theta <- b[ind]; n <- b[-ind]

lf0 <- lfey(theta,n,y,li)
accept <- 0

gamma=.5; ## dist. to move prop. mu towards overall mean
k <- 2.4/sqrt(length(b))*1.2 ## jump scale

## compute first proposal mean vector, muw...
z <- forwardsolve(t(R),b-mu); dz <- sqrt(sum(z^2))
if (dz>gamma) muw <- b - (b-mu)*gamma/sqrt(sum(z^2)) else

muw <- b

for (i in 2:n.mc) { ## mcmc loop
muw.0 <- muw ## mean of current state
b0 <- b
b <- muw.0 + rwp[i,] * k ## proposal from N(muw.0,V*k^2)
## find mean of proposal starting from b...
z <- forwardsolve(t(R),b-mu);dz <- sqrt(sum(z^2))
if (dz>gamma) muw <- b-(b-mu)*gamma/sqrt(sum(z^2)) else

muw <- b

theta <- b[ind]; n <- b[-ind]
lf1 <- lfey(theta,n,y,li)
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Figure 6.14 Algal model MCMC output equivalent to Figure 6.6,
for 50000 iterations using a biased random walk proposal with
correlated multivariate normal jumps, based on a shrunken
version of the covariance matrix from a pilot run, and with a mean
moved from the current state of the chain towards the overall
mean from the pilot run. This is the most efficient of the samplers
tried here.

q.rat <- dmvnr(b0,muw,R*k)-dmvnr(b,muw.0,R*k)
if (runif(1) < exp(lf1-lf0+q.rat)&&

sum(theta>ul|theta<ll) == 0) { ## accept
accept <- accept + 1
lf0 <- lf1

} else { ## reject
b <- b0
muw <- muw.0

}
th[,i] <- theta
if (i%%3000==0) cat(".")

} ## end of loop

This chain achieves a minimum effective sample size of 1200 in 50000 it-
erations: the better mixing can be seen in Figure 6.14. In terms of computer
time per minimum effective sample size, this sampler is approximately 100
times more efficient than the original sampler in Section 6.4. Notice that
it only worked because the posterior normality approximation was not too
bad in this case: had the posterior been less amenable, then something more
sophisticated would have been required.

168 Bayesian computation

x  x

α1

λ1

α2

λ2

α3

λ3

r

K

σ
e

2

nt−2

nt−1

nt

nt+1

µτ yτ σ
2

α4

λ4

Figure 6.15 Part of the DAG for the algal model introduced in
Section 6.4, assuming the priors introduced in Section 6.6. The
figure focuses on a section of the graph relating to an observation
at time τ lying between discrete simulation times t and t+ 1.
Most of the edges connected to nodes nt−2 and nt+1 are not
shown. Notice how the left and rightmost nodes, which are fixed
constants defining priors, have no parents. Conversely, the
observed data node yt has no children, but this is a feature of this
model, rather than being a requirement of the formalism.

6.6 Graphical models and automatic Gibbs sampling

The implementation of MCMC samplers is obviously rather time consum-
ing, and the question of automating the construction of samplers arises. It
turns out that automatic Gibbs sampling can be very successfully imple-
mented for Bayesian graphical models in which the dependency structure
between variables in the model can be represented by a directed acyclic
graph (DAG). The basic trick is to break down simulation from a high-
dimensional posterior into a sequence of Gibbs sampling steps of intrinsi-
cally low dimension.

The automation process is bound up with the model’s DAG structure, so
we need to explore the concepts here. Graphs already featured in Section
5.5.3, where computational graphs (examples of DAGs) were used in auto-
matic differentiation. A directed graph consists of a set of nodes connected
by directed edges: arrows. These arrows run from parents to children. Ev-
ery variable in a graphical model is a node, and the key feature of such
models is that the distribution of a variable/node is completely known if
you know the values of all its parent nodes. The fact that the graphs are
acyclic means that no node is its own ancestor: you cannot find a path
through the graph that follows edges in the direction of the arrows and
arrives back at the node you started from.
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It is helpful to distinguish three types of node.

1. Stochastic nodes are variables with a distribution that depends stochas-
tically on other nodes. They may be observed (i.e. correspond to data),
or unobserved (parameters or random effects).

2. Deterministic nodes are nodes that are deterministic (logical) functions
of other nodes. They cannot be observed.

3. Constants are fixed numbers and have no parents.

There are two types of arrows. Deterministic/logical relationships between
nodes are usually shown as dashed arrows, whereas stochastic relationships
are shown as solid arrows.

Figure 6.15 illustrates a portion of the DAG for the algal population
model of Section 6.4, assuming that proper gamma(αj , λj) priors have
been specified for r, K , 1/σ2

e and 1/σ2. The parentless nodes at the far
left and right of the figure are the constants specifying the various gamma
priors: actual numbers would have to be supplied here. The portion of the
graph shown surrounds a data node yτ whose time of observation lies be-
tween discrete update times t and t+1, so that its expected value is obtained
by linear interpolation between nodes nt and nt+1. The fact that this linear
interpolation is purely deterministic is the reason that the arrows from nt
and nt−1 to deterministic node µτ are dashed.

Now consider what makes graphical models convenient for automatic
Gibbs sampling. Generically, let xi denote the variable corresponding to
the ith node of the graph. From the dependencies encoded in the graph it
follows that the joint density of the (non constant) nodes is

f(x) =
∏

i

f(xi|parent{xi}), (6.8)

where the product is over the non constant nodes. If this is not obvious, start
with the childless (terminal) nodes and work back using the basic relations
between conditional and joint densities covered in Section 1.4.2.

Gibbs sampling involves simulating from the full conditionals of all
stochastic nodes other than those corresponding to data, which are fixed
at their observed values. It turns out that these conditionals usually involve
far fewer terms than the full joint density. From the definition of a condi-
tional p.d.f.,

f(xj |x−j) =
f(x)∫
f(x)dxj

=

∏
i f(xi|parent{xi})∫ ∏
i f(xi|parent{xi})dxj

,

but the only terms in the product that have to stay inside the integral are
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those that involve xj : the conditional density of xj given its parents, and
the conditional densities of each child of xj , given that child’s parents. All
other terms in (6.8) can be taken out of the integral and therefore cancel
between the top and bottom of f(xj|x−j). In short,

f(xj |x−j) =
f(xj |parent{xj})

∏
i∈child{j} f(xi|parent{xi})∫

f(xj|parent{xj})
∏
i∈child{j} f(xi|parent{xi})dxj

∝ f(xj |parent{xj})
∏

i∈child{j}

f(xi|parent{xi}),

so that, however complicated the model and corresponding DAG, f(xj |x−j),
required for the Gibbs update of xj , depends only on the parent-conditional-
densities of xj and its children.

6.6.1 Building the samplers

The preceding discussion forms the basis for the automatic construction
of Gibbs samplers. The model’s DAG structure is used to identify the rela-
tively small number of terms that play a part in each f(xj |x−j), an attempt
is made to identify the exact distribution for f(xj|x−j), and when this is
not possible a more costly general-purpose sampler is constructed. Identi-
fication of the exact distributions rests on known conjugacy relationships
between distributions, while the ingenious method of slice sampling is of-
ten useful otherwise.

Conjugate distributions
Again consider,

f(xj |x−j) ∝ f(xj|parent{xj})
∏

i∈child{j}

f(xi|parent{xi}).

The right hand side has exactly the structure of a prior, f(xj |parent{xj}),
for xj , multiplied by a likelihood term for xj , in which the children xi
play the role of data. This fact allows what is known about conjugacy of
distributions to be exploited in automatically ascertaining the density that
gives f(xj |x−j).

If the prior and posterior distribution for some quantity are from the
same family7, for a given likelihood, then that distribution is said to be con-
jugate for that likelihood. We have already seen an example of this when
7 For example, a normal prior yields a normal posterior, or a gamma prior yields a gamma

posterior. Of course, the parameters of the distributions change from prior to posterior.
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constructing the simple Gibbs sampler in Section 6.2.8: there the normal
distribution was shown to be conjugate for the mean of a normal likeli-
hood term, while the gamma distribution was conjugate for the precision
(reciprocal variance) of a normal. A whole library of such standard con-
jugacy results is known,8 and can therefore be exploited in the automatic
construction of Gibbs samplers.

Slice sampling

When no convenient analytic form for a density f(xj|x−j) can be ob-
tained, then some other stochastic simulation method must be employed
for that density. A beautifully simple approach is slice sampling (Neal,
2003). The basic observation is this: if we plot kf(x) against x for any
finite non-zero k, and then generate a coordinate x, y from a uniform den-
sity over the region bounded by kf(x) and the x axis, then the resulting x
value will be a draw from f(x).

The problem, of course, is that generating directly from the required
uniform density of x, y is no easier than generating from f(x) itself. The
simplicity arises when we consider a Gibbs update of x and y. Trivially

f(y|x) ∼ U(0, kf(x))

while

f(x|y) ∼ U(x : kf(x) ≥ y),

so a Gibbs update would draw a y uniformly from the interval (0, kf(x))
and then draw x uniformly from the set of x values for which kf(x) ≥ y
(the ‘slice’ of the technique’s name). The only problem now is identify-
ing the required set of x values. For a unimodal distribution, this set will
constitute a single interval, which may be easy to locate, but for multi-
modal distributions several intervals may need to be identified. Of course,
in practice it is only necessary to identify an interval or a set of intervals
that bracket the required set: then we can generate uniformly on the brack-
eting interval(s) until we obtain an x such that kf(x) ≥ y. If the bracketing
interval(s) are too wide this will be inefficient, of course.

8 Bayesian statisticians had to have something to do between the reading of the Reverend
Bayes’ paper to the Royal Society of London in 1763, and the advent of computers
cheap enough to make the Metropolis Hastings algorithm of 1953/1970 something
usable for those with a smaller budget than the US atomic weapons program.
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6.6.2 BUGS and JAGS

The most widely used software for statistics via automatically constructed
Gibbs samplers is BUGS (Bayesian Updating via Gibbs Sampling), now
followed by openBUGS, which has an R package interface brugs. BUGS
established a simple language for the specification of graphical models,
leading to other implementations including JAGS (Just Another Gibbs Sam-
pler), with the R interface package rjags, which is covered here.

JAGS has to be installed as a standalone program and can be used as
such, but it is very convenient to use it via rjags, which is the method
covered here. rjags also provides easy integration with the coda package
for convergence diagnostics. JAGS models are specified in a text file using
a dialect of the BUGS language. The name of this file, together with a list
providing the corresponding data, is supplied to the jags.model function,
which calls JAGS itself to automatically generate a sampler, returned as
an object of class "jags". This object can then be used to generate sam-
ples using calls to jags.samples or the closely related coda.samples

(depending on exactly what format you would like the data returned in).

Toy example
Recall the toy normal model example of Section 6.2.8 in which we have
n = 20 observations yi ∼ N(µ, φ), where 1/φ ∼ G(a, b) (a gamma
random variable) and (independently) µ ∼ N(c, d). a, b, c and d are con-
stants. In graphical model terms each yi, µ and τ = 1/φ are stochastic
nodes, whereas a, b, c and d are constant nodes: the graph has 26 nodes
in total. The BUGS language is set up for convenient specification of each
node, and their relationships (directed edges). Here is the contents of the
file norm.jags coding up our toy model

model {
for (i in 1:N) {
y[i] ~ dnorm(mu,tau)

}
mu ~ dnorm(0.0, 0.01)
tau ~ dgamma(0.05,0.005)

}

For anyone who has read this far, the language is very intuitive. The sym-
bol ~ specifies a stochastic dependence (i.e. a → in the graph), with the
BUGS/JAGS statement y[i] ~ dnorm(mu,tau) being exactly equivalent
to the mathematical statement yi ∼ N(µ, 1/τ). By default the normal dis-
tribution is parameterised in terms of its precision, rather than its variance.
Notice the use of loops to deal with vectors. R programmers are used to
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Figure 6.16 ACFs computed by autocorr.plot from the coda
package for the toy model simulated using JAGS in Section 6.6.2.
There is little autocorrelation here: to get more detail on the low
correlations the acfplot function could be used.

avoiding loops for populating vectors, but here there is no problem: this
code is going to be compiled by JAGS to produce a sampler, and the R
efficiency concerns do not apply.

Here is the R code to get JAGS to build a sampler from R, given 20
observations in a vector, y:

library(rjags)
setwd("some/directory/somewhere")
jan <- jags.model("norm.jags",data=list(y=y,N=20))

Function setwd sets R’s working directory to the location of norm.jags.
jags.model then creates the sampler, setting the nodes identified in data

to their observed values. JAGS counts N as a constant node in the model, so
it reports that the model has 27 nodes, rather than the 26 counted before.

The jags.model function also runs a number of adaptation iterations,
tuning those component samplers that can be tuned to try to optimise their
performance. The n.adapt argument controls the number of adaptation
iterations and has a default value of 1000. At this stage jan contains a
JAGS model object, which is ready to use to generate samples. Once built
and initialized the sampler can be used:

> um <- jags.samples(jan,c("mu","tau"),n.iter=10000)
|*************************************************| 100%

The second argument, c("mu","tau"), specifies the nodes that should be
monitored at each step, and n.iter gives the number of steps (by setting
argument thin to an integer greater than 1, we could monitor every thin
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steps). The results are stored in a two element list um, which could be used
to produce a plot almost identical to Figure 6.2.

rjags can also create output in a manner convenient for use with the
MCMC diagnostics package coda. Here is some code to do this, plot the
chain ACFs shown in Figure 6.16 and compute effective sample sizes:

> er <- coda.samples(jan,c("mu","tau"),n.iter=10000)
|*************************************************| 100%

> autocorr.plot(er)
> effectiveSize(er)

mu tau
9616.071 10000.000

JAGS has a built-in function dic.samples for obtaining the DIC for a
model. It uses a slightly different computation for pD, which requires sam-
ples from two independent chains (see argument n.chains of jags.model).
For example,

jan <- jags.model("norm.jags",data=list(y=y,N=20),
n.chains=2)

dic.samples(jan,n.iter=10000)

The importance sampling method of Section 6.3.1 can also be used to
estimate the marginal likelihood with JAGS. The sample for the posterior
can be obtained as just shown, whereas the sample from the prior is ob-
tainable by setting up and running the model with no data. The slightly
inconvenient part is that log f(y|θ) has to be coded up again, externally to
the JAGS model. But now let’s move on to a less trivial example.

6.6.3 JAGS algal population example

The algal population growth model of Section 6.4 can easily be imple-
mented in JAGS. The graph in this case has 874 nodes, and a portion of it
is shown in Figure 6.15. The contents of the model specification file are as
follows:

model {
n[1] ~ dnorm(n0,tau)
for (i in 2:M) {
n[i] ~ dnorm(n[i-1] + r - exp(n[i-1]/K),tau)

}
for (i in 1:N) {
mu[i] <- wm[i]*n[im[i]] + wp[i]*n[ip[i]]
y[i] ~ dnorm(exp(mu[i]),tau0)

}
K ~ dgamma(1.0,.001)
tau ~ dgamma(1.0,.1)
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Figure 6.17 40 replicates of the underlying state exp(n) of the
algal population model of section 6.6.3, as simulated using JAGS,
shown as grey lines. The observed data are shown as open circles.
Clearly the state is too variable towards the end of the data.

r ~ dgamma(1.0,.1)
n0 ~ dgamma(1.0,.1)
tau0 ~ dgamma(1.0,.1)

}

Notice that there are two loops now. The first iterates the dynamic model
for the log population for M steps. The second loop works through the N
observed population nodes y[i], relating them to the n[i]. The required
linear interpolation is implemented via the deterministic nodes mu[i], us-
ing the interpolation indices and weights as generated by the function lint

defined in Section 6.4. The notation ‘<-’ is equivalent to the dashed arrows
in Figure 6.15.

The R code to use this model is a little more involved for this example,
because we need to produce interpolation weights and an initial value for
the state vector n. Without a reasonable initial value JAGS is unsuccessful
at initialising this model.

library(rjags)
setwd("~location/of/model/file")
li <- lint(alg$hour,t0=0,dt=4)
dat <- list(y=alg$cell.pop,N=length(alg$cell.pop),M=li$m,

ip=li$ip,im=li$im,wp=li$wp,wm=li$wm)
## initial state for n by linear interpolation of data...
ni <- log(c(alg$cell.pop[1],approx(alg$hour,alg$cell.pop,
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Figure 6.18 Histogram of the galaxies data from the MASS
library (divided by 1000). The data show speeds of 82 galaxies,
and the existence of several modes in the underlying distribution
would be evidence for voids and large clusters in the far universe.

1:(li$m-2)*li$dt)$y,max(alg$cell.pop)))
jal <- jags.model("algae.jags",data=dat,inits=list(n=ni),

n.adapt=10000)
ug <- coda.samples(jal,c("n0","r","K","tau0"),

n.iter=40000,thin=10)

Here only every 10th sample has been stored in ug. According to coda the
effective sample sizes are 1891, 559, 514 and 4000 for K , n0, r and τ0,
respectively, and other diagnostic plots look reasonable. Let us look at the
underlying state n, by having JAGS monitor it every 1000 iterations:
pop <- jags.samples(jal,c("n"),n.iter=40000,thin=1000)
plot(alg)
ts <- 0:(li$m-1)*li$dt
for (i in 1:40) lines(ts,exp(pop$n[,i,1]),col="grey")
with(alg,points(hour,cell.pop))

The results are shown in Figure 6.17: clearly the state is too variable at high
population sizes, and the model would benefit from some modification.

6.6.4 JAGS mixture model example

Figure 6.18 shows astronomical data on the speeds of 82 galaxies, where
it is scientifically interesting to know whether the underlying distribution
is multimodal (this is one of those classic datasets from the statistical lit-
erature). A popular approach to modelling such data is to use a mixture
distribution; for example, to treat the data as coming from a mixture of
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normal densities. Letting y denote the speed of a randomly chosen galaxy
in 1000kms−1 the p.d.f. might be

f(y) =
K∑

k=1

αkφ(y;µk, σ
2
k),

where φ(y;µk, σ
2
k) denotes a normal p.d.f. with mean µk and variance

σ2
k, while positive mixture weights, αk, sum to 1. A common approach to

MCMC sampling from the posterior for the mixture parameters is to in-
troduce auxiliary allocation variables, zi say, which indicate from which
component of the mixture each observation comes. Sampling is then from
the posterior of the component mean and variances and the auxiliary vari-
ables. Notice the technical nuisance that we can permute the indices on
µk, σ

2
k without changing the model (the ‘label switching problem’). In the

one-dimensional case we could deal with this by re-parameterising, or just
ignore it, but in the interests of keeping the pictures pretty I adopt the sim-
ple pragmatic devise of explicitly assigning one of the observations to each
component (i.e. treat K of the zi as known). Otherwise the zi will be mod-
elled as taking value k with probability αk, where the αk follow a Dirich-
let distribution (see Section A.2.4). Normal priors are used for the µk, and
gamma priors are used for the 1/σ2

k.
The JAGS code is as follows, where zi is comp[i], comp.tau[k] is

1/σ2
k and comp.mu is µk:

model {
for (i in 1:N) {
comp[i] ~ dcat(pc[1:K]) ## assign obs. to comp.s
mu[i] <- comp.mu[comp[i]] ## pick out comp. mean
tau[i] <- comp.tau[comp[i]] ## pick out comp. prec.
y[i] ~ dnorm(mu[i],tau[i]) ## f(y|theta)

}
## set up priors...
pc[1:K] ~ ddirch(K.ones) ## Dirichlet prior
for (i in 1:K) {
comp.tau[i] ~ dgamma(1,.1)
comp.mu[i] ~ dnorm(p.mean[i],1e-2)

}
}

This can be utilised from R using something like the following, where a
three component mixture is considered:

library(MASS);library(rjags)
y <- galaxies/1000 ## note y in ascending order
K <- 3;p.mean <- c(10,21,34) ## setting prior means & K
## fix obs closest to prior means to components...

178 Bayesian computation

0 500 1000 1500 2000

9
.0

9
.5

1
0
.0

1
0
.5

µ

0 500 1000 1500 2000

0
.2

0
.6

1
.0

1
.4

σ

0 500 1000 1500 2000

2
0
.5

2
1
.0

2
1
.5

2
2
.0

µ

0 500 1000 1500 2000

2
.0

2
.5

3
.0

σ

0 500 1000 1500 2000

2
5

3
0

3
5

µ

0 500 1000 1500 2000

0
2

4
6

8
1
0

σ

Figure 6.19 Chains for means and standard deviations of a three
component mixture model for the galaxy data, simulated using
JAGS, as discussed in Section 6.6.4.

comp <- rep(NA,N); comp[1] <- 1;comp[N] <- K
if (K>2) for (j in 2:(K-1)) {
abs(y-p.mean[j])->zz; comp[which(zz==min(zz))] <- j

}
n.sim <- 20000
jam <- jags.model("mixture.jags",data=list(y=y,N=N,K=K,

K.ones=rep(1,K),p.mean=p.mean,comp=comp),n.chains=1)
um <- jags.samples(jam,c("comp.mu","comp.tau"),

n.iter=n.sim,thin=10)

Output from the chains is shown in Figure 6.19.
How many components should the mixture contain? The priors used in

this case are vague and fairly arbitrary, so basing inference on posterior
model probabilities or Bayes factors does not seem justified. The presence
of the zi allocation variables also makes it improbable that we are in the
regime where the DIC is well justified. If we were to reformulate, and
use maximum likelihood estimation directly with the likelihood based on
the mixture distribution, then the BIC might be a possibility (provided we
carefully check that the label switching problem can indeed be eliminated
by a re-parameterisation compatible with the MLEs). However, a simpler
approach based on predictive posterior simulation makes more scientific
sense for this simple univariate situation.

Essentially we would like to choose the model most likely to produce
data like the data we actually observe, and the obvious way to check this is
to simulate new data given the posterior distributions of the model param-
eters. This is easy within JAGS. We simply add further nodes to the model
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Figure 6.20 QQ-plots for galaxy data, when theoretical quantiles
are generated by posterior simulation for K equal to 2 (left), 3
(middle) and 4 (right). Plots for K > 5 look very similar to the
right panel.

to allow replicate data to be simulated. Here is the snippet of code to add
to our original JAGS code to do this:

for (i in 1:N) {
compp[i] ~ dcat(pc[1:K]) ## assign obs to comps
mup[i] <- comp.mu[compp[i]] ## pick out comp mean
taup[i] <- comp.tau[compp[i]] ## pick out comp prec
yp[i] ~ dnorm(mup[i],taup[i]) ## pred. of y~f(y|theta)

}

So yp now contains new data simulated according to the posterior distribu-
tion of the model parameters (note that the auxilliary variables are drawn
anew and not from their posterior). Having set this model up, exactly as
before, we would sample from it, monitoring yp

um <- jags.samples(jam,c("yp"),n.iter=n.sim,thin=10)

To compare the posterior predictive distribution to that of the actual data we
could look at QQ-plots, plot(q,sort(y)), based on quantile estimates
q <-quantile(um$yp[,,1],((0:81)+.5)/82). Figure 6.20 shows such
plots for K = 2 to 4. More formally we could use the posterior pre-
dictive sample in yp to form the empirical c.d.f. of y, and then compute
ui = F̂−1(yi), which should be indistinguishable from U(0, 1) if the
model is correct. Here is some code to compute such ui and to test them
for unifomity using a standard Kolmogorov-Smirnov test:

n <- length(as.numeric(um$yp[,,1]))
uq <- (1:n-0.5)/n
u <- approx(sort(um$yp[,,1]),uq,y)$y
ks.test(u,"punif")

The resulting p-value of 0.32 provides no evidence that the galaxy data
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Figure 6.21 Trace plots from the urchin model of Section 6.6.5,
simulated using JAGS. There is clear negative correlation between
omega and mug, with consequent slow mixing of these chains.

are not from a three component mixture, although the corresponding QQ-
plot shows some deviation from a straight line. A two component mixture
gives a quite ugly QQ-plot and a lower p-value, but still not into the firmly
rejectable range. By four components the p-value is over 0.98 and the QQ-
plot pretty much a straight line. Five components yields a marginally higher
p-value, after which it starts to decline again. So with even the slightest
preference for simplicity we would select the four component mixture, al-
though it is hard to rule out a lower K given these data. See Gelman et al.
(2013) for much more on checking via posterior model simulation.

6.6.5 JAGS urchin growth example

Now consider the urchin growth model of Section 5.4, but with vague
gamma priors on the variance parameters and normal priors on mean pa-
rameters. Here is the JAGS model specification file (urchin.jags), where
because the distributional assumption is on the square root of the observed
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volume, we need a data section in the model specification in order to im-
plement the square root transformation:9

data {
for (i in 1:N) { rv[i] <- sqrt(v[i])}
}
model {
for (i in 1:N) {
p[i] ~ dlnorm(mup,taup)
g[i] ~ dlnorm(mug,taug)
am[i] <- log(p[i]/(g[i]*omega))/g[i]
murv[i] <- (a[i] < am[i])*sqrt(omega*exp(g[i]*a[i])) +

(a[i] >= am[i])*sqrt(p[i]/g[i] + p[i]*(a[i]-am[i]))
rv[i] ~ dnorm(murv[i],tauv)

}
tauv ~ dgamma(1.0,.1)
taup ~ dgamma(1.0,.1)
taug ~ dgamma(1.0,.1)
mup ~ dnorm(0,0.0001)
mug ~ dnorm(0,0.0001)
omega ~ dgamma(1.0,.1)

}

Note that log(p[i]) ~ dnorm(mup,taup) cannot be used in place of
p[i] ~ dlnorm(mup,taup), and TRUE/FALSE are interpreted as 1/0 in
arithmetic expressions. Here is some code to set up and simulate from this
model, assuming data in dataframe uv:
N <- nrow(uv)
jan <- jags.model("urchin.jags",

data=list(v=uv$vol,a=uv$age,N=N))
um <- jags.samples(jan,c("mup","mug","taup","taug",

"omega","tauv"),n.iter=100000,thin=100)

Mixing is slow for omega and mug, which appear to have high posterior
correlation (correlation coefficient -0.9): see the trace plots in Figure 6.21.
Now let us look at the predicted urchin volumes for two draws from the
model, overlaid on the observed volumes:
rn <- jags.samples(jan,c("murv"),n.iter=1001,thin=1000)
par(mfrow=c(1,2))
plot(uv,col="grey",pch=19);
points(uv$age,rn$murv[,1,]^2,pch=19,cex=.5)
plot(uv,col="grey",pch=19);
points(uv$age,rn$murv[,2,]^2,pch=19,cex=.5)

The results are shown in Figure 6.22 and look reasonably plausible. It
would also be worth simulating volumes from the posterior distribution
of the model parameters by adding a replicate loop into the JAGS code,
9 This is slightly different from the way BUGS deals with data transformation.
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Figure 6.22 Two draws from the posterior distribution of the
urchin volumes, shown as black dots overlaid on the data shown
as grey circles.

which is like the existing loop but with p, g, am, murv and rv replaced by
predictive versions pp, gp, amp, murvp and rvp, respectively. rvp could
then be monitored and compared to the original root volume data.

Exercises
6.1 The nhtemp data introduced in Section 2.1 can be modelled using the tα

based model given as the second example in that section.

a. Write a Metropolis Hastings sampler to simulate from the posterior of
µ, σ and α, assuming improper uniform priors on µ and σ, but a proper
geometric prior with p = 0.05 for α− 1.

b. Check that the chains have converged.
c. Check the feasibility of the model with the aid of simulated new data

from the posterior.
d. Produce an alternative model in which µi increases linearly with year,

sample from the posterior distribution of the parameters in this case, and,
by producing an appropriate credible interval, test whether there is evi-
dence that average temperature is changing over the years.

e. Compare DIC values for the two versions of the model, and check whether
they imply the same conclusion as the credible interval in this case.

6.2 Repeat the analysis from question 6.1 using JAGS.
6.3 Produce code to reproduce Figure 6.10 from Section 6.5.2, and investigate

the use of the final improved proposal scheme of Section 6.5.3 using this
example (of course in this case a static multivariate normal proposal would
be optimal!)

6.4 Use JAGS to simulate from the posterior of the parameters of the bone mar-
row survival model given in Example 4 of Section 2.1. Use vague priors.
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6.5 Model (6.6) in Section 6.4 can produce highly nonlinear ‘chaotic’ dynamics
for sufficiently large values of r.

a. Simulate a time series of 50 data points from (6.6), using r = 3.8, K =

20, N0 = 10, and assuming that what is actually observed is not Nt, but
rather Yt ∼ Poi(Nt).

b. Write code to simulate from the posterior of the model parameters, given
the simulated yt, bearing in mind that the interpolation required in Sec-
tion 6.4 is not needed here, although it is still sensible to work in terms
of nt = logNt rather than directly in terms of et.

c. Once the sampler is working, try writing a sampler that works in terms
of et rather than nt, and try to work out why it mixes so badly.

6.6 Produce a better model of the geyser data from the MASS library, intro-
duced in Exercise 5.6, using both waiting times and duration of the
eruptions. Sample from the posterior density of its parameters.

7

Linear models

This book has focused on general statistical methods that can be used with
non standard models for statistical inference. This generality comes at the
price of approximation, either through resort to large sample theory, in
the case of most applications of maximum likelihood estimation, or use
of stochastic simulation (or Laplace approximation) in the case of most
Bayesian analyses. There is, however, one class of widely used statistical
models for which inference, given the model, does not rely on approxima-
tion. These are linear models, and this chapter briefly covers their general
theory and use.

A linear model is one in which a response vector y is linear in some
parameters β and some zero mean random errors ǫ, so that

y = Xβ + ǫ.

The model matrix X is determined by some known predictor variables
(also known as covariates1), observed along with each response observa-
tion yi. Usually the elements of ǫ are assumed to be mutually independent
with constant variance σ2. For the purposes of finding confidence intervals
and testing hypotheses for β, the ǫi are also assumed to have a normal
distribution.

Two types of predictor variable form the basic ingredients of X.

1. Metric predictor variables are measurements of some quantity that may
help to predict the value of the response. For example, if the response is
the blood pressure of patients in a clinical trial, then age, fat mass and
height are potential metric predictor variables.

2. Factor variables are labels that serve to categorize the response mea-
surements into groups, which may have different expected values. Con-
tinuing the blood pressure example, factor variables might be sex and

1 Response and predictor variables are sometimes known as ‘dependent’ and
‘independent’ variables, a particularly confusing terminology, not used here.
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drug treatment received (drug A, drug B or placebo, for example). Some-
what confusingly, the groups of a factor variable are referred to as levels
although the groups generally have no natural ordering, and even if they
do, the model structure ignores it.

To understand the construction of X it helps to consider an example. Sup-
pose that along with yi we have metric predictor variables xi and zi and
factor variable gi, which contains labels dividing yi into three groups. Sup-
pose further that we believe the following model to be appropriate:

yi = γgi + α1xi + α2zi + α3z
2
i + α4zixi + ǫi, i = 1, . . . , n,

where there is a different γ parameter for each of the three levels of gi.
Collecting the γ and α parameters into one vector, β, we can rewrite the
model in matrix-vector form as



y1
y2
y3
y4
.
.
.
.
yn




=




1 0 0 x1 z1 z21 z1x1

1 0 0 x2 z2 z22 z2x2

1 0 0 x3 z3 z23 z3x3

0 1 0 x4 z4 z24 z4x4

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .
0 0 1 xn zn z2n znxn







γ1
γ2
γ3
α1

α2

α3

α4




+




ǫ1
ǫ2
ǫ3
ǫ4
.
.
.
.
ǫn




where y1 - y3 are in group 1, y4 is in group 2, and yn is in group 3 of
the factor g. Notice how the factor levels/groups each get a dummy in-
dicator column in the model matrix, with elements showing whether the
corresponding yi belongs to the group or not. Notice also how the metric
variables can enter the model nonlinearly: the model is linear in the param-
eters and error term, but not necessarily in the predictors.

7.1 The theory of linear models

This section shows how the parameters, β, of the linear model

µ = Xβ, y ∼ N(µ, Inσ
2) (7.1)

can be estimated by least squares. It is assumed that X is a matrix, with
n rows, p columns and rank p (n > p). It is also shown that the resulting
estimator, β̂, is unbiased and that, given the normality of the data, β̂ ∼
N(β, (XTX)−1σ2). Results are also derived for setting confidence limits
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on parameters and for testing hypotheses about parameters: in particular
the hypothesis that several elements of β are simultaneously zero.

In this section it is important not to confuse the length of a vector with
its dimension. For example (1, 1, 1)T has dimension 3 and length

√
3. Also

note that no distinction has been made notationally between random vari-
ables and particular observations of those random variables: it is usually
clear from the context which is meant.

7.1.1 Least squares estimation of β

Point estimates of the linear model parameters, β, can be obtained by the
method of least squares; that is, by minimising the residual sum of squares

S =
n∑

i=1

(yi − µi)
2,

with respect to β, where µ = Xβ. This fitting objective follows directly
from the log likelihood for the model, but even without the assumption of
normality, the Gauss-Markov theorem says that minimising S w.r.t. β will
produce the minimum variance linear unbiased estimator of β.

To use least squares with a linear model, written in general matrix-vector
form, first recall the link between the Euclidean length of a vector and the
sum of squares of its elements. If v is any vector of dimension, n, then
‖v‖2 ≡ vTv ≡∑n

i=1 v
2
i . Hence

S = ‖y − µ‖2 = ‖y −Xβ‖2.

Since S is simply the squared (Euclidian) length of the vector y−Xβ,
its value will be unchanged if y −Xβ is rotated or reflected. This obser-
vation is the basis for a practical method for finding β̂ and for developing
the distributional results required to use linear models.

Specifically, as with any real matrix, X can always be decomposed

X = Q

[
R
0

]
= QfR, (7.2)

where R is a p×p upper triangular matrix,2 and Q is an n×n orthogonal
matrix, the first p columns of which form Qf . Recall that orthogonal ma-
trices rotate/reflect vectors, but do not change their length. Orthogonality
also means that QQT = QTQ = In. Multiplying y−Xβ by QT implies

2 That is, Ri,j = 0 if i > j. See also Section B.5.
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that

‖y −Xβ‖2 = ‖QTy −QTXβ‖2 =
∥∥∥∥QTy −

[
R
0

]
β

∥∥∥∥
2

.

Defining p vector f and n− p vector r so that
[
f
r

]
≡ QTy, yields3

‖y −Xβ‖2 =
∥∥∥∥
[
f
r

]
−
[
R
0

]
β

∥∥∥∥
2

= ‖f −Rβ‖2 + ‖r‖2.

The length of r does not depend on β and ‖f −Rβ‖2 can be reduced to
zero by choosing β so that Rβ equals f . Hence,

β̂ = R−1f (7.3)

is the least squares estimator of β. Notice that ‖r‖2 = ‖y − Xβ̂‖2, the
residual sum of squares for the model fit.

7.1.2 The distribution of β̂

The distribution of the estimator, β̂, follows from that of QTy. Multivari-
ate normality of QTy follows from that of y, and since the covariance
matrix of y is Inσ2, the covariance matrix of QTy is

VQTy = QTInQσ2 = Inσ
2.

Furthermore,

E

[
f
r

]
= E(QTy) = QTXβ =

[
R
0

]
β

⇒ E(f) = Rβ and E(r) = 0.

So we have that

f ∼ N(Rβ, Ipσ
2) and r ∼ N(0, In−pσ

2)

with both vectors independent of each other.
Turning to the properties of β̂ itself, unbiasedness follows immediately:

E(β̂) = R−1E(f) = R−1Rβ = β.

3 If the final equality is not obvious recall that ‖x‖2 =
∑
i x

2
i , so if x =

[
v

w

]
,

‖x‖2 =
∑
i v

2
i +

∑
i w

2
i = ‖v‖2 + ‖w‖2.
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Since the covariance matrix of f is Ipσ2, it also follows from (1.5) in Sec-
tion 1.5.1 that the covariance matrix of β̂ is

Vβ̂ = R−1IpR
−Tσ2 = R−1R−Tσ2. (7.4)

Furthermore, since β̂ is just a linear transformation of the normal random
vector f , it must have a multivariate normal distribution:

β̂ ∼ N(β,Vβ̂).

This result is not usually directly useful for making inferences aboutβ, be-
cause σ2 is generally unknown and must be estimated, thereby introducing
an extra component of variability that should be accounted for.

7.1.3 (β̂i − βi)/σ̂β̂i ∼ tn−p

This section derives a result that is generally useful for testing hypotheses
about individual βi, as well as for finding confidence intervals for βi. Since
the n− p elements of r are i.i.d. N(0, σ2) random variables,

1

σ2
‖r‖2 = 1

σ2

n−p∑

i=1

r2i ∼ χ2
n−p

(see Section A.1.2). The mean of a χ2
n−p r.v. is n − p, so this result is

sufficient (but not necessary) to imply that

σ̂2 = ‖r‖2/(n− p) (7.5)

is an unbiased estimator of σ2. The independence of the elements of r and
f also implies that β̂ and σ̂2 are independent.4

Now consider a single-parameter estimator, β̂i, with standard deviation,
σβ̂i

, given by the square root of element i, i of Vβ̂ . An unbiased estimator
of Vβ̂ is V̂β̂ = Vβ̂σ̂

2/σ2 = R−1R−Tσ̂2, so an estimator, σ̂β̂i
, is given

by the square root of element i, i of V̂β̂ , and it is clear that σ̂β̂i
= σβ̂i

σ̂/σ.
Hence, using Section A.1.3,

β̂i − βi
σ̂β̂i

=
β̂i − βi
σβ̂i

σ̂/σ
=

(β̂i − βi)/σβ̂i√
1
σ2 ‖r‖2/(n− p)

∼ N(0, 1)√
χ2
n−p/(n − p)

∼ tn−p

(7.6)
(where the independence of β̂i and σ̂2 has been used). This result enables

4 Recall that ‖r‖2 = ‖y −Xβ̂‖2.
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confidence intervals for βi to be found and is the basis for hypothesis tests
about individual βis (for example, H0 : βi = 0).

7.1.4 F-ratio results

It is also of interest to obtain distributional results for testing, for exam-
ple, the simultaneous equality to zero of several model parameters. Such
tests are particularly useful for making inferences about factor variables
and their interactions, because each factor (or interaction) is typically rep-
resented by several elements of β. Suppose that we want to test

H0 : µ = X0β0 against H1 : µ = Xβ,

where X0 is ‘nested’ within X (meaning that Xβ can exactly match any
X0β0, but the reverse is not true). Without loss of generality we can as-
sume that things are actually arranged so that X = [X0 : X1]: it is always
possible to re-parameterise the model so that this is the case. Suppose that
X0 and X1 have p − q and q columns, respectively, and let β0 and β1

be the corresponding subvectors of β. The null hypothesis can hence be
rewritten as H0 : β1 = 0.

Now consider (7.2), the original QR decomposition of X, in partitioned
form:

X = Q

[
R
0

]
⇒ QTX =

[
R
0

]

⇒ QT[X0 : X1] =

[
R̃0 : R1

0

]
⇒ QTX0 =

[
R̃0

0

]
,

where R̃0 is the first p− q columns of R. Since R is upper triangular, the
last q rows of R̃0 are 0, so let R0 denote the first p− q rows of R̃0 (i.e. the
first p− q rows and columns of R). Rotating y−X0β0 using QT implies
that

‖y−X0β0‖2 =
∥∥∥∥QTy−

[
R0

0

]
β0

∥∥∥∥
2

= ‖f0−R0β0‖2+‖f1‖2+‖r‖2,

where QTy has been partitioned into f and r, exactly as before, but f
has then been further partitioned into p − q vector f0 and q vector f1 so

that f =

[
f0
f1

]
. Since the residual sum of squares for this null model is

now ‖f1‖2 + ‖r‖2, ‖f1‖2 is the increase in the residual sum of squares
that results from dropping X1 from the model (i.e. from setting β1 = 0).
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That is, ‖f1‖2 is the difference in residual sum of squares between the ‘full
model’ and the ‘null model’.

Now, we know that f ∼ N(Rβ, Ipσ
2), but in addition we know that

β1 = 0 under H0 (i.e. the last q elements of β are zero). Hence

E

[
f0
f1

]
= Rβ = (R̃0 : R1)

[
β0

β1

]
= (R̃0 : R1)

[
β0

0

]

= R̃0β0 =

[
R0

0

]
β0 =

[
R0β0

0

]
.

So, if H0 is true, E(f1) = 0 and f1 ∼ N(0, Iqσ
2). Consequently

1

σ2
‖f1‖2 ∼ χ2

q.

We also know that f1 and r are independent. So, forming an F-ratio statis-
tic, assuming H0 and using Section A.1.4, we have

F =
‖f1‖2/q

σ̂2
=

1
σ2 ‖f1‖2/q

1
σ2 ‖r‖2/(n − p)

∼ χ2
q/q

χ2
n−p/(n − p)

∼ Fq,n−p, (7.7)

and this result can be used to find the p-value for the hypothesis test.
Remember that the term ‖f1‖2 is the difference in residual sum of squares
between the two models being compared, and q is the difference in their
degrees of freedom. So we could also write F as

F =
(‖y −X0β̂0‖2 − ‖y −Xβ̂‖2)/{dim(β)− dim(β0)}

‖y −Xβ̂‖2/{n − dim(β)}
.

7.1.5 The influence matrix

One useful matrix is the influence matrix (or hat matrix) of a linear model.
This is the matrix that yields the fitted value vector, µ̂, when post-multiplied
by the data vector, y. Recalling the definition of Qf , as being the first p
columns of Q, f = QT

f y, and so

β̂ = R−1QT
f y.

Furthermore µ̂ = Xβ̂ and X = QfR so

µ̂ = QfRR−1QT
f y = QfQ

T
f y.

So the matrix A ≡ QfQ
T
f is the influence (hat) matrix such that µ̂ = Ay.

The influence matrix has two interesting properties. First, the trace of the
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influence matrix is the number of (identifiable) parameters in the model,
since

tr(A) = tr(QfQ
T
f ) = tr(QT

f Qf ) = tr(Ip) = p.

Second, AA = A, a property known as idempotency. Proof is simple:

AA = QfQ
T
fQfQ

T
f = QfIpQ

T
f = QfQ

T
f = A.

7.1.6 The residuals, ǫ̂, and fitted values, µ̂

The influence matrix is helpful in deriving properties of the fitted values, µ̂,
and the residuals, ǫ̂. µ̂ is unbiased, since E(µ̂) = E(Xβ̂) = XE(β̂) =
Xβ = µ. The covariance matrix of the fitted values is obtained from the
fact that µ̂ is a linear transformation of the random vector y, which has
covariance matrix Inσ

2, so that, using (1.5) from Section 1.5.1,

Vµ̂ = AInA
Tσ2 = Aσ2,

by the idempotence (and symmetry) of A. The distribution of µ̂ is degen-
erate multivariate normal.

Similar arguments apply to the residuals:

ǫ̂ = y − µ̂ = (I−A)y,

so

E(ǫ̂) = E(y) − E(µ̂) = µ− µ = 0.

As in the fitted value case, we have

Vǫ̂ = (In−A)In(In−A)Tσ2 = (In − 2A+AA) σ2 = (In −A)σ2.

Again, the distribution of the residuals is degenerate normal. The results for
the residuals are useful for model checking, because they allow the residu-
als to be standardised to have constant variance, if the model is correct.

7.1.7 The geometry of linear models

Least squares estimation of linear models amounts to finding the orthogo-
nal projection of the n dimensional response data y onto the p dimensional
linear subspace spanned by the columns of X. The linear model states that
E(y) lies in the space spanned by all possible linear combinations of the
columns of the n× p model matrix X, and least squares seeks the point in
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Figure 7.1 Illustration of the geometry of least squares. Left: a
straight line fit to three x, y data. Right: the space in which the y
coordinates of the data define a single point, while the columns of
the model matrix (solid and dashed line) span the subspace shown
in grey. The least squares estimate of E(y) is the orthogonal
projection of the data point onto the model subspace.

that space that is closest to y in Euclidean distance. Figure 7.1 illustrates
this geometry for the model,
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7.1.8 Results in terms of X

The presentation so far has been in terms of the method actually used to
fit linear models in practice (employing the QR decomposition5). By tak-
ing this approach, results (7.6) and (7.7) can be derived concisely, without
recourse to advanced linear algebra. However, for historical reasons, these
results are more usually presented in terms of the model matrix, X, rather
than the components of its QR decomposition.

First consider the covariance matrix of β̂. This becomes (XTX)−1σ2,

5 A few programs still fit models by solution of XTXβ̂ = XTy, but this is less
computationally stable than the rotation method described here, although it is a bit faster.
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which is easily seen to be equivalent to (7.4):

Vβ̂ = (XTX)−1σ2 =
(
RTQT

fQfR
)−1

σ2 =
(
RTR

)−1
σ2

= R−1R−Tσ2.

The expression for the least squares estimates is β̂ = (XTX)−1XTy,
which is equivalent to (7.3):

β̂ = (XTX)−1XTy = R−1R−TRTQT
f y = R−1QT

f y = R−1f .

It follows that the influence matrix can be written as A = X(XTX)−1XT.
These results are of theoretical interest, but should not usually be used for
computational purposes.

7.1.9 Interactions and identifiability

The preceding theory assumed that X has full rank. When working with
factors some care is required to ensure that this happens. The issue is easiest
to appreciate by considering the simple linear model

yi = α+ γk(i) + ǫi,

where α and the γk are parameters while k(i) gives the group to which
observation i belongs. Conceptually this model makes good sense: α is the
overall mean, whereas γk is the departure from the overall mean caused by
being a member of the kth group. The problem is that α and the γk are not
identifiable. Any constant c could be added to α and simultaneously sub-
tracted from all the γk, without changing the model-predicted distribution
of the yi. Hence there is no way that the model parameters can uniquely be
determined from the data. This lack of identifiability leads directly to rank
deficiency of X, as is easily seen by writing out an example of the model
matrix. Suppose, arbitrarily, that there are three groups, so that

X =




1 1 0 0
1 . . .
1 1 0 0
1 0 1 0
1 . . .
1 0 1 0
1 0 0 1
1 . . .
1 0 0 1




.
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Any column of X is a simple linear combination of the other three, so
that the matrix is rank 3. The lack of identifiability can be removed by
placing a single linear constraint on the model parameters, the simplest
of which is to set one of the parameters to zero. This could be α, but a
choice that generalises to multiple factor models is to leave α free and to
set the first level of the factor to zero, thereby removing the corresponding
column of the model matrix and restoring full rank. If you write out an
example model with m factor variables and an intercept, you will see that
m constraints are required. Setting the first level of each factor to zero is
a simple automatic way of generating them and is also the default in R.
Notice that these constraints do not change what the model says about the
distribution of the response. All that changes is the interpretation of the
parameters: α is now the mean for the first level of the factor, whereas the
γ2, γ3, etc. are the differences between each of the factor levels and the
first.

Often in linear models we are interested in ‘interaction’ terms involving
several predictors. Formally an interaction is generated in a model when
the parameter for one predictor variable depends on another predictor vari-
able (for example, the slope of a regression on age itself depends on the
factor variable sex). It turns out that the model matrix columns associated
with an interaction are given by all possible pairwise products of the model
matrix columns for the effects that make up the interaction. Furthermore,
if those effects are identifiable (perhaps by having had constraints imposed
already), then the interactions constructed in this way are also identifiable.
This is assuming that the data are sufficient to estimate the effect: for ex-
ample, we cannot estimate the interaction coefficient associated with being
over 50 and exercising for more than five hours a week from a sample that
contains no individuals in this category.

As an example, consider a model with two factors and one metric vari-
able, with an interaction of the factors and of the first factor with the metric
variable. To save ink suppose that each factor has two levels. The model is

yi = α+ γk(i) + δj(i) + ηk(i),j(i) + νxi + ωk(i)xi + ǫi.

Suppose there are 14 observations, the first 8 from the first level of the first
factor, and the remainder from the second level, and that observations al-
ternate between levels 1 and 2 of the second factor. Then the rank-deficient
full model matrix is shown on the left, while a full rank version is shown
on the right, using the simple constraints just described:
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1 1 0 1 0 1 0 0 0 x1 x1 0
1 1 0 0 1 0 0 1 0 x2 x2 0
1 1 0 1 0 1 0 0 0 x3 x3 0
1 1 0 0 1 0 0 1 0 x4 x4 0
1 1 0 1 0 1 0 0 0 x5 x5 0
1 1 0 0 1 0 0 1 0 x6 x6 0
1 1 0 1 0 1 0 0 0 x7 x7 0
1 1 0 0 1 0 0 1 0 x8 x8 0
1 0 1 1 0 0 1 0 0 x9 0 x9
1 0 1 0 1 0 0 0 1 x10 0 x10
1 0 1 1 0 0 1 0 0 x11 0 x11
1 0 1 0 1 0 0 0 1 x12 0 x12
1 0 1 1 0 0 1 0 0 x13 0 x13
1 0 1 0 1 0 0 0 1 x14 0 x14




→




1 0 0 0 x1 0
1 0 1 0 x2 0
1 0 0 0 x3 0
1 0 1 0 x4 0
1 0 0 0 x5 0
1 0 1 0 x6 0
1 0 0 0 x7 0
1 0 1 0 x8 0
1 1 0 0 x9 x9
1 1 1 1 x10 x10
1 1 0 0 x11 x11
1 1 1 1 x12 x12
1 1 0 0 x13 x13
1 1 1 1 x14 x14




Now consider a general n × p model matrix, X, of rank r < p, with
corresponding parameter vector β. All that least squares does is to find the
point in the space spanned by the columns of X that is as close as possi-
ble to y (in the Euclidean sense). So we could remove the rank-deficiency
problem by defining β = Cβ̃, where C is any p × r matrix such that
X̃ = XC is of (full) rank r. β̃ is the r vector of constrained parame-
ters and X̃ the corresponding model matrix. This observation implies that
we have considerable freedom to define constraint matrices C so that the
constrained parameters are interpretable. These alternative constrained pa-
rameterisations are known as alternative contrasts.

7.2 Linear models in R

The lm function in R is used to fit linear models to data and is the prototype
for a large number of other functions for fitting standard classes of models.
The first argument to lm is a model formula that specifies the response vari-
able and the structure of the model matrix. The second, optional, argument
is a dataframe containing the variables referred to by the model formula.
lm estimates the model using exactly the QR method covered earlier, hav-
ing first imposed any necessary identifiability constraints. It returns a fitted
model object of class "lm".

The returned fitted model object can be interrogated by various method
functions for printing, summarizing, producing residual plots and so on.
Here is a short example in which data are simulated from

yi = α+ γk(i) + δxi + ǫi,

and the parameters are then estimated from the resulting data by least
squares:

> set.seed(0);g <- rep(1:3,10); x <- runif(30)
> y <- 1 + x + g + rnorm(30) * 0.5
> g <- factor(g)
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> dat <- data.frame(y=y,g=g,x=x)
>
> mod <- lm(y ~ g + x,dat)
> mod ## causes print method to be called for mod

Call:
lm(formula = y ~ g + x, data = dat)

Coefficients:
(Intercept) g2 g3 x

2.0362 0.9812 2.1461 0.8590

The structure of the model is specified using the formula y ~ g + x, where
the fact that g is declared to be of class "factor" causes it to be treated as
such in the model fitting. lm has automatically implemented identifiability
constraints here, setting the first coefficient for factor g to zero, so that the
intercept is now the intercept for level 1 of factor g.

A more extensive summary of the model can also be obtained as follows:

> summary(mod)

Call:
lm(formula = y ~ g + x, data = dat)

Residuals:
Min 1Q Median 3Q Max

-0.64293 -0.26466 -0.07511 0.27505 0.89931

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.0362 0.2023 10.067 1.84e-10 ***
g2 0.9812 0.1873 5.237 1.80e-05 ***
g3 2.1461 0.1849 11.605 8.76e-12 ***
x 0.8590 0.2579 3.331 0.0026 **
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1

Residual standard error: 0.411 on 26 degrees of freedom
Multiple R-squared: 0.8436, Adjusted R-squared: 0.8256
F-statistic: 46.75 on 3 and 26 DF, p-value: 1.294e-10

After printing the model call and a summary of the residual distribution, the
coefficient table gives the parameter estimates and their standard errors, as
well as a t statistic for testing each parameter for equality to zero and the
p-value for such a test (based on Section 7.1.3). Notice how coefficients are
identified by the name of the predictor variable with which they are associ-
ated (R knows nothing about what we might choose to call the coefficients;
it only knows about the associated variables). The output from this table
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can also be used to compute confidence intervals for the model coefficients
using the results from Section 2.7. The Residual standard error is σ̂,
and the F-statistic is the F-ratio for testing the null hypothesis that a
constant is as good a model for the mean response as the model actually
fitted. The associated p-value suggests not, in this case.

The R-squared statistics are measures of how closely the model fits the
response data. The idea is that, after fitting, the part of the variability left
unexplained is the variability of the residuals, so the proportion of variabil-
ity unexplained is the ratio of the residual variance to the original variance
of the yi. One minus the unexplained variance is the explained variance

r2 = 1−
∑

i ǫ̂
2
i/n∑

i(yi − ȳ)2/n
.

This conventional definition (from which the n’s can be cancelled) uses
biased variance estimators. As a result r2 tends to overestimate how well a
model is doing. The adjusted r2 avoids this overestimation to some extent
by using unbiased estimators,

r2adj = 1−
∑

i ǫ̂
2
i/(n− p)∑

i(yi − ȳ)2/(n− 1)
,

where p is the number of model parameters. r2adj can be negative.6

High r2 values (close to 1) indicate a close fit, but a low r2 is not neces-
sarily indicative of a poor model: it can simply mean that the data contain
a substantial random component.

7.2.1 Model formulae

In R, model formulae are used to specify the response variable and model
structure. Consider the example

y ~ x + log(z) + x:z

The variable to the left of ~ specifies the response variable, whereas every-
thing to the right specifies how to set up the model matrix. ‘+’ indicates
to include the variable to the left of it and the variable to the right of it (it
does not mean that they should be summed). ‘:’ denotes the interaction of
the variables to its left and right. So if x is a metric variable then the above
formula specifies:

yi = β1 + β2xi + β3 log(zi) + β4xizi + ǫi

6 This occurs when the fit of the model to data is purely imaginary.
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whereas if x is a factor variable the model is

yi = β1 + γk(i) + β2 log(zi) + αk(i)zi + ǫi.

Notice how an intercept term is included by default.
In addition to ‘+’ and ‘:’ several other symbols have special meanings

in model formulae:

• ‘*’ means to include main effects and interactions, so a * b is the same
as a + b + a:b.

• ‘^’ is used to include main effects and interactions up to a specified level.
So (a+b+c)^2 is equivalent to a + b + c + a:b + a:c + b:c, for
example, while (a+b+c)^3 would also add a:b:c. Notice that this oper-
ator does not generate all the second-order terms you might be expecting
for metric variables.

• ‘-’ excludes terms that might otherwise be included. For example, -1
excludes the intercept otherwise included by default, and x * z - z

would produce x + x:z.

As we have seen, you can use simple mathematical functions in model
formulae to transform variables, but outside the argument to a function the
usual arithmetic operators all have special meanings. This means that if we
want to restore the usual arithmetic meaning to an operator in a formula,
then we have to take special measures to do this, by making the expression
the argument of the identity function I(). For example, y ~I(x+z) would
specify the model yi = α+β(xi+zi)+ǫi. Occasionally the model matrix
should include a column for which the corresponding β coefficient is fixed
at 1. Such a column is known as an offset: offset(z) would include a
column, z, of this type. See ?formula in R for more details.

7.2.2 Model checking

As with all statistical modelling it is important to check the plausibility of
a linear model before conducting formal statistical inference. It is pointless
computing AIC, testing hypotheses or obtaining confidence intervals for a
model that is clearly wrong, because all these procedures rest on the model
being at least plausible. For linear models the key assumptions are those of
constant variance and independence, and the residuals should be examined
for any evidence that these have been violated. Normality of the residuals
should also be checked, if the other assumptions are viable, but the central
limit theorem tends to mean that normality is of only secondary importance
to the other assumptions.
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Figure 7.2 Leverage: the basic problem. The solid black line
shows the least squares straight line fit to the 100 data shown as
open circles. In this case the fit is reasonable for all the data. The
dashed line shows the least squares straight line fit when the point
at x = 10 is moved to the position shown as a solid black disc. To
accommodate the datum far from the other points, the line has
been forced to fit the remaining 99 data rather poorly.

Often the constant variance assumption is violated because the variance
actually depends on the mean of the response, so plots of ǫ̂i against µ̂i, can
be very useful. Independence tends to be violated when observations that
are nearby in space or time are correlated, or when something is wrong with
the mean structure of the model, such as a predictor having been omitted,
or included incorrectly (specified as a linear effect when a quadratic was
appropriate, for example). Plots of residuals against predictors and poten-
tial predictors are useful, as well as estimation of the degree of correlation
in space and time.

Another thing to check is whether some individual observations are hav-
ing undue influence on the modelling results. Points with very large resid-
uals can sometimes be problematic: perhaps they are recorded incorrectly
or are observations that simply do not belong in the same population as the
rest of the data. Large outliers should be investigated. Sometimes there is
something wrong with the corresponding observations, justifying exclusion
of these points from the analysis, but sometimes, on closer investigation,
these are the observations that contain the most interesting information
in the dataset. If there appears to be nothing unusual about outliers apart
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Figure 7.3 Default model checking plots for the cars model
discussed in Section 7.2.2. The left-hand plots both suggest
increasing variance with the mean and the top right plot indicates
some departure from normality in the residuals. The lower right
plot suggests that, although a couple of points have rather high
leverage, their actual influence on the fit is not unduly large.

from them being outliers, then it is prudent to repeat the analysis with and
without them, to check the sensitivity of conclusions to these points. How-
ever, outliers should almost never be discarded simply for being outliers
(if Geiger and Marsden had discarded the outliers in Rutherford’s 1909
experiment, they would have left the nucleus of the atom undiscovered).

A related issue is that of leverage: some points have undue influence
not because their response variable is noticeably out of line, but because
an unusual combination of predictor variables makes the whole fit unduly
sensitive to the value of the corresponding response observation. Figure 7.2
illustrates this issue.

As an example of some basic model checking, consider a model for the
cars data supplied with R. The data give stopping distance in feet for
cars stopping from a range of speeds in miles per hour and were gathered
in the 1920s. Theoretically the stopping distance for a car is made up of
a driver reaction distance and a braking distance. The former comes from
the fixed length of time taken for the driver to respond to the stop signal
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and apply the brakes, so this distance should be directly proportional to
speed. Once the brakes are applied, the distance is determined by the rate
at which the brakes can dissipate the car’s kinetic energy. Brakes dissipate
kinetic energy in direct proportion to the distance travelled, and the total
amount of energy to dissipate is proportional to the square of speed, so this
component of the distance should be proportional to initial speed squared,
suggesting a model

disti = β0 + β1speedi + β2speed
2
i + ǫi

(if the reasoning behind the model is correct then β0 should be approxi-
mately zero). Let us fit this model to the cars data and then examine the
default residual plots for an "lm" object:
b <- lm(dist ~ speed + I(speed^2),data=cars)
par(mfrow=c(2,2))
plot(b)

Figure 7.3 shows the results. The top left plot of ǫ̂i against µ̂i shows some
indication of increasing variance with mean, which would somewhat vio-
late the constant variance assumption, although the effect is not extreme
here. The other feature to look for is a pattern in the average value of
the residuals as the fitted values change. The solid curve shows a run-
ning average of the residuals to help judging this: there is no obvious pat-
tern here, which is good. The remaining plots shows standardised residuals
ǫ̂i/(σ̂

√
1−Aii), which should appear approximately N(0, 1) distributed

if the model is correct (see Section 7.1.6). The lower left plot shows the
square root of the absolute value of the standardised residuals against the
fitted value (again with a running average curve). If all is well, the points
should be evenly spread with respect the vertical axis here, with no trend
in their average value. A trend in average value is indicative of a problem
with the constant variance assumption, and is clearly visible in this case.
The top right plot shows the ordered standardised residuals against quan-
tiles of a standard normal: the systematic deviation from a straight line at
the top right of the plot indicates a departure from normality in the residu-
als. The lower right plot is looking at leverage and influence of residuals,
by plotting standardised residuals against a measure of leverage, Aii. A
combination of high residuals and high leverage indicates a point with sub-
stantial influence on the fit. A standard way of measuring this is via Cook’s
distance, which measures the change in all model fitted-values on omission
of the data point in question. It turns out that Cook’s distance is a function
of Aii and the standardised residuals, so contours of Cook’s distance values
are shown on the plot. Cook’s distances over 0.5 are considered borderline
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Figure 7.4 Fitted car model predictions overlaid on observed
data, as discussed in Section 7.2.3.

problematic, whereas values over 1 are usually considered highly influ-
ential, so points to the right of these contours warrant investigation. Here
there seems to be no problem.

Given these plots, an obvious model to try is one in which variability
increases with speed; for example, ǫi ∼ N(0, σ2speedi).

lm(dist ~ speed + I(speed^2),data=cars,weights=1/speed)

would fit this and does indeed improve matters, but it is time to move on,
noting that in most serious analyses we would need to plot residuals against
predictors, rather than relying solely on the default plots.

7.2.3 Prediction

After fitting a model, one common task is to predict the expected response
from the model at new values of the predictor variables. This is easy: sim-
ply use the new predictor variable values to create a prediction matrix, Xp,
in exactly the same way as the original values were used to create X. Then
the predictions are µ̂p = Xpβ̂, and µ̂p ∼ N(µp,Xp(XTX)−1XpTσ2).
In R the method function predict.lm automates the process. The follow-
ing code uses it to add a predicted distance curve, with 2 standard error
bands, to a plot of the cars data:

with(cars,plot(speed,dist))
dat <- data.frame(speed = seq(0,25,length=100))
fv <- predict(b,newdata=dat,se=TRUE)
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lines(dat$speed,fv$fit)
lines(dat$speed,fv$fit + 2 * fv$se.fit,lty=2)
lines(dat$speed,fv$fit - 2 * fv$se.fit,lty=2)

The results are shown in Figure 7.4.

7.2.4 Interpretation, correlation and confounding

On examination of the summary of the cars model, something strange
stands out:

> summary(b)

Call:
lm(formula = dist ~ speed + I(speed^2), data = cars)

Residuals:
Min 1Q Median 3Q Max

-28.720 -9.184 -3.188 4.628 45.152

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.47014 14.81716 0.167 0.868
speed 0.91329 2.03422 0.449 0.656
I(speed^2) 0.09996 0.06597 1.515 0.136

Residual standard error: 15.18 on 47 degrees of freedom
Multiple R-squared: 0.6673, Adjusted R-squared: 0.6532
F-statistic: 47.14 on 2 and 47 DF, p-value: 5.852e-12

The p-values for all the model terms are very high, despite the fact that the
predictions from the model as a whole clearly indicate that there is good
evidence that the model is better than zero or a constant model. These p-
values cannot be taken as an indication that all the terms can be dropped
from the model, but why not? The answer is that the p-values are testing
whether the corresponding coefficients could really be zero given that the
other terms remain in the model (i.e. are nonzero). If the estimators for the
various coefficients are not independent, then dropping one term (setting it
to zero) will change the estimates of the other coefficients and hence their
p-values. For this reason, if we were to consider dropping terms then we
should drop only one at a time, refitting after each drop. It often makes
sense for the single dropped term to be the one with the highest p-value.
Only if all the coefficient estimators are independent can we dispense with
this cautious approach and drop all the terms with high p-values from a
model in one go. However, such independence usually only arises for mod-
els of ‘balanced’ data from experiments designed to achieve it.
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Lack of independence between estimators creates difficulties in the in-
terpretation of estimates. The basic issue is that correlation between pa-
rameter estimators typically arises from correlation between the variables
to which the parameters relate, but if predictor variables are correlated it
is not possible to entirely separate out their effects on the response by ex-
amining the results of model fitting. As an example, consider modelling
blood pressure in a group of patients using the predictor variables height
and weight. Here is a simple simulation in which the real driver of blood
pressure is weight, but height and weight are correlated:

n <- 50; set.seed(7)
height <- rnorm(n,180,10)
weight <- height^2/400+rnorm(n)*5
bp <- 80 + weight/2 + rnorm(n)*10

Now fit bpi = β0 + β1heighti + β2weighti + ǫi, and summarise it:

> summary(lm(bp~height+weight))
...
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 32.76340 30.57422 1.072 0.2894
height 0.45497 0.26894 1.692 0.0973 .
weight 0.09462 0.27248 0.347 0.7299
...

In this case most of the effect on blood pressure has been attributed to
height, basically because the correlation between height and weight is
about 0.9, so that it is not possible to determine which variable is actu-
ally driving the response. Comparison with the two single-effect models
emphasises the difficulty:

> summary(lm(bp~height))
...
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 25.4937 22.0782 1.155 0.254
height 0.5382 0.1209 4.453 5.05e-05 ***
...
> summary(lm(bp~weight))
...
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 81.3987 10.6049 7.676 6.83e-10 ***
weight 0.5054 0.1260 4.012 0.00021 ***
...

Notice how both model coefficients were modified by the presence of the
other correlated predictor (the true coefficient values being 0 for height
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and 0.5 for weight). Another way of looking at this is that height is such
a good proxy for weight in these data that we can’t tell whether weight or
its proxy is the better predictor. On reflection, the only way to determine
which is the causal variable here is to control for the other one. That is, to
find a way of comparing different heights with weight held constant, and
different weights with height held constant. Case control studies operate
this way, by trying to identify pairs of patients matched on every relevant
variable except for the variable being investigated.

The obvious related problem is the problem of hidden confounders,
which are variables not in the model that are related to both the response
and one or more of the predictors that are included. Since the included pre-
dictors act as proxies for the confounders, their coefficient estimates are
distorted by including both a component relating to their direct affect, and
a component relating to their effect as a proxy for the confounder.

The issue of hidden confounding and correlation is a major reason for
basing causal inference (such as deciding ‘does this drug work or not?’) on
designed experiments. With appropriate design we can ensure that param-
eters associated with the different effects controlled for in the experiment
are independent. Furthermore, by random allocation of experimental units
(e.g. patients) to the different levels of the factors controlled for, we can
break any association between the factor variables controlled by the exper-
iment and variables that could otherwise be confounders. See Section 2.6.

7.2.5 Model comparison and selection

The results of Section 7.1.4 allow the comparison of nested linear models
by hypothesis testing, and the R function anova automates this. As an ex-
ample consider testing the null model disti = βspeed2i + ǫi against the
full model for the cars data considered earlier. The following performs the
appropriate F-ratio test (using the variance modification suggested by the
model checking):
> b <- lm(dist~speed+I(speed^2),data=cars,weights=1/speed)
> b0 <- lm(dist~I(speed^2)-1 ,data=cars,weights=1/speed)
> anova(b0,b)
Analysis of Variance Table

Model 1: dist ~ I(speed^2) - 1
Model 2: dist ~ speed + I(speed^2)
Res.Df RSS Df Sum of Sq F Pr(>F)

1 49 756.11
2 47 663.42 2 92.693 3.2834 0.04626 *
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so there is some evidence against the null model in this case. If anova

is called with a single argument, then a table is produced based on the
sequence of ever simpler models obtained by removing terms sequentially
from the model. Each row of the table tests one model in the sequence
against the closest more complicated model in the sequence. Such tables
only really make sense in the context of balanced designed experiments
where the effects are independent. Otherwise the drop1 function is usually
a better bet: it produces the table obtained by F-ratio test comparison of the
full model with each of the models produced by dropping a single effect
from the full model.

The AIC function compares models by AIC (see Section 4.6). For exam-
ple,
> AIC(b0,b)

df AIC
b0 2 414.8026
b 4 412.2635

which again suggests that that the larger model is preferable here. BIC is
also available.

Model selection strategies
When faced with large numbers of possible prediction terms in a model,
model comparison methods are often used to try and sort through the space
of possible models to find one that is ‘best’ in some sense. A traditional
approach is backwards selection, which starts with the ‘largest plausible
model’ and consists of repeatedly deleting the model term with the highest
p-value (as reported by drop1) and refitting, until all p-values are below
some threshold. Forward selection starts from a simple model and repeat-
edly adds in the single predictor term for which there is most evidence
in an F-ratio test, until no more terms would lead to significant improve-
ment. Forward selection is slightly problematic theoretically, because early
in the process it is likely that both models being compared are demon-
strably wrong, which invalidates the theoretical basis for the test. Perhaps
more seriously, early in the process the residual variance may be seriously
inflated as a result of important terms not yet being included in the model,
which means that the early tests lack power and termination may occur
far too soon. Pragmatically, however, it may be the only solution for large
problems. Naturally there are also backward-forward strategies, in which
cycles of backward and forward selection are alternated until convergence,
to allow terms that were dropped early on the possibility of re-entering the
model.
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Selection strategies based on hypothesis testing are somehow searching
for the simplest model compatible with the data. As an alternative to this
approach we can also use AIC to compare the alternative models. The step
function in R automates the process of backward, forward, or backward-
forward selection based on AIC. In simple cases it may also be possible to
fit all possible submodels of some initial largest model, and just select the
submodel with the smallest AIC.

Another selection approach, which has gained popularity when there are
large numbers of predictors relative to the number of data, is to penalise
the model coefficients towards zero, in such a way that as the penalization
increases, many of the coefficient estimates become zero (see e.g. Hastie
et al., 2001). For example, the model fitting problem becomes

β̂ = argmin
β

‖y −Xβ‖2 + λ
p∑

i=1

|βi|,

where penalisation parameter λ is increased to force successively more
terms out of the model. Obviously, care must be taken to standardise the
predictors appropriately for this Lasso method to make sense.

7.3 Extensions

Linear models have proved so useful that they have been generalised in
several ways.

• Linear mixed models augment the linear model structure with a much
richer linear structure for the random variability in the data (e.g. Pinheiro
and Bates, 2000). The basic model becomes

y = Xβ + Zb+ ǫ, b ∼ N(0,ψ), ǫ ∼ N(0, Iσ2),

where β, σ2 and ψ are now parameters (ψ usually has some structure
so that it actually depends on only a small set of parameters θ). Z is
a model matrix specifying how the stochastic structure of the response
depends on the random effects, b. Inference is now based on maximum
likelihood estimation using the fact that y ∼ N(Xβ, Iσ2 + ZψZT)
(and in practice usually exploiting any special structure in Z and ψ).
One interesting and computationally useful fact is that, given the other
parameters, β̂ and the modes of b|y are the minimisers of

‖y −Xβ − Zb‖2/σ2 + bTψ−1b,

a penalized least squares problem. See lme from library nlme in R.
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• Generalised linear models (GLMs) allow the response variable to have
any exponential family distribution (Poisson, gamma, binomial, etc.)
while some nonlinearity is allowed into the mean structure (McCullagh
and Nelder, 1989). Defining µi = E(yi) a generalised linear model has
the form

g(µi) = Xiβ, yi ∼ EF(µi, φ),

where g is some known monotonic function (identity or log, for exam-
ple), Xi is the ith row of X, and EF(µi, φ) denotes some exponential
family distribution with mean µi and scale parameterφ. Xβ is known as
the linear predictor for such models and is often denoted η. Maximum
likelihood estimation theory provides the basis for model estimation and
further inference for these models, but there are many links to the lin-
ear models of this chapter. In particular, noting that for any exponential
family distribution var(yi) = V (µi)φ, where V is a known function, it
turns out that MLE by Newton’s method is equivalent to the iterative es-
timation of working weighted linear models, as follows (here using the
expected Hessian). Set µ̂i = yi + ∆i and η̂i = g(µ̂i) (where ∆i is a
small perturbation that may be made to ensure the existence of η̂i) and
iterate the following two steps to convergence:

1. For i = 1, . . . , n form η̂i = g(µ̂i), zi = g′(µ̂i)(yi − µ̂i) + η̂i, and
wi = V (µ̂i)

−1g′(µ̂i)
−2.

2. Compute

β̂ = argmin
β

n∑

i=1

wi(zi −Xiβ)
2

and update η̂i = Xiβ̂, and µ̂i = g−1(η̂i).

At convergence (4.5) becomes β̂ ∼ N(β, (XTWX)−1φ), where W
is the diagonal matrix of converged wi (this is a large sample approxi-
mation, of course). See glm in R for fitting these models.

• Generalised additive models (GAMs) are generalised linear models in
which the linear predictor depends linearly on unknown smooth func-
tions of predictors (e.g. Wood, 2006). In general the model becomes

g(µi) = X∗
iβ

∗ +
∑

j

Lijfj , yi ∼ EF(µi, φ)

where X∗
iβ

∗ is the parametric component of the linear predictor (often
just an intercept term), the fk are smooth functions of one or more pre-
dictors, and the Lij are linear functionals. The most common example
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is where the Lij are functionals of evaluation, so that the model is

g(µi) = X∗
iβ

∗ +
∑

j

fj(xji), yi ∼ EF(µi, φ)

where xji denotes the ith observation of the jth predictor (possibly a
vector). The model is accompanied by precise characterisation of what
is meant by a smooth function, in the form of measures of function wig-
gliness such as the spline penalty

∫
f ′′(x)2dx.

The models offer convenient flexibility relative to purely parametric
GLMs, but at the cost that the functions must be estimated, which in-
cludes estimating how smooth they should be. A convenient approach
replaces each fj with a linear basis expansion fj(x) =

∑K
k=1 bjk(x)γk

where the γk are coefficients to be estimated, and the bjk(x) are basis
functions, chosen to have good approximation theoretic properties (such
as spline bases). K is chosen to strike a balance between avoiding ap-
proximation error bias and achieving computational efficiency. Given
the basis expansion, the GAM now has the form of a rather richly pa-
rameterised GLM, g(µi) = Xiβ, where X contains the originalX∗ and
columns containing each of the basis functions evaluated at the covari-
ate values (or linear functionals of these) and β contains the collected
parameters. The penalties become quadratic forms, βTSjβ, where the
Sj are matrices of known coefficients.

To avoid overfit, estimation is by penalised maximum likelihood esti-
mation, so we seek

β̂ = argmax
β

l(β)− 1

2

∑

j

λjβ
TSjβ.

The λj are tunable smoothing parameters controlling the fit-smoothness
tradeoff. In fact, given values for the smoothing parameters, β̂ can be
obtained by a penalised version of the iterative weighted least squares
method used to fit GLMs. All that changes is that at the second step of
the algorithm we have

β̂ = argmin
β

n∑

i=1

wi(zi −Xiβ)
2 +

∑

j

λjβ
TSjβ.

To estimate the λj there are two main approaches. The first chooses the
λi to optimise an estimate of how well the model would fit new data
(not used in the estimation), such as AIC or some cross-validation score.
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The alternative treats the penalties as being induced by improper Gaus-
sian priors on the model coefficients β ∼ N{0, τ(∑j λjSj)

−} (the
covariance matrix here is a pseudoinverse of the total penalty matrix).
A Laplace approximation can then be used to integrate the β out of the
marginal likelihood for the λj and φ, and this marginal likelihood can be
maximised to estimate the scale parameter (if needed) and the smooth-
ing parameters. The computations resemble those used for estimating
the variance parameters of random effects, but some care is needed in
the interpretation. It is rarely the case that the modeller believes that the
fk would be resampled afresh from their priors on each replication of the
data, so the procedure is really best thought of as Bayesian. In any case
the fk have the dual interpretation of being smooth functions and pos-
terior modes of random fields. Inference is most usefully based on the
large-sample Bayesian result β ∼ N{β̂, (XTWX +

∑
j λjSj)

−1φ}.
See function gam in R package mgcv.

Unsurprisingly, these various extensions have been combined, yielding gen-
eralised linear mixed models (GLMMs) and generalised additive mixed
models (GAMMs), for example. Given the link between estimating smooth
functions and estimating random effects, these latter extensions are com-
putable by methods almost identical to those used for GAMs. Full Bayesian
approaches to these model classes are also available via MCMC (see e.g.
Fahrmeir et al., 2004, the stand alone BayesX package, and its R interface),
or higher order approximation based on nested Laplace approximation (see
Rue et al., 2009, the stand alone INLA package and its R interface).

Exercises
7.1 Find an expression for the least squares estimate of β in the model yi =

βxi = ǫi, in terms of xi and yi, by minimising
∑
i(yi − βxi)

2 w.r.t. β.
7.2 This question provides an alternative derivation of the least squares esti-

mates. Let S(β) denote ‖y −Xβ‖2. If XTXβ0 = XTy, show that

S(β)− S(β0) = ‖X(β − β0)‖2.

What does this tell you about β0?
7.3 Show that

σ̂2 =
‖r‖2
n− p

is an unbiased estimator of the residual variance σ2 by considering only
E(r2i ) (and not assuming normality).
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7.4 Show that, in the usual linear modelling notation, XTy = XTµ̂. Hence if a
linear model contains an intercept term, show what the sum of the residuals,∑
i ǫ̂i, must be.

7.5 Write out the following three models in the form y = Xβ + ǫ (note: y, β
and ǫ are always vectors, whereas X is a matrix). In all cases y is the re-
sponse variable, ǫ the residual ‘error’ and other Greek letters indicate model
parameters.

a. The ‘balanced one-way ANOVA model’, yij = βi+ǫij , where i = 1 . . . 3

and j = 1 . . . 2.
b. A model with two explanatory variables: a factor variable and a continu-

ous variable, x:

yi = βj + γxi + ǫi if obs. i is from factor level j

Assume that i = 1 . . . 6, that the first two observations are for factor level
1 and the remaining four for factor level 2, and that the xi’s are 0.1, 0.4,
0.5, 0.3, 0.4 and 0.7.

c. A model with two explanatory factor variables and only one observation
per combination of factor variables: yij = α + βi + γj + ǫij . The first
factor (β) has three levels and the second factor has four levels.

7.6 A statistician has fitted two alternative models to response data yi. The
first is yi = β0 + β1xi + ǫi and the second is yi = β0 + β1xi + γj +

ǫi if yi from group j. In R the factor variable containing the group labels is
trt. The statistician wants to test the null hypothesis that the simpler model
is correct. To do this, both models are fitted in R, and a fragment of the
summary for each is shown here:

> summary(b0)
lm(formula = y ~ x)
...
Resid standard error: 0.3009 on 98 degrees of freedom
> summary(b1)
lm(formula = y ~ x + trt)
...
Resid standard error: 0.3031 on 95 degrees of freedom

In R this test could be conducted via anova(b0,b1), but instead perform
the test using just the information given (and pf in R).

7.7 Consider the cars model of Section 7.2.2. This question is about the me-
chanics of estimating that model using the QR decomposition.

a. Create a model matrix X, for the model, using the data in the cars data
frame and the model.matrix.

b. Now form the QR decomposition of X as follows

qrx <- qr(X) ## returns a QR decomposition object
Q <- qr.Q(qrx,complete=TRUE) ## extract Q
R <- qr.R(qrx) ## extract R
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c. Look at R to confirm its structure. Confirm that Q is an orthogonal matrix.
Confirm that ‖Qx‖2 = ‖x‖2 for any x of appropriate dimension, by
trying some example x’s (why does this happen?).

d. Obtain f and r (in the notation of Section 7.1.1).
e. Evaluate β̂ using R and f .
f. Confirm that ‖r‖2 = ‖y −Xβ̂‖2 for this model.
g. Estimate σ2 as σ̂2 = ‖r‖2/(n− p).
h. Using σ̂2 and R, obtain an estimate of the estimator covariance matrix

V
β̂

corresponding to β̂.

7.8 A material of unknown volume is divided into four roughly equal parts by
cutting it in two first and then cutting the resulting pieces in two. Two alterna-
tive methods of estimating the (different) volumes of each part are suggested

A. Make two estimates of the volume of each section.
B. Make two estimates of the volume of each of the 2 parts formed first, and

one estimate of the volume of the each of the 4 final pieces.

Assuming that each estimate is independent and unbiased with variance σ2,
show that the variances of the least squares estimates of the four volumes
are 0.5σ2 by method A and 0.6σ2 by method B. Hint: use the (XTX)−1σ2

form of the parameter estimator covariance matrix.
7.9 A distillery sets up and sponsors a hill race dubbed the ‘Whisky Challenge’,

for promotional purposes. To generate extra interest from elite fell runners
in the first year, it is proposed to offer a prize for every runner who com-
pletes the course in less than a set time, T0. The organisers need to set T0
high enough to generate a big field of participants, but low enough that they
do not bankrupt the distillery. To this end they approach you to come up
with a predicted winning time for the race. To help you do this, the hills
data frame in R package MASS provides winning times for 35 Scottish hill
races. To load the data and examine it, type library(MASS);hills in
R. Find and estimate a suitable linear model for predicting winning times
(minutes) in terms of race distance dist (miles) and the total height climbed
climb (feet). If you are not sure where to start look up ‘Naismith’s Rule’
on Wikipedia. The Whisky Challenge is to be a 7-mile race, with 2400 feet
of ascent.
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Some distributions

This appendix covers some standard distributions useful in the construction
of models. The gamma function occurs frequently and is defined as

Γ(x) =

∫ ∞

0

tx−1e−tdt.

See ?gamma in R to evaluate it numerically. Note that if n is a positive
integer then Γ(n) = (n− 1)!

It is also convenient to define the beta function,

B(a, b) =
∫ 1

0

ta−1(1− t)b−1dt =
Γ(a)Γ(b)

Γ(a+ b)
,

where a > 0 and b > 0 (both real). See ?beta in R.

A.1 Continuous random variables: the normal and its relatives

The normal distribution is ubiquitous in statistics, so we start with it and
its relatives.

A.1.1 Normal distribution

A random variable X follows a normal (or ‘Gaussian’) distribution with
mean µ and variance σ2 if it has probability density function

f(x) =
1√
2πσ

exp

{
− 1

2σ2
(x− µ)2

}
, −∞ < x <∞,

σ2 > 0, but µ is unrestricted. Standard notation is X ∼ N(µ, σ2). The
central limit theorem of Section 1.9 ensures the central place of the nor-
mal distribution in statistics, both as a limiting distribution of estimators
and as a reasonable model for many variables that can be characterised as

213

214 Some distributions

the sum of other random variables. The multivariate normal is equally im-
portant, and is characterised in Section 1.6 (see Section 6.5.4 or B.2 for
its generation). Z ∼ N(0, 1) is a standard normal random variable. See
?dnorm in R. Continuous positive variables are often modelled as being
log-normally distributed; that is, the logarithm of the variable is assumed
normally distributed. See ?dlnorm in R.

In Bayesian statistics it is often convenient to parameterise the normal
in terms of the precision, τ = 1/σ2. The normal distribution is conjugate
for µ and the gamma distribution is conjugate for τ .

A.1.2 χ2 distribution

Let Z1, Z2, . . . , Zn be a set of independent N(0, 1) random variables.
Then X =

∑n
i=1 Z

2
i is a χ2

n random variable, with p.d.f.

f(x) =
1

2Γ(n/2)

(x
2

)n/2−1

e−x/2, x ≥ 0.

Standard notation is X ∼ χ2
n. E(X) = n and var(X) = 2n. χ2 ran-

dom variables often occur when sums of squares of random variables are
involved. The χ2

2 distribution is also the exponential distribution with λ =
1/2, and if U ∼ U(0, 1) then −2 log(U) ∼ χ2

2. Notice that the distribu-
tion is also defined for non-integer n. See ?dchisq in R.

A.1.3 t and Cauchy distributions

Let Z ∼ N(0, 1) and independently X ∼ χ2
n. Then T = Z/

√
X/n has

a t distribution with n degrees of freedom. In short T ∼ tn. The p.d.f. is

f(t) =
Γ(n/2 + 1/2)√

nπΓ(n/2)
(1 + t2/n)−n/2−1/2, −∞ < t <∞,

and n ≥ 1 need not be an integer. E(T ) = 0 if n > 1, but is otherwise
undefined. var(T ) = n/(n− 2) for n > 2, but is infinite otherwise. t∞ is
N(0, 1), whereas for n < ∞ the tn distribution is ‘heavier tailed’ than a
standard normal. t1 is also known as the Cauchy distribution. See Section
1.6.1 for a multivariate version and Section 2.7 for applications. In R see
?dt and ?dcauchy.
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A.1.4 F distributions

Let Xn ∼ χ2
n and independently Xm ∼ χ2

m.

F =
Xn/n

Xm/m

has an F distribution with n and m degrees of freedom. In short F ∼
Fn,m. The p.d.f. is

f(x) =
Γ(n/2 +m/2)nn/2mm/2

Γ(n/2)Γ(m/2)

xn/2−1

(m+ nx)n/2+m/2
, x ≥ 0.

E(F ) = m/(m − 2) if m > 2. The square root of an F1,n r.v. has a
tn distribution. The F distribution is central to hypothesis testing in linear
models and as an approximate reference distribution when using gener-
alised likelihood ratio tests in the presence of nuisance scale parameters
(see Section 2.7). See ?df in R.

A.2 Other continuous random variables

Moving beyond relatives of the normal distribution, two classes of ran-
dom variable are particularly important: non-negative random variables,
and those defined on the unit interval.

A.2.1 Beta distribution

A random variable, X , defined on the unit interval, [0, 1], has a beta distri-
bution if its p.d.f. has the form

f(x) =
xα−1(1− x)β−1

B(α, β) ,

where α > 0 and β > 0 are shape parameters. Standard notation is X ∼
Beta(α, β) (although others are used as well):

E(X) =
α

α+ β
and var(X) =

αβ

(α+ β)2(α+ β + 1)
.

In R see ?dbeta: shape1 is α and shape2 is β. The beta distribution is of-
ten used as a prior for probabilities (where it is often conjugate).Beta(1, 1)
is the uniform distribution on [0, 1] (so f(x) = 1). For the uniform, which
can be defined over any finite interval, see ?dunif in R.
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A.2.2 Gamma and exponential distributions

A positive random variable X has a gamma distribution with shape param-
eter α > 0 and scale parameter θ > 0 if its p.d.f. is

f(x) =
xα−1e−x/θ

θαΓ(α)
.

E(X) = αθ and var(X) = (αθ2). Standard notation isX ∼ Gamma(α, θ),
but beware that the distribution is often written in terms of the rate param-
eter β = 1/θ or even directly in terms of the mean of X and a scale pa-
rameter. See ?dgamma, where shape is α and scale is θ. In JAGS gamma

is parameterised using α and β, in that order.
The gamma(1, λ−1) is the exponential distribution, for which X ≥ 0

(i.e. zero is possible). Its p.d.f. simplifies to f(x) = λ exp(−λx), while
E(X) = λ−1 and var(X) = λ−2. It is useful for describing the time
between independent random events. See ?dexp in R.

A.2.3 Weibull distribution

Random variable, T , has a Weibull distribution if its p.d.f. is

f(t) =
k

λ

(
t

λ

)k−1

e−t
k/λk

, t ≥ 0

and 0 otherwise. k > 0 and λ > 0. This distribution is often used to model
time-to-failure (or other event) data, in which case the failure (event) rate
(also known as the hazard function) is given by k/λ(t/λ)k−1 .

E(T ) = λΓ(1+1/k) and var(T ) = λ2
{
Γ(1 + 2/k)− Γ(1 + 1/k)2

}
.

In R see ?dweibull where k is shape and λ is scale.

A.2.4 Dirichlet distribution

Consider X, an n vector of non-negative random variables, Xi, where∑n
i=1 Xi = 1. X has a Dirichlet distribution with parameters α1, . . . αn if

its p.d.f. is

f(x) =
Γ(α0)∏n
i=1 Γ(αi)

n∏

i=1

xαi−1
i ,
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where α0 =
∑n

i=1 αi.

E(Xi) =
αi
α0

and var(Xi) =
αi(α0 − αi)

α2
0(α0 + 1)

.

The Dirichlet distribution is typically used as a prior distribution for vectors
of probabilities that must sum to 1.

A.3 Discrete random variables

A.3.1 Binomial distribution

Consider n independent trials each with probability of success p. The total
number of successes, x = 0, 1, . . . , n, follows a binomial distribution with
probability function,

f(x) =
n!

x!(n − x)!
px(1− p)n−x.

E(X) = np and var(X) = np(1− p). See ?dbinom in R.

A.3.2 Poisson distribution

Letting the binomial n → ∞ and p → 0, while holding their product
constant at np = λ, yields the Poisson distribution, with probability mass
function

f(x) =
λxe−λ

x!
,

where x can be any non-negative integer. E(X) = var(X) = λ. The
Poisson distribution is often used for count data that can be thought of as
counts of rare events. See ?dpois in R.

A.3.3 Negative binomial distribution

Often count data show higher variance than is consistent with a Poisson dis-
tribution, but if we allow the Poisson parameter, λ, to itself have a gamma
distribution, then we end up with a more dispersed count distribution: the
negative binomial. X ∼ NB(n, p) if its probability function is

f(x) =
Γ(x+ n)

Γ(n)x!
(1− p)xpn,
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where x is a non-negative integer. E(X) = n(1 − p)/p and var(X) =
n(1 − p)p2. If n → ∞ and p → 1 in such a way that E(X) is held
constant at λ, then this tends to Poi(λ). See ?dnbinom in R. In JAGS the
parameter n is known as r.

A.3.4 Hypergeometric distribution

This distribution is useful in problems involving sampling without replace-
ment. Suppose you have an urn containing m white balls and n black balls,
and you sample k balls from the urn randomly and without replacement.
The number of white balls drawn follows a hypergeometric distribution.
See ?dhyper in R.

A.3.5 Geometric distribution

Consider a sequence of independent trials, each with probability p of suc-
cess. If X is the number of failures before the first success, then it follows
a geometric distribution, with probability function

f(x) = p(1− p)x

for non-negative integers x. E(X) = (1 − p)/p while var(X) = (1 −
p)/p2. See ?dgeom in R.
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Matrix computation

Statistical computation often involves numerical computation with matri-
ces. It is quite easy to get this wrong, producing code that is orders of mag-
nitude less efficient or less stable than could be achieved. This appendix in-
troduces the basics of stability and efficiency in matrix computation, along
with some standard matrix decompositions useful in statistics. See Golub
and Van Loan (2013) or Watkins (1991) for more detail.

B.1 Efficiency in matrix computation

Consider this simple example in R.

n <- 2000
A <- matrix(runif(n*n),n,n)
B <- matrix(runif(n*n),n,n)
y <- runif(n)
system.time(f0 <- A%*%B%*%y) ## case 1
user system elapsed
31.50 0.03 31.58
system.time(f1 <- A%*%(B%*%y)) ## case 2
user system elapsed
0.08 0.00 0.08

f0 and f1 are identical to machine precision, but f1 took much less time to
compute. Why? The answer is to do with how the multiplications were or-
dered in the two cases, and the number of floating point operations (flops)
required by the two alternative orderings.

1. In the first case AB was formed first, and the resulting matrix used to
pre-multiply the vector y.

2. In the second case, the vector By was formed first and was then pre-
multiplied by A.

The first case took more time because the number of floating point opera-
tions (+, -, *, /) required to multiply A and B was about 2n3, whereas the

219

220 Matrix computation

number of flops required to multiply an n × n matrix by an n vector is
only about 2n2. Hence f0 cost about 2n3 + 2n2 operations, whereas f1
cost only 4n2. So the first alternative required about n/2 times as many
operations as the second.1

Another simple matrix operation is the evaluation of the trace of a matrix
product. Again different ways of computing the same quantity lead to rad-
ically different computation times. Consider the computation of tr(AB)
where A is 5000 × 100 and B is 100 × 5000:

n <- 5000;m <- 100
A <- matrix(runif(n*m),n,m)
B <- matrix(runif(n*m),m,n)
system.time(sum(diag(A%*%B)))
user system elapsed
10.46 0.11 10.58
system.time(sum(diag(B%*%A)))
user system elapsed
0.2 0.0 0.2

system.time(sum(A*t(B)))
user system elapsed
0.02 0.00 0.02

1. The first method forms AB, at a flop cost of 2n2m and then extracts
the leading diagonal and sums it.

2. The second method uses the fact that tr(AB) = tr(BA). It forms BA
at flop cost of 2nm2 and then extracts the leading diagonal of the result
and sums it.

3. The third method makes direct use of the fact that tr(AB) =
∑

ij AijBji,
at a cost of 2nm. It is the fastest because no effort is wasted in calcu-
lating unused off-diagonal matrix elements.

Notice that method 1 is not just wasteful of flops, but also requires storage
of an n× n matrix, which is much larger than either A or B.

Unfortunately, it is not generally possible to automatically choose the
most efficient alternative when computing with matrices. Even the appar-
ently simple problem of choosing the best order in which to perform matrix
multiplication is difficult to automate. However, for many statistical com-
puting problems, a small amount of effort in identifying the best ordering
at the coding stage pays big dividends in terms of improved computing

1 The ratio of timings observed is not exactly 1000 here, because R also spends time
interpreting the instructions, setting up storage and so on, which is a significant part of
the cost of producing f1; low level optimisation also has an impact on timing.
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speeds. In general, the important thing is to be constantly aware of the po-
tential for careless coding with matrices to be hugely inefficient, and to
consider flop count in all matrix computations.

Generally when flop counting it is important to know whether the count
is proportional to n2 or to n3 (for example), as n → ∞, but much less
important to know whether it is 2n2 or 4n2, say. For this reason, it is often
sufficient to simply consider how the cost scales with the problem size, in
the n→∞ limit, without worrying about exact constants of proportional-
ity. So we simply consider whether an algorithm is O(n2) or O(n3) (‘order
n2 or order n3’), for example.

B.2 Choleski decomposition: a matrix square root

Positive definite matrices are the ‘positive real numbers’ of matrix alge-
bra. They have particular computational advantages and occur frequently
in statistics, because covariance matrices are usually positive definite (and
always positive semi-definite). So let’s start with positive definite matrices,
and their matrix square roots. To see why matrix square roots might be
useful, consider the following.

Example Generating multivariate normal random variables. There exist
very quick and reliable methods for simulating i.i.d. N(0, 1) random de-
viates, but suppose that N(µ,Σ) random vectors are required. Clearly we
can generate vectors z from N(0, I). If we could find a matrix R such that
RTR = Σ, then y ≡ RTz + µ ∼ N(µ,Σ), because the covariance
matrix of y is RTIR = RTR = Σ and E(y) = E(RTz+ µ) = µ.

In general the square root of a positive definite matrix is not uniquely
defined, but there is a unique upper triangular square root of any positive
definite matrix: its Choleski factor. The algorithm for finding the Choleski
factor is easily derived. Consider a 4×4 example first. The defining matrix
equation is



R11 0 0 0
R12 R22 0 0
R13 R23 R33 0
R14 R24 R34 R44







R11 R12 R13 R14

0 R22 R23 R24

0 0 R33 R34

0 0 0 R44




=




A11 A12 A13 A14

A12 A22 A23 A24

A13 A23 A33 A34

A14 A24 A34 A44


 .
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If the component equations of this expression are written out and solved
in the right order, then each contains only one unknown, as the following
illustrates (unknowns are in bold):

A11 = R11
2

A12 = R11R12

A13 = R11R13

A14 = R11R14

A22 = R2
12 +R22

2

A23 = R12R13 +R22R23

.

.

Generalising to the n×n case, and using the convention that
∑0

k=1 xi ≡ 0,
we have

Rii =

√√√√Aii −
i−1∑

k=1

R2
ki, and Rij =

Aij −
∑i−1

k=1 RkiRkj

Rii

, j > i.

Working through these equations in row order, from row one, and starting
each row from its leading diagonal component, ensures that all right-hand-
side quantities are known at each step. Choleski decomposition requires
n3/3 flops and n square roots. In R it is performed by function chol, which
calls routines in LAPACK or LINPACK.2

Example (continued) The following simulates 1000 random draws from

N






1
−1
3


 ,




2 −1 1
−1 2 −1
1 −1 2






and checks their observed mean and covariance:

V <- matrix(c(2,-1,1,-1,2,-1,1,-1,2),3,3)
mu <- c(1,-1,3)
R <- chol(V) ## Choleski factor of V
Z <- matrix(rnorm(3000),3,1000) ## 1000 N(0,I) 3-vectors
Y <- t(R)%*%Z + mu ## 1000 N(mu,V) vectors

## and check that they behave as expected...
rowMeans(Y) ## observed mu

2 Actually, numerical analysts do not consider the Choleski factor to be a square root in
the strict sense, because of the transpose in A = RTR.
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[1] 1.0924086 -0.9694124 2.9926779

(Y-mu)%*%t(Y-mu)/1000 ## observed V
[,1] [,2] [,3]

[1,] 2.066872 -1.039062 1.003980
[2,] -1.039062 2.054408 -0.980139
[3,] 1.003980 -0.980139 1.833971

As a second application of the Choleski decomposition, consider evalu-
ating the log likelihood of µ and Σ:

l = −n

2
log(2π)− 1

2
log(|Σ|)− 1

2
(y − µ)TΣ−1(y − µ).

If we were simply to invert Σ to evaluate the final term, it would cost 2n3

flops, and we would still need to evaluate the determinant. A Choleski-
based approach is much better. It is easy to see that Σ−1 = R−1R−T,
where R is the Choleski factor of Σ. So the final term in the log likelihood
can be written as zTz where z = R−T(y − µ). Notice that we do not
actually need to evaluate R−T, but simply to solve RTz = y − µ for z.
To see how this is done, consider a 4× 4 case again:




R11 0 0 0
R12 R22 0 0
R13 R23 R33 0
R14 R24 R34 R44







z1
z2
z3
z4


 =




y1 − µ1

y2 − µ2

y3 − µ3

y4 − µ4


 .

If this system of equations is solved from the top down, then there is only
one unknown (shown in bold) at each stage:

R11z1 = y1 − µ1

R12z1 +R22z2 = y2 − µ2

R13z1 +R23z2 +R33z3 = y3 − µ3

R14z1 +R24z2 +R34z3 +R44z4 = y4 − µ4

The generalisation of this forward substitution process to n dimensions is
obvious, as is the fact that it costs O(n2) flops: much cheaper than explicit
formation of R−T, which would involve applying forward substitution to
find each column of the unknown R−T in the equation RTR−T = I, at
O(n3) cost.

In R there is a routine forwardsolve for doing forward substitution
with a lower triangular matrix (and a routine backsolve for performing the
equivalent back substitution with upper triangular matrices). Before using
it, we still need to consider |Σ|. Again the Choleski factor helps. From
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the general properties of determinants we know that |RT||R| = |Σ|, but
because R is triangular |RT| = |R| = ∏n

i=1 Rii. So given the Choleski
factor, the calculation of the determinant is O(n).

Example The following evaluates the log likelihood of the covariance
matrix V and mean vector mu, from the previous example, given an observed
yT = (1, 2, 3):
y <- 1:3; n <- length(y)
z <- forwardsolve(t(R),y-mu)
logLik <- -n*log(2*pi)/2-sum(log(diag(R)))-sum(z*z)/2
logLik

[1] -6.824963

Note that Choleski decomposition of a matrix that is not positive def-
inite will fail. Positive semi-definite is no better, because in that case a
leading diagonal element of the Choleski factor will become zero, so that
computation of the off-diagonal elements on the same row is impossible.
Positive semi-definite matrices are reasonably common, so this is a prac-
tical problem. For the positive semi-definite case, it is possible to modify
the Choleski decomposition by pivoting; that is, by reordering the rows
and columns of the original matrix so that the zeroes end up at the end of
the leading diagonal of the Choleski factor, in rows that are all zero. This
is not pursued further here. Rather let us consider a more general matrix
decomposition, that provides matrix square roots along with much else.

B.3 Eigen-decomposition (spectral-decomposition)

Any symmetric matrix, A can be written as

A = UΛUT, (B.1)

where the matrix U is orthogonal and Λ is a diagonal matrix, with ith

leading diagonal element λi (conventionally λi ≥ λi+1). Post-multiplying
both sides of the decomposition by U we have

AU = UΛ.

Considering this system one column at a time and writing ui for the ith

column of U we have

Aui = λiui.

So the λi are the eigenvalues of A, and the columns of U are the cor-
responding eigenvectors. (B.1) is the eigen-decomposition or spectral de-
composition of A.
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State-of-the-art schemes for eigen-decomposition are fairly intricate, but
do not use the determinant and characteristic equation of A. One practical
scheme is as follows: (i) the matrix A is first reduced to tri-diagonal form
using repeated pre- and post-multiplication by simple rank-one orthogonal
matrices called Householder rotations, and (ii) an iterative scheme called
QR-iteration3 then pre-and post-multiplies the tri-diagonal matrix by even
simpler orthogonal matrices, in order to reduce it to diagonal form. At
this point the diagonal matrix contains the eigenvalues, and the product of
all the orthogonal matrices gives U. Eigen-decomposition is O(n3), but a
good symmetric eigen routine is around 10 times as computationally costly
as a Choleski routine.

An immediate use of the eigen-decomposition is to provide an alterna-
tive characterisation of positive (semi-) definite matrices. All the eigenval-
ues of a positive (semi-) definite matrix must be positive (non-negative) and
real. This is easy to see. Were some eigenvalue, λi to be negative (zero),
then the corresponding eigenvector ui would result in uT

i Aui being neg-
ative (zero). At the same time the existence of an x such that xTAx is
negative (zero) leads to a contradiction unless at least one eigenvalue is
negative (zero).4

B.3.1 Powers of matrices

Consider raising A to the power m.

Am = AAA · · ·A = UΛUTUΛUT · · ·UΛUT

= UΛΛ · · ·ΛUT = UΛmUT,

where Λm is just the diagonal matrix with λmi as the ith leading diagonal
element. This suggests that any real valued function, f , of a real valued
argument, which has a power series representation, has a natural generali-
sation to a symmetric matrix valued function of a symmetric matrix argu-
ment; that is

f ′(A) ≡ Uf ′(Λ)UT,

where f ′(Λ) denotes the diagonal matrix with ith leading diagonal element
f(λi). For example, exp(A) = U exp(Λ)UT.

3 Not to be confused with QR decomposition.
4 We can write x = Ub for some vector b. So xTAx < 0 ⇒ bTΛb < 0 ⇒

∑
b2iΛi < 0

⇒ Λi < 0 for some i.
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B.3.2 Another matrix square root

For matrices with non-negative eigenvalues we can generalise to non-integer
powers. For example, it is readily verified that

√
A = U

√
ΛUT has the

property that
√
A
√
A = A. Notice (i) that

√
A is not the same as the

Choleski factor, emphasizing the non-uniqueness of matrix square roots
and (ii) that, unlike the Choleski factor,

√
A is well defined for positive

semi-definite matrices (and can therefore be computed for any covariance
matrix).

B.3.3 Matrix inversion, rank and condition

Continuing in the same vein we can investigate matrix inversion by writing

A−1 = UΛ−1UT,

where the diagonal matrix Λ−1 has ith leading diagonal element λ−1
i .

Clearly we have a problem if any of the λi are zero, for the matrix inverse
will be undefined. A matrix with no zero eigenvalues is termed full rank.
A matrix with any zero eigenvalues is rank deficient and does not have an
inverse. The number of nonzero eigenvalues is the rank of a matrix.

For some purposes it is sufficient to define a generalised inverse or pseu-
doinverse when faced with rank deficiency, by finding the reciprocal of the
nonzero eigenvalues, but setting the reciprocal of the zero eigenvalues to
zero. This is not pursued here.

It is important to understand the consequences of rank deficiency quite
well when performing matrix operations involving matrix inversion/matrix
equation solving. This is because near rank deficiency is rather easy to
achieve by accident, and in finite precision arithmetic it is as bad as rank
deficiency. First consider trying to solve

Ax = y

for x when A is rank deficient. In terms of the eigen-decomposition the
solution is

x = UΛ−1UTy.

So y is rotated to become y′ = UTy, the elements of y′ are then divided
by the eigenvalues, λi, and the reverse rotation is applied to the result. The
problem is that y′

i/λi is not defined if λi = 0. This is just a different
way of showing something that you already know: rank-deficient matrices
cannot be inverted. But the approach also helps in understanding near rank
deficiency and ill conditioning.
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An illustrative example highlights the problem. Suppose that an n × n
symmetric matrix A has n − 1 distinct eigenvalues ranging from 0.5 to
1, and one much smaller magnitude eigenvalue ǫ. Further suppose that we
wish to compute with A on a machine that can represent real numbers to
an accuracy of 1 part in ǫ−1. Now consider solving the system

Ax = u1 (B.2)

for x, where u1 is the dominant eigenvector of A. Clearly the correct so-
lution is x = u1, but now consider computing the answer. As before we
have a formal solution,

x = UΛ−1UTu1,

but although analytically u′
1 = UTu1 = (1, 0, 0, . . . , 0)T, the best we

can hope for computationally is to get u′
1 = (1 + e1, e2, e3, . . . , en)

T

where the numbers ej are of the order of ±ǫ. For convenience, suppose
that en = ǫ. Then, approximately, Λ−1u′

1 = (1, 0, 0, . . . , 0, 1)T , and
x = UΛ−1u′

1 = u1 +un, which is not correct. Similar distortions would
occur if we used any of the other first n − 1 eigenvectors in place of u1:
they all become distorted by a spurious un component, with only un itself
escaping.

Now consider an arbitrary vector y on the right-hand-side of (B.2).
We can always write it as some weighted sum of the eigenvectors y =∑

wiui. This emphasises how bad the ill-conditioning problem is: all but
one of y’s components are seriously distorted when multiplied by A−1.
By contrast, multiplication by A itself would lead only to distortion of the
un component of y, and not the other eigenvectors, but the un component
is the component that is so heavily shrunken by multiplication by A that it
makes almost no contribution to the result, unless we have the misfortune
to choose a y that is proportional to un and nothing else.

A careful examination of the preceding argument reveals that what really
matters in determining the seriousness of the consequences of near rank
deficiency is the ratio of the largest magnitude to the smallest magnitude
eigenvalues:

κ = max |λi|/min |λi|.
This quantity is a condition number for A.5 Roughly speaking it is the
factor by which errors in y will be multiplied when solving Ax = y for
5 Because the condition number is so important in numerical computation, there are

several methods for getting an approximate condition number more cheaply than via
eigen decomposition — e.g. see ?kappa in R.
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x. Once κ begins to approach the reciprocal of the machine precision we
are in trouble. A system with a large condition number is referred to as
ill-conditioned. Orthogonal matrices have κ = 1, which is why numerical
analysts like them so much.

Example Consider a simple simulation in which data are simulated from
a quadratic model, and an attempt is made to obtain least squares estimates
of the linear model parameters directly from β̂ = (XTX)−1XTy.

set.seed(1); n <- 100
xx <- sort(runif(n))
y <- .2*(xx-.5)+(xx-.5)^2 + rnorm(n)*.1
x <- xx+100
X <- model.matrix(~ x + I(x^2))
beta.hat <- solve(t(X)%*%X,t(X)%*%y)
Error in solve.default(t(X) %*% X, t(X) %*% y) :
system is computationally singular:
reciprocal condition number = 3.98648e-19

This is an apparently innocuous linear model fitting problem. However, the
simple fact that the x range is from 100 to 101 has caused the columns
of X to be sufficiently close to linear dependence that XTX is close to
singular, as we can confirm by direct computation of its condition number:

XtX <- crossprod(X) ## form t(X)%*%X (efficiently)
lambda <- eigen(XtX)$values
lambda[1]/lambda[3] ## the condition number of X’X

[1] 2.506267e+18

Of course, this raises two obvious questions. Could we have diagnosed
the problem directly from X? And how does the lm function avoid this
problem (it is able to fit this model)? Answers to these questions follow,
but first consider a trick for reducing κ.

B.3.4 Preconditioning

The discussion of condition numbers related to systems involving unstruc-
tured matrices (albeit presented only in the context of symmetric matrices).
Systems involving matrices with special structure are sometimes less sus-
ceptible to ill-conditioning than naive computation of the condition number
would suggest. For example, if D is a diagonal matrix, then we can accu-
rately solve Dy = x for y, however large κ(D) is: overflow or underflow
are the only limits.

This basic fact can sometimes be exploited to rescale a problem to im-
prove computational stability. As an example consider diagonal precondi-
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tioning of the computation of (XTX)−1 considered previously. For XTX
we have
solve(XtX)

Error in solve.default(XtX) :
system is computationally singular:
reciprocal condition number = 3.98657e-19

But now suppose that we create a diagonal matrix D, with elements Dii =
1/
√
(XTX)ii. Clearly,

(XTX)−1 = D(DXTXD)−1D,

but (DXTXD)−1 turns out to have a much lower condition number than
XTX:
D <- diag(1/diag(XtX)^.5)
DXXD <- D%*%XtX%*%D
lambda <- eigen(DXXD)$values
lambda[1]/lambda[3]

[1] 4.29375e+11

As a result we can now compute the inverse of XTX:
XtXi <- D%*%solve(DXXD,D) ## computable inverse of X’X
XtXi %*% XtX ## how accurate?

(Intercept) x I(x^2)
[1,] 9.999941e-01 -3.058910e-04 0.005661011
[2,] 1.629232e-07 1.000017e+00 0.001764774
[3,] -6.816663e-10 -8.240750e-08 0.999998398

This is not perfect, but is better than no answer at all.

B.3.5 Asymmetric eigen-decomposition

If positive definite matrices are the positive reals of the square matrix
system, and symmetric matrices are the reals, then asymmetric matrices
are the complex numbers. As such they have complex eigenvectors and
eigenvalues. It becomes necessary to distinguish right and left eigenvec-
tors (one is no longer the transpose of the other), and the right and left
eigenvector matrices are no longer orthogonal matrices (although they are
still inverses of each other). Eigen-decomposition of asymmetric matri-
ces is still O(n3), but is substantially more expensive than the symmet-
ric case. For example, using a basic R setup on a Linux laptop asym-
metric eigen-decomposition took four times longer than symmetric eigen-
decomposition for a 1000 × 1000 matrix.

The need to compute with complex numbers somewhat reduces the prac-
tical utility of the eigen-decomposition in numerical methods for statistics.
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It would be better to have a decomposition that provides some of the useful
properties of the eigen-decomposition without the inconvenience of com-
plex numbers. The singular value decomposition (SVD) meets this need.

B.4 Singular value decomposition

The singular values, di, of an r× c matrix, A (r ≥ c) are the non-negative
square roots of the eigenvalues of ATA. If A is positive semi-definite then
its singular values are just its eigenvalues, of course. For symmetric matri-
ces, eigenvalues and singular values differ only in sign, if at all. However,
the singular values are also well defined and real for matrices that are not
even square, let alone symmetric.

Related to the singular values is the singular value decomposition,

A = UDVT,

where U has orthogonal columns and is the same dimension as A, while
c× c matrix D = diag(di) (usually arranged in descending order), and V
is a c× c orthogonal matrix.

The singular value decomposition is computed using a similar approach
to that used for the symmetric eigen problem: orthogonal bi-diagonalization,
followed by QR iteration atO(rc2) cost (it does not involve formingATA).
It is more costly than symmetric eigen-decomposition, but cheaper than the
asymmetric equivalent. For a 1000 × 1000 matrix, SVD took about 2.5
times as long as symmetric eigen-decomposition using R.

The number of its nonzero singular values gives the rank of a matrix,
and the SVD is the most reliable method for numerical rank determination
(by examining the size of the singular values relative to the largest singular
value). In a similar vein, a general definition of the condition number is the
ratio of largest and smallest singular values: κ = d1/dc.

Example Continuing the example of the simple quadratic regression fit-
ting failure, consider the singular values of X:

d <- svd(X)$d ## get the singular values of X
d

[1] 1.010455e+05 2.662169e+00 6.474081e-05

Clearly, numerically X is close to being rank 2, rather than rank 3. Turning
to the condition number,

d[1]/d[3]
[1] 1560769713
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κ ≈ 2×109 is rather large, especially as it is easy to show that the condition
number of XTX must then be κ2 ≈ 4 × 1018. So we now have a pretty
clear diagnosis of the cause of the original problem.

In fact the SVD provides not only a diagnosis of the problem, but also
one possible solution. We can rewrite the solution to the normal equations
in terms of the SVD of X:

(XTX)−1XTy = (VDUTUDVT)−1VDUTy

= (VD2VT)−1VDUTy

= VD−2VTVDUTy

= VD−1UTy

Notice two things:

1. The condition number of the system that we have ended up with is ex-
actly the condition number of X (i.e. the square root of the condition
number involved in the direct solution of the normal equations).

2. Comparing the final right-hand-side expression to the representation of
an inverse in terms of its eigen-decomposition, it is clear thatVD−1UT

is a sort of pseudoinverse of X.

The SVD has many uses. One interesting one is low-rank approximation
of matrices. In a well-defined sense, the best rank k ≤ rank(X) approxi-
mation to a matrix X can be expressed in terms of the SVD of X as

X̃ = UD̃VT

where D̃ is D with all but the k largest singular values set to 0. Using
this result to find low-rank approximations to observed covariance matri-
ces is the basis for several dimension-reduction techniques in multivariate
statistics (although, of course, a symmetric eigen-decomposition is then
equivalent to SVD). One issue with this sort of approximation is that the
full SVD is computed, despite the fact that part of it is then to be discarded
(be careful with routines that ask you how many eigen or singular vectors
to return: I saved 0.1 of a second, out of 13, by getting R routine svd to
only return the first columns of U and V). Look up Lanczos methods and
Krylov subspaces for approaches that avoid this sort of waste.

B.5 The QR decomposition

The SVD provided a stable solution to the linear model fitting example,
but at a rather high computational cost, prompting the question of whether
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similar stability could be obtained without the full cost of SVD. The QR
decomposition provides a positive answer, as was shown in Section 7.1.1.
We can write any r × c rectangular matrix X (r ≥ c) as the product of
columns of an orthogonal matrix and an upper triangular matrix:

X = QR,

where R is upper triangular and Q is of the same dimension as X, with
orthogonal columns (so QTQ = I, but QQT 6= I). The QR decompo-
sition has a cost of O(rc2), but it is about one-third of the cost of SVD.
The SVD and QR approaches are the most numerically stable methods for
least squares problems, but there is no magic here: it is quite possible to
produce model matrices so close to co-linear that these methods also fail.
The lesson here is that if possible we should try to set up models so that
condition numbers stay low.

Another application of the QR decomposition is determinant calculation.
If A is square and A = QR then

|A| = |Q||R| = |R| =
∏

i

Rii,

since R is triangular, while Q is orthogonal with determinant 1. Usually
we need

log |A| =
∑

i

log |Rii|,

which underflows to −∞ much less easily than |A| underflows to zero.

B.6 Sparse matrices

Many statistical problems involve sparse matrices: matrices that contain a
very high proportion of zeroes. This sparsity can be exploited to save on
computer memory and floating point operations. We need only store the
nonzero entries of a sparse matrix, along with the location of those entries,
and need only perform floating point operations when they involve nonzero
matrix elements. Many libraries exist for exploiting sparse matrices, such
as the Matrix package in R. The main difficulty in exploiting sparsity is
infil: a sparse matrix rarely has a sparse inverse or Choloeski factor, for
example, and even the product of two sparse matrices is often not sparse.
However, it is the case that a pivoted version of a matrix (one in which
rows and columns are reordered) has a sparse Choleski factor, for example:
so with careful structuring, efficiency can be achieved in some cases. See
Davis (2006) for a good introduction.



Appendix C

Random number generation

Chapter 6, in particular, took it for granted that we can produce random
numbers from various distributions. Actually we can’t. The best that can
be done is to produce a completely deterministic sequence of numbers that
appears indistinguishable from a random sequence with respect to any rel-
evant statistical property that we choose to test.1 In other words, we may be
able to produce a deterministic sequence of numbers that can be very well
modelled as being a random sequence from some distribution. Such deter-
ministic sequences are referred to as sequences of pseudorandom numbers,
but the pseudo part usually gets dropped at some point.

The fundamental problem, for our purposes, is to generate a pseudoran-
dom sequence that can be extremely well modelled as i.i.d. U(0, 1). Given
such a sequence, it is fairly straightforward to generate deviates from other
distributions, but the i.i.d. U(0, 1) generation is where the problems lie.
Indeed if you read around this topic, most books will largely agree about
how to turn uniform random deviates into deviates from a huge range of
other distributions, but advice on how to obtain the uniform deviates in the
first place is much less consistent.

C.1 Simple generators and what can go wrong

Since the 1950s there has been much work on linear congruential gener-
ators. The intuitive motivation is something like this. Suppose I take an
integer, multiply it by some enormous factor, rewrite it in base - ‘some-
thing huge’, and then throw away everything except for the digits after the
decimal point. Pretty hard to predict the result, no? So, if I repeat the oper-
ation, feeding each step’s output into the input for the next step, a more or

1 Hence the interesting paradox that although statistical methods in general may be viewed
as methods for distinguishing between the deterministic and the random, many statistical
methods rely fundamentally on the inability to distinguish random from deterministic.
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less random sequence might result. Formally the pseudorandom sequence
is defined by

Xi+1 = (aXi + b)modM,

where b is 0 or 1, in practice. This is started with a seed X0. The Xi are in-
tegers (< M , of course), but we can define Ui = Xi/M . Now the intuitive
hope that this recipe might lead to Ui that are reasonably well modelled by
i.i.d. U(0, 1) r.v.s is only realized for some quite special choices of a and
M , and it takes some number theory to give the generator any sort of the-
oretical foundation (see Ripley, 1987, Chapter 2).

An obvious property to try to achieve is full period. We would like the
generator to visit all possible integers between 1−b and M−1 once before
it starts to repeat itself (clearly the first time it revisits a value, it starts to
repeat itself). We would also like successive Uis to appear uncorrelated. A
notorious and widely used generator called RANDU, supplied at one time
with IBM machines, met these basic considerations with

Xi+1 = (65539Xi)mod231.

This appears to do very well in 1 dimension.

n <- 100000 ## code NOT for serious use
x <- rep(1,n)
a <- 65539;M <- 2^31;b <- 0 ## Randu
for (i in 2:n) x[i] <- (a*x[i-1]+b)%%M
u <- x/(M-1)
qqplot((1:n-.5)/n,sort(u))
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Similarly a plot of Ui vs Ui−1 indicates no worries with serial correlation:
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## Create data frame with U at 3 lags...
U <- data.frame(u1=u[1:(n-2)],u2=u[2:(n-1)],u3=u[3:n])
plot(U$u1,U$u2,pch=".")
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We can also check visually what the distribution of the triples (Ui, Ui−1, Ui−2)
looks like:

library(lattice)
cloud(u1~u2*u3,U,pch=".",col=1,screen=list(z=40,x=-70,y=0))

u2
u3

u1

Clearly not quite so random looking. Experimenting a little with rotations
gives:

cloud(u1~u2*u3,U,pch=".",col=1,screen=list(z=40,x=70,y=0))
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u2u3

u1

The triples lie on one of 15 planes. Actually it can be shown that this must
happen (see Ripley, 1987, §2.2).

Does this deficiency matter in practice? Much of the statistical use of
random numbers is for processes somehow equivalent to high dimensional
integration. Statistical estimators of integrals have nonzero variance, but
can be designed to be unbiased, and this unbiasedness is usually not af-
fected by the dimension of the integral. Deterministic attempts at inte-
gration tend to evaluate the integrand on a discrete lattice. They have no
variance, but their bias is determined by the lattice spacing, and for fixed
computational effort this bias increases sharply with dimension. As a result,
statistical estimation of high-dimensional integrals usually outperforms de-
terministic quadrature rules. However, the unbiasedness of such estimators
relies on being able to generate random numbers. If we are actually gener-
ating numbers on a lattice, then there is a danger that our statistical estima-
tors may suffer from the same bias problems as deterministic integration.

So the first lesson is to use generators that have been carefully engi-
neered by people with a good understanding of number theory and have
then been empirically tested (Marsaglia’s Diehard battery of tests provides
one standard test set). For example, if we stick with simple congruential
generators, then

Xi = (69069Xi−1 + 1)mod232 (C.1)

is a much better bet. Here is its triples plot, for which no amount of rotation
provides any evidence of structure:
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u2u3

u1

Although this generator is much better than RANDU, it is still problem-
atic. An obvious infelicity is the fact that a very small Xi will always be
followed by an unusually small Xi+1 (consider Xi = 1, for example).
This is not a property that would be desirable in a time series simulation,
for example. Not quite so obvious is the fact that for any congruential gen-
erator of period M , then k-tuples, Ui, Ui−1, . . . , Ui−k+1 will tend to lie on
a finite number of k − 1 dimensional planes (e.g. for RANDU we saw 3-
tuples lying on two dimensional planes.) There will be at most M1/k such
planes, and as RANDU shows, there can be far fewer. The upshot of this
is that if we could visualize 8 dimensions, then the 8-tuple plot for (C.1)
would be just as alarming as the 3D plot was for RANDU. Eight is not an
unreasonably large dimension for an integral.

Generally then, it would be nice to have generators with better behaviour
than simple congruential generators, and in particular we would like gen-
erators where k-tuples appear uniformly distributed on [0, 1]k for as high a
k as possible (referred to as having a high k-distribution).

C.2 Building better generators

An alternative to the congruential generators are generators that focus on
generating random sequences of 0s and 1s. In some ways this seems to be
the natural fundamental random number generation problem when using
modern digital computers, and at the time of writing it also seems to be
the approach that yields the most satisfactory results. Such generators are
often termed shift-register generators. The basic approach is to use bitwise
binary operations to make a binary sequence ‘scramble itself’. An example
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is the Marsaglia (2003) Xorshift generator as recommended in Press et al.
(2007).

Let x be a 64-bit variable (i.e. an array of 64 0s or 1s). The generator is
initialised by setting to any value (other than 64 0s). The following steps
then constitute one iteration (update of x):

x← x ∧ (x >> a)

x← x ∧ (x << b)

x← x ∧ (x >> c)

Each iteration generates a new random sequence of 0s and 1s. ∧ denotes
‘exclusive or’ (XOR), and >> and << are right-shift and left shift, re-
spectively, with the integers a, b and c giving the distance to shift. a = 21,
b = 35 and c = 4 appear to be good constants (but see Press et al., 2007,
for some others).

If you are a bit rusty on these binary operators then consider an 8-bit
example where x=10011011 and z=01011100:

• x<<1 is 00110110: the bit pattern is shifted leftwards, with the leftmost
bit discarded, and the rightmost set to zero.

• x<<2 is 01101100: the pattern is shifted 2 bits leftwards, which also
entails discarding the 2 leftmost bits and zeroing the two rightmost.

• x>>1 is 01001101: shift the pattern 1 bit rightwards.
• x^z is 11000111:a 1 where the bits in x and z disagree, and a 0 where

they agree.

The Xorshift generator is very fast, has a period of 264−1, and passes the
Diehard battery of tests (perhaps unsurprising as Marsaglia is responsible
for that too). These shift-register generators suffer similar granularity prob-
lems to congruential generators (there is always some k for which [0, 1]k

cannot be very well covered by even 264 − 1 points), but tend to have all
bit positions ‘equally random’, whereas lower order bits from congruential
generator sequences often have a good deal of structure.

Now we reach a fork in the road. To achieve better performance in
terms of longer period, larger k-distribution, and fewer low-order correla-
tion problems, there seem to be two main approaches: the first pragmatic,
and the second more theoretical.

1. Combine the output from several ‘good’, well-understood, simple gen-
erators using operations that maintain randomness (e.g. XOR and addi-
tion, but not multiplication). When doing this, the output from the com-
bined generators is never fed back into the driving generators. Prefer-
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ably combine rather different types of generator. Press et al. (2007)
make a convincing case for this approach. Wichmann and Hill (1982),
available in R, is an example of such a combined generator, albeit based
on three very closely related generators.

2. Use more complicated generators: non-linear or with a higher dimen-
sional state that just a single Xi (see Gentle, 2003). For example, use
a shift-register type generator based on maintaining the history of the
last n bit-patterns, and using these in the bit scrambling operation. The
Matsumoto and Nishimura (1998) Mersenne Twister is of this type. It
achieves a period of 219937 − 1 (that is not a misprint: 219937 − 1 is a
‘Mersenne prime’2), and is 623-distributed at 32 bit accuracy. That is,
its 623-tuples appear uniformally distributed (each appearing the same
number of times in a full period) and are spaced 2−32 apart (without the
ludicrous period this would not be possible). It passes the Diehard tests,
is the default generator in R, and C source code is freely available.

C.3 Uniform generation conclusions

This brief discussion shows that random number generation and use of
pseudorandom numbers, are nontrivial topics that require some care. That
said, most of the time, provided you pick a good modern generator, you
will probably have no problems. As general guidelines:

1. Avoid using black-box routines supplied with low level languages such
as C: you do not know what you are getting, and there is a history of
these being botched.

2. Do make sure you know what method is being used to generate any
uniform random deviates that you use and that you are satisfied that it
is good enough for your purposes.

3. For any random number generation task that relies on k-tuples hav-
ing uniform distribution for high k, be particularly careful about what
generator you use. This includes any statistical task that is somehow
equivalent to high-dimensional integration.

4. The Mersenne Twister is probably the sensible default choice in most
cases at present. For high-dimensional problems it remains a good idea
to check answers with a different high-quality generator. If results differ
significantly, then you will need to find out why (probably starting with
the ‘other’ generator).

2 Numbers this large are often described as being ‘astronomical’, but this does not really
do it justice: there are probably fewer than 2270 atoms in the universe.
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Note that I have not discussed methods used by cryptographers. Cryp-
tographers want to use (pseudo)random sequences of bits (0s and 1s) to
scramble messages. Their main concern is that if someone were to inter-
cept the random sequence and guess the generator being used, that individ-
ual should not be able to infer the state of the generator. Achieving this goal
is quite computer intensive, which is why generators used for cryptography
are usually over-engineered for simulation purposes.

C.4 Other deviates

Once you have a satisfactory stream of i.i.d. U(0, 1) deviates, then gen-
erating deviates from other standard distributions is much more straight-
forward. Conceptually, the simplest approach is inversion. We know that if
X is from a distribution with continuous c.d.f. F , then F (X) ∼ U(0, 1).
Similarly, if we define the inverse of F by F−(u) = min(x|F (x) ≥ u),
and if U ∼ U(0, 1), then F−(U) has a distribution with c.d.f. F (this time
with not even a continuity restriction on F itself).

As an example here is inversion used to generate one million i.i.d.N(0, 1)
deviates in R:

system.time(X <- qnorm(runif(1e6)))
user system elapsed
0.22 0.01 0.24

For most standard distributions (except the exponential), there are better
methods than inversion, and the happy situation exists where textbooks
tend to agree about what these are. Ripley (1987, Ch. 3) is a good place to
start, while the lighter version is provided by Press et al. (2007, Ch. 7). R
has many of these methods built in.
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