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Preface

This book is aimed at the numerate reader who has probably taken an in-

troductory statistics and probability course at some stage and would like

a brief introduction to the core methods of statistics and how they are ap-

plied, not necessarily in the context of standard models. The first chapter

is a brief review of some basic probability theory needed for what fol-

lows. Chapter 2 discusses statistical models and the questions addressed by

statistical inference and introduces the maximum likelihood and Bayesian

approaches to answering them. Chapter 3 is a short overview of the R pro-

gramming language. Chapter 4 provides a concise coverage of the large

sample theory of maximum likelihood estimation and Chapter 5 discusses

the numerical methods required to use this theory. Chapter 6 covers the

numerical methods useful for Bayesian computation, in particular Markov

chain Monte Carlo. Chapter 7 provides a brief tour of the theory and prac-

tice of linear modelling. Appendices then cover some useful information

on common distributions, matrix computation and random number genera-

tion. The book is neither an encyclopedia nor a cookbook, and the bibliog-

raphy aims to provide a compact list of the most useful sources for further

reading, rather than being extensive. The aim is to offer a concise coverage

of the core knowledge needed to understand and use parametric statistical

methods and to build new methods for analysing data. Modern statistics ex-

ists at the interface between computation and theory, and this book reflects

that fact. I am grateful to Nicole Augustin, Finn Lindgren, the editors at

Cambridge University Press, the students on the Bath course ‘Applied Sta-

tistical Inference’ and the Academy for PhD Training in Statistics course

‘Statistical Computing’ for many useful comments, and to the EPSRC for

the fellowship funding that allowed this to be written.
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Random variables

1.1 Random variables

Statistics is about extracting information from data that contain an inher-

ently unpredictable component. Random variables are the mathematical

construct used to build models of such variability. A random variable takes

a different value, at random, each time it is observed. We cannot say, in

advance, exactly what value will be taken, but we can make probability

statements about the values likely to occur. That is, we can characterise

the distribution of values taken by a random variable. This chapter briefly

reviews the technical constructs used for working with random variables,

as well as a number of generally useful related results. See De Groot and

Schervish (2002) or Grimmett and Stirzaker (2001) for fuller introductions.

1.2 Cumulative distribution functions

The cumulative distribution function (c.d.f.) of a random variable (r.v.), X ,

is the function F (x) such that

F (x) = Pr(X ≤ x).

That is, F (x) gives the probability that the value of X will be less than

or equal to x. Obviously, F (−∞) = 0, F (∞) = 1 and F (x) is mono-

tonic. A useful consequence of this definition is that if F is continuous then

F (X) has a uniform distribution on [0, 1]: it takes any value between 0 and

1 with equal probability. This is because

Pr(X ≤ x) = Pr{F (X) ≤ F (x)} = F (x)⇒ Pr{F (X) ≤ u} = u

(if F is continuous), the latter being the c.d.f. of a uniform r.v. on [0, 1].
Define the inverse of the c.d.f. as F−(u) = min(x|F (x) ≥ u), which is

just the usual inverse function of F if F is continuous. F− is often called

the quantile function of X . If U has a uniform distribution on [0, 1], then

1



2 Random variables

F−(U) is distributed as X with c.d.f. F . Given some way of generating

uniform random deviates, this provides a method for generating random

variables from any distribution with a computable F−.

Let p be a number between 0 and 1. The p quantile of X is the value

that X will be less than or equal to, with probability p. That is, F−(p).
Quantiles have many uses. One is to check whether data, x1, x2, . . . , xn,

could plausibly be observations of a random variable with c.d.f. F . The xi
are sorted into order, so that they can be treated as ‘observed quantiles’.

They are then plotted against the theoretical quantiles F−{(i − 0.5)/n}
(i = 1, . . . , n) to produce a quantile-quantile plot (QQ-plot). An approx-

imately straight-line QQ-plot should result, if the observations are from a

distribution with c.d.f. F .

1.3 Probability (density) functions

For many statistical methods a function that tells us about the probability

of a random value taking a particular value is more useful than the c.d.f. To

discuss such functions requires some distinction to be made between ran-

dom variables taking a discrete set of values (e.g. the non-negative integers)

and those taking values from intervals on the real line.

For a discrete random variable, X , the probability function (or probabil-

ity mass function), f(x), is the function such that

f(x) = Pr(X = x).

Clearly 0 ≤ f(x) ≤ 1, and since X must take some value,
∑

i f(xi) = 1,

where the summation is over all possible values of x (denoted xi).
Because a continuous random variable, X , can take an infinite number

of possible values, the probability of taking any particular value is usually

zero, so that a probability function would not be very useful. Instead the

probability density function, f(x), gives the probability per unit interval of

X being near x. That is, Pr(x−∆/2 < X < x+∆/2) ≃ f(x)∆. More

formally, for any constants a ≤ b,

Pr(a ≤ X ≤ b) =

∫ b

a

f(x)dx.

Clearly this only works if f(x) ≥ 0 and
∫∞

−∞
f(x)dx = 1. Note that

∫ b

−∞
f(x)dx = F (b), so F ′(x) = f(x) when F ′ exists. Appendix A pro-

vides some examples of useful standard distributions and their probability

(density) functions.
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Figure 1.1 The example p.d.f (1.2). Left: over the region
[−0.5, 1.5]× [−0.5, 1.5]. Right: the nonzero part of the p.d.f.

The following sections mostly consider continuous random variables,

but except where noted, equivalent results also apply to discrete random

variables upon replacement of integration by an appropriate summation.

For conciseness the convention is adopted that p.d.f.s with different argu-

ments usually denote different functions (e.g. f(y) and f(x) denote differ-

ent p.d.f.s).

1.4 Random vectors

Little can usually be learned from single observations. Useful statistical

analysis requires multiple observations and the ability to deal simultane-

ously with multiple random variables. A multivariate version of the p.d.f.

is required. The two-dimensional case suffices to illustrate most of the re-

quired concepts, so consider random variables X and Y .

The joint probability density function of X and Y is the function f(x, y)
such that, if Ω is any region in the x− y plane,

Pr{(X,Y ) ∈ Ω} =
∫∫

Ω

f(x, y)dxdy. (1.1)

So f(x, y) is the probability per unit area of the x − y plane, at x, y. If

ω is a small region of area α, containing a point x, y, then Pr{(X,Y ) ∈
ω} ≃ fxy(x, y)α. As with the univariate p.d.f. f(x, y) is non-negative and

integrates to one over R2.
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Figure 1.2 Evaluating probabilities from the joint p.d.f. (1.2),
shown in grey. Left: in black is shown the volume evaluated to
find Pr[X < .5, Y > .5]. Right: Pr[.4 < X < .8, .2 < Y < .4].

Example Figure 1.1 illustrates the following joint p.d.f.

f(x, y) =

{

x+ 3y2/2 0 < x < 1 & 0 < y < 1
0 otherwise.

(1.2)

Figure 1.2 illustrates evaluation of two probabilities using this p.d.f.

1.4.1 Marginal distribution

Continuing with the X,Y case, the p.d.f. of X or Y , ignoring the other

variable, can be obtained from f(x, y). To find the marginal p.d.f. of X ,

we seek the probability density of X given that−∞ < Y <∞. From the

defining property of a p.d.f., it is unsurprising that this is

f(x) =

∫ ∞

−∞

f(x, y)dy,

with a similar definition for f(y).

1.4.2 Conditional distribution

Suppose that we know that Y takes some particular value y0. What does

this tell us about the distribution of X? BecauseX andY have joint density
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Figure 1.3 The conditional density f(y|.2). The joint density
f(x, y) is shown as a grey surface. The thin black curve shows
f(.2, y). The thick black curve shows f(y|.2) = f(.2, y)/fx(.2).

f(x, y), we would expect the density of x, given Y = y0, to be propor-

tional to f(x, y0). That is, we expect

f(x|Y = y0) = kf(x, y0),

where k is a constant. Now if f(x|y) is a probability density function, then

it must integrate to 1. So,

k

∫ ∞

−∞

f(x, y0)dx = 1 ⇒ kf(y0) = 1⇒ k =
1

f(y0)
,

where f(y0) denotes the marginal density of y at y0. Hence we have:

Definition If X and Y have joint density f(x, y) then the conditional

density of X , given Y = y0, is

f(x|Y = y0) =
f(x, y0)

f(y0)
, (1.3)

assuming f(y0) > 0.

Notice that this is a p.d.f. for random variable X: y0 is now fixed. To

simplify notation we can also write f(x|y0) in place of f(x|Y = y0),
when the meaning is clear. Of course, symmetric definitions apply to the
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conditional distribution of Y given X: f(y|x0) = f(x0, y)/f(x0). Figure

1.3 illustrates the relationship between joint and conditional p.d.f.s.

Manipulations involving the replacement of joint distributions with con-

ditional distributions, using f(x, y) = f(x|y)f(y), are common in statis-

tics, but not everything about generalising beyond two dimensions is com-

pletely obvious, so the following three examples may help.

1. f(x, z|y) = f(x|z, y)f(z|y).
2. f(x, z, y) = f(x|z, y)f(z|y)f(y).
3. f(x, z, y) = f(x|z, y)f(z, y).

1.4.3 Bayes theorem

From the previous section it is clear that

f(x, y) = f(x|y)f(y) = f(y|x)f(x).

Rearranging the last two terms gives

f(x|y) = f(y|x)f(x)
f(y)

.

This important result, Bayes theorem, leads to a whole school of statistical

modelling, as we see in chapters 2 and 6.

1.4.4 Independence and conditional independence

If random variables X and Y are such that f(x|y) does not depend on

the value of y, then x is statistically independent of y. This has the conse-

quence that

f(x) =

∫ ∞

−∞

f(x, y)dy =

∫ ∞

−∞

f(x|y)f(y)dy

= f(x|y)
∫ ∞

−∞

f(y)dy = f(x|y),

which in turn implies that f(x, y) = f(x|y)f(y) = f(x)f(y). Clearly

the reverse implication also holds, since f(x, y) = f(x)f(y) leads to

f(x|y) = f(x, y)/f(y) = f(x)f(y)/f(y) = f(x). In general then:

Random variables X and Y are independent if and only if their joint p.(d.)f. is given by

the product of their marginal p.(d.)f.s: that is, f(x, y) = f(x)f(y).



1.5 Mean and variance 7

Modelling the elements of a random vector as independent usually sim-

plifies statistical inference. Assuming independent identically distributed

(i.i.d.) elements is even simpler, but much less widely applicable.

In many applications, a set of observations cannot be modelled as inde-

pendent, but can be modelled as conditionally independent. Much of mod-

ern statistical research is devoted to developing useful models that exploit

various sorts of conditional independence in order to model dependent data

in computationally feasible ways.

Consider a sequence of random variablesX1,X2, . . . Xn, and letX−i =
(X1, . . . ,Xi−1,Xi+1, . . . ,Xn)

T. A simple form of conditional indepen-

dence is the first order Markov property,

f(xi|x−i) = f(xi|xi−1).

That is, Xi−1 completely determines the distribution of Xi, so that given

Xi−1, Xi is independent of the rest of the sequence. It follows that

f(x) = f(xn|x−n)f(x−n) = f(xn|xn−1)f(x−n)

= . . . =
n
∏

i=2

f(xi|xi−1)f(x1),

which can often be exploited to yield considerable computational savings.

1.5 Mean and variance

Although it is important to know how to characterise the distribution of a

random variable completely, for many purposes its first- and second-order

properties suffice. In particular the mean or expected value of a random

variable, X, with p.d.f. f(x), is defined as

E(X) =

∫ ∞

−∞

xf(x)dx.

Since the integral is weighting each possible value of x by its relative fre-

quency of occurrence, we can interpret E(X) as being the average of an

infinite sequence of observations of X .

The definition of expectation applies to any function g of X:

E{g(X)} =
∫ ∞

−∞

g(x)f(x)dx.

Defining µ = E(X), then a particularly useful g is (X − µ)2, measuring



8 Random variables

the squared difference between X and its average value, which is used to

define the variance of X:

var(X) = E{(X − µ)2}.
The variance of X measures how spread out the distribution of X is. Al-

though computationally convenient, its interpretability is hampered by hav-

ing units that are the square of the units of X . The standard deviation is

the square root of the variance, and hence is on the same scale as X .

1.5.1 Mean and variance of linear transformations

From the definition of expectation it follows immediately that if a and b are

finite real constants E(a + bX) = a + bE(X). The variance of a + bX
requires slightly more work:

var(a+ bX) = E{(a+ bX − a− bµ)2}
= E{b2(X − µ)2} = b2E{(X − µ)2} = b2var(X).

If X and Y are random variables then E(X + Y ) = E(X) + E(Y ).
To see this suppose that they have joint density f(x, y); then,

E(X + Y ) =

∫

(x+ y)f(x, y)dxdy

=

∫

xf(x, y)dxdy +

∫

yf(x, y)dxdy = E(X) + E(Y ).

This result assumes nothing about the distribution of X and Y . If we

now add the assumption that X and Y are independent then we find that

E(XY ) = E(X)E(Y ) as follows:

E(XY ) =

∫

xyf(x, y)dxdy

=

∫

xf(x)yf(y)dxdy (by independence)

=

∫

xf(x)dx

∫

yf(y)dy = E(X)E(Y ).

Note that the reverse implication only holds if the joint distribution of X
and Y is Gaussian.

Variances do not add as nicely as means (unless X and Y are indepen-

dent), and we need the notion of covariance:

cov(X,Y ) = E{(X − µx)(Y − µy)} = E(XY )−E(X)E(Y ),
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where µx = E(X) and µy = E(Y ). Clearly var(X) ≡ cov(X,X),
and if X and Y are independent cov(X,Y ) = 0 (since then E(XY ) =
E(X)E(Y )).

Now let A and b be, respectively, a matrix and a vector of fixed finite

coefficients, with the same number of rows, and let X be a random vector.

E(X) = µx = {E(X1), E(X2), . . . , E(Xn)}T and it is immediate that

E(AX + b) = AE(X) + b. A useful summary of the second-order

properties of X requires both variances and covariances of its elements.

These can be written in the (symmetric) variance-covariance matrix Σ,

where Σij = cov(Xi,Xj), which means that

Σ = E{(X − µx)(X− µx)T}. (1.4)

A very useful result is that

ΣAX+b = AΣAT, (1.5)

which is easily proven:

ΣAX+b = E{(AX + b−Aµx − b)(AX+ b−Aµx − b)T}
= E{(AX −Aµx)(AX−Aµx)

T)

= AE{(X − µx)(X− µx)T}AT = AΣAT.

So if a is a vector of fixed real coefficients then var(aTX) = aTΣa ≥ 0:

a covariance matrix is positive semi-definite.

1.6 The multivariate normal distribution

The normal or Gaussian distribution (see Section A.1.1) has a central place

in statistics, largely as a result of the central limit theorem covered in Sec-

tion 1.9. Its multivariate version is particularly useful.

Definition Consider a set of n i.i.d. standard normal random variables:

Zi ∼
i.i.d

N(0, 1). The covariance matrix for Z is In and E(Z) = 0. Let B

be an m× n matrix of fixed finite real coefficients and µ be an m- vector

of fixed finite real coefficients. The m-vector X = BZ+µ is said to have

a multivariate normal distribution. E(X) = µ and the covariance matrix

of X is just Σ = BB
T

. The short way of writing X’s distribution is

X ∼ N(µ,Σ).

In Section 1.7, basic transformation theory establishes that the p.d.f. for
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this distribution is

fx(x) =
1

√

(2π)m|Σ|
e−

1
2 (x−µ)TΣ−1(x−µ) for x ∈ R

m, (1.6)

assumingΣ has full rank (if m = 1 the definition gives the usual univariate

normal p.d.f.). Actually there exists a more general definition in which Σ is

merely positive semi-definite, and hence potentially singular: this involves

a pseudoinverse of Σ.

An interesting property of the multivariate normal distribution is that

if X and Y have a multivariate normal distribution and zero covariance,

then they must be independent. This implication only holds for the normal

(independence implies zero covariance for any distribution).

1.6.1 A multivariate t distribution

If we replace the random variables Zi ∼
i.i.d

N(0, 1) with random variables

Ti ∼
i.i.d

tk (see Section A.1.3) in the definition of a multivariate normal, we

obtain a vector with a multivariate tk(µ,Σ) distribution. This can be use-

ful in stochastic simulation, when we need a multivariate distribution with

heavier tails than the multivariate normal. Note that the resulting univariate

marginal distributions are not t distributed. Multivariate t densities with t
distributed marginals are more complicated to characterise.

1.6.2 Linear transformations of normal random vectors

From the definition of multivariate normality, it immediately follows that

if X ∼ N(µ,Σ) and A is a matrix of finite real constants (of suitable

dimensions), then

AX ∼ N(Aµ,AΣAT). (1.7)

This is because X = BZ + µ, so AX = ABZ +Aµ, and hence AX

is exactly the sort of linear transformation of standard normal r.v.s that

defines a multivariate normal random vector. Furthermore it is clear that

E(AX) = Aµ and the covariance matrix of AX is AΣAT.

A special case is that if a is a vector of finite real constants, then

aTX ∼ N(aTµ,aTΣa).

For the case in which a is a vector of zeros, except for aj , which is 1, (1.7)

implies that

Xj ∼ N(µj ,Σjj) (1.8)



1.6 The multivariate normal distribution 11

(usually we would write σ2
j for Σjj). In words:

If X has a multivariate normal distribution, then the marginal distribution of any Xj is

univariate normal.

More generally, the marginal distribution of any subvector of X is multi-

variate normal, by a similar argument to that which led to (1.8).

The reverse implication does not hold. Marginal normality of the Xj

is not sufficient to imply that X has a multivariate normal distribution.

However, if aTX has a normal distribution, for all (finite real) a, then X

must have a multivariate normal distribution.

1.6.3 Multivariate normal conditional distributions

Suppose that Z and X are random vectors with a multivariate normal joint

distribution. Partitioning their joint covariance matrix

Σ =

[

Σz Σzx

Σxz Σx

]

,

then

X|z ∼ N(µx +ΣxzΣ
−1
z (z− µz),Σx −ΣxzΣ

−1
z Σzx).

Proof relies on a result for the inverse of a symmetric partitioned matrix:

[

A C

CT B

]−1

=

[

A−1 +A−1CD
−1
CTA−1 −A−1CD

−1

−D−1CTA−1 D−1

]

where D = B−CTA−1C (this can be checked easily, if tediously). Now
find the conditional p.d.f. of X givenZ. Defining Q = Σx−ΣxzΣ

−1
z Σzx,

z̃ = z − µz, x̃ = x− µx and noting that terms involving only z are part
of the normalising constant,

f(x|z) = f(x, z)/f(z)

∝ exp

{

−
1

2

[

z̃

x̃

]T [

Σ−1
z + Σ−1

z ΣzxQ
−1ΣxzΣ

−1
z −Σ−1

z ΣzxQ
−1

−Q−1ΣxzΣ
−1
z Q−1

] [

z̃

x̃

]

}

∝ exp
{

−x̃
T
Q

−1
x̃/2 + x̃

T
Q

−1
ΣxzΣ

−1
z z̃+ z terms

}

∝ exp
{

−(x̃ − ΣxzΣ
−1
z z̃)TQ

−1(x̃ − ΣxzΣ
−1
z z̃)/2 + z terms

}

,

which is recognisable as a N(µx+ΣxzΣ
−1
z (z−µz),Σx−ΣxzΣ

−1
z Σzx)

p.d.f.
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1.7 Transformation of random variables

Consider a continuous random variable Z , with p.d.f. fz. Suppose X =
g(Z) where g is an invertible function. The c.d.f of X is easily obtained

from that of Z:

Fx(x) = Pr(X ≤ x)

=

{

Pr{g−1(X) ≤ g−1(x)} = Pr{Z ≤ g−1(x)}, g increasing

Pr{g−1(X) > g−1(x)} = Pr{Z > g−1(x)}, g decreasing

=

{

Fz{g−1(x)}, g increasing

1− Fz{g−1(x)}, g decreasing

To obtain the p.d.f. we simply differentiate and, whether g is increasing or

decreasing, obtain

fx(x) = F ′
x(x) = F ′

z{g−1(x)}
∣

∣

∣

∣

dz

dx

∣

∣

∣

∣

= fz{g−1(x)}
∣

∣

∣

∣

dz

dx

∣

∣

∣

∣

.

If g is a vector function and Z and X are vectors of the same dimension,

then this last result generalises to

fx(x) = fz{g−1(x)} |J| ,

where Jij = ∂zi/∂xj (again a one-to-one mapping between x and z is as-

sumed). Note that if fx and fz are probability functions for discrete random

variables then no |J| term is needed.

Example Use the definition of a multivariate normal random vector to

obtain its p.d.f. Let X = BZ+ µ, where B is an n× n invertible matrix

andZ a vector of i.i.d. standard normal random variables. So the covariance

matrix of X is Σ = BB
T

, Z = B−1(X − µ) and the Jacobian here is

|J| = |B−1|. Since the Zi are i.i.d. their joint density is the product of their

marginals, i.e.

f(z) =
1√
2π

n e
−zTz/2.

Direct application of the preceding transformation theory then gives

f(x) =
|B−1|√
2π

n e
−(x−µ)TB−TB−1(x−µ)/2

=
1

√

(2π)n|Σ|
e−(x−µ)TΣ−1(x−µ)/2.
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1.8 Moment generating functions

Another characterisation of the distribution of a random variable, X , is its

moment generating function (m.g.f.),

MX(s) = E
(

esX
)

,

where s is real. The kth derivative of the m.g.f. evaluated at s = 0 is the

kth (uncentered) moment of X:

dkMX

dsk

∣

∣

∣

∣

s=0

= E(Xk).

So MX(0) = 1, M ′
X(0) = E(X), M ′′

X(0) = E(X2), etc.

The following three properties will be useful in the next section:

1. If MX(s) = MY (s) for some small interval around s = 0, then X and

Y are identically distributed.

2. If X and Y are independent, then

MX+Y (s) = E
{

es(X+Y )
}

= E
(

esXesY
)

= E
(

esX
)

E
(

esY
)

= MX(s)MY (s).

3. Ma+bX(s) = E(eas+bXs) = easMX(bs).

Property 1 is unsurprising, given that the m.g.f. encodes all the moments

of X .

1.9 The central limit theorem

Consider i.i.d. random variables, X1,X2, . . . Xn, with mean µ and finite

variance σ2. Let X̄n =
∑n

i=1 Xi/n. In its simplest form, the central limit

theorem says that in the limit n→∞,

X̄n ∼ N(µ, σ2/n).

Intuitively, consider a Taylor expansion of l(x̄n) = log f(x̄n) where f is

the unknown p.d.f. of X̄n, with mode x̂n:

f(x̄) ≃ exp{l(x̂n) + l′′(x̄n − x̂n)
2/2 + l′′′(x̄n − x̂n)

3/6 + · · · }

as n → ∞, x̄n − x̂n → 0, so that the right hand side tends to an

N(x̂,−1/l′′) p.d.f. This argument is not rigorous, because it makes im-

plicit assumptions about how derivatives of l vary with n.
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A proper proof uses moment generating functions. Define

Yi =
Xi − µ

σ
and Zn =

1√
n

n
∑

i=1

Yi =
X̄n − µ

σ/
√
n

.

Now express the m.g.f. of Zn in terms of the Taylor expansion of the m.g.f.

of Yi (noting that M ′
Y (0) = 0 and M ′′

Y (0) = 1):

MZn
(s) =

{

MY (s/
√
n)
}n

=

{

MY (0) +M ′
Y (0)

s√
n
+M ′′

Y (0)
s2

2n
+ o(n−1)

}n

=

{

1 +
s2

2n
+ o(n−1)

}n

= exp

[

n log

{

1 +
s2

2n
+ o(n−1)

}]

→ exp

(

s2

2

)

as n→∞.

The final expression is the m.g.f. of N(0, 1), completing the proof.

The central limit theorem generalises to multivariate and non-identical

distribution settings. There are also many non-independent situations where

a normal limiting distribution occurs. The theorem is important in statistics

because it justifies using the normal as an approximation in many situations

where a random variable can be viewed as a sum of other random variables.

This applies in particular to the distribution of statistical estimators, which

very often have normal distributions in the large sample limit.

1.10 Chebyshev, Jensen and the law of large numbers

Some other general results are useful in what follows.

1.10.1 Chebyshev’s inequality

If X is a random variable and E(X2) <∞, then

Pr(|X| ≥ a) ≤ E(X2)

a2
. (1.9)

Proof: From the definition of expectation we have

E(X2) = E(X2 | a ≤ |X|)Pr(a ≤ |X|)
+ E(X2 | a > |X|)Pr(a > |X|)
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and because all the terms on the right hand side are non-negative it follows

that E(X2) ≥ E(X2 | a ≤ |X|)Pr(a ≤ |X|). However if a ≤ |X|, then

obviously a2 ≤ E(X2 | a ≤ |X|) so E(X2) ≥ a2Pr(|X| ≥ a) and (1.9)

is proven.

1.10.2 The law of large numbers

Consider i.i.d. random variables, X1, . . . Xn, with mean µ, and E(|Xi|) <
∞. If X̄n =

∑n
i=1 Xi/n then the strong law of large numbers states that,

for any positive ǫ

Pr
(

lim
n→∞

|X̄n − µ| < ǫ
)

= 1

(i.e. X̄n converges almost surely to µ).

Adding the assumption var(Xi) = σ2 < ∞, it is easy to prove the

slightly weaker result

lim
n→∞

Pr
(

|X̄n − µ| ≥ ǫ
)

= 0,

which is the weak law of large numbers (Xn converges in probability to

µ). A proof is as follows:

Pr
(

|X̄n − µ| ≥ ǫ
)

≤ E(X̄n − µ)2

ǫ2
=

var(X̄n)

ǫ2
=

σ2

nǫ2

and the final term tends to 0 as n → ∞. The inequality is Chebyshev’s.

Note that the i.i.d. assumption has only been used to ensure that var(X̄n) =
σ2/n. All that we actually needed for the proof was the milder assumption

that limn→∞ var(X̄n) = 0.

To some extent the laws of large numbers are almost statements of the

obvious. If they did not hold then random variables would not be of much

use for building statistical models.

1.10.3 Jensen’s inequality

This states that for any random variable X and concave function c,

c{E(X)} ≥ E{c(X)}. (1.10)

The proof is most straightforward for a discrete random variable. A con-

cave function, c, is one for which

c(w1x1 + w2x2) ≥ w1c(x1) + w2c(x2) (1.11)



16 Random variables

for any real non-negative w1 and w2 such that w1+w2 = 1. Now suppose

that it is true that

c

(

n−1
∑

i=1

w′
ixi

)

≥
n−1
∑

i=1

w′
ic(xi) (1.12)

for any non-negative constants w′
i such that

∑n−1
i=1 w′

i = 1. Consider any

set of non-negative constants wi such that
∑n

i=1 wi = 1. We can write

c

(

n
∑

i=1

wixi

)

= c

(

(1−wn)
n−1
∑

i=1

wixi
1− wn

+ wnxn

)

≥ (1− wn)c

(

n−1
∑

i=1

wixi
1− wn

)

+ wnc(xn) (1.13)

where the final inequality is by (1.11). Now from
∑n

i=1 wi = 1 it follows

that
∑n−1

i=1 wi/(1− wn) = 1, so (1.12) applies and

c

(

n−1
∑

i=1

wixi
1− wn

)

≥
n−1
∑

i=1

wic(xi)

1− wn
.

Substituting this into the right hand side of (1.13) results in

c

(

n
∑

i=1

wixi

)

≥
n
∑

i=1

wic(xi). (1.14)

For n = 3 (1.12) is just (1.11) and is therefore true. It follows, by induc-

tion, that (1.14) is true for any n. By setting wi = f(xi), where f(x) is the

probability function of the r.v. X , (1.10) follows immediately for a discrete

random variable. In the case of a continuous random variable we need to

replace the expectation integral by the limit of a discrete weighted sum,

and (1.10) again follows from (1.14)

1.11 Statistics

A statistic is a function of a set of random variables. Statistics are them-

selves random variables. Obvious examples are the sample mean and sam-

ple variance of a set of data, x1, x2, . . . xn:

x̄ =
1

n

n
∑

i=1

xi, s2 =
1

n− 1

n
∑

i=1

(xi − x̄)2.
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The fact that formal statistical procedures can be characterised as functions

of sets of random variables (data) accounts for the field’s name.

If a statistic t(x) (scalar or vector) is such that the p.d.f. of x can be

written as

fθ(x) = h(x)gθ{t(x)},
where h does not depend on θ and g depends on x only through t(x),
then t is a sufficient statistic for θ, meaning that all information about θ

contained in x is provided by t(x). See Section 4.1 for a formal definition

of ‘information’. Sufficiency also means that the distribution of x given

t(x) does not depend on θ.

Exercises

1.1 Exponential random variable, X ≥ 0, has p.d.f. f(x) = λ exp(−λx).

1. Find the c.d.f. and the quantile function for X.

2. Find Pr(X < λ) and the median of X.

3. Find the mean and variance of X.

1.2 Evaluate Pr(X < 0.5, Y < 0.5) if X and Y have joint p.d.f. (1.2).

1.3 Suppose that

Y ∼ N

([

1

2

]

,

[

2 1

1 2

])

.

Find the conditional p.d.f. of Y1 given that Y1 + Y2 = 3.

1.4 If Y ∼ N(µ, Iσ2) and Q is any orthogonal matrix of appropriate dimension,

find the distribution of QY. Comment on what is surprising about this result.

1.5 If X and Y are independent random vectors of the same dimension, with

covariance matrices Vx and Vy , find the covariance matrix of X+Y.

1.6 Let X and Y be non-independent random variables, such that var(X) = σ2
x,

var(Y ) = σ2
y and cov(X,Y ) = σ2

xy . Using the result from Section 1.6.2,

find var(X + Y ) and var(X − Y ).

1.7 Let Y1, Y2 and Y3 be independent N(µ, σ2) r.v.s. Somehow using the matrix





1/3 1/3 1/3

2/3 −1/3 −1/3

−1/3 2/3 −1/3





show that Ȳ =
∑3
i=1 Yi/3 and

∑3
i=1(Yi − Ȳ )2 are independent random

variables.

1.8 If log(X) ∼ N(µ, σ2), find the p.d.f. of X.

1.9 Discrete random variable Y has a Poisson distribution with parameter λ if

its p.d.f. is f(y) = λye−λ/y!, for y = 0, 1, . . .
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a. Find the moment generating function for Y (hint: the power series repre-

sentation of the exponential function is useful).

b. If Y1 ∼ Poi(λ1) and independently Y2 ∼ Poi(λ2), deduce the distribu-

tion of Y1 + Y2, by employing a general property of m.g.f.s.

c. Making use of the previous result and the central limit theorem, deduce

the normal approximation to the Poisson distribution.

d. Confirm the previous result graphically, using R functions dpois, dnorm,

plot or barplot and lines. Confirm that the approximation improves

with increasing λ.
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Statistical models and inference

Statistics aims to extract information from data: specifically, information

about the system that generated the data. There are two difficulties with

this enterprise. First, it may not be easy to infer what we want to know

from the data that can be obtained. Second, most data contain a component

of random variability: if we were to replicate the data-gathering process

several times we would obtain somewhat different data on each occasion.

In the face of such variability, how do we ensure that the conclusions drawn

statistical modelknowns

unknowns

data

statistical modelγ, x

θ

y

Figure 2.1 Left: a statistical model is a mathematical description
of how the values of some knowns and unknowns could have
been used to generate observed data and other stochastically
similar replicates. Right: the model unknowns are written in a
parameter vector θ and the model knowns may include fixed data,
x and parameters γ. The data are observations, y, of a random
vector. At minimum a statistical model must allow random data to
be simulated that are stochastically similar to y: explicitly or
implicitly it specifies the distribution of y in terms of x, γ and θ.
Statistical methods aim to reverse the direction of the vertical
arrows: to infer the unknown θ from the observed data y.

19
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from a single set of data are generally valid, and not a misleading reflection

of the random peculiarities of that single set of data?

Statistics provides methods for overcoming these difficulties and mak-

ing sound inferences from inherently random data. For the most part this

involves the use of statistical models, which are like ‘mathematical car-

toons’ describing how our data might have been generated, if the unknown

features of the data-generating system were actually known. So if the un-

knowns were known, then a decent model could generate data that resem-

bled the observed data, including reproducing its variability under replica-

tion. The purpose of statistical inference is then to use the statistical model

to go in the reverse direction: to infer the values of the model unknowns

that are consistent with observed data.

Mathematically, let y denote a random vector containing the observed

data. Let θ denote a vector of parameters of unknown value. We assume

that knowing the values of some of these parameters would answer the

questions of interest about the system generating y. So a statistical model

is a recipe by which y might have been generated, given appropriate values

for θ. At a minimum the model specifies how data like y might be simu-

lated, thereby implicitly defining the distribution of y and how it depends

on θ. Often it will provide more, by explicitly defining the p.d.f. of y in

terms of θ. Generally a statistical model may also depend on some known

parameters, γ, and some further data, x, that are treated as known and are

referred to as covariates or predictor variables. See Figure 2.1.

In short, if we knew the value of θ, a correct statistical model would

allow us to simulate as many replicate random data vectors y∗ as we like,

which should all resemble our observed data y (while almost never being

identical to it). Statistical methods are about taking models specified in this

unknown parameters to known data way and automatically inverting them

to work out the values of the unknown parameters θ that are consistent

with the known observed data y.

2.1 Examples of simple statistical models

1. Consider the following 60-year record of mean annual temperatures in

New Haven, Connecticut (in ◦F, and available as nhtemp in R).

49.9 52.3 49.4 51.1 49.4 47.9 49.8 50.9 49.3 51.9 50.8 49.6 49.3 50.6

48.4 50.7 50.9 50.6 51.5 52.8 51.8 51.1 49.8 50.2 50.4 51.6 51.8 50.9

48.8 51.7 51.0 50.6 51.7 51.5 52.1 51.3 51.0 54.0 51.4 52.7 53.1 54.6

52.0 52.0 50.9 52.6 50.2 52.6 51.6 51.9 50.5 50.9 51.7 51.4 51.7 50.8

51.9 51.8 51.9 53.0

A simple model would treat these data as independent observations
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from an N(µ, σ2) distribution, where µ and σ2 are unknown param-

eters (see Section A.1.1). Then the p.d.f. for the random variable corre-

sponding to a single measurement, yi, is

f(yi) =
1√
2πσ

e
−(yi−µ)2

2σ2 .

The joint p.d.f. for the vector y is the product of the p.d.f.s for the

individual random variables, because the model specifies independence

of the yi, i.e.

f(y) =
60
∏

i=1

f(yi).

2. The New Haven temperature data seem to be ‘heavy tailed’ relative to

a normal: that is, there are more extreme values than are implied by a

normal with the observed standard deviation. A better model might be

yi − µ

σ
∼ tα,

where µ, σ and α are unknown parameters. Denoting the p.d.f. of a tα
distribution as ftα , the transformation theory of Section 1.7, combined

with independence of the yi, implies that the p.d.f. of y is

f(y) =
60
∏

i=1

1

σ
ftα{(yi − µ)/σ}.

3. Air temperature, ai, is measured at times ti (in hours) spaced half an

hour apart for a week. The temperature is believed to follow a daily

cycle, with a long-term drift over the course of the week, and to be

subject to random autocorrelated departures from this overall pattern.

A suitable model might then be

ai = θ0 + θ1ti + θ2 sin(2πti/24) + θ3 cos(2πti/24) + ei,

where ei = ρei−1 + ǫi and the ǫi are i.i.d. N(0, σ2). This model im-

plicitly defines the p.d.f. of a, but as specified we have to do a little

work to actually find it. Writing µi = θ0 + θ1ti + θ2 sin(2πti/24) +
θ3 cos(2πti/24), we have ai = µi + ei. Because ei is a weighted

sum of zero mean normal random variables, it is itself a zero mean

normal random variable, with covariance matrix Σ such that Σi,j =
ρ|i−j|σ2/(1− ρ2). So the p.d.f. of a,1 the vector of temperatures, must

1 For aesthetic reasons I will use phrases such as ‘the p.d.f. of y’ to mean ‘the p.d.f. of the

random vector of which y is an observation’.
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be multivariate normal,

fa(a) =
1

√

(2π)n|Σ|
e−

1
2 (a−µ)TΣ−1(a−µ),

whereΣ depends on parameter ρ and σ, whileµ depends on parameters

θ and covariate t (see also Section 1.6).

4. Data were collected at the Ohio State University Bone Marrow Trans-

plant Unit to compare two methods of bone marrow transplant for 23

patients suffering from non-Hodgkin’s lymphoma. Each patient was

randomly allocated to one of two treatments. The allogenic treatment

consisted of a transplant from a matched sibling donor. The autogenic

treatment consisted of removing the patient’s marrow, ‘cleaning it’ and

returning it after a high dose of chemotherapy. For each patient the time

of death, relapse or last follow up (still healthy) is recorded. The ‘right-

censored’ last follow up times are marked with an over-bar.
Time (Days)

Allo 28 32 49 84 357 933 1078 1183 1560 2114 2144
Auto 42 53 57 63 81 140 176 210 252 476 524 1037

The data are from Klein and Moeschberger (2003). A reasonable model

is that the death or relapse times are observations of independent ran-

dom variables having exponential distributions with parameters θl and

θu respectively (mean survival times are θ−1
u/l). Medically the interesting

question is whether the data are consistent with θl = θu.

For the allogenic group, denote the time of death, relapse or censor-

ing by ti. So we have

fl(ti) =

{

θle
−θlti uncensored

∫∞

ti
θle

−θltdt = e−θlti censored

where fl is a density for an uncensored ti (death) or a probability of

dying after ti for a censored observation. A similar model applies for

the autogenic sample. For the whole dataset we then have

f(t) =
11
∏

i=1

fl(ti)
23
∏

i=12

fu(ti).

2.2 Random effects and autocorrelation

For the example models in the previous section, it was relatively straight-

forward to go from the model statement to the implied p.d.f. for the data.
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Often, this was because we could model the data as observations of in-

dependent random variables with known and tractable distributions. Not

all datasets are so amenable, however, and we commonly require more

complicated descriptions of the stochastic structure in the data. Often we

require models with multiple levels of randomness. Such multilayered ran-

domness implies autocorrelation in the data, but we may also need to in-

troduce autocorrelation more directly, as in Example 3 in Section 2.1.

Random variables in a model that are not associated with the indepen-

dent random variability of single observations,2 are termed random effects.

The idea is best understood via concrete examples:

1. A trial to investigate a new blood-pressure reducing drug assigns male

patients at random to receive the new drug or one of two alternative

standard treatments. Patients’ age, aj , and fat mass, fj , are recorded

at enrolment, and their blood pressure reduction is measured at weekly

intervals for 12 weeks. In this setup it is clear that there are two sources

of random variability that must be accounted for: the random variability

from patient to patient, and the random variability from measurement to

measurement made on a single patient. Let yij represent the ith blood-

pressure reduction measurement on the jth patient. A suitable model

might then be

yij = γk(j)+β1aj+β2fj+bj+ǫij, bj ∼ N(0, σ2
b ), ǫij ∼ N(0, σ2),

(2.1)

where k(j) = 1, 2 or 3 denotes the treatment to which patient j has

been assigned. The γk, βs and σs are unknown model parameters. The

random variables bj and ǫij are all assumed to be independent here.

The key point is that we decompose the randomness in yij into two

components: (i) the patient specific component, bj , which varies ran-

domly from patient to patient but remains fixed between measurements

on the same patient, and (ii) the individual measurement variability, ǫij ,
which varies between all measurements. Hence measurements taken

from different patients of the same age, fat mass and treatment will usu-

ally differ more than measurements taken on the same patient. So the

yij are not statistically independent in this model, unless we condition

on the bj .

On first encountering such models it is natural to ask why we do

not simply treat the bj as fixed parameters, in which case we would be

back in the convenient world of independent measurements. The rea-

2 and, in a Bayesian context, are not parameters.
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son is interpretability. As stated, (2.1) treats patients as being randomly

sampled from a wide population of patients: the patient-specific effects

are simply random draws from some normal distribution describing the

distribution of patient effects over the patient population. In this setup

there is no problem using statistics to make inferences about the pop-

ulation of patients in general, on the basis of the sample of patients in

the trial. Now suppose we treat the bj as parameters. This is equivalent

to saying that the patient effects are entirely unpredictable from patient

to patient — there is no structure to them at all and they could take any

value whatsoever. This is a rather extreme position to hold and implies

that we can say nothing about the blood pressure of a patient who is not

in the trial, because their bj value could be anything at all. Another side

of this problem is that we lose all ability to say anything meaningful

about the treatment effects, γk, since we have different patients in the

different treatment arms, so that the fixed bj are completely confounded

with the γk (as can be seen by noting that any constant could be added to

a γk, while simultaneously being subtracted from all the bj for patients

in group k, without changing the model distribution of any yij).

2. A population of cells in an experimental chemostat is believed to grow

according to the model

Nt+1 = rNt exp(−αNt + bt), bt ∼ N(0, σ2
b ),

where Nt is the population at day t; r, α, σb and N0 are parameters;

and the bt are independent random effects. A random sample of 0.5%

of the cells in the chemostat is counted every 2 days, giving rise to

observations yt, which can be modelled as independent Poi(0.005Nt).
In this case the random effects enter the model nonlinearly, introducing

a complicated correlation structure into Nt, and hence also the yt.

The first example is an example of a linear mixed model.3 In this case it

is not difficult to obtain the p.d.f. for the vector y. We can write the model

in matrix vector form as

y = Xβ + Zb+ ǫ, b ∼ N(0, Iσ2
b ), ǫ ∼ N(0, Iσ2), (2.2)

where βT = (γ1, γ2, γ3, β1, β2). The first three columns of X contain

0, 1 indicator variables depending on which treatment the row relates to,

3 It is a mixed model because it contains both fixed effects (the γ and β terms in the

example) and random effects. Mixed models should not be confused with mixture

models in which each observation is modelled as having some probability of being

drawn from each of a number of alternative distributions.
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and the next two columns contain the age and fat mass for the patients. Z

has one column for each subject, each row of which contains a 1 or a 0

depending on whether the observation at this data row relates to the subject

or not. Given this structure it follows (see Section 1.6.2) that the covariance

matrix fory is Σ = Iσ2+ZZ
Tσ2

b and the expected value of y isµ = Xβ,

so that y ∼ N(µ,Σ), with p.d.f. as in (1.6). So in this case the p.d.f. for y

is quite easy to write down. However, computing with it can become very

costly if the dimension of y is beyond the low thousands. Hence the main

challenge with these models is to find ways of exploiting the sparsity that

results from having so many 0 entries in Z, so that computation is feasible

for large samples.

The second example illustrates the more usual situation in which the

model fully specifies a p.d.f. (or p.f.) for y, but it is not possible to write

it down in closed form, or even to evaluate it exactly. In contrast, the joint

density of the random effects, b, and data, y, is always straightforward to

evaluate. From Sections 1.4.2 and 1.4.3 we have that

f(y,b) = f(y|b)f(b),
and the distributions f(y|b) and f(b) are usually straightforward to work

with. So, for the second example, let f(y;λ) denote the p.f. of a Poisson

random variable with mean λ (see Section A.3.2). Then

f(y|b) =
∏

t

f(yt;Nt/200),

while f(b) is the density of a vector of i.i.d. N(0, σ2
b ) deviates.

For some statistical tasks we may be able to work directly with f(y,b)
without needing to evaluate the p.d.f. of y: this typically applies when tak-

ing the Bayesian approach of Section 2.5, for example. However, often we

cannot escape the need to evaluate f(y) itself. That is, we need

f(y) =

∫

f(y,b)db,

which is generally not analytically tractable. We then have a number of

choices. If the model has a structure that allows the integral to be bro-

ken down into a product of low-dimensional integrals then numerical in-

tegration methods (so-called quadrature) may be feasible; however, these

methods are usually impractical beyond somewhere around 10 dimensions.

Then we need a different approach: either estimate the integral statistically

using stochastic simulation or approximate it somehow (see Section 5.3.1).
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2.3 Inferential questions

Given some data, y, and a statistical model with parameters θ, there are

four basic questions to ask:

1. What values for θ are most consistent with y?

2. Is some prespecified restriction on θ consistent with y?

3. What ranges of values of θ are consistent with y?

4. Is the model consistent with the data for any values of θ at all?

The answers to these questions are provided by point estimation, hypoth-

esis testing, interval estimation and model checking, respectively. Ques-

tion 2 can be somewhat generalised to: which of several alternative mod-

els is most consistent with y? This is the question of model selection

(which partly incorporates question 4). Central to the statistical way of do-

ing things is recognising the uncertainty inherent in trying to learn about θ

from y. This leads to another, often neglected, question that applies when

there is some control over the data-gathering process:

5. How might the data-gathering process be organized to produce data that

enables answers to the preceding questions to be as accurate and precise

as possible?

This question is answered by experimental and survey design methods.

There are two main classes of methods for answering questions 1-4,

and they start from different basic assumptions. These are the Bayesian

and frequentist approaches, which differ in how they use probability to

model uncertainty about model parameters. In the frequentist approach,

parameters are treated as having values that are fixed states of nature, about

which we want to learn using data. There is randomness in our estimation

of the parameters, but not in the parameters themselves. In the Bayesian

approach parameters are treated as random variables, about which we want

to update our beliefs in the light of data: our beliefs are summarised by

probability distributions for the parameters. The difference between the

approaches can sound huge, and there has been much debate about which

is least ugly. From a practical perspective, however, the approaches have

much in common, except perhaps when it comes to model selection. In

particular, if properly applied they usually produce results that differ by

less than the analysed models are likely to differ from reality.
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2.4 The frequentist approach

In this way of doing things we view parameters, θ, as fixed states of nature,

about which we want to learn. We use probability to investigate what would

happen under repeated replication of the data (and consequent statistical

analysis). In this approach probability is all about how frequently events

would occur under this imaginary replication process.

2.4.1 Point estimation: maximum likelihood

Given a model and some data, then with enough thought about what the

unknown model parameters mean, it is often possible to come up with a

way of getting reasonable parameter value guesses from the data. If this

process can be written down as a mathematical recipe, then we can call the

guess an estimate, and we can study its properties under data replication

to get an idea of its uncertainty. But such model-by-model reasoning is

time consuming and somewhat unsatisfactory: how do we know that our

estimation process is making good use of the data, for example? A general

approach for dealing with all models would be appealing.

There are a number of more or less general approaches, such as the

method of moments and least squares methods, which apply to quite wide

classes of models, but one general approach stands out in terms of practical

utility and nice theoretical properties: maximum likelihood estimation. The

key idea is simply this:

Parameter values that make the observed data appear relatively probable are more likely

to be correct than parameter values that make the observed data appear relatively im-

probable.

For example, we would much prefer an estimate of θ that assigned a prob-

ability density of 0.1 to our observed y, according to the model, to an

estimate for which the density was 0.00001.

So the idea is to judge the likelihood of parameter values using fθ(y),
the model p.d.f. according to the given value of θ, evaluated at the ob-

served data. Because y is now fixed and we are considering the likelihood

as a function of θ, it is usual to write the likelihood as L(θ) ≡ fθ(y). In

fact, for theoretical and practical purposes it is usual to work with the log

likelihood l(θ) = logL(θ). The maximum likelihood estimate (MLE) of

θ is then

θ̂ = argmax
θ

l(θ).



28 Statistical models and inference

There is more to maximum likelihood estimation than just its intuitive ap-

peal. To see this we need to consider what might make a good estimate, and

to do that we need to consider repeated estimation under repeated replica-

tion of the data-generating process.

Replicating the random data and repeating the estimation process results

in a different value of θ̂ for each replicate. These values are of course ob-

servations of a random vector, the estimator or θ, which is usually also

denoted θ̂ (the context making clear whether estimate or estimator is being

referred to). Two theoretical properties are desirable:

1. E(θ̂) = θ or at least |E(θ̂) − θ| should be small (i.e. the estimator

should be unbiased, or have small bias).

2. var(θ̂) should be small (i.e. the estimator should have low variance).

Unbiasedness basically says that the estimator gets it right on average: a

long-run average of the θ̂, over many replicates of the data set, would tend

towards the true value of the parameter vector. Low variance implies that

any individual estimate is quite precise. There is a tradeoff between the

two properties, so it is usual to seek both. For example, we can always

drive variance to zero if we do not care about bias, by just eliminating the

data from the estimation process and picking a constant for the estimate.

Similarly it is easy to come up with all sorts of unbiased estimators that

have enormous variance. Given the tradeoff, you might reasonably wonder

why we do not concern ourselves with some direct measure of estimation

error such as E{(θ̂−θ)2}, the mean square error (MSE). The reason is that

it is difficult to prove general results about minimum MSE estimators, so

we are stuck with the second-best option of considering minimum variance

unbiased estimators.4

It is possible to derive a lower limit on the variance that any unbiased es-

timator can achieve: the Cramér-Rao lower bound. Under some regularity

conditions, and in the large sample limit, it turns out that maximum like-

lihood estimation is unbiased and achieves the Cramér-Rao lower bound,

which gives some support for its use (see Sections 4.1 and 4.3). In addition,

under the same conditions,

θ̂ ∼ N(θ,I−1), (2.3)

4 Unless the gods have condemned you to repeat the same experiment for all eternity,

unbiasedness, although theoretically expedient, should not be of much intrinsic interest:

an estimate close to the truth for the data at hand should always be preferable to one that

would merely get things right on average over an infinite sequence of data replicates.
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where Iij = −E(∂2l/∂θi∂θj) (and actually the same result holds substi-

tuting Îij = −∂2l/∂θi∂θj for Iij).

2.4.2 Hypothesis testing and p-values

Now consider the question of whether some defined restriction on θ is

consistent with y?

p-values: the fundamental idea

Suppose that we have a model defining a p.d.f., fθ(y), for data vector y

and that we want to test the null hypothesis, H0 : θ = θ0, where θ0
is some specified value. That is, we want to establish whether the data

could reasonably be generated from fθ0(y). An obvious approach is to ask

how probable data like y are under H0. It is tempting to simply evaluate

fθ0(y) for the observed y, but then deciding what counts as ‘probable’ and

‘improbable’ is difficult to do in a generally applicable way.

A better approach is to assess the probability, p0 say, of obtaining data

at least as improbable as y under H0 (better read that sentence twice). For

example, if only one dataset in a million would be as improbable as y,

according to H0, then assuming we believe our data, we ought to seriously

doubt H0. Conversely, if half of all datasets would be expected to be at least

as improbable as y, according to H0, then there is no reason to doubt it.

A quantity like p0 makes good sense in the context of goodness of

fit testing, where we simply want to assess the plausibility of fθ0 as a

model without viewing it as being a restricted form of a larger model.

But when we are really testing H0 : θ = θ0 against the alternative H1 :
‘θ unrestricted’ then p0 is not satisfactory, because it makes no distinction

between y being improbable under H0 but probable under H1, and y being

improbable under both.

A very simple example illustrates the problem. Consider independent

observations y1, y2 from N(µ, 1), and the test H0 : µ = 0 versus H0 : µ 6=
0. Figure 2.2 shows the p.d.f. under the null, and, in grey, the region over

which the p.d.f. has to be integrated to find p0 for the data point marked by

•. Now consider two alternative values for y1, y2 that yield equal p0 = 0.1.

In one case (black triangle) y1 = −y2, so that the best estimate of µ is 0,

corresponding exactly to H0. In the other case (black circle) the data are

much more probable under the alternative than under the null hypothesis.

So because we include points that are more compatible with the null than

with the alternative in the calculation of p0, we have only weak discrimi-

natory power between the hypotheses.
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Figure 2.2 Why the alternative hypothesis is needed in defining
the p-value, and p0 will not do. Contour plot of the joint p.d.f. for
the null model that y1, y2 are independent N(0, 1). The dashed
line illustrates the possible values for the expected values of y1
and y2, under the alternative model that they are independent
N(µ, 1). The black triangle and black circle show two possible
values for y1, y2, while the grey region shows the region of at
least as improbable y1, y2 pairs, corresponding to p0 = 0.1. The
problem is that although the black circle is much more probable
under the alternative model, it has the same p0 value as the black
triangle, for which y1 = −y2 and the estimated µ would be
exactly the null model value of zero. The dotted line is y1 = −y2.

Recognizing the problems with p0, a possible solution is to standardise

fθ0(y) by the highest value that fθ(y) could have taken for the given y.

That is, to judge the relative plausibility of y under H0 on the basis of

fθ0(y)/fθ̂(y) where θ̂ is the value maximising fθ(y) for a given y. In the

context of the example in Figure 2.2 this approach is much better. The black

triangle now has relative plausibility 1, reflecting its compatibility with the

H0, whereas the black circle has much lower plausibility, reflecting the fact

that it would be much more probable under a model with a mean greater

than zero. So we could now seek a revised measure of consistency of the

data and null hypothesis:
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p is the probability, under the null hypothesis, of obtaining data at least as relatively

implausible as that observed.

Actually the reciprocal of this relative plausibility is generally known as

the likelihood ratio fθ̂(y)/fθ0(y) of the two hypotheses, because it is a

measure of how likely the alternative hypothesis is relative to the null, given

the data. So we have the more usual equivalent definition:

p is the probability, under the null hypothesis, of obtaining a likelihood ratio at least as

large as that observed.

p is generally referred to as the p-value associated with a test. If the null

hypothesis is true, then from its definition, the p-value should have a uni-

form distribution on [0, 1] (assuming its distribution is continuous). By

convention p-values in the ranges 0.1 ≥ p > 0.05, 0.05 ≥ p > 0.01,

0.01 ≥ p > 0.001 and p ≤ 0.001 are sometimes described as providing,

respectively, ‘marginal evidence’, ‘evidence’, ‘strong evidence’ and ‘very

strong evidence’ against the null model, although the interpretation should

really be sensitive to the context.

Generalisations

For the purposes of motivating p-values, the previous subsection consid-

ered only the case where the null hypothesis is a simple hypothesis, speci-

fying a value for every parameter of f , while the alternative is a composite

hypothesis, in which a range of parameter values are consistent with the

alternative. Unsurprisingly, there are many situations in which we are in-

terested in comparing two composite hypotheses, so that H0 specifies some

restrictions of θ, without fully constraining it to one point. Less commonly,

we may also wish to compare two simple hypotheses, so that the alternative

also supplies one value for each element of θ. This latter case is of theo-

retical interest, but because the hypotheses are not nested it is somewhat

conceptually different from most cases of interest.

All test variants can be dealt with by a slight generalisation of the like-

lihood ratio statistic to fθ̂(y)/fθ̂0(y) where fθ̂0(y) now denotes the max-

imum possible value for the density of y under the null hypothesis. If the

null hypothesis is simple, then this is just fθ0(y), as before, but if not then

it is obtained by finding the parameter vector that maximises fθ(y) subject

to the restrictions on θ imposed by H0.

In some cases the p-value can be calculated exactly from its definition,

and the relevant likelihood ratio. When this is not possible, there is a large

sample result that applies in the usual case of a composite alternative with

a simple or composite null hypothesis. In general we test H0 : R(θ) = 0
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against H1 : ‘θ unrestricted’, where R is a vector-valued function of θ,

specifying r restrictions on θ. Given some regularity conditions and in the

large sample limit,

2{log fθ̂(y) − log fθ̂0(y)} ∼ χ2
r, (2.4)

under H0. See Section 4.4.

fθ̂(y)/fθ̂0(y) is an example of a test statistic, which takes low values

when the H0 is true, and higher values when H1 is true. Other test statistics

can be devised in which case the definition of the p-value generalises to:

p is the probability of obtaining a test statistic at least as favourable to H1 as that ob-

served, if H0 is true.

This generalisation immediately raises the question: what makes a good

test statistic? The answer is that we would like the resulting p-values to be

as small as possible when the null hypothesis is not true (for a test statistic

with a continuous distribution, the p-values should have a U(0, 1) distribu-

tion when the null is true). That is, we would like the test statistic to have

high power to discriminate between null and alternative hypotheses.

The Neyman-Pearson lemma

The Neyman-Pearson lemma provides some support for using the likeli-

hood ratio as a test statistic, in that it shows that doing so provides the

best chance of rejecting a false null hypothesis, albeit in the restricted con-

text of a simple null versus a simple alternative. Formally, consider testing

H0 : θ = θ0 against H1 : θ = θ1. Suppose that we decide to reject

H0 if the p-value is less than or equal to some value α. Let β(θ) be the

probability of rejection if the true parameter value is θ — the test’s power.

In this accept/reject setup the likelihood ratio test rejects H0 if y ∈ R =
{y : fθ1(y)/fθ0(y) > k} and k is such that Prθ0(y ∈ R) = α. It is

useful to define the function φ(y) = 1 if y ∈ R and 0 otherwise. Then

β(θ) =
∫

φ(y)fθ(y)dy. Note that β(θ0) = α.

Now consider using an alternative test statistic and again rejecting if the

p-value is ≤ α. Suppose that the test procedure rejects if

y ∈ R∗ where Prθ0(y ∈ R∗) ≤ α.

Let φ∗(y) and β∗(θ) be the equivalent of φ(y) and β(θ) for this test. Here

β∗(θ0) = Prθ0(y ∈ R∗) ≤ α.

The Neyman-Pearson Lemma then states that β(θ1) ≥ β∗(θ1) (i.e. the

likelihood ratio test is the most powerful test possible).
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Proof follows from the fact that

{φ(y) − φ∗(y)}{fθ1(y)− kfθ0(y)} ≥ 0,

since from the definition of R, the first bracket is non-negative whenever

the second bracket is non-negative, and it is non-positive whenever the sec-

ond bracket is negative. In consequence,

0 ≤
∫

{φ(y) − φ∗(y)}{fθ1(y)− kfθ0(y)}dy

= β(θ1)− β∗(θ1)− k{β(θ0)− β∗(θ0)} ≤ β(θ1)− β∗(θ1),

since {β(θ0) − β∗(θ0)} ≥ 0. So the result is proven. Casella and Berger

(1990) give a fuller version of the lemma, on which this proof is based.

2.4.3 Interval estimation

Recall the question of finding the range of values for the parameters that

are consistent with the data. An obvious answer is provided by the range

of values for any parameter θi that would have been accepted in a hypoth-

esis test. For example, we could look for all values of θi that would have

resulted in a p-value of more than 5% if used as a null hypothesis for the

parameter. Such a set is known as a 95% confidence set for θi. If the set is

continuous then its endpoints define a 95% confidence interval.

The terminology comes about as follows. Recall that if we reject a hy-

pothesis when the p-values is less than 5% then we will reject the null on

5% of occasions when it is correct and therefore accept it on 95% of oc-

casions when it is correct. This follows directly from the definition of a

p-value and the fact that it has a U(0, 1) distribution when the null hypoth-

esis is correct.5 Clearly if the test rejects the true parameter value 5% of the

time, then the corresponding confidence intervals must exclude the true pa-

rameter value on those 5% of occasions as well. That is, a 95% confidence

interval has a 0.95 probability of including the true parameter value (where

the probability is taken over an infinite sequence of replicates of the data-

gathering and intervals estimation process). The following graphic shows

95% confidence intervals computed from 20 replicate datasets, for a single

parameter θ with true value θtrue.

5 again assuming a continuously distributed test statistic. In the less common case of a

discretely distributed test statistic, then the distribution will not be exactly U(0, 1).
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θtrue

As expected on average, 19 of the intervals include the true value, and 1

does not. In general,

A γ100% confidence interval for θ is (an observation of) a random interval designed to

have a probability γ of including the true value of θ.

Again, maximum likelihood theory provides general recipes for com-

puting intervals that will be correct in the large sample limit. We can either

base intervals on result (2.3) and Section 2.7 or search for the range of θi
values giving p-values above 1− γ, in a test using (2.4). The latter profile

likelihood intervals have the advantage that parameters inside the interval

have higher likelihood than those outside it.

2.4.4 Model checking

Ultimately a statistical model says that our data, y, are observations of a

random vector with probability density function fθ(y). That is, the model

says that y ∼ fθ(y). The aim of model checking is to show that

y ≁ fθ(y),

i.e. to show that the model is wrong in some serious and detectable way.

In most cases we know that the model is wrong: it is a model, not reality.

The point is to look for ways in which the model is so wrong that any con-

clusions we might want to draw from it become questionable. The idea is

that if we cannot detect that the model is wrong statistically, then statistical

conclusions drawn with its aid are likely to be reasonably reliable.6

No single test or informal check can detect all possible ways in which a

model might be wrong. Model checking calls for judgement and ‘quantita-

tive scepticism’. Often the most useful checks are graphical ones, because

6 More cautiously, if we can statistically detect that the model is wrong, then statistical

conclusions drawn from it are very likely to be wrong.
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when they indicate that a model is wrong, they frequently also indicate

how it is wrong. One plot that can be produced for any model is a quantile-

quantile (QQ) plot of the marginal distribution of the elements of y, in

which the sorted elements of y are plotted against quantiles of the model

distribution of y. Even if the quantile function is not tractable, replicate y

vectors can be repeatedly simulated from fθ̂(y), and we can obtain empir-

ical quantiles for the marginal distribution of the simulated yi. An approxi-

mately straight line plot should result if all is well (and reference bands for

the plot can also be obtained from the simulations).

But such marginal plots will not detect all model problems, and more is

usually needed. Often a useful approach is to examine plots of standardised

residuals. The idea is to remove the modelled systematic component of the

data and to look at what is left over, which should be random. Typically

the residuals are standardised so that if the model is correct they should ap-

pear independent with constant variance. Exactly how to construct useful

residuals is model dependent, but one fairly general approach is as follows.

Suppose that the fitted model implies that the expected value and covari-

ance matrix of y areµθ̂ and Σθ̂. Then we can define standardised residuals

ǫ̂ = Σ
−1/2

θ̂
(y − µθ̂),

which should appear to be approximately independent, with zero mean and

unit variance, if the model is correct. Σ
−1/2

θ̂
is any matrix square root of

Σ−1

θ̂
, for example its Choleski factor (see Appendix B). Of course, if the

elements of y are independent according to the model, then the covariance

matrix is diagonal, and the computations are very simple.

The standardised residuals are then plotted against µθ̂, to look for pat-

terns in their mean or variance, which would indicate something missing in

the model structure or something wrong with the distributional assumption,

respectively. The residuals would also be plotted against any covariates in

the model, with similar intention. When the data have a temporal element

then the residuals would also be examined for correlations in time. The ba-

sic idea is to try to produce plots that show in some way that the residuals

are not independent with constant/unit variance. Failure to find such plots

increases faith in the model.

2.4.5 Further model comparison, AIC and cross-validation

One way to view the hypothesis tests of Section 2.4.2 is as the comparison

of two alternative models, where the null model is a simplified (restricted)
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version of the alternative model (i.e where the models are nested). The

methods of Section 2.4.2 are limited in two major respects. First, they pro-

vide no general way of comparing models that are not nested, and second,

they are based on the notion that we want to stick with the null model until

there is strong evidence to reject it. There is an obvious need for model

comparison methods that simply seek the ‘best’ model, from some set of

models that need not necessarily be nested.

Akaike’s information criterion (AIC; Akaike, 1973) is one attempt to

fill this need. First we need to formalise what ‘best’ means in this context:

closest to the underlying true model seems sensible. We saw in Section

2.4.2 that the likelihood ratio, or its log, is a good way to discriminate

between models, so a good way to measure model closeness might be to

use the expected value of the log likelihood ratio of the true model and the

model under consideration:

K(fθ̂, ft) =

∫

{log ft(y) − log fθ̂(y)}ft(y)dy

where ft is the true p.d.f. of y. K is known as the Kullback-Leibler di-

vergence (or distance). Selecting models to minimise an estimate of the

expected value of K (expectation over the distribution of θ̂) is equivalent

to selecting the model that has the lowest value of

AIC = −2l(θ̂) + 2dim(θ).

See Section 4.6 for a derivation.

Notice that if we were to select models only on the basis of which has

the highest likelihood, we would encounter a fundamental problem: even if

a parameter is not in the true model, the extra flexibility it provides means

that adding it never decreases the maximised likelihood and almost always

increases it. So likelihood almost always selects the more complex model.

AIC overcomes this problem by effectively adding a penalty for adding

parameters: if a parameter is not needed, the AIC is unlikely to decrease

when it is added to the model.

An alternative recognises that the KL divergence only depends on the

model via−
∫

log fθ̂(y)ft(y)dy, the expectation of the model maximised

log likelihood, where the expectation is taken over data not used to estimate

θ̂. An obvious direct estimator of this is the cross-validation score

CV = −
∑

i

log fθ̂[−i](yi),

where θ̂[−i] is the MLE based on the data with yi omitted (i.e. we measure



2.5 The Bayesian approach 37

the average ability of the model to predict data to which it was not fitted).

Sometimes this can be computed or approximated efficiently, and variants

are possible in which more than one data point at a time are omitted from

fitting. However, in general it is more costly than AIC.

2.5 The Bayesian approach

The other approach to answering the questions posed in Section 2.3 is the

Bayesian approach. This starts from the idea that θ is itself a random vec-

tor and that we can describe our prior knowledge about θ using a prior

probability distribution. The main task of statistical inference is then to up-

date our knowledge (or at any rate beliefs) about θ in the light of data y.

Given that the parameters are now random variables, it is usual to denote

the model likelihood as the conditional distribution f(y|θ). Our updated

beliefs about θ are then expressed using the posterior density

f(θ|y) = f(y|θ)f(θ)
f(y)

, (2.5)

which is just Bayes theorem from Section 1.4.3 (again f with different ar-

guments are all different functions here). The likelihood, f(y|θ), is speci-

fied by our model, exactly as before, but the need to specify the prior, f(θ),
is new. Note one important fact: it is often not necessary to specify a proper

distribution for f(θ) in order for f(θ|y) to be proper. This opens up the

possibility of using improper uniform priors for θ; that is, specifying that

θ can take any value with equal probability density.7

Exact computation of (2.5) is rarely possible for interesting models, but

it is possible to simulate from f(θ|y) and often to approximate it, as we

see later. For the moment we are interested in how the inferential questions

are answered under this framework.

2.5.1 Posterior modes

Under the Bayesian paradigm we do not estimate parameters: rather we

compute a whole distribution for the parameters given the data. Even so,

we can still pose the question of which parameters are most consistent

with the data. A reasonable answer is that it is the most probable value of

7 This is not the same as providing no prior information about θ. e.g. assuming that θ has

an improper uniform prior distribution is different from assuming the same for log(θ).
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θ according to the posterior: the posterior mode,

θ̂ = argmax
θ

f(θ|y).

More formally, we might specify a loss function quantifying the loss as-

sociated with a particular θ̂ and use the minimiser of this over the poste-

rior distribution as the estimate. If we specify an improper uniform prior

f(θ) = k, then f(θ|y) ∝ f(y|θ) and the posterior modes are exactly

the maximum likelihood estimates (given that f(y) does not depend on

θ). In fact, for data that are informative about a fixed dimension parameter

vector θ, then as the sample size tends to infinity the posterior modes tend

to the maximum likelihood estimates in any case, because the prior is then

dominated by the likelihood.

2.5.2 Model comparison, Bayes factors, prior sensitivity, BIC, DIC

Hypothesis testing, in the sense of Section 2.4.2, does not fit easily with

the Bayesian approach, and a criterion somehow similar to AIC is also

not straightforward. The obvious approach to Bayesian model selection

is to include all possible models in the analysis and then to compute the

marginal posterior probability for each model (e.g. Green, 1995). This

sounds clean, but it turns out that those probabilities are sensitive to the

priors put on the model parameters, which is problematic when these are

‘priors of convenience’ rather than well-founded representations of prior

knowledge. Computing such probabilities is also not easy. This section ex-

amines the issue of sensitivity to priors and then covers two of the attempts

to come up with a Bayesian equivalent to AIC. See Section 6.6.4 for an

alternative approach based on posterior simulation.

Marginal likelihood, the Bayes factor and sensitivity to priors

In the Bayesian framework the goal of summarising the evidence for or

against two alternative models can be achieved by the Bayes factor (which

therefore plays a somewhat similar role to frequentist p-values). A natural

way to compare two models, M1 and M0, is via the ratio of their prob-

abilities.8 As a consequence of Bayes theorem, the prior probability ratio

transforms to the posterior probability ratio as

Pr(M1|y)
Pr(M0|y)

=
f(y|M1)Pr(M1)

f(y|M0)Pr(M0)
= B10

Pr(M1)

Pr(M0)
,

8 If M1 and M0 are the only two possibilities then the probability ratio is also the odds of

M1; that is, the probability of M1 over the probability of not M1.
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by definition of B10, which is known as the Bayes factor for comparing

M1 with M0. So B10 measures the amount by which the data have shifted

the prior probability ratio in favour of M1. As with p-values, there are

conventions about how to describe the degree of evidence that different

magnitudes of Bayes factor represent (Kass and Raftery, 1995). Working

with 2 logB10 (for comparability with the log likelihood ratio) we have

2 logB10 Evidence against M0

0− 2 Barely worth mentioning

2− 6 Positive

6− 10 Strong

> 10 Very strong

To actually compute B10 we need to obtain the marginal density of y

given each model, also known as the marginal likelihood. For example,

f(y|M1) =

∫

f(y|θ1)f(θ1)dθ1, (2.6)

where θ1 denotes the parameters of M1. The need to integrate over all pos-

sible parameter values is a major difference between the Bayes factor and

the likelihood ratio statistic for model comparison, but integration gives

the Bayes factor some advantage. The likelihood ratio statistic is a ratio of

maximised likelihoods evaluated at both models’ best fit parameters, giving

the larger model an inevitable advantage, which we then have to allow for

in interpreting the ratio; hence the need for p-values or AIC. By integrating

over all possible parameter values, the marginal likelihood does not suffer

from this bias towards large models — irrelevant flexibility can decrease

the marginal likelihood. Computing (2.6) is generally not straightforward,

with two main lines of attack being via stochastic simulation (see Section

6.3.1), or Laplace approximation of the integral. However, there is also a

more fundamental problem to consider.

Examination of (2.6) indicates an immediate problem with the use of

vague, uninformative or improper priors (i.e. with any prior that is chosen

to represent a broad statement of ignorance, rather than a precise character-

isation of prior knowledge). The difficulty is that the value of (2.6) is very

sensitive to the prior. It is easy to see the problem by example. Suppose the

likelihood indicates that a single parameter θ is almost certain to lie in the

interval (0, 1), but because we had no real prior information on θ, we used

a U(−100, 100) prior, obtaining a value for the marginal likelihood of k.

Now suppose that we replace the prior with U(−1000, 1000). This pro-
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duces a negligible change in the posterior for θ, but reduces the marginal

likelihood to approximately k/10 (corresponding to a ‘positive’ change in

the Bayes factor in the earlier table). If we had used an improper prior

then it would only have been possible to compute the marginal likelihood

to within an arbitrary multiplicative constant, rendering the Bayes factor

completely useless unless the same improper priors apply to both models.

Another way of seeing the problem with the marginal likelihood is to

recognise that it is the likelihood for the fixed parameters of the prior (that

is, for those parameter values we chose during model specification), all

other parameters having been integrated out. Choosing between models on

the basis of the relative likelihood of the fixed parameters of the prior is not

always a natural approach. Indeed it is completely arbitrary if those values

were selected merely to be as uninformative as possible about θ.

In summary, because the prior is inescapably part of the model in the

Bayesian approach, marginal likelihoods, Bayes factors and posterior model

probabilities are inescapably sensitive to the choice of prior. In conse-

quence, it is only when those priors that differ between alternative mod-

els are really precise and meaningful representations of prior knowledge

that we can justify using Bayes factors and posterior model probabilities

for model selection. Even then, the computation of the marginal likelihood

is often difficult. These difficulties are part of the motivation for attempt-

ing to produce AIC-like model selection criteria (see Section 2.4.5) in the

Bayesian setting. But before looking at these, let us consider fixing the

Bayes Factor.

Intrinsic, fractional and partial Bayes factors

Given that Bayes factors require meaningfully informative priors, which

are often not available at the model formulation stage, it is worth consid-

ering the alternative of using part of the data to generate priors. The basic

idea is to split the data y into two parts x and z, and to use f(θ|x) as the

prior for computing the marginal likelihood based on z. That is, marginal

likelihoods of the form

f(z|Mi,x) =

∫

f(z|θi,x)f(θi|x)dθi

are used to form a sort of partial Bayes factor. To see why this improves

matters, substitute f(θi|x) = f(x|θi)f(θi)/
∫

f(x|θi)f(θi)dθi into the
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preceding expression to get

f(z|Mi,x) =

∫

f(z|θi,x)f(x|θi)f(θi)dθi
∫

f(x|θi)f(θi)dθi

=

∫

f(y|θi)f(θi)dθi
∫

f(x|θi)f(θi)dθi
. (2.7)

Since we have the same prior on the top and bottom of this last expres-

sion, the sensitivity to priors seen in the full marginal likelihood is much

reduced.

Two variants of this basic idea are intrinsic and fractional Bayes factors.

Intrinsic Bayes factors (Berger and Pericchi, 1996) use a subset x just large

enough to ensure that f(θi|x) is proper, and then average the resulting par-

tial Bayes factors over all such subsets to remove the arbitrariness attendant

on any particular choice of x. The required averaging can be somewhat

computationally costly. Hence fractional Bayes factors (O’Hagan, 1995)

use the fact that if b = dim(x)/dim(y), then f(x|θi) ≈ f(y|θi)b (at least

for large dimensions and exchangeable observations) and this approxima-

tion can be plugged into (2.7). Note that if the fractional Bayes factors are

to select the right model in the large sample limit, then b → 0 as the sam-

ple size tends to infinity. This consistency is automatic for intrinsic Bayes

factors. Hence the Bayesian cross-validation approach of setting x to y

with one datum omitted, and then averaging the results over each possible

z, will not give consistent model selection, but then neither does AIC (see

Section 4.6). See Section 6.3.1 for fractional Bayes factor computation.

BIC: the Bayesian information criterion

An older approach, avoiding the difficulties of sensitivity to priors, is due

to Schwarz (1978). Dropping the notation relating to particular models in

the interests of clarity, the computation of the Bayes factor requires the

evaluation of the marginal likelihood,

P =

∫

f(y|θ)f(θ)dθ,

for each model. Let n be the dimension of y and p be the dimension of θ,

and define fp(θ) = f(y|θ)f(θ) (y is the observed data vector here). Let
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θ̃ be the value of θ maximising fp. A Taylor expansion gives

log fp(θ) ≃ log fp(θ̃)−
1

2
(θ − θ̃)T

(

−∂2 log fp
∂θ∂θT

)

(θ − θ̃)

⇒ fp(θ) ≃ fp(θ̃) exp

{

−1

2
(θ − θ̃)T

(

−∂2 log fp
∂θ∂θT

)

(θ − θ̃)
}

.

Recognising the term in {} from the multivariate normal p.d.f., we have

P =

∫

fp(θ)dθ ≃ fp(θ̃)(2π)
p/2

∣

∣

∣

∣

−∂2 log fp
∂θ∂θT

∣

∣

∣

∣

−1/2

.

Now assume, at least in the n → ∞ limit, that −∂2 log fp/∂θ∂θ
T =

nI0, where I0 is a matrix such that |I0|, is bounded above and below by

finite positive constants, independent of n (and ideally close to 1). In the

case of i.i.d. data, then I0 is the (fixed) information matrix for a single

observation. Under this assumption we have
∣

∣

∣

∣

−∂2 log fp
∂θ∂θT

∣

∣

∣

∣

= np|I0|

and so

log P ≃ log f(y|θ̃) + log f(θ̃) +
p

2
log(2π) − p

2
log n− 1

2
log |I0|.

Now as n→∞, θ̃ → θ̂ (the MLE) while the terms that do not depend on

n become negligible compared to those that do. So we arrive at

BIC = −2 log f(y|θ̂) + p log n (≈ −2 log P ).

Hence the difference in BIC between two models is a crude approximation

to twice the log Bayes factor, and all other things being equal, we would

select the model with the lowest BIC. Notice some arbitrariness here: there

is really nothing in the preceding derivation to stop us from multiplying n
in BIC by the finite positive constant of our choice. One interesting feature

of BIC is that because it drops the prior, it is not susceptible to the problem

with sensitivity to priors that affects the Bayes factor itself, but on the other

hand the justification for dropping the prior seems somewhat artificial.

DIC: the deviance information criterion

In complex Bayesian models it is not always clear how to count the number

of free parameters in the model. For example, the distinction between ran-

dom effects and parameters in models is really terminological rather than

formal in the Bayesian setting. This makes application of BIC problematic,
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as does BIC’s dependence on knowledge of the posterior modes, which are

not directly available via simulation.

In essence, the problem with counting free parameters is the introduction

of priors. A prior restricts the freedom of a parameter to vary. In the limit in

which the prior was a Dirac delta function, then the corresponding param-

eter would behave as a fixed constant, insensitive to the data, and should

clearly not count in the tally of free parameters at all. Moving smoothly

from this extreme to the other extreme of a fully uninformative prior, it

seems reasonable that the contribution of the corresponding parameter to

the free parameter count should increase smoothly from 0 to 1. This idea

leads us to the notion of effective degrees of freedom.

Spiegelhalter et al. (2002) suggest a measure of the effective degrees

of freedom of a Bayesian model that is readily computed from simulation

output. They first define the deviance as

D(θ) = −2 log f(y|θ) + c,

where c is a neglectable constant depending only on the y (and hence not

varying between models of a given y). Using the notation x̄ for ‘mean of

x’, the proposed definition of the effective degrees of freedom is

pD = D(θ)−D(θ̄).

The definition is appealing because in the large sample limit in which the

likelihood dominates the prior and the posteriors are approximately Gaus-

sian, then D(θ) − D{E(θ)} ∼ χ2
r, by the same argument that leads to

(2.4). But pD is a direct estimate of E[D(θ)−D{E(θ)}], andE(χ2
r) = r.

The deviance information criterion is then

DIC = D(θ̄) + 2pD,

which clearly has a somewhat similar form to AIC. Derivation of DIC in the

context of approximately Gaussian posteriors is relatively straightforward,

but it is applied much more widely, with some associated controversy. In

any case the DIC cannot be justified if pD is not small relative to the num-

ber of data in y. It has the pragmatic appeal of being readily computable

from simulation output, while being much less sensitive to the choice of

vague priors than the marginal likelihood.

2.5.3 Interval estimation

The Bayesian approach to answering the question of what range of param-

eter values is consistent with the data is to pick out the range of values with
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high posterior probability. For example, a γ100% credible set for θi is

Ω = {θi :
∫

Ω

f(θi|y)dθi = γ; f(θi ∈ Ω|y) > f(θi 6∈ Ω|y)}

(i.e. it is the set containing the γ100% of θi values with highest posterior

probability). If the set is continuous then its endpoints define a γ100%
credible interval. Notice the difference from frequentist confidence inter-

vals. Here the interval is fixed and the parameter is random, which is the

opposite of the frequentist interpretation. Despite this difference, in the

large sample limit, with informative data, Bayesian credible intervals and

frequentist confidence intervals coincide.

2.5.4 Model checking

A particularly extreme Bayesian argument states that you should not check

models, because doing so implies that you did not properly specify your

uncertainty when setting up the Bayesian analysis and are therefore being

‘incoherent’. This argument is somewhat impractical, and it is usually more

pragmatic to view both models and priors as approximate representations

of reality that it would be wise to check for gross infelicities. In part this

checking can be done as in Section 2.4.4, but it is also wise to check the

sensitivity of results to the specification of the prior, especially if it was

chosen more or less arbitrarily, as is often the case. Simulation of replicate

data implied by draws from the posterior distribution of the parameters

can also be helpful, in order to check whether the posterior simulated data

deviate in some systematic way from the observed data, indicating a prob-

lematic model (see e.g. Section 6.6.4).

2.5.5 The connection to MLE

We have already seen the large sample coincidence between posterior modes

and MLEs and the large sample correspondence of Bayesian credible in-

tervals and frequentist credible intervals. In fact, in many circumstances, in

the large sample limit,

θ|y ∼ N(θ̂,I−1),

where θ̂ and I are as in (2.3).
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2.6 Design

Statistical design theory is concerned with the design of surveys and ex-

periments so as to obtain data that will be best able to answer the statistical

questions of interest. This is a large topic with a rich theory, and much is

known about how to go about producing practically useful designs. This

section simply introduces two important design ideas.

The first key idea is randomisation. To make things concrete, consider

the example of conducting an experiment to test whether a drug is effective

at reducing blood pressure, relative to a standard treatment. In addition to

the drug there are many other variables that may control blood pressure,

such as age, percentage body fat, sex and so on. Because these factors are

not of direct interest here, they are referred to as confounding variables.

Strictly, a confounding variable is any variable that is associated with both

the response variable and other predictor variables of interest, but in prac-

tice it is often difficult to rule out confounding for any variable that might

affect the response. To know what the effect of the drug is, we must al-

low for the presence of the confounders. To see why, imagine we treated

almost all women in the study with the new drug, and almost all the men

with the standard treatment: now try to work out how you would disentan-

gle the effect of sex from the effect of the drug. One solution is to measure

the confounders and include them in the statistical model used to analyse

the data. This is useful, but we cannot measure all possible confounders,

because we do not even know what some of them might be. In the face of

unmeasured confounders, how can we hope to make valid inferences about

the effect of the drug?

The answer is randomisation. If patients are randomly allocated to drug

type, then we break all possible association between the treatment the pa-

tient receives and the value of the confounding variables, so they cease to

be confounders. In effect the part of the patient’s blood pressure change

that is due to these other variables can now be treated as patient-specific

random error. This random error can easily be accounted for in the statisti-

cal modelling, and valid conclusions can be drawn about the drug’s effect.

The key point is that the randomisation of experimental units (e.g. pa-

tients) to experimental treatments (e.g. drug treatment) turns the effects of

unmeasured confounder variables into effects that can be modelled as ran-

dom noise. It is this effect of randomisation that allows experiments to be

used to test for causal effects in a way that is impossible with observa-

tional or survey data, where we cannot eliminate the systematic effects of

unmeasured (and possibly unknown) confounders.
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The second big idea in design is that we can adjust how experiments or

surveys are done to improve the parameter estimates made using the result-

ing data. The idea is often to try to optimise some measure of the average

variance of the parameter estimators (or of θ|y for a Bayesian analysis).

If we are using maximum likelihood estimation then the approximate co-

variance matrix for θ̂ is I
−1

. The leading diagonal elements of this matrix

give the approximate estimator variances. Two of the most common design

criteria are then as follows:

1. A-optimality, which seeks to minimise the average estimator variance,

which is equivalent to minimising tr(I−1).
2. D-optimality, which seeks to minimise the determinant of the approxi-

mate covariance matrix, |(I−1| = 1/|I |.
The idea is that the design is adjusted to minimise the chosen criterion.

Sometimes this can be achieved analytically, but otherwise a numerical op-

timisation may be required. See Cox (1992) for an introduction to design.

2.7 Useful single-parameter normal results

The approximate normality of many estimators, as a result of the central

limit theorem and large sample maximum likelihood results, means that

some basic computations involving single normally distributed estimators

are required repeatedly.

Suppose we know that θ̂ ∼ N(θ, σ2
θ), where σθ is known, but θ is not.

We might want to test H0 : θ = θ0 versus H1 : θ 6= θ0, for some specified

value θ0. A moment’s thought, or contemplation of the likelihood ratio

statistic, leads to the test statistic

θ̂ − θ0
σθ

,

which will obviously have a N(0, 1) distribution if H0 is true.9 Since the

null distribution is symmetric, and large magnitude values of the statistic

support H1, the p-value is

p = Pr

(

|Z| ≥
∣

∣

∣

∣

∣

θ̂ − θ0
σθ

∣

∣

∣

∣

∣

)

where Z ∼ N(0, 1). (2.8)

In obvious notation, here is some R code to compute this (three variants,

giving identical results):

9 With even shorter contemplation of the likelihood ratio we could equally have used

(θ̂ − θ0)2/σ2

θ
, which has a χ2

1
distribution under H0: the p-value is unchanged.
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z.obs <- (theta.hat - theta.0)/sigma

pnorm(abs(z.obs),lower.tail=FALSE) + pnorm(-abs(z.obs))

pnorm(-abs(z.obs))*2 ## use symmetry of N(0,1)

pchisq(z.obs^2,lower.tail=FALSE,df=1) ## equivalent

In fact we seldom know σθ, and it is much more common that θ̂ ∼
N(θ, c2σ2), where c is a known constant and σ2 is unknown but can be

estimated by σ̂2. One option is just to plug cσ̂ in place of σθ and use (2.8).

This is fine in the large sample limit, but at finite sample sizes we can

usually do a bit better by not ignoring the variability in σ̂2.

Suppose that σ̂2 is statistically independent of θ̂ and that σ̂2/σ2 ∼ χ2
k/k

for some positive integer k. In that case, from the definition of the tk dis-

tribution (see Section A.1.3),

θ̂ − θ0
cσ̂

∼ tk.

The p-value computation for H0 : θ = θ0 versus H1 : θ 6= θ0 now uses

p = Pr

(

|T | ≥
∣

∣

∣

∣

∣

θ̂ − θ0
cσ̂

∣

∣

∣

∣

∣

)

where T ∼ tk.

In R something like the following would be used:

t.obs <- (theta.hat - theta.0)/(const*sigma.hat)

pt(-abs(z.obs),df=k)*2 ## use symmetry of t_k

The assumptions about σ̂2 may look restrictive, but there are quite wide

classes of model estimation problems for which they hold. For example,

they hold exactly in the case of linear regression models (see Chapter 7),

and approximately for generalised linear models (in these cases k is the

number of data less the number of estimated parameters, excluding σ̂2).

Even when the conditions only hold approximately, use of tk is usually an

improvement on simply ignoring the variability in σ2 and using N(0, 1).
In any case as k →∞, tk tends to N(0, 1).

Now consider confidence interval (CI) estimation, first in the known

variance case. Suppose that we would accept H0, above, for any θ0 re-

sulting in a p-value≥ α. In that case we would have accepted all θ0 values

such that

zα/2 ≤
θ̂ − θ0
σθ

≤ z1−α/2,

where zφ is the φ quantile of the N(0, 1) distribution: the value such that

Pr(Z ≤ zφ) = φ. By symmetry zα/2 = −z1−α/2 (zα/2 will be negative).
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Rearrangement of the inequality leads to

θ̂ + zα/2σθ < θ0 < θ̂ − zα/2σθ

(i.e. a (1 − α)100% confidence interval for θ is θ̂ ± zα/2σθ). Here is one

possible piece of R code, implementing this for a 95% CI:

theta.hat + qnorm(c(.025,.975))*sigma

When the variance is estimated, the derivation is identical, except that

the tk distribution is used in place of N(0, 1). Letting tk,α/2 denote the

α/2 quantile of tk, the endpoints of the (1 − α)100% CI for θ become

θ̂ ± tk,α/2cσ̂. R code to implement this might be

theta.hat + qt(c(.025,.975),df=k)*const*sigma.hat

Although the results here all relate to single parameters, nothing in the

preceding arguments requires that the model only contains one unknown

parameter. θ could be a single element from a parameter vector.

Exercises

2.1 Find the maximum likelihood estimates of µ and σ for Example 1, Section

2.1. Find an exact 95% confidence interval for µ. Compare it to the approxi-

mation based on (2.3). Compute an approximate confidence interval for σ.

2.2 By appropriate use of the qnorm, sort, plot and abline functions in R,

check the model fit produced in question 2.1. Is the model adequate?

2.3 Using R, produce a contour plot of the log likelihood for the second model

for the temperature data in Section 2.1, against µ and σ for α = 3. Approxi-

mately find the MLE of µ and σ for the given α.

2.4 Using R, write a function to evaluate the log likelihood of θl for Example

4 in Section 2.1 (hint: see ?dexp). Plot the log likelihood against θl over a

suitable range, and by making use of (2.4) and the definition of a confidence

interval, find a 95% confidence interval for θl (pchisq is also useful).

2.5 Write an R function to evaluate the log likelihood of model (2.2) in Section

2.2 by making use of the chol function in R (see Section B.2).

2.6 Consider simulated data x <-rnorm(10)+1, for which the Bayesian model

xi ∼ N(µ, 1), µ ∼ U(−k, k) (i.e. the prior for µ is a uniform distribution

on [−k, k]). Making use of the R function integrate, investigate the sen-

sitivity of the marginal likelihood for this model, when k is changed from 2

to 20. Vectorize may be useful for converting your joint density function

to a form suitable for integrate.

2.7 Show that if independent observations xi have an exponential distribution

with parameter λ, and λ has a gamma distribution as a prior, then the poste-

rior distribution of λ is also a gamma distribution (see Section A.2.2).
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R

Statistical analysis of interesting datasets is conducted using computers.

Various specialised computer programmes are available to facilitate statis-

tical work. For using general statistical theory directly with custom-built

models, R is probably the most usefully flexible of such programmes.

R (R Core Team, 2012) is a progamming language and environment de-

signed for statistical analysis. It is free (see http://cran.r-project.org

to obtain a copy) and is written and maintained by a community of statisti-

cians. A major design feature is extendibility. R makes it very straightfor-

ward to code up statistical methods in a way that is easy to distribute and

for others to use. The first place to look for information on getting started

with R is http://cran.r-project.org/manuals.html. I will assume

that you have installed R, can start it to obtain a command console, and

have at least discovered the function q() for quitting R.1

The following web resources provide excellent guides to the R language

at different levels.

• http://cran.r-project.org/doc/contrib/Short-refcard.pdf

is a four page summary of key functions and functionality.

• http://cran.r-project.org/doc/contrib/R_language.pdf

is a very concise introduction to and reference for the structure of the

language.

• http://cran.r-project.org/doc/manuals/R-lang.html

is the main reference manual for the language.

A huge amount of statistical functionality is built into R and its extension

packages, but the aim of this chapter is simply to give a brief overview of

R as a statistical programming language.

1 When you quit R, it will ask you if you want to save the workspace image. If you reply

‘yes’ then all the objects created and not subsequently destroyed in your session will be

saved to disk and reloaded next time you start R. Usually you do not want to do this.

49
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3.1 Basic structure of R

When you start R (interactively) two important things are created: a com-

mand prompt at which to type commands telling R what to do, and an

environment, known interchangeably as the ‘global environment’ or ‘user

workspace’ to hold the objects created by your commands. Unlike the com-

mand prompt, you do not see the global environment directly, but it is there

as an extendible chunk of computer memory for holding your data, com-

mands and other objects.

Generically in R an ‘environment’ consists of two things. The first,

known in R jargon as a frame, is a set of symbols used to refer to ob-

jects, along with the data defining those objects. The second is a pointer to

an enclosing environment. As we will see, R makes use of different envi-

ronments arranged in a tree structure when organising the evaluation and

manipulation of objects. In a slightly Zen manner, the base environment

of the tree contains nothing at all. For the most part environments act as

seamless computational infrastructure that the programmer is largely un-

aware of, but for some purposes it is important to know about them.

Everything in R is an object living in an environment, including R com-

mands themselves. Here is a line of R code to create an object called ‘a’

and to assign it the value 2 (using the assignment operator <-):

> a <- 2

As soon as I press return, the text “a <-2” is sent to the parser to be

checked for correctness (i.e. whether it is a valid statement in R) and to

be converted to an internal representation for evaluation, known as an ex-

pression object. The expression is then evaluated, which has the effect of

creating an object in the user workspace referred to by the symbol a and

containing the single number 2.

Once an object is created, it can be referred to by name and used to

create other objects. For example,

> b <- 1/a

Having created objects you often need to check their contents. Just typ-

ing the name of an object causes R to print it (actually to call the print

function for the class of object concerned):

> b

[1] 0.5

ls() lists all the objects in the global environment and rm(b) would re-

move the object called b.
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R is a functional programming language: it is structured around func-

tions that take objects as arguments and produce other objects as results.

Even basic operators such as + and * are actually implemented as func-

tions. Within R we can create objects that are functions. Suppose we want

to create a function foo that takes arguments a and b and returns the value

of b log(a)− 1/2. Here is how to define such a function object:

foo <- function(a,b) {

b * log(a) - 0.5

}

The curly brackets { and } enclose the R commands defining how the ar-

guments a and b are converted into the result returned by the function.

Whatever is evaluated on the last line of the function is taken to be its

return value. So

> foo(2,3)

[1] 1.579442

prints the value of foo evaluated at a = 2, b = 3.

R evaluates commands once they appear complete and a line end has

been encountered. Commands can be split over several lines, but you then

need to be careful that they could not be interpreted as being complete at

the end of one of the lines, before they really are. Conversely, if several

complete commands are to be included on a single line then they must be

separated by ‘;’. Commands can be grouped using curly brackets, { and

}. Once you have started a group of commands with a {, it will not be

complete and ready to be parsed and evaluated until you close it with a }.

You will have noticed from this discussion that R is an interpreted lan-

guage. Commands are interpreted and executed as they are encountered

(rather than being converted en masse into binary instructions and then

executed, as in a compiled language, such as C). This has two important

consequences. First, we will have to worry about achieving efficiency in

repetitive tasks, to ensure that interpretation of what we want R to do does

not take longer than actually doing it. Second, it means that it is possible

to write R code that itself writes R code and runs it.

3.2 R objects

Objects in R are either language objects of some sort or are the result of a

function call. Therefore, in contrast to many programming languages, we

do not need to explicitly declare the type of a variable before using it: the

type is determined by the function creating the variable. There are a number
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of basic object types (classes) in R, of which the most important for data

handling are vectors and arrays. Lists are used to create objects containing

several different sorts of object.

As well as their class, objects in R carry around information about the

basic type of thing that they are made up of. Somewhat confusingly, they

actually carry around three different classifications of the sort of basic thing

they are made up of: their type, mode and storage mode. The following

code illustrates this by creating the vector (1, 2, 3, 4) and examining its

type, mode and storage mode:

> b <- 1:4

> typeof(b)

[1] "integer"

> mode(b)

[1] "numeric"

> storage.mode(b)

[1] "integer"

Usually it is not necessary to worry much about the modes and type of

an object: for example, the conversion between real and integer numbers

is automatic and need seldom concern the programmer. The exception is

when calling code written in other languages, when it is essential to know

the storage mode of data being passed to the external code from R.

Objects can also carry a variety of extra information as attributes. At-

tributes have a name and can be an object of any type. They behave rather

like a whole bunch of notes stuck onto the object and carried around with

it. The attributes function lets you access all the attributes of an ob-

ject, whereas the attr function allows individual attributes to be set and

extracted. As an example, let’s give the vector b, above, an attribute con-

sisting of a 2× 2 matrix (and then print it):

> attr(b,"mat") <- matrix(1:4,2,2)

> attr(b,"mat")

[,1] [,2]

[1,] 1 3

[2,] 2 4

You can add as many attributes as you like, and they are used by R itself

in many ways, including in the implementation of matrices and higher di-

mensional arrays. The class of an object is somewhat like a special attribute

and is used in R’s basic object orientation mechanism (see Section 3.6).

Here are the basic sorts of objects that are needed for manipulating data

in R. For a complete list see the sources listed at the start of the chapter.

• Vectors are the default structures for storing real, complex, integer, log-

ical and character data. Scalars are simply vectors of length 1. Here is
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some code to create a numeric vector d, check how many elements it

has, and print the third element:

> d <- c(1,3.56,9)

> length(d)

[1] 3

> d[3]

[1] 9

• Arrays are vectors with a dim attribute and are of class "array". The

following creates a three dimensional array, displays its dim attribute,

and prints its element 2, 1, 3:

> b <- array(1:24,c(2,3,4))

> attributes(b)

$dim

[1] 2 3 4

> b[2,1,3]

[1] 14

Array elements can be accessed by providing an index for each dimen-

sion, as just shown, or by providing a single index for accessing elements

of the underlying vector. Arrays are stored in the underlying vector in

‘column major’ order, so if d is the dim attribute b[i, j, k] is equivalent

to b[i+ (j − 1)d1 + (k − 1)d1d2]; that is b[2,1,3] refers to the same

location as b[14], in this case.

• Matrices are two dimensional arrays of class "matrix". They are treated

as a separate class to facilitate numerical linear algebra with matrices.

• Factors are, conceptually, vectors of labels that serve to group other data.

They have a special place in statistical modelling (see e.g. Chapter 7)

and as such require special handling. In R, factors have class "factor"

and another attribute "levels", which is a vector of the unique labels

occurring in the factor object. If you print a factor variable, then what is

printed is the label given in each element of the vector. However, what is

actually stored is a set of integers indexing the "levels" attribute, and

it is the print function that is actually doing the conversion from stored

integer to corresponding label.

• Data.frames are matrices of data, where each column has a name, but not

necessarily the same type. (e.g. having a mixture of logical, numeric,

factor and character columns is no problem). This format is a natural

way of storing statistical datasets. Here is a short example:

> dat <- data.frame(y=5:7,lab=c("um","er","er"))

> dat

y lab

1 5 um
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2 6 er

3 7 er

By default the character vector lab was converted to a factor variable.2

Data frames can be accessed like any other matrix, but also by variable

name and as a list (see next). In consequence, dat[2,1], dat$y[2] and

dat[[1]][2] all access the same entry (6).

• Lists are the basic building blocks for all sorts of complicated objects

in R. Lists consist of any number of numbered, and optionally named,

items, each of which can be an object of any type. For example,

> li <- list(a="fred",1:3,M=matrix(1,2,2))

Elements can be accessed by number, starting from 1, using double

square brackets (e.g. li[[1]] accesses "fred"). If the item has a name

then this provides an alternative access method using $. For example,

li$a also accesses "fred".

3.3 Computing with vectors, matrices and arrays

Data manipulation in R is vector based. That is, wherever possible we work

with whole vectors, rather than with individual elements of vectors, be-

cause the former is much more efficient in an interpreted language. So

standard operators and mathematical functions in R are defined in a vector

oriented manner, as best illustrated by an example.

Suppose we have vectors x and y and want to evaluate the vector z, the

elements of which are defined as zi = sin(xi)yi − yxi

i / exp(xi). If x and

y are the vectors in R, then

> z <- sin(x)*y - y^x/exp(x)

computes z. The key point is that the functions and operators are operating

elementwise on the vector components.

There are built-in functions for a number of common vector operations

that are not purely elementwise. For example:

sum(x) to evaluate
∑

i xi.
prod(x) to evaluate

∏

i xi.

cumsum(x) to evaluate zi =
∑i

j=1 xj .

cumprod(x) to evaluate zi =
∏i
j=1 xj .

2 See ?data.frame for how to turn off this conversion.
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3.3.1 The recycling rule

When working with vectors we often want to perform operations involving

a scalar and a vector (such as multiplying all the elements of a vector by

two). In R, scalars are simply vectors of length one: there is nothing special

about them. However, R has a recycling rule, which is a vector-oriented

generalisation of what happens when a scalar is multiplied by a vector. The

recycling rule states that when two vectors of different length appear in an

operation, then the shorter is replicated as many times as is necessary to

produce a vector of the length of the longer vector, and this recycled vector

is what is used in computation.

So conceptually if x <-c(1,2,3), then z <-2*x results in 2 being re-

cycled three times to produce a vector of three 2s, which is then multiplied

by x elementwise to produce z. Here is an example of recycling in action:

> a <- 1:4

> b <- 1:2

> a + b

[1] 2 4 4 6

Recycling can be very useful once you get used to it. For example, suppose

that we want to form A = WX where W is a diagonal matrix with diag-

onal elements w, and X is some n×n matrix. One option for doing this is

to form W explicitly and then multiply X by it:

W <- diag(w); A <- W%*%X

This uses something like 2n3 arithmetic operations, most of which involve

products with zero, and make no contribution to the final result. But recall-

ing that matrices are actually stored columnwise in vectors, we can simply

exploit the recycling rule to compute the result with n2 operations and no

wasted products with zero:

A <- w * X

R will produce a warning if the number of elements in the longer vector is

not an integer multiple of the number of elements in the shorter vector. It

will also refuse to recycle vectors with a dimension attribute.

3.3.2 Matrix algebra

Clearly, vectorised elementwise operations mean that A*B does not perform

matrix multiplication and A/B does not produce AB
−1

. Instead these and

other matrix operations have special functions and operators:
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• %*% is the matrix multiplication operator. A %*%B performs the matrix

multiplication AB, checking for compatible dimensions. This is also

used for matrix-vector multiplication.

• %x% is the Kronecker product. So A %x% B produces A⊗B.

• t(A) returns the transpose of its argument.

• solve(A,B) formsA−1B. To formAB
−1

use t(solve(t(B),t(A)))

since AB
−1 = (B−TAT)T. solve(A) returns A−1, but should rarely

be used, because it is usually more expensive and less stable to compute

the inverse explicitly.

• crossprod(A) produces ATA at least twice as quickly as t(A)%*%A

would do.

When computing with these basic operations you need to be very careful

about the ordering of operations. An interesting feature of numerical linear

algebra is that many expressions can be evaluated in a number of different

orders, all of which give the same result, but can differ in their compu-

tational speed by several orders of magnitude. To see this, consider com-

puting BCy, where, from left to right the matrix dimensions are n ×m,

m× n and n× 1 (a vector). R function system.time lets us examine the

effect of operation ordering, while n and m are set to 1000 and 2000.

> system.time(z <- B%*%C%*%y)

user system elapsed

2.706 0.009 2.720

> system.time(z <- B%*%(C%*%y))

user system elapsed

0.013 0.000 0.013

Both lines compute the same quantity here, but the second is much faster.

Why? In the first case R simply evaluates the expression left to right: the

matrix produced by BC is formed first at the cost of 2n2m arithmetic

operations, after which the result is multiplied by y at a further cost of 2n2

operations. In the second case the brackets force R to compute the vector

Cy first using 2mn operations, and then to multiply it by B at the cost

of 2mn more operations. So the latter approach involves something like

a factor of n fewer operations.3. This is clearly an issue that can not be

ignored, but it is also rather straightforward to deal with (see Appendix B)

Functions chol, qr,4 eigen and svd produce the Choleski, QR, eigen

and singular value decompositions of their arguments, respectively. In the

case of qr the decomposition is returned in a compact form, which can

3 We do not see quite that speed up here because of other overheads in both calculations.
4 Beware of the default tol argument for qr in R: it is set quite high for some purposes.
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then be manipulated with helper functions (see ?qr). forwardsolve and

backsolve are versions of solve to use with, respectively, lower and up-

per triangular first arguments: for an n × n argument they are a factor

of n more efficient than using solve in these cases. Functions det and

determinant are also provided for evaluating determinants, but for many

statistical applications determinants should rather be computed directly

from the triangular QR or Choleski factor, which is likely to be needed any-

way. Appendix B provides more information on matrix decompositions.

Functions ncol and nrow return the number of rows or columns of their

argument, whereas rowSums and colSums return vectors of sums for each

row or each column, respectively. kappa efficiently estimates the condition

number of a matrix (see Section B.3.3), and norm computes various matrix

norms. apply and its relatives, covered next, are also useful with matrices.

Matrices consisting mainly of zeroes are known as sparse matrices. The

Matrix package supplied with R provides the facilities for working with

sparse matrices, but be warned that you need to understand pivoting and

the issue of infil in order to make good use of it (see Davis, 2006).

3.3.3 Array operations and apply

Beyond matrices, many array operations are accomplished using vector

arithmetic and the indexing and subsetting facilities to be covered next.

However, there are two common array-oriented tasks that deserve special

mention: applying a function to some margins of an array, using the apply

function, and forming array products by ‘summing over array indices’, us-

ing Jonathon Rougier’s tensor5 package.

The apply function takes a single array as its first argument, a vector of

dimension indices as the next argument, and then a function to be applied

to the data given by the indices. Here is a simple example using apply to

sum over the rows and columns of a 2×3 matrix (a two dimensional array).

> A <- matrix(1:6,2,3);A

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

> apply(A,1,sum)

[1] 9 12

> apply(A,2,sum)

[1] 3 7 11

5 In physics and geometry a vector has a magnitude and an associated direction, requiring

a one-dimensional array of numbers to represent it. A tensor has a magnitude and d

associated directions, and it requires a d-dimensional array of numbers to represent it.
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The first call to apply specifies that the sum function should be applied to

each row (the first dimension) of A in turn, and the results returned. The

second call applies sum to each column (the second dimension) of A. To be

clear about what apply is doing, it helps to see what happens if we specify

rows and columns in the second argument:

> apply(A,c(1,2),sum)

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

So apply has taken the data given by each combination of row and column

index (a single number in the case of a two dimensional array) and applied

sum to that, giving the matrix result shown, which is just the original A here.

apply can be used in the same way with arrays of any dimension: see

?apply for more. Furthermore there are versions of apply for lists (see

?lapply), and for applying functions over subsets of vectors (see ?tapply).

Related functions aggregate and sweep are also useful.

Now consider array products. We have a c-dimensional array A and a

d-dimensional array B and want to find the array that results by forming

inner products of some of their dimensions. For example,

Cipqvw =
∑

jkl

AijklpqBkjlvw .

If we write some indices as superscripts, then this can be written more com-

pactly using Einstein’s summation convention as C ipq
vw = AijklpqBkjlvw .

The idea is that we sum over the product of the elements given by shared

indices. Here is a concrete example forming AijkBkjl in R:

> A <- array(1:24,c(2,3,4))

> B <- array(1:72,c(4,3,5))

> require(tensor) ## load the tensor library

> tensor(A,B,c(2,3),c(2,1))

[,1] [,2] [,3] [,4] [,5]

[1,] 1090 2818 4546 6274 8002

[2,] 1168 3040 4912 6784 8656

tensor takes the arrays as arguments, followed by two vectors giving the

dimensions to be summed over.

3.3.4 Indexing and subsetting

Operations often have to be applied to only a subset of a vector or array

or to only some dimensions of an array. To facilitate this efficiently, R has
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a rich variety of indexing and subsetting operations that can be applied to

arrays and vectors. First let us consider vectors.

Vectors can be indexed using a vector of integers giving the locations

of the required elements within the indexed vector, or by a logical array

of the same length as the indexed vector, having a TRUE for each required

element. Here is an example:

> x <- c(0,-1,3.4,2.1,13)

> ii <- c(1,4,5)

> x[ii]

[1] 0.0 2.1 13.0

> il <- c(TRUE,FALSE,FALSE,TRUE,TRUE)

> x[il]

[1] 0.0 2.1 13.0

The index version is somewhat more flexible than the logical version, in

that elements can be selected more than once and in any order. For example,

> ii <- c(5,4,1,1)

> x[ii]

[1] 13.0 2.1 0.0 0.0

However, the logical version is better for extracting values according to

some condition. For example, the values of x less than 2.5 can be extracted

as follows:

> il <- x < 2.5

> il

[1] TRUE TRUE FALSE TRUE FALSE

> x[il]

[1] 0.0 -1.0 2.1

or with the single command x[x < 2.5]. It is often helpful to convert the

logical version to the index version, and the which function does this:

> ii <- which(x < 2.5); ii

[1] 1 2 4

(ii <-(1:5)[x < 2.5] is equivalent).

Index vectors of either type can also appear on the ‘left-hand side’ of an

assignment6. This example resets any element of x to 1 if it is less than 2:

> x[x < 2] <- 1; x

[1] 1.0 1.0 3.4 2.1 13.0

The examples so far have involved only simple conditions, but often

more complicated subsetting is required. This can be achieved using ele-

mentwise logical ‘or’ and ‘and’ operators, ‘|’ and ‘&’. For example, con-

sider selecting the elements of a vector z that are between -1 and 2:

6 Actually the assignment arrow can point in either direction, so this really means ‘at the

pointy end of the assignment operator’.
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> z <- c(3.6,-1.2,1,1.6,2,20)

> z[z >= -1 & z <= 2]

[1] 1.0 1.6 2.0

z[z < -1 | z > 2] extracts the complement of this subset, as does the

alternative z[!(z >= -1 &z <= 2)], which uses the ‘not’ operator, ‘!’.

Another common task is to apply some function to all of several non-

overlapping subsets of a vector, a task which tapply accomplishes. The

vector of data, X, is its first argument, followed by a vector or list of vectors,

INDEX, containing one or more factor variables, each of the same length as

X. All elements of X sharing the same combination of factor levels from

INDEX are in the same group, and the subvectors containing these groups

supply the argument to tapply’s third argument, the function FUN. For

example, suppose that the means of the first two, the next three and the

final element of z are required:

> fac <- factor(c(1,1,2,2,2,3))

> tapply(z,fac,mean)

1 2 3

1.200000 1.533333 20.000000

Matrices and arrays generally require one further sort of subsetting: the

extraction of particular rows and columns. Actually this works by mak-

ing use of the fact that the absence of an indexing array is taken to mean

that the whole vector is required. For example, x and x[] both return the

whole vector, x. Similarly, X[i,] and X[,j] extract, respectively, row i

and column j of matrix X.

Indexing vectors and missing indices can be mixed in any way you like;

for example,

> a <- array(1:24,c(2,3,4))

> a[1,,2:3]

[,1] [,2]

[1,] 7 13

[2,] 9 15

[3,] 11 17

Notice, however, that the task of extracting scattered elements of a ma-

trix or array is more difficult. Suppose I want to extract the three elements

(1, 3), (4, 2) and (2, 1) from a 4× 3 matrix B. Naively I might try

> B <- matrix(1:12,4,3)

> i <- c(1,4,2); j <- c(3,2,1)

> B[i,j]

[,1] [,2] [,3]

[1,] 9 5 1

[2,] 12 8 4

[3,] 10 6 2
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. . . not what is required at all (but completely consistent with the preceding

description of how indexing works). Here the underlying vector storage

of arrays comes to the rescue. Recalling that arrays are stored in column

major order, we can create an appropriate vector indexing the underlying

vector storage in order to extract the required elements:

> B[i+(j-1)*4]

[1] 9 8 2

One important detail of array subsetting is that if a subset results in a

single vector, then dimension attributes are dropped by default. This can

cause problems in code designed for the case where we do not know in

advance whether an array or a vector will be returned by an operation. In

this case we can force dimension attributes to be retained, as follows:

> B[1,] ## vector result

[1] 1 5 9

> B[1,,drop=FALSE] ## 1 by 3 matrix result

[,1] [,2] [,3]

[1,] 1 5 9

3.3.5 Sequences and grids

Many computations require the production of regular sequences of num-

bers (or occasionally other variables). The simplest is a sequence of num-

bers incrementing or decrementing by 1. a:b produces a sequence starting

at a and finishing at a+k where k is the largest integer such that a+ k ≤ b

if a < b or such that a − k ≥ b otherwise. Usually a and b are integers.

For example,

> i <- 1:10; i

[1] 1 2 3 4 5 6 7 8 9 10

Function seq produces sequences with increments that need not be unity.

Its first two arguments specify endpoints, while argument by specifies an

increment to apply, or alternatively length specifies how many elements

the sequence should have. For example

> x <- seq(0,1.5,length=4); x

[1] 0.0 0.5 1.0 1.5

Frequently, sequences should repeat in some way and rep facilitates

this. Its first argument is a ‘base sequence’, and the second argument spec-

ifies how its elements are to be repeated. Here are some examples:

> rep(x,2) ## whole sequence repeat

[1] 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
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> rep(x,each=2) ## element-wise repeat

[1] 0.0 0.0 0.5 0.5 1.0 1.0 1.5 1.5

> rep(x,rep(2,4)) ## element-wise (more flexible)

[1] 0.0 0.0 0.5 0.5 1.0 1.0 1.5 1.5

For the last form, the second argument is a vector of the same length as x

specifying how many times each element of x is to be repeated (its elements

may differ, of course).

Regular sequences in more than one dimension are also useful: grids.

One option for generating a grid is to use rep. However, it is often easier

to use the function expand.grid, which takes named arguments defining

the mesh points in each dimension, and returns a data frame with columns

corresponding to each margin, expanded so that the points fall on a regular

grid. For example,

> z <- seq(-1,0,length=3)

> expand.grid(z=z,x=x)

z x

1 -1.0 0.0

2 -0.5 0.0

3 0.0 0.0

4 -1.0 0.5

. . .

12 0.0 1.5

Any dimension of grid can, in principle, be generated. Often a grid is gener-

ated in order to evaluate a function of several variables over some domain.

In that case it can be more convenient to use the function outer which

generates the evaluation grid internally, and returns the function values,

evaluated on the grid, as an array.

3.3.6 Sorting, ranking, ordering

sort will return its argument sorted into ascending order (set the second

argument decreasing to TRUE to get descending order). For example,

> set.seed(0); x <- runif(5); x

[1] 0.8966972 0.2655087 0.3721239 0.5728534 0.9082078

> sort(x)

[1] 0.2655087 0.3721239 0.5728534 0.8966972 0.9082078

Often it is necessary to apply the reordering implied by sorting one vari-

able to some other variables. order will return an appropriate index vector

for doing this (see also ?sort.int), illustrated here by resorting x itself:

> io <- order(x); io

[1] 2 3 4 1 5
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> xs <- x[io]; xs

[1] 0.2655087 0.3721239 0.5728534 0.8966972 0.9082078

A related task is to find the rank of data in a vector, and rank does this.

In the absence of ties, then rank is the inverse function of order in the

following sense:

> ir <- rank(x); ir

[1] 4 1 2 3 5

> xs[rank(x)]

[1] 0.8966972 0.2655087 0.3721239 0.5728534 0.9082078

Another way of ‘inverting’ io is with

> um <- rep(0,5)

> um[io] <- 1:5; um

[1] 4 1 2 3 5

Similarly, using ir on the left-hand side results in um being io. This sort of

construction is useful when dealing with matrix pivoting (as used, option-

ally, in qr and chol, for example).

3.4 Functions

Functions were introduced in Section 3.1, but some more detail is required

to write them effectively. Formally a function consists of an argument list,

a body (the code defining what it does), and an environment (which is the

environment where it was created). Generally, functions take objects as

arguments and manipulate them to produce an object, which is returned.

There are two caveats to this general principle.

1. A function may have side effects, such as printing some output to the

console or producing a plot. Indeed a function may only produce a side

effect, and no return object. Generally side effects that modify objects

that are external to the function are to be avoided, if code is to be clean

and easy to debug.

2. A function may make use of objects not in its argument list: if R en-

counters a symbol not in the function argument list and not previously

created within the function, then it searches for it, first in the environ-

ment in which the function was defined7 (which is not necessarily the

environment from which it was called). If that fails it looks in the envi-

ronments returned by function search(). A benign use of this mech-

anism is to call other functions not in a function’s argument list, or to

7 This is known as ‘lexical scoping’, because the parent environment of the function is

where it was written down.
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access constants such as those stored in .Machine. Using this mech-

anism to provide a function with other objects that you have created

is generally bad practice, because it makes for complex hard-to-debug

code. Generally all objects that a function needs should be provided as

its arguments. If this gets unwieldy, then group the arguments into a

smaller number of list arguments.

Here is an example of a function definition. It generalises one-to-one

real functions with power series representations to symmetric matrices:

mat.fun <- function(A,fun=I) {

ea <- eigen(A,symmetric=TRUE)

ea$vectors %*% (fun(ea$values)*t(ea$vectors))

}

‘function(A,fun=I)’ indicates that a function is to be created with ar-

guments A and fun. In this case the function created is given the name

mat.fun, but functions are sometimes used without being given a name

(for example, in the arguments to other functions). The argument list gives

the names by which the function arguments will be referred to within the

function body. Arguments may be given default values to be used in the

event that the function is called without providing a value for that argu-

ment. This is done using name = default in the argument list. fun=I is

an example of this, setting the default value of fun to the identity function.

Next comes the body of the function given by the R expressions within

the curly brackets { ... } (if the function body consists of a single ex-

pression, then the brackets are not needed). The function body can contain

any valid R expressions. The object created on the last line of the function

body is the object returned by the function. Alternatively the object can

be returned explicitly using the return function. For mat.fun, the eigen

decomposition of the first argument is obtained and then used to produce

the generalised version of fun.

Now let us use the function, with a random matrix. First a sanity check:

> set.seed(1)

> m <- 3; B <- crossprod(matrix(runif(m*m),m,m))

> B; mat.fun(B)

[,1] [,2] [,3]

[1,] 0.5371320 0.8308333 0.8571082

[2,] 0.8308333 1.6726210 1.5564220

[3,] 0.8571082 1.5564220 1.7248496

[,1] [,2] [,3]

[1,] 0.5371320 0.8308333 0.8571082

[2,] 0.8308333 1.6726210 1.5564220

[3,] 0.8571082 1.5564220 1.7248496
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which confirms that the default behaviour is to return the first argument.

Now consider what actually happened when the function was called (by

mat.fun(B)). R first matches the arguments of the function to those ac-

tually supplied, adopting a rather permissive approach to so doing. First it

matches on the basis of exact matches to argument names (‘A’ and ‘fun’ in

the example). This does not mean that R is looking for B to be called A in

the example; rather it is looking for statements of the form A=B, specifying

unambiguously that object B is to be taken as argument ‘A’ of mat.fun.

After exact matching, R next tries partial matching of names on the re-

maining arguments; for example mat.fun(B,fu=sqrt) would cause the

sqrt function to be taken as the object to be used as argument fun. After

matching by name, the remaining arguments are matched by position in

the argument list: this is how R has actually matched B to A earlier. Any

unmatched argument is matched to its default value.

R next creates an evaluation frame: an extendible piece of memory in

which to store copies of the function arguments used in the function, as

well as the other objects created in the function. This evaluation frame has

the environment of the function as its parent (which is the environment

where the function was defined, remember).

Having matched the arguments, R does not actually evaluate them im-

mediately, but waits until they are needed to evaluate something in the func-

tion body: this is known as lazy evaluation. Evaluation of arguments takes

place in the environment from which the function was called, except for

arguments matched to their default values, which are evaluated in the func-

tion’s own evaluation frame.

Preliminaries over, R then evaluates the commands in the function body,

and returns a result.

Notice that arguments are effectively copied into the function’s eval-

uation frame, so nothing that is done to a function argument within the

function has any effect on the object that supplied that argument ‘outside’

the function. Within the body of mat.mod argument A could have been re-

placed by some poetry, and matrix B would have remained unaltered.

Here is an example of calling mat.mod to find a matrix inverse:

> mat.fun(A = B, fun = function(x) 1/x)

[,1] [,2] [,3]

[1,] 10.108591 -2.164337 -3.070143

[2,] -2.164337 4.192241 -2.707381

[3,] -3.070143 -2.707381 4.548381

In this case both arguments were supplied by their full name, and a function

definition was used to supply argument fun.
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3.4.1 The ‘...’ argument

Functions can also have a special argument ‘...’, which is used to create

functions that can have variable numbers of arguments. It is also used to

pass arguments to a function that may in turn be passed on to other func-

tions, without those arguments having to be declared as arguments of the

calling function: this is useful for passing arguments that control settings

of plotting functions, for example.

Any arguments supplied in the call to a function, that are not in the argu-

ment list in the function definition, are matched to its ‘...’ argument, if it

has one.8 The elements of ‘...’ can be extracted into a list. The following

simple function’s only purpose is to do this, and thereby show you all you

need to know to work with ‘...’:

dum <- function(...) {

arg <- list(...)

arg.names <- as.list(substitute(list(...)))[-1]

names(arg) <- arg.names

arg

}

The first line of the function body extracts the arguments and puts them in

a list. The next line extracts the names of the arguments (in the calling en-

vironment, obviously). Look up ?substitute to understand exactly how

it works. The names are then given to the elements of the list. Here it is in

unexciting action, with just two arguments:

> a <- 1; b <- c("um","er")

> dum(a,b)

$a

[1] 1

$b

[1] "um" "er"

As mentioned, a major use of ‘...’ is to pass arguments to a function for

it to pass on to another function. R’s optimisation function optim uses this

mechanism to pass arguments to the function that it is minimising. optim

is designed to minimise functions with respect to their first argument (a

vector). The function to be optimised may have many other arguments,

of no concern to optim, except that values for them have to be supplied.

optim does not ‘know’ what these are called nor how many of them there

are: it does not need to because they can be provided as named arguments

matched to ‘...’ and passed to the function that way. For example, here is

a function for optim to minimise, and the call to do so:

8 This has the slightly unfortunate side effect that mistyped argument names do not

generate obvious warnings.
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ff <- function(x,a,b) {

(x[1]-a/(x[2]+1))^2 + (x[2]-b/(x[1]+1))^2

}

optim(c(0,0),ff,a=.5,b=.2)

optim minimises ff w.r.t. the elements of x. It passes 0.5 and 0.2 to ff as

the values for a and b. Of course, we are not restricted to passing simple

constants: almost any R object could also be passed as an argument.

One irritation is worth being aware of.

ff <- function(res=1,...) res;f(r=2)

will return the answer 2 as a result of partial matching of argument names,

even if you meant r to be part of the ‘...’ argument. It is easy to be caught

out by this. If you want ‘...’ to be matched first, then it has to precede the

arguments it might be confused with. So the following gives the answer 1:

ff <- function(...,res=1) res;f(r=2)

3.5 Useful built-in functions

The purpose of this chapter is to provide an introductory overview, not

a reference, for R. So this section simply provides the information on

where to locate the documentation for some useful standard built-in func-

tions. R has an extensive help system, which can be accessed by typing

help.start() at the command prompt, to obtain help in navigable HTML

form, or by typing ?foo at the command line, where foo is the function or

other topic of interest.

Help topic Subject covered

?Arithmetic Standard arithmetic operators

?Logic Standard logical operators

?sqrt Square root and absolute value functions

?Trig Trigonometric functions (sin, cos, etc.)

?Hyperbolic Hyperbolic functions (tanh, etc.)

?Special Special mathematical functions (Γ function, etc.)

?pgamma Partial gamma function

?Bessel Bessel functions

?log Logarithmic functions

?max Maximum, minimum and vectorised versions

?round Rounding, truncating, etc.

?distributions Statistical distributions built into R
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The ?distributions topic requires some more explanation. R has built-

in functions for the beta, binomial, cauchy, chisquared, exponential, f,

gamma, geometric, hypergeometric, lnormal (log-normal), multinomial,

nbinomial (negative binomial), normal, poisson, t, uniform and weibull

distributions. The R identifying names for these are shown in courier font

in this list.

For each distribution, with name dist, say, there are four functions:

1. ddist is the probability (density) function of dist.

2. pdist is the cumulative distribution functions of dist.

3. qdist is the quantile function of dist.

4. rdist generates independent pseudorandom deviates from dist.

3.6 Object orientation and classes

Objects in R have classes, and R contains a mechanism by which different

versions of a function may be used depending on an object’s class. For

example, the somewhat complicated list object returned from the linear

modelling function lm has class "lm":

> set.seed(0); n <- 100

> x <- runif(n); y <- x + rnorm(n)

> b <- lm(y~x)

> class(b)

[1] "lm"

This is why if we just type b or equivalently print(b) at the command

prompt, then rather than getting a dull and lengthy printout of everything b

contains (the default for a list), we get the much prettier result:

> print(b)

Call:

lm(formula = y ~ x)

Coefficients:

(Intercept) x

-0.05697 0.92746

What has happened here is that the print method function appropriate to

the "lm" class has been invoked to do the printing. This function is called

print.lm (type stats:::print.lm at the command prompt if you want

to see what it looks like). The mechanism by which this happens involves

method dispatch via a generic print function. If we examine the print

function then it turns out to contain only a single line:
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> print

function (x, ...)

UseMethod("print")

which tells R to use a function print.foo based on the class foo of the

first argument x: there is a print.default to use if no print.foo method

is found. Common uses of this sort of approach are for print, summary and

plot functions.

At first sight it might appear that the existence of print methods is a

nuisance if you want to know exactly what is inside an object, but actually

it is no handicap. You can always call the default print method directly (e.g.

print.default(b) prints out the contents of b in tedious and overwhelm-

ing detail). str(b) is usually a better bet, giving a summary of the structure

of its argument. names(b) simply tells you the names of b’s elements.

Many object classes are quite closely related to other object classes. For

example, generalised linear models share many features of linear models,

and as a result there is much overlap in the structure of the objects returned

by lm and glm. This overlap immediately raises the question of whether

some lm methods could be used directly with glm objects without needing

to be rewritten. The idea of inheritance of classes facilitates this. An object

of one class can inherit from one or more other classes, and any method

functions missing for this class can then default to the versions for the

classes from which it inherits. For example,

> b1 <- glm(y~x)

> class(b1)

[1] "glm" "lm"

indicates that class "glm" inherits from class "lm", which could also be

tested using inherits(b1,"lm"). In the case of b1 there is a print.glm

method, but no plot.glm, so plot(b1) will actually use plot.lm(b1).

We are free to add methods for existing generic functions and to create

our own generics. As an example, the following code creates a version of

the ‘+’ operator that concatenates lines of poetry, which are given class

"poetry", and creates a print method for the class:

"+.poetry" <- function(a,b) {

d <- paste(a,b,sep="\n")

class(d) <- "poetry"

d

}

print.poetry <- function(x) cat(x,"\n")

Note that paste is a function for pasting together character strings and cat
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is a basic text output function. Having provided these methods for objects

of class "poetry", here they are in action:

> a <- "twas brillig and the slithy toves"

> b <- "Did gyre and gimble in the wabe"

> d <- "All mimsy were the borogroves"

> class(a) <- class(b) <- class(d) <- "poetry"

> a + b + d

twas brillig and the slithy toves

Did gyre and gimble in the wabe

All mimsy were the borogroves

The mechanisms described here are a quite weak form of object orienta-

tion, known as S3 classes and methods. A much fuller form of object ori-

entation is provided by S4 classes and methods in the R package methods.

The ?Methods help file contains very clear information on both approaches.

3.7 Conditional execution and loops

It is often necessary to evaluate different sets of R commands depending

on whether some condition holds or not. When working with elements of

vectors and arrays the efficient way to evaluate conditionally is to use the

logical indexing methods of Section 3.3.4; otherwise R offers this structure:

if (condition) {

statements 1

} else {

statements 2

}

If the expression condition evaluates to TRUE then the expressions cor-

responding to statements 1 are evaluated; otherwise statements 2 are

evaluated. The else { ... } part is optional: if it is omitted then nothing

is evaluated when condition is FALSE, and R simply moves on to the next

instruction. Nested if statements can be constructed in the obvious way

(see also ?switch):

if (condition 1) {

statements 1

} else if (condition 2) {

statements 2

} else {

statement 3

}

Here is a simple example to simulate the tossing of a coin:

if (runif(1) > 0.5) cat("heads\n") else cat("tails\n")



3.7 Conditional execution and loops 71

Statements such as a <-if (condition) foo else bar are also com-

monly used.

Another essential programming task is looping. In R it is important to

avoid looping over array elements whenever possible: the methods detailed

in Section 3.3 are usually much more efficient. However, there are many

legitimate uses of looping (where each iteration of the loop is doing lots

of work), and R has five commands for loop implementation: for, while,

repeat, break and next.

for is perhaps the most commonly used. It repeats a set of R commands

once for each element of a vector. The syntax is

for (a in vec) {

R code

}

where the R code in brackets is repeated for a set equal to each element of

vec in turn. For example,

> vec <- c("I","am","bored")

> for (a in vec) cat(a," ")

I am bored

The commonest use of for is to loop over all integers between some limits.

For example, for (i in 1:10) {...} evaluates the commands in {...}

for i = 1, 2, . . . , 10.

while executes a loop until a condition is no longer met. The syntax is

while (condition) {

R code

}

So it repeatedly evaluates R code until condition no longer evaluates to

TRUE. The following example iterates a simple ecological population model

until some threshold population is exceeded:

N <- 2

while (N < 100) N <- N * exp(rnorm(1)*.1)

Notice that this is an example of a case where we cannot avoid looping by

vectorizing: the computation is fundamentally iterative.

break and next are commands for modifying the looping behaviour

from within the code being looped over. break causes an immediate exit

from the loop. next causes the loop to skip directly to the next iteration.

The existence of break facilitates R’s simplest looping instruction repeat,

which simply repeats a set of instructions until a break is encountered.

Here is a rewrite of the while population model example, using repeat.

The logic is identical.
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N <- 2

repeat {

N <- N * exp(rnorm(1)*.1)

if (N >= 100) break

}

Note the indentation of code within the loop: this is generally considered

to be good practice because it improves readability.

3.7.1 Loop efficiency

The key to efficient programming in R is to make sure that each iteration

of a loop is doing lots of work (with relatively little code). Looping over

elements of arrays, and doing only a little work on each element, is usually

very inefficient. To emphasise this, consider the example of multiplying

two square matrices. The following R code compares the timings of a naive

loop in R with use of ‘%*%’ for the same task.

> n <- 100L

> A <- matrix(runif(n^2),n,n)

> B <- matrix(runif(n^2),n,n)

> C <- B*0

> system.time({

+ for (i in 1:n) for (j in 1:n) for (k in 1:n)

+ C[i,j] <- C[i,j] + A[i,k] * B[k,j]})

user system elapsed

11.213 0.012 11.223

> system.time(C <- A%*%B)

user system elapsed

0.004 0.000 0.002

The reason that the loop is so slow is that R is an interpreted language. At

each iteration of the nested loop, C[i,j] <-C[i,j] + A[i,k] *B[k,j]

has to be interpreted and evaluated, which takes far longer than the one

addition and one multiplication that the expression actually results in. Of

course, the naive loop is particularly boneheaded. We could much improve

matters by replacing the inner loop with something vector oriented, thereby

increasing the work done at each iteration while reducing the interpretation

and evaluation overheads by a factor of around 100:

> system.time({

+ for (i in 1:n) for (j in 1:n)

+ C[i,j] <- sum(A[i,] * B[,j])})

user system elapsed

0.224 0.000 0.223

This is better, but still around 50 times slower than the single line version.
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When lengthy looping is unavoidable, as in truly iterative computations,

then some improvements can be obtained by byte-compilation of R, using

the standard package compiler. Here is an example of creating a byte-

compiled function out of the second R loop using the cmpfun function:

> require(compiler)

> bad.loop <- cmpfun(function(A,B) {

+ C <- A*0

+ for (i in 1:n) for (j in 1:n)

+ C[i,j] <- sum(A[i,] * B[,j])

+ C

+ })

> system.time(C <- bad.loop(A,B))

user system elapsed

0.108 0.000 0.108

A modest improvement, but still much slower than A%*%B.

3.8 Calling compiled code

There exist tasks for which R is simply inefficient, but this inefficiency is

often easy to overcome by calling external compiled code from R. Inter-

faces exist for Fortran, C and C++, and it is possible to call back into R

from compiled code. This section only considers the most basic interface

for calling C code from R. Windows users will need the extra software pro-

vided at http://cran.r-project.org/bin/windows/Rtools/. Most

systems based on some variety of Unix should already have the required

tools available.

Consider the example of writing C code to implement the matrix mul-

tiplication loop from the previous section. Suppose that such a function is

contained in matmult.c, as follows:

#include <math.h>

#include "matmult.h"

void matmult(double *A, double *B, double *C, int *n) {

int i,j,k;

for (i=0;i < *n;i++) for (j=0;j < *n;j++) {

C[i + *n * j] = 0;for (k=0;k < *n;k++)

C[i + *n * j] += A[i + *n * k] * B[k + *n * j];

}

}

Notice the assumption that the matrices are stored columnwise in vectors,

corresponding to R’s underlying storage convention for matrices. There is

a corresponding header file, matmult.h, containing
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void matmult(double *A, double *B, double *C, int *n);

In the directory containing these files, the command line version of R can

create a compiled version of this code, suitable for calling from R:

R CMD SHLIB matmult.c

will produce a shared object file matmult.so (matmult.dll on Windows).

From within R we can now load this compiled object (either giving the full

path to the file or using setwd to set the working directory to the directory

containing it).

> dyn.load("matmult.so")

The routine itself can now be called, via R function .C:

> res <- .C("matmult",A=as.double(A),B=as.double(B),

+ C=as.double(C*0),n=as.integer(n))

> C <- matrix(res$C,n,n)

The arguments are explicitly converted to the type that the C code is expect-

ing, using as.double, etc. For the matrices, what is passed to C is a pointer

to the underlying vector of values (stored one column after another). .C ac-

tually copies all the objects that are its arguments, before passing pointers

to these copies to the C code. .C then returns a list containing the copied

arguments, with any modification of the copies that the C code has made.9

For this example, the copy of C has been modified. In the above call, each

argument has been given a name; for example, by using A=as.double(A)

to name the first argument A. If names are omitted, then the elements of

the return list are accessed by number in the usual way. Finally, notice that

res$C had to be explicitly converted from a vector back to a matrix.

Applying system.time to the call to matmult reveals that it takes about

three times as long as A%*%B. The speed penalty occurs because the given

C code is itself inefficiently written: speeding it up by a factor of three

is fairly easy, but also beyond the scope of this book. However, even this

inefficient C code is much faster than anything we achieved using R loops

for this task.

See http://cran.r-project.org/doc/manuals/R-exts.html for

much more detail on this topic, but note that there are numerous oppor-

tunities to call R routines from C if the header file R.h is included in the

code. For example, unif_rand() and norm_rand() give access to R’s

uniform and standard normal pseudorandom number generators.

9 Hence the C code does not modify the original R objects passed as arguments to .C
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3.9 Good practice and debugging

R is enormously flexible: so flexible that it is easy to code in a very sloppy

way that is likely to create hard-to-trace errors. For this reason it is worth

imposing some self discipline when coding. Top of the list is to code for

legibility. There are four obvious aspects to this:

1. Use meaningful object names, but try to keep them concise. For exam-

ple, if coding up a model that you wrote down in terms of parameters

α, β and γ, then refer to those parameters as alpha, beta and gamma

in your code.

2. White space costs almost nothing, so use it to space out your expres-

sions for readability. It is good practice to use white space around oper-

ators to avoid ambiguity. For example, a <- 2 is unambiguous, whereas

a<-2 could be assignment or could be the logical result of testing if a is

less than -2 (R would choose assignment, but code is clearer if you do

not have to known that).

3. Use comments to explain code. Comments start with # and continue

until a line end. Use them freely.

4. When coding a complex task, take care to structure your code carefully.

Break the task down into functions, each performing a discrete, well-

defined and comprehensible part of the overall work.

The second component of self-discipline is to resist the temptation to do

everything interactively at the command prompt. R code for anything re-

motely complex should be coded up in a text file (which can be saved) and

then pasted or source’d into R. Various R-based computing environments

exist to make this way of working easier.

Finally, a word about debugging. Anyone writing remotely interesting

code makes mistakes. Being very careful about writing down exactly what

you want to do on paper before coding it can minimise the number of cod-

ing bugs, but will not eliminate them. It is good practice to assume that

code is buggy until, after strenuous effort, you fail to find any more bugs.

The temptation when confronted with a stubborn bug is to spend hours

gazing at the code. This is usually a waste of time: if you were going to

see the bug that way, you would probably have done so when first writing

the code. It is more effective to apply the approach of scientific investiga-

tion to your code. Formulate hypotheses about what might be wrong (or

even what should be right), and design experiments to test these hypothe-

ses. When doing this it is helpful to print out intermediate values of com-

puted quantities. However, to avoid wasting time, you should also learn
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how to use a debugger. In R the default debugging facilities are provided

by debug and trace (see their help files for more information). However,

I find the mtrace debugger from Mark Bravington’s debug package to be

much more useful.

You can also debug C (and other) code called from R using the GNU

gdb debugger. For C/C++ on Linux, nemiver is somewhat easier to use

than gdb (and in some respects more powerful). The valgrind mem-

ory error debugger can also be used for compiled code in R. Again, see

http://cran.r-project.org/doc/manuals/R-exts.html for details.

Exercises

3.1 Computers do not represent most real numbers exactly. Rather, a real number

is approximated by the nearest real number that can be represented exactly

(floating point number), given some scheme for representing real numbers

as fixed-length binary sequences. Often the approximation is not noticeable,

but it can make a big difference relative to exact arithmetic (e.g., imagine that

you want to know the difference between two distinct real numbers that are

approximated by the same binary sequence). One consequence of working in

finite precision arithmetic is that for any number x, there is a small number

ǫ such that for all e, |e| ≤ |ǫ|, x+ e is indistinguishable from x.

a. Try out the following code to find the size of this number, when x = 1:

eps <- 1

x <- 1

while (x+eps != x) eps <- eps/2

eps/x

b. Confirm that the final eps here is close to the largest ǫ for which x and

x+ ǫ give rise to the same floating point number.

c. 2*eps is stored in R as .Machine$double.eps. Confirm this.

d. Confirm that eps/x is the same for x = 1/8,1/4,1/2,1,2, 4 or 8.

e. Now try some numbers that are not exactly representable as modest pow-

ers of 2, and note the difference.

f. In terms of decimal digits, roughly how accurately are real numbers be-

ing represented here?

3.2 Rewrite the following to eliminate the loops, first using apply and then

using rowSums:

X <- matrix(runif(100000),1000,100); z <- rep(0,1000)

for (i in 1:1000) {

for (j in 1:100) z[i] <- z[i] + X[i,j]

}
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Confirm that all three versions give the same answers, but that your rewrites

are much faster than the original. (system.time is a useful function.)

3.3 Rewrite the following, replacing the loop with efficient code:

n <- 100000; z <- rnorm(n)

zneg <- 0;j <- 1

for (i in 1:n) {

if (z[i]<0) {

zneg[j] <- z[i]

j <- j + 1

}

}

Confirm that your rewrite is faster but gives the same result.

3.4 Run the following code:

set.seed(1); n <- 1000

A <- matrix(runif(n*n),n,n); x <- runif(n)

Evaluate xTAx, tr(A) and tr(ATWA) where W is the diagonal matrix

such that Wii = xi.

3.5 Consider solving the matrix equation Ax = y for x, where y is a known n

vector and A is a known n×n matrix. The formal solution to the problem is

x = A−1y, but it is possible to solve the equation directly, without actually

forming A−1. This question explores this direct solution. Read the help file

for solve before trying it.

a. First create an A, x and y satisfying Ax = y.

set.seed(0); n <- 1000

A <- matrix(runif(n*n),n,n); x.true <- runif(n)

y <- A%*%x.true

The idea is to experiment with solving Ax = y for x, but with a known

truth to compare the answer to.

b. Using solve, form the matrix A−1 explicitly and then form x1 =

A−1y. Note how long this takes. Also assess the mean absolute differ-

ence between x1 and x.true (the approximate mean absolute ‘error’ in

the solution).

c. Now use solve to directly solve for x without forming A−1. Note how

long this takes and assess the mean absolute error of the result.

d. What do you conclude?

3.6 The empirical cumulative distribution function for a set of measurements

{xi : i = 1, . . . n} is

F̂ (x) =
#{xi < x}

n

where #{xi < x} denotes ‘number of xi values less than x’. When an-

swering the following, try to ensure that your code is commented, clearly
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structured, and tested. To test your code, generate random samples using

rnorm, runif, etc.

a. Write an R function that takes an unordered vector of observations x

and returns the values of the empirical c.d.f. for each value, in the order

corresponding to the original x vector. See ?sort.int.

b. Modify your function to take an extra argument plot.cdf, that when

TRUE will cause the empirical c.d.f. to be plotted as a step function over

a suitable x range.

3.7 Try out the debug function on your function from the previous question.

Then install the debug package from CRAN and see how using the mtrace

function compares. To get started, take a look at the html help for the debug

package.

3.8 In an R session containing nothing important, run the following code.

rm(list=ls())

hello2 <- function(name=NULL,n=3,dum=0) {

txt <- paste(paste(rep("hello ",n),collapse=""),

name,"\n",sep="")

cat(txt)

}

hello2(foo,2)

hello2("simon",2,foo)

Why does the first call to hello2 generate an error, but not the second?

3.9 Work out the reasons for the differences and similarities in the results of

calling foo and bar in the following code:

foo <- function() {

print(parent.env(environment()))

print(parent.frame())

}

bar <- function() foo()

foo()

bar()
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Theory of maximum likelihood estimation

The use of maximum likelihood estimation rests on some general the-

ory about log likelihoods and maximum likelihood estimates. This chapter

briefly covers the derivation of the key results at a level suitable for ensur-

ing their reliable application. See Cox and Hinkley (1974), Silvey (1970)

and Davison (2003) for more detail.

4.1 Some properties of the expected log likelihood

Large sample theory for maximum likelihood estimators relies on some re-

sults for the expected log likelihood and on the observed likelihood tending

to its expected value as the sample size tends to infinity. The results for the

expected log likelihood are derived here. Recall that l(θ) = log fθ(y), and

let θt be the vector of true parameter values.

1.

E

(

∂l

∂θ

∣

∣

∣

∣

θt

)

= 0, (4.1)

where the expectation is taken at θt. Proof is straightforward provided

that there is sufficient regularity to allow the order of differentiation and

integration to be exchanged:

E

{

∂

∂θ
log fθ(y)

}

=

∫

1

fθ(y)

∂fθ
∂θ

fθ(y)dy =

∫

∂fθ
∂θ

dy

=
∂

∂θ

∫

fθ(y)dy =
∂1

∂θ
= 0.

2.

cov

(

∂l

∂θ

∣

∣

∣

∣

θt

)

= E

(

∂l

∂θ

∣

∣

∣

∣

θt

∂l

∂θT

∣

∣

∣

∣

θt

)

, (4.2)
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which follows directly from the previous result and the definition of a

covariance matrix, (1.4). Recall here that ∂l/∂θ is a column vector and

∂l/∂θT a row vector.

3.

I = E

(

∂l

∂θ

∣

∣

∣

∣

θt

∂l

∂θT

∣

∣

∣

∣

θt

)

= −E
(

∂2l

∂θ∂θT

∣

∣

∣

∣

θt

)

. (4.3)

I , is known as the Fisher information matrix. The terminology relates

to the fact that a likelihood containing lots of information about θ will

be sharply peaked (I will have large magnitude eigenvalues), whereas

a less informative likelihood will be less sharply peaked.

Proof is straightforward. From (4.1) we have

∫

∂ log fθ
∂θ

fθ(y)dy = 0

⇒
∫

∂2 log fθ
∂θ∂θT

fθ(y) +
∂ log fθ
∂θ

∂fθ
∂θT

dy = 0,

but
∂ log fθ
∂θT

=
1

fθ

∂fθ
∂θT

, so

∫

∂2 log fθ
∂θ∂θT

fθ(y)dy = −
∫

∂ log fθ
∂θ

∂ log fθ
∂θT

fθ(y)dy,

and the result is proven.

4. The expected log likelihood has a global maximum at θt. i.e.

E{l(θt)} ≥ E{l(θ)} ∀ θ. (4.4)

Since log is a concave function, Jensen’s inequality (1.10) implies that

E

[

log

{

fθ(y)

fθt(y)

}]

≤ log

[

E

{

fθ(y)

fθt(y)

}]

= log

∫

fθ(y)

fθt(y)
fθt(y)dy = log

∫

fθ(y)dy = log(1) = 0,

and the result is proven.

5. The Cramér-Rao lower bound. I
−1

provides a lower bound on the vari-

ance matrix of any unbiased estimator θ̃, in the sense that cov(θ̃)−I−1

is positive semi-definite.
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Proof: Since f∂ log f/∂θ = ∂f/∂θ, ∂θt/∂θ
T
t = I and θ̃ is unbi-

ased,
∫

θ̃fθt(y)dy = θt ⇒
∫

θ̃
∂ log fθt
∂θT

t

∣

∣

∣

∣

θt

fθt(y)dy = I.

Hence, given (4.1), the matrix of covariances of elements of θ̃t with

elements of ∂ log fθt/∂θt can be obtained:

cov

(

θ̃,
∂ log fθt
∂θt

∣

∣

∣

∣

θt

)

= E

(

θ̃
∂ log fθt
∂θT

t

∣

∣

∣

∣

θt

)

− E(θ̃)E

(

∂ log fθt
∂θT

t

∣

∣

∣

∣

θt

)

= I.

Combining this with (4.2) we obtain the variance-covariance matrix,

cov

[

θ̃
∂ log fθt
∂θt

∣

∣

∣

θt

]

=

[

cov(θ̃) I

I I

]

,

which is positive semi-definite by virtue of being a variance-covariance

matrix. It follows that

[

I −I−1
]

[

cov(θ̃) I

I I

] [

I

−I−1

]

= cov(θ̃)− I
−1

is positive semi-definite, and the result is proven.

If the sense in which I
−1

is a lower bound is unclear, consider the

variance of any linear transformation of the form aTθ̃. By the result just

proven, and the definition of positive semi-definiteness,

0 ≤ aT{cov(θ̃)− I
−1}a = var(aTθ̃)− aT

I
−1
a,

⇒ var(aTθ̃) ≥ aT
I

−1
a. For example, the lower bound on var(θ̃i) is

given by the ith element on the leading diagonal of I
−1

.

4.2 Consistency of MLE

Maximum likelihood estimators are usually consistent, meaning that as the

sample size tends to infinity, θ̂ tends to θt (provided that the likelihood

is informative about the parameters). This occurs because in regular situa-

tions l(θ)/n→ E{l(θ)}/n as the sample size, n, tends to infinity, so that

eventually the maximum of l(θ) and E{l(θ)}must coincide at θt by (4.4).

The result is easy to prove if the log likelihood can be broken down into a
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sum of independent components (usually one per observation), so that the

law of large numbers implies convergence of the log likelihood to its ex-

pectation. Consistency can fail when the number of parameters is growing

alongside the sample size in such a way that, for at least some parameters,

the information per parameter is not increasing with sample size.

4.3 Large sample distribution of MLE

Taylor’s theorem implies that

∂l

∂θ

∣

∣

∣

∣

θ̂

≃ ∂l

∂θ

∣

∣

∣

∣

θt

+
∂2l

∂θ∂θT

∣

∣

∣

∣

θt

(θ̂ − θt)

with equality in the large sample limit, for which θ̂ − θt → 0. From the

definition of θ̂, the left-hand side is 0. So assuming I/n is constant (at

least in the n→∞ limit), then as the sample size tends to infinity,

1

n

∂2l

∂θ∂θT

∣

∣

∣

∣

θt

→ −I

n
, while

∂l

∂θ

∣

∣

∣

∣

θt

is a random vector with mean 0 and covariance matrix I by (4.2) and

(4.1).1 Therefore in the large sample limit,

θ̂ − θt ∼ I
−1 ∂l

∂θ

∣

∣

∣

∣

θt

,

implying that E(θ̂ − θt) = 0 and var (θ̂ − θt) = I
−1

. Hence in regular

situations in the large sample limit, maximum likelihood estimators are

unbiased and achieve the Cramér-Rao lower bound. This partly accounts

for their popularity.

It remains to establish the large sample distribution of θ̂ − θt. In the

case in which the likelihood is based on independent observations, then

l(θ) =
∑

i li(θ), where li denotes the contribution to the log likelihood

from the ith observation. In that case ∂l/∂θ =
∑

i ∂li/∂θ, so that ∂l/∂θ
is a sum of independent random variables. Hence, under mild conditions,

the central limit theorem applies, and in the large sample limit

θ̂ ∼ N(θt,I
−1). (4.5)

In any circumstance in which (4.5) holds, it is also valid to use−∂2l/∂θ∂θT

1 In the limit the random deviation of n−1∂2l/∂θ∂θT from its expected value, n−1
I, is

negligible relative to n−1
I itself (provided it is positive definite). This is never the case

for the ∂l/∂θ, because its expected value is zero.
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in place of I itself. When the likelihood is not based on independent ob-

servations, it is very often the case that ∂l/∂θ has a limiting normal distri-

bution so that (4.5) holds anyway. The key is that the expected information

increases without limit with increasing sample size. In any case, achieve-

ment of the Cramér-Rao lower bound does not depend on normality.

4.4 Distribution of the generalised likelihood ratio statistic

Consider testing:

H0 : R(θ) = 0 vs. H1 : R(θ) 6= 0,

where R is a vector-valued function of θ, such that H0 imposes r restric-

tions on the parameter vector. If H0 is true, then in the limit as n→∞,

2λ = 2{l(θ̂)− l(θ̂0)} ∼ χ2
r, (4.6)

where l is the log-likelihood function and θ̂ is the MLE of θ. θ̂0 is the

value of θ maximising the likelihood subject to the constraint R(θ) = 0.

This result is used to calculate approximate p-values for the test.

To derive (4.6), first re-parameterise so that θT = (ψT,γT), whereψ is

r dimensional and the null hypothesis can be rewritten H0 : ψ = ψ0. Such

re-parameterisation is always possible, but is only necessary for deriving

(4.6), not for its use.

Let the unrestricted MLE be (ψ̂T, γ̂T), and let (ψT
0 , γ̂

T
0 ) be the MLE

under the restrictions defining the null hypothesis. To make progress, γ̂0

must be expressed in terms of ψ̂, γ̂ and ψ0. Taking a Taylor expansion of

l around the unrestricted MLE, θ̂, yields

l(θ) ≃ l(θ̂)− 1

2

(

θ − θ̂
)T

H
(

θ − θ̂
)

, (4.7)

where Hi,j = − ∂2l/∂θi∂θj |θ̂. Exponentiating produces

L(θ) ≃ L(θ̂) exp

[

−
(

θ − θ̂
)T

H
(

θ − θ̂
)

/2

]

(i.e. the likelihood can be approximated by a function proportional to the

p.d.f. of an N(θ̂,H−1) random vector). So, in the large sample limit and

defining Σ = H−1, the likelihood is proportional to the p.d.f. of

N

([

ψ̂

γ̂

]

,

[

Σψψ Σψγ

Σγψ Σγγ

])

.
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If ψ = ψ0 then this p.d.f. will be maximised by2 γ̂0 = E(γ|ψ0), which,

from the results of Section 1.6.3, is

γ̂0 = γ̂ +ΣγψΣ
−1
ψψ(ψ0 − ψ̂). (4.8)

If the null hypothesis is true, then in the large sample limit ψ̂ → ψ0 (in

probability) so that the approximate likelihood tends to the true likelihood,

and we can expect (4.8) to hold for the maximisers of the true likelihood.

It helps to express (4.8) in terms of the partitioned version of H. Writing

ΣH = I in partitioned form
[

Σψψ Σψγ

Σγψ Σγγ

] [

Hψψ Hψγ

Hγψ Hγγ

]

=

[

I 0

0 I

]

,

and multiplying out, results in two useful equations:

ΣψψHψψ +ΣψγHγψ = I and ΣψψHψγ +ΣψγHγγ = 0. (4.9)

Rearranging (4.9) while noting that, by symmetry,HT
ψγ = Hγψ andΣT

ψγ =
Σγψ, yields

Σ−1
ψψ = Hψψ −HψγH

−1
γγHγψ (4.10)

and −H−1
γγHγψ = ΣγψΣ

−1
ψψ. Substituting the latter into (4.8), we obtain

γ̂0 = γ̂ +H−1
γγHγψ(ψ̂ −ψ0). (4.11)

Now provided that the null hypothesis is true so that ψ̂ is close toψ0, we

can reuse the expansion (4.7) and write the log likelihood at the restricted

MLE as

l(ψ0, γ̂0) ≃ l(ψ̂, γ̂)− 1

2

[

ψ0 − ψ̂
γ̂0 − γ̂

]T

H

[

ψ0 − ψ̂
γ̂0 − γ̂

]

.

Hence

2λ = 2{l(ψ̂, γ̂)− l(ψ0, γ̂0)} ≃
[

ψ0 − ψ̂
γ̂0 − γ̂

]T

H

[

ψ0 − ψ̂
γ̂0 − γ̂

]

.

Substituting for γ̂0 from (4.11) and writing out H in partitioned form gives

2λ ≃
[

ψ0 − ψ̂
H−1

γγHγψ(ψ̂ −ψ0)

]T [

Hψψ Hψγ

Hγψ Hγγ

] [

ψ0 − ψ̂
H−1

γγHγψ(ψ̂ −ψ0)

]

= (ψ̂ −ψ0)
T
[

Hψψ −HψγH
−1

γγHγψ

]

(ψ̂ −ψ0)

= (ψ̂ −ψ0)
T
Σ

−1

ψψ(ψ̂ −ψ0),

2 See Section 1.4.2 and Figure 1.3 if this is unclear.
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where the final equality follows from (4.10). If H0 is true, then as n→∞
this expression will tend towards exactness as ψ̂ → ψ0. Furthermore,

provided H → I as n → ∞, then Σ tends to I
−1

, and hence Σψψ

tends to the covariance matrix of ψ̂, by (4.5). Hence, by the asymptotic

normality of the MLE ψ̂, 2λ ∼ χ2
r, under H0.

4.5 Regularity conditions

The preceding results depend on some assumptions.

1. The densities defined by distinct values of θ are distinct. If this is not the

case the parameters need not be identifiable, and there is no guarantee

of consistency.

2. θt is interior to the space of possible parameter values. This is neces-

sary in order to be able to approximate the log likelihood by a Taylor

expansion in the vicinity of θt.

3. Within some neighbourhood of θt, the first three derivatives of the log

likelihood exist and are bounded, while the Fisher information matrix

satisfies (4.3) and is positive definite and finite. The various Taylor ex-

pansions and the arguments leading to (4.5) depend on this.

When these assumptions are met the results of this section are very general

and apply in many situations well beyond the i.i.d setting. When they are

not met, some or all of the results of Sections 4.2 to 4.4 will fail.

4.6 AIC: Akaike’s information criterion

As briefly introduced in Section 2.4.5, an appealing approach to model

selection is to select the model that appears to be as close to the truth as

possible, in the Kullback-Leibler sense of minimising

K(fθ, ft) =

∫

{log ft(y) − log fθ(y)} ft(y)dy, (4.12)

where ft is the true density of y and fθ is the model approximation to it.

To make this aspiration practical, we need to choose some version of K
that can be estimated, and it turns out that the expected value of K(fθ̂, ft)

is tractable, where θ̂ is the MLE.

Although we cannot compute it, consider the value of θ that would min-
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imise (4.12), and denote it by θK . Now consider the Taylor expansion

log fθ̂(y) ≃ log fθK(y) + (θ̂ − θK)T
∂ log fθ
∂θ

∣

∣

∣

∣

θK

+
1

2
(θ̂ − θK)T

∂2 log fθ
∂θ∂θT

∣

∣

∣

∣

θK

(θ̂ − θK). (4.13)

If θK minimises K then
∫

∂ log fθ/∂θ|θKftdy = 0, so substituting (4.13)

into K(fθ̂, ft), while treating θ̂ as fixed3 results in

K(fθ̂, ft) ≃ K(fθK , ft) +
1

2
(θ̂ − θK)TIθK (θ̂ − θK), (4.14)

where IθK is the information matrix at θK . Now assume that the model is

sufficiently correct that E(θ̂) ≃ θK and cov(θ̂) ≃ IθK , at least for large

samples. In this case, and reusing results from the end of Section 4.4,

E{l(θ̂)− l(θK)} ≃ E

{

1

2
(θ̂ − θK)TIθK (θ̂ − θK)

}

≃ p/2 (4.15)

where p is the dimension of θ. So taking expectations of (4.14) and substi-

tuting an approximation from (4.15),

EK(fθ̂, ft) ≃ K(fθK , ft) + p/2. (4.16)

Since this still involves the unknownable ft, consider

E{−l(θ̂)} = E[−l(θK)− {l(θ̂)− l(θK)}]

≃ −
∫

log{fθK (y)}ft(y)dy − p/2 by (4.15)

= K(fθK , ft)− p/2−
∫

log{ft(y)}ft(y)dy.

Using this result to eliminate K(fθK , ft) from (4.16) suggests the estimate

̂EK(fθ̂, ft) = −l(θ̂) + p+

∫

log{ft(y)}ft(y)dy.

Since the last term on the right-hand side only involves the truth, this last

estimate is minimised by whichever model minimises

AIC = −2l(θ̂) + 2p,

where the factor of 2 is by convention, to put AIC on the same scale as 2λ

3 By treating θ̂ as fixed we are effectively assessing the expected likelihood ratio between

model and truth for new data.
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from Section 4.4. A possible concern here is that (4.15) is not justified if

the model is oversimplified and hence poor, but in practice this is unprob-

lematic, because the log likelihood decreases sharply as the approximation

deteriorates. See Davison (2003) for a fuller derivation.

An objection to AIC is that it is not consistent: as n → ∞, the proba-

bility of selecting the correct model does not tend to 1. For nested models

(4.6) states that the difference in −2l(θ̂) between the true model and an

overly complex model follows a χ2
r distribution, where r is the number of

spurious parameters. Neither χ2
r nor 2p depends on n, so the probability of

selecting the overly complex model by AIC is nonzero and independent of

n (for n large). The same objection could also be made about hypothesis

testing, unless we allow the accept/reject threshold to change with n.4

Exercises

4.1 The double exponential distribution has p.d.f. f(x) = e−|x−µ|/σ/(2σ) where

µ and σ are parameters. Obtain maximum likelihood estimates of µ and σ,

given observations x1, x2, . . . , xn. (assume that n is even, the xi are unique

and xi 6= µ). Comment on the uniqueness of your estimates.

4.2 A random variable X has p.d.f. f(x) = (b − a)−1 if a ≤ x ≤ b and 0

otherwise. Given observations x1, x2, . . . , xn, find the maximum likelihood

estimates of a and b. Are the corresponding estimators unbiased? Why is

(4.5) inapplicable in this case?

4.3 Random variables X and Y have joint p.d.f. f(x, y) = kxαyβ 0 ≤ x ≤
1, 0 ≤ y ≤ 1. Assume that you have n independent pairs of observations

(xi, yi). (a) Evaluate k in terms of the α and β. (b) Find the maximum like-

lihood estimators of α and β. (c) Find approximate variances of α̂ and β̂

4.4 Suppose that you have n independent measurements of times between major

aircraft disasters, ti, and believe that the probability density function for the

ti’s is of the form: f(t) = ke−λt
2

t ≥ 0 where λ and k are the same for all

i. (a) By considering the normal p.d.f., show that k =
√

4λ/π. (b) Obtain a

maximum likelihood estimator for λ. (c) Given observations of Ti (in days)

of: 243, 14, 121, 63, 45, 407 and 34 use a generalised likelihood ratio test to

test H0 : λ = 10−4 against the alternative of no restriction on λ at the 5%

significance level. Note that if V ∼ χ2
1 then Pr[V ≤ 3.841] = 0.95.

4 The inconsistency of AIC is not in itself the reason for the empirical observation that

AIC tends to select increasingly complex models as n increases. If the true model is

among those considered then (4.6) does not imply that the probability of rejecting it

increases with sample size. However, if all the models under consideration are wrong,

then we will tend to select increasingly complex approximations as the sample size

increases and the predictive disadvantages of complexity diminish.
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Numerical maximum likelihood estimation

The theory of maximum likelihood estimation provides very general tools

for inference using statistical models, provided we can evaluate the log

likelihood and its first two derivatives and maximise the likelihood with

respect to its parameters. For most interesting models we can not do this

entirely analytically, and must use numerical methods for parts of the en-

terprise. The second-order Taylor expansion is again pivotal.1

5.1 Numerical optimisation

Most optimisation literature and software, including in R, concentrates on

the minimisation of functions. This section follows this convention, bearing

in mind that our goal of maximising log likelihoods can always be achieved

by minimising negative log likelihoods. Generically, then, we are interested

in automatic methods for finding

θ̂ = argmin
θ

f(θ). (5.1)

There are some very difficult problems in this class, so some restrictions

are needed. Specifically, assume that the objective function, f , is a suffi-

ciently smooth function, bounded below, and that the elements of θ are

unrestricted real parameters. So f might be a negative log likelihood, for

example. f may also depend on other known parameters and data, but there

is no need to clutter up the notation with these. The assumption that θ is

unrestricted means that, if we want to put restrictions on θ, we need to be

able to implement them by writing θ = r(θr), where r is a known func-

tion and θr is a set of unrestricted parameters. Then the problem becomes

minθr f{r(θr)}.
Even given these assumptions, it is not possible to guarantee finding a

1 Some numerical matrix algebra is also taken for granted here, but Appendix B

introduces most of what is needed.

88
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solution to (5.1) unless we know that f is convex, which is generally an

assumption too far. Pragmatically, the best we can hope for is to develop

methods to find a local minimum; that is, a point θ̂ such that f(θ̂ +∆) ≥
f(θ̂), for any sufficiently small perturbation ∆. The resulting methods are

adequate for many statistical problems.

5.1.1 Newton’s method

A very successful optimisation method is based on iteratively approximat-

ing f by a truncated Taylor expansion and seeking the minimum of the ap-

proximation at each step. With a little care, this can be made into a method

that is guaranteed2 to converge to a local minimum. Taylor’s theorem states

that if f is a twice continuously differentiable function of θ, and ∆ is of

the same dimension as θ, then for some t ∈ (0, 1),

f(θ +∆) = f(θ) +∇f(θ)T∆+
1

2
∆T∇2f(θ + t∆)∆ (5.2)

where ∇f(θ∗) =
∂f

∂θ

∣

∣

∣

∣

θ∗
and ∇2f(θ∗) =

∂2f

∂θ∂θT

∣

∣

∣

∣

θ∗
.

From (5.2), the condition f(θ̂ + ∆) ≥ f(θ̂), for any sufficiently small

perturbation ∆, is equivalent to

∇f(θ̂) = 0 and ∇2f(θ̂) positive semi-definite, (5.3)

which are the useful conditions for a minimum.

A second consequence of (5.2) is that for sufficiently small α, a θ that

is not a turning point, and any positive definite matrix H of appropriate

dimension, then f{θ − αH∇f(θ)} < f(θ). Under the given conditions

we can approximate f by a first-order Taylor approximation. Hence, in the

small α limit, f{θ−αH∇f(θ)} = f(θ)−α∇f(θ)TH∇f(θ) < f(θ),
where the inequality follows from the fact that ∇f(θ)TH∇f(θ) > 0
since H is positive definite and∇f(θ) 6= 0. In short,

∆ = −H∇f(θ) (5.4)

is a descent direction if H is any positive definite matrix. After Taylor’s

theorem, this is probably the second most important fact in the optimisation

of smooth functions.

2 The statistical literature contains many statements about the possibility of Newton’s

method diverging, and the consequent difficulty of guaranteeing convergence. These

statements are usually outdated, as a look at any decent textbook on optimisation shows.
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Now consider Newton’s method itself. Suppose that we have a guess, θ′,

at the parameters minimising f(θ). Taylor’s theorem implies that

f(θ′ +∆) ≃ f(θ′) +∇f(θ′)T∆+
1

2
∆T∇2f(θ′)∆.

Provided that∇2f(θ′) is positive semi-definite, the right-hand-side of this

expression can be minimised by differentiating with respect to ∆ and set-

ting the result to zero, which implies that

∇2f(θ′)∆ = −∇f(θ′). (5.5)

So, in principle, we simply solve for ∆ given θ′ and update θ′ ← θ′ +∆

repeatedly until the conditions (5.3) are met. By Taylor’s theorem itself,

this process must converge if we start out close enough to the minimising

θ̂. But if we knew how to do that we perhaps would not need to be using

Newton’s method in the first place.

The method should converge when started from parameter guesses that

are a long way from θ̂, requiring two modifications of the basic iteration:

1. ∇2f(θ′) is only guaranteed to be positive (semi) definite close to θ̂. So

∇2f(θ′) must be modified to make it positive definite, if it is not. The

obvious alternatives are (i) to replace∇2f(θ′) by∇2f(θ′)+δI, where

δ is chosen to be just large enough to achieve positive definiteness;3

or (ii) take the symmetric eigen-decomposition ∇2f(θ′) = UΛUT,

where Λ is the diagonal matrix of eigenvalues, and replace ∇2f(θ′)
by UΛ̃UT, where Λ̃ is Λ with all nonpositive eigenvalues replaced by

positive entries (e.g. |Λii|). Using the perturbed version in (5.5), results

in a step of the form (5.4), so if we are not at a turning point, then a

sufficiently small step in the direction ∆ is guaranteed to reduce f .

2. The second-order Taylor approximation about a point far from θ̂ could

be poor at θ̂, so that there is no guarantee that stepping to its minimum

will lead to a reduction in f . However, given the previous modification,

we know that the Newton step is a descent direction. A small enough

step in direction ∆ must reduce f . Therefore, if f(θ′ +∆) > f(θ′),
repeatedly set ∆←∆/2, until a reduction in f is achieved.

With these two modifications each step of Newton’s method must reduce

f until a turning point is reached.

3 Positive definiteness can be tested by attempting a Choleski decomposition of the matrix

concerned: it will succeed if the matrix is positive definite and fail otherwise. Use a

pivoted Choleski decomposition to test for positive semi-definiteness. Alternatively,

simply examine the eigenvalues returned by any symmetric eigen routine.
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In summary, starting with k = 0 and a guesstimate θ[0], iterate these steps:

1. Evaluate f(θ[k]),∇f(θ[k]) and∇2f(θ[k]).

2. Test whether θ[k] is a minimum using (5.3), and terminate if it is.4

3. If H = ∇2f(θ[k]) is not positive definite, perturb it so that it is.

4. Solve H∆ = −∇f(θ[k]) for the search direction ∆.

5. If f(θ[k] +∆) is not < f(θ[k]), repeatedly halve ∆ until it is.

6. Set θ[k+1] = θ[k] +∆, increment k by one and return to step 1.

In practice∇f is not tested for exact equality to zero at 2, and we instead

test whether ‖∇f(θ[k])‖ < |f(θ[k])|ǫr+ ǫa, for small constants ǫr and ǫa.

Newton’s method examples

As a single-parameter example, consider an experiment on antibiotic effi-

cacy. A 1-litre culture of 5 × 105 cells is set up and dosed with antibiotic.

After 2 hours, and then every subsequent hour up to 14 hours after dosing,

0.1ml of the culture is removed and the live bacteria in this sample counted

under a microscope, giving counts, yi, and times, ti (hours). The data are

ti 2 3 4 5 6 7 8 9 10 11 12 13 14

yi 35 33 33 39 24 25 18 20 23 13 14 20 18

A simple model for the sample counts, yi, is that their expected value is

E(Yi) = µi = 50e−δti , where δ is an unknown ‘death rate’ parameter

(per hour) and ti is the sample time in hours. Given the sampling protocol,

it is reasonable to assume that the counts are observations of independent

Poi(µi) random variables (see Section A.3.2), with probability function

f(yi) = µyii e
−µi/yi! So the log likelihood is

l(δ) =
n
∑

i=1

{yi log(µi)− µi − log(yi!)}

=
n
∑

i=1

yi{log(50)− δti} −
n
∑

i=1

50e−δti −
n
∑

i=1

log(yi!),

where n = 13. Differentiating w.r.t. δ,

∂l

∂δ
= −

n
∑

i=1

yiti +
n
∑

i=1

50tie
−δti and

∂2l

∂δ2
= −50

n
∑

i=1

t2i e
−δti .

4 If the objective function contains a saddlepoint, then theoretically Newton’s method

might find it, in which case the gradient would be zero and the Hessian indefinite: in this

rare case further progress can only be made by perturbing the Newton step directly.
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Figure 5.1 Newton’s method for the antibiotic example of
Section 5.1.1. Each panel shows one step of Newton’s method,
with the log likelihood (black) and the second-order Taylor
approximation about • (dashed). Vertical lines show the estimated
value of δ at the start and end of the step. Each panel title gives

the end estimate. a starts from δ[0] = 0. b to d show subsequent
iterations until convergence.

The presence of the ti term in e−δti precludes a closed-form solution for

∂l/∂δ = 0, and Newton’s method can be applied instead. Figure 5.1 illus-

trates the method’s progression. In this case the second derivatives do not

require perturbation, and no step-length halving is needed.

Now consider an example with a vector parameter. The following data

are reported AIDS cases in Belgium, in the early stages of the epidemic.

Year (19–) 81 82 83 84 85 86 87 88 89 90 91 92 93

Cases 12 14 33 50 67 74 123 141 165 204 253 246 240

One important question, early in such epidemics, is whether control

measures are beginning to have an impact or whether the disease is con-

tinuing to spread essentially unchecked. A simple model for unchecked

growth leads to an ‘exponential increase’ model. The model says that the
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Figure 5.2 Newton’s method for the AIDS example of Section
5.1.1. Each panel shows one step, with the log likelihood
contoured in black, the second order Taylor approximation about
• in grey, and the quadratic given by the positive definite
corrected Hessian as dotted. ◦ gives the Newton method proposed
parameter values at the end of each step, which are also given in
the panel caption. The iteration starts at the top left and has
converged by the lower right.

number of cases, yi, is an observation of an independent Poisson r.v., with

expected value µi = αeβti where ti is the number of years since 1980. So

the log likelihood is

l(α, β) =
n
∑

i=1

yi{log(α) + βti} −
n
∑

i=1

(αeβti − yi!),

and hence,

∇l =
[ ∑

yi/α−
∑

exp(βti)
∑

yiti − α
∑

ti exp(βti)

]

and ∇2l =

[

−∑ yi/α
2 −∑ tie

βti

−∑ tie
βti −α∑ t2i e

βti .

]

.

A swift glance at the expression for the gradients should be enough to

convince you that numerical methods will be required to find the MLEs of

the parameters. Starting from an initial guess α[0] = 4, β[0] = .35, here is
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the first Newton iteration:
[

α[0]

β[0]

]

=

[

4
.35

]

⇒ ∇l =
[

88.4372
1850.02

]

,

∇2l =

[

−101.375 −3409.25
−3409.25 −154567

]

⇒ (∇2l)−1∇l =
[

−1.820
0.028

]

⇒
[

α[1]

β[1]

]

=

[

α[0]

β[0]

]

− (∇2l)−1∇l =
[

5.82
0.322

]

.

After eight more steps the likelihood is maximised at α̂ = 23.1, β̂ =
0.202. Figure 5.2 illustrates six Newton steps, starting from the more in-

teresting point α̂0 = 4, β̂0 = 0.35. Perturbation to positive definiteness is

required in the first two steps, but the method converges in six steps.

Newton variations: avoiding f evaluation and the expected Hessian

Occasionally we have access to∇f and∇2f , but f itself is either unavail-

able or difficult to compute in a stable way. Newton’s method only requires

evaluation of f in order to check that the Newton step has led to a reduc-

tion in f . It is usually sufficient to replace the condition f(θ+∆) ≤ f(θ)
with the condition that f must be non-increasing in the direction ∆ at

θ′ + ∆. That is, ∇f(θ′ + ∆)T∆ ≤ 0. In many circumstances, step-

length control based on this condition ensures convergence in cases where

the iteration would otherwise have diverged, but unlike the function-value

based control, pathological cases can easily be dreamt up to defeat it. Such

step-length reduction should only be applied after testing that the step has

not already met the convergence criteria. See Section 5.4.3 for an example.

Another common variation on the method, used in maximum likelihood

estimation, is to replace−∇2l(θ) by−E{∇2l(θ)} (so-called Fisher scor-

ing). Because the replacement is always positive (semi-)definite, perturba-

tion to positive definiteness is not required and by the arguments surround-

ing (5.4) the method converges when used with simple step-length control.

5.1.2 Quasi-Newton

Newton’s method is very effective and in the maximum likelihood setting

has the nice property of being based on exactly the derivatives of the log

likelihood that are required to use the large sample result (2.3). However,

there are cases where the derivative vector ∇f is available, but the Hes-

sian matrix, ∇2f , is tedious or difficult to evaluate. If the dimension of
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θ is large, numerically solving for the Newton direction can also become

prohibitively costly. These considerations raise the question of what can be

done based only on f and∇f .

The obvious approach is to apply the strategy that led to Newton’s method

again, but based on the first-order Taylor expansion of f . However, the re-

sulting steepest descent method is really a nonstarter. The problem is that

the first-order Taylor expansion ceases to be a good model of f at exactly

the point we are most interested in. At the minimum of f , ∇f = 0 and

we lose all justification for having neglected the second-order terms in the

Taylor expansion in favour of the first order terms, since the latter have van-

ished. This theoretical concern is borne out in practice: the steepest descent

method often becomes excruciatingly slow as it approaches a minimum.

A less obvious approach is to build up a local quadratic model of f from

the first derivative information accumulated as the optimisation proceeds.

This leads to quasi-Newton methods, which update an approximation to

the Hessian, ∇2f , based entirely on evaluations of ∇f . In principle, this

approximation can be used instead of the Hessian in Newton’s method, but

it is also possible to work directly on an approximation to the inverse of

the Hessian, thereby reducing the cost of calculating the step, ∆. It is also

possible to ensure that the approximate Hessian is always positive definite.

Quasi-Newton methods were invented in the mid 1950s by W. C. Davi-

don (a physicist). In the mathematical equivalent of not signing the Beat-

les, his paper on the method was rejected (it was eventually published in

1991). There are now many varieties of the quasi-Newton method, but the

most popular is the BFGS variant,5 which is briefly covered here.

Suppose that H[k+1] is the approximate positive definite Hessian at the

(k + 1)th step, so that

f(θ) ≃ f(θ[k+1]) +∇f(θ[k+1])T(θ − θ[k+1])

+
1

2
(θ − θ[k+1])TH[k+1](θ − θ[k+1]).

The basic requirement of a quasi Newton method is that this approximation

should exactly match∇f(θ[k]); that is, it should get the gradient vector at

the previous point, θ[k], exactly right. So

∇f(θ[k+1]) +H[k+1](θ[k] − θ[k+1]) = ∇f(θ[k]),

5 BFGS is named after Broyden, Fletcher, Goldfarb and Shanno all of whom discovered

and published it, independently, around 1970. ‘Big Friendly Giant Steps’ is the way all

Roald Dahl readers remember the name, of course (M. V. Bravington, pers. com.).
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which can be compactly re-written as

H[k+1]sk = yk, (5.6)

where sk = θ
[k+1]−θ[k] andyk = ∇f(θ[k+1])−∇f(θ[k]). Equation (5.6)

will only be feasible for positive definite H[k+1] under certain conditions

on sk and yk, but these can always be met by choosing the step-length to

meet the Wolfe conditions, covered shortly.

Now let us work in terms of the inverse approximate Hessian, B[k] ≡
(

H[k]
)−1

. Equation (5.6) alone does not define a unique B[k+1], and some

extra conditions are needed. A B[k+1] is sought that

1. satisfies (5.6) so that B[k+1]yk = sk;

2. is as close as possible to B[k];

3. is positive definite.

‘Close’ in condition 2 is judged using a particular matrix norm, that is not

covered here. The unique solution to this problem is the BFGS update

B[k+1] = (I− ρksky
T
k )B

[k](I− ρkyks
T
k ) + ρksks

T
k ,

where ρ−1
k = sTk yk. The BFGS method then works exactly like Newton’s

method, but with B[k] in place of the inverse of ∇2f(θ[k]), and without

the need for evaluation of second derivatives or for perturbing the Hessian

to achieve positive definiteness. A finite difference approximation to the

Hessian is often used to start the method (see Section 5.5.2).

The only detail not required by Newton’s method is that step-length se-

lection must now be carried out more carefully. We must ensure that the

step-length is such that ∆ satisfies the sufficient decrease condition

f(θ[k] +∆) ≤ f(θ[k]) + c1∇f(θ[k])T∆,

c1 ∈ (0, 1), and the curvature condition

∇f(θ[k] +∆)T∆ ≥ c2∇f(θ[k])T∆,

c2 ∈ (c1, 1). Collectively these conditions are known as the Wolfe con-

ditions. The first seeks to ensure that the step results in a decrease that is

reasonable relative to the gradient of f in the direction of ∆ and guards

against overly long steps. The second says that there should have been a

sufficient decrease in the gradient of the function along ∆ (otherwise why

not take a longer step, given that the function is still decreasing fast in

this direction). For a full discussion see Nocedal and Wright (2006, §3.1),

where c1 = 10−4 and c2 = 0.9 are suggested as typical.

When performing maximum likelihood estimation, it is tempting to use
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Figure 5.3 BFGS quasi-Newton method applied to the AIDS
example of Section 5.1.1. Each panel shows one step, with the
negative log likelihood as black contours, and the quadratic
implied by the current gradient and approximate inverse Hessian
about • as dashed contours. ◦ gives the updated parameter values
at the end of each step, which are given numerically in each panel
caption. The iteration starts at the top left. The MLE is reached in
about six more steps.

the converged B matrix as an estimate of I
−1

, but caution is required.

Because of the arguments surrounding (5.4), quasi Newton methods work

even when B is a poor approximation to the inverse Hessian of f . B may

be a poor representation of the shape of f in directions that the BFGS

iteration has not explored recently.

Quasi-Newton example

Figure 5.3 illustrates the first 6 steps of BFGS applied to the AIDS in Bel-

gium model of Section 5.1.1. Compared to the Newton method in Figure

5.2, progress is slightly slower, but convergence is still reached in about

12 steps, despite only requiring function values and first derivatives to be

evaluated.

5.1.3 The Nelder-Mead polytope method

What if even gradient evaluation is too taxing, or if our objective is not

smooth enough for Taylor approximations to be valid? What can be done
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with function values alone? The Nelder-Mead polytope6 method provides

an elegant answer.

Let p be the dimension of θ. At each stage of the method we maintain

p + 1 distinct θ vectors, defining a polytope in the parameter space (e.g.

for a two-dimensional θ, the polytope is a triangle). The following steps

are iterated until a minimum is reached/ the polytope collapses to a point.

1. The search direction is defined as the vector from the worst point (the

vertex of the polytope with the highest objective value) through the av-

erage of the remaining p points.

2. The initial step-length is set to twice the distance from the worst point

to the centroid of the others. If it succeeds (meaning that the new point

is no longer the worst point), then a step-length of 1.5 times that is tried,

and the better of the two accepted.

3. If the previous step did not find a successful new point, then step-lengths

of half and one and a half times the distance from the worst point to the

centroid are tried.

4. If the last two steps failed to locate a successful point, then the poly-

tope is reduced in size by linear rescaling towards the current best point

(which remains fixed.)

Variations are possible, in particular with regard to the step-lengths and

shrinkage factors. Figure 5.4 illustrates the polytope method applied to the

negative log likelihood of the AIDS data example of Section 5.1.1. Each

polytope is plotted, with the line style cycling through, black, grey and

dashed black. The worst point in each polytope is highlighted with a circle.

In this case it took 24 steps to reach the MLE. This is a somewhat higher

number of steps than the Newton or BFGS methods, but given that we need

no derivatives in this case, the amount of computation is actually less.

On the basis of this example you might be tempted to suppose that

Nelder-Mead is all you ever need, but this is generally not the case. If you

need to know the optimum very accurately (for example, for the inner opti-

misation in a nested optimisation), then Nelder-Mead will often take a long

time to get an answer that Newton based methods would give very quickly.

Also, the polytope can get ‘stuck’, so that it is usually a good idea to restart

the optimisation from any apparent minimum (with a new polytope having

the apparent optimum as one vertex), to check that further progress is re-

ally not possible. The Nelder-Mead method is good if the answer does not

need to be too accurate and derivatives are hard to come by.

6 also known as the downhill simplex method, but not to be confused with the completely

different simplex method of linear programming.
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Figure 5.4 The Nelder-Mead method applied to the AIDS
example of Section 5.1.1. All 24 steps to convergence are shown,
from a starting point at α = 10, β = 0.35. Polytope (triangle) line
styles cycle through black, grey and dashed black. The worst
vertex of each polytope is highlighted with a symbol.

5.2 A likelihood maximisation example in R

Echinus affinis is a species of deep sea urchin. Gage and Tyler (1985) re-

ported data on the growth of E. affinis collected from the Rockall Trough,

which are shown in Figure 5.5. Gurney and Nisbet (1998) suggested sim-

ple energy-budget based arguments to arrive at a model for volume, V , as

a function of age, a, which is

dV

da
=

{

γV V < φ/γ
φ otherwise,

where γ and φ are parameters. The initial volume is ω, also a model param-

eter. Growth is in two phases: in the first the animal grows as fast as it can,

given the food it can obtain, and in the second it grows less quickly, putting

the surplus food energy into reproduction. The age at onset of reproduction

is therefore

am =
1

γ
log

(

φ

γω

)

,
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Figure 5.5 Data on urchin volume against age. Symbols show
raw data. The black curve is the best fit model from Section 5.2.

and the model can be solved analytically:

V (a) =

{

ω exp(γa) a < am
φ/γ + φ(a− am) otherwise.

Clearly the data do not follow the model exactly, so denoting the ith volume

measurement as vi, one possible model is that
√
vi ∼ N(

√

V (ai), σ
2)

where the observations are independent (a reasonable assumption because

each datum relates to one individual).

5.2.1 Maximum likelihood estimation

Given the model specification, it is straightforward to code up an R function

evaluating the negative log likelihood of θ = log(ω, γ, φ, σ)T , where the

log parameterisation ensures that ω, γ, φ and σ remain positive:

urchin.vol <- function(theta,age) {

## get volumes at ‘age’ given log params in ‘theta’

omega <- exp(theta[1]); gamma <- exp(theta[2])

phi <- exp(theta[3]); V <- age*0

am <- log(phi/(gamma*omega))/gamma

ind <- age < am

V[ind] <- omega*exp(gamma*age[ind])

V[!ind] <- phi/gamma + phi*(age[!ind]-am)

V

}
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ll <- function(theta,age,vol) {

rV <- sqrt(urchin.vol(theta,age)) ## expected sqrt vol.

sigma <- exp(theta[4])

-sum(dnorm(sqrt(vol),rV,sigma,log=TRUE)) ## -ve log lik.

}

Now let us minimise ll (i.e. maximise the log likelihood) with respect

to θ, using the BFGS method available in R function optim (because no

gradient function is supplied, optim will approximate gradients by finite

differencing: see Section 5.5.2). Assume that the data are in a data frame,

uv, with columns vol and age:

> th.ini <- c(0,0,0,0) ## initial parameter values

> fit <- optim(th.ini,ll,hessian=TRUE,method="BFGS",

+ age=uv$age,vol=uv$vol)

> fit

$par

[1] -4.0056322 -0.2128199 0.1715547 -0.7521029

$value

[1] 94.69095

$counts

function gradient

74 25

$convergence

[1] 0

...

The first argument to optim provides initial parameter values from which

to start the optimisation. The next argument is the objective function. The

first argument of the objective function must be the vector of parame-

ters with respect to which optimisation is required. The objective func-

tion may depend on other fixed arguments, which can be provided, named,

via optim’s ‘...’ argument: this is how age and vol get passed to ll.

hessian=TRUE tells optim to return an approximate Hessian matrix at

convergence, and method="BFGS" selects the BFGS optimisation method.

The default method is Nelder-Mead.

The returned object, fit, contains several elements. par contains the

minimising parameter values; here the MLE, θ̂. value contains the value

of the objective function at the minimum (the negative of the maximised

log likelihood in this case). counts indicates how many function and gradi-

ent evaluations have been required (the latter by finite differencing, in this

case). convergence contains a numeric code: 0 for convergence or other

integers indicating some problem (see ?optim). message (not shown) con-

tains any diagnostic message returned from the underlying optimisation

code. hessian (not shown) contains the Hessian matrix.
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Figure 5.6 Checking plots for the urchin model from Section 5.2.
Left: standardised residuals against fitted values. The lack of
pattern in the mean or variance suggests that the assumptions are
reasonable. Right: normal QQ-plot of standardised residuals; it is
close enough to a straight line to accept the normality assumption.

5.2.2 Model checking

Before investigating the estimates further it is important to check that the

model assumptions are plausible. Figure 5.5 overlays the estimated curve

of V (a) against a over the raw data. As a characterisation of the expected

volume the model looks reasonable, but what of the distributional assump-

tions on which further inference is based? For this model is it easy to com-

pute standardised residuals:

ǫ̂i =

{√
vi −

√

V (ai)

}

/σ,

which should be close to i.i.d. N(0, 1) deviates if the model is correct.

Then a plot of residuals against fitted values and a normal QQ-plot are

useful.

theta <- fit$par ## MLE

v <- urchin.vol(theta,uv$age)

rsd <- (uv$vol^.5-v^.5)/exp(theta[4])

plot(v,rsd);qqnorm(rsd);abline(0,1);

The results are shown in Figure 5.6, and suggest no problem with the dis-

tributional assumptions.
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5.2.3 Further inference

Now let us use (4.5) to obtain approximate 95% confidence intervals for

the model parameters on the original scale. Notice that we already have the

Hessian of the negative log likelihood, and at this level of approximation

1.96 ≈ 2.

> V <- solve(fit$hessian) ## approx. cov matrix

> sd <- diag(V)^.5 ## standard errors

> ## now get 95% CIs for all 4 parameters...

> rbind(exp(theta - 2*sd),exp(theta + 2*sd))

[,1] [,2] [,3] [,4]

[1,] 7.049868e-05 0.2138756 1.092046 0.4186246

[2,] 4.705125e+00 3.0548214 1.290534 0.5307708

The intervals for ω and γ are very wide, but computing the estimated cor-

relation matrix of θ̂ using diag(1/sd)%*%V%*%(diag(1/sd)), we find a

correlation of 0.997 between logω and log γ, which explains the width.

As a simple example of model selection, suppose that we want to test the

hypothesis that σ = 0.4. The above interval for σ suggests rejecting this

hypothesis at the 5% level, but a generalised likelihood ratio test could also

be used for this purpose, using (2.4). To implement this we need a modified

version of ll, ll0, say, in which the line sigma <-exp(theta[4]) is

removed and replaced with a function argument sigma = 0.4, so that the

null hypothesis is imposed. It remains to optimise ll0, evaluate the log

likelihood ratio statistic and compute the p-value using (2.4):

> fit0 <- optim(rep(0,3),ll0,method="BFGS",

+ age=uv$age,vol=uv$vol,sigma=0.4)

> llr <- fit0$value - fit$value

> pchisq(2*llr,1,lower.tail=FALSE)

[1] 0.003421646

This suggests rather more evidence against the null than the interval might

have implied. We could also search for the range of σ values acceptable in

a generalised likelihood ratio test. The following code does this.

llf <- function(sigma,ll.max,uv) # zero on accept boundary

-2*(ll.max-optim(rep(0,3),ll0,method="BFGS",age=uv$age,

vol=uv$vol,sigma=sigma)$value)-qchisq(.95,1)

uniroot(llf,c(.2,.47),uv=uv,ll.max=fit$value)$root # lower

uniroot(llf,c(.47,1),uv=uv,ll.max=fit$value)$root # upper

The resulting 95% profile likelihood interval for σ is (0.421, 0.532).

AIC also suggests that the simplified model is not as good as the original:

> 2*fit$value + 2*4; 2*fit0$value + 2*3 ## AIC

[1] 197.3819

[1] 203.9497
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However, in its current form the model is somewhat unbiological. Measure-

ment errors in the urchin volumes are likely to be rather small, and much of

the observed variability is likely to result from variation between individu-

als in their realized growth parameters γ and φ, suggesting a reformulation

with random effects.

5.3 Maximum likelihood estimation with random effects

When random effects are present it is usually straightforward to write down

the joint density, fθ(y,b), of the observed data, y, and unobserved random

effects, b, which depends on parameters θ. However, the likelihood is the

marginal density of the data evaluated at the observed data values,

L(θ) = fθ(y) =

∫

fθ(y,b)db, (5.7)

and the integral is usually analytically intractable. We then have several

options:

1. Use numerical integration (also known as ‘quadrature’). This is usually

impractical unless the integral can be decomposed into a product of

low-dimensional integrals or b is low-dimensional.

2. Estimate the integral by Monte Carlo methods. This can be effective, but

is not always easy to combine with numerical likelihood maximisation,

and accuracy considerations mean that we must typically simulate many

times as many b values as we have data in y.

3. Approximate the integral with one that we can do.

4. Avoid the integral altogether by finding an easier to evaluate function

whose maximum will coincide with the maximum of the likelihood.

The following sections consider options 3 and 4, looking in particular at

Laplace approximation, the EM algorithm, and the combination of the two.

5.3.1 Laplace approximation

Let b̂y be the value of b maximising f(y,b) for a giveny (the dependence

on θ has been dropped from the notation to avoid clutter). Then a second-

order Taylor expansion of log f , about b̂y, gives

log f(y,b) ≃ log f(y, b̂y)−
1

2
(b− b̂y)

TH(b− b̂y),
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where H = −∇2
b log f(y, b̂y). Hence,

f(y,b) ≃ f(y, b̂y) exp

{

−1

2
(b− b̂y)

TH(b− b̂y)

}

.

However, writing nb for the dimension of b,

∫

1

(2π)nb/2|H−1|1/2 exp
{

−1

2
(b− b̂y)

TH(b− b̂y)

}

db = 1,

since the integrand is the p.d.f. of an N(b̂y,H
−1) random vector and

p.d.f.s integrate to 1. It follows that

∫

f(y,b)db ≃ f(y, b̂y)

∫

exp

{

−1

2
(b− b̂y)

TH(b− b̂y)

}

db

= f(y, b̂y)
(2π)nb/2

|H|1/2 , (5.8)

the right-hand side being the first order Laplace approximation to the in-

tegral. Careful accounting of the approximation error shows it to generally

be O(n−1) where n is the sample size (assuming a fixed length for b).

Notice how the problem of evaluating the integral has been reduced to

the problem of finding ∇2 log f(y, b̂y) and b̂y. If we can obtain the for-

mer then the latter is always obtainable by Newton’s method. Of course

optimising the approximate likelihood that results from the Laplace ap-

proximation will also require numerical optimisation, so nested optimisa-

tion loops will usually be needed; but this is usually preferable to a brute

force attack on (5.7).

5.3.2 The EM algorithm

A rather ingenious method avoids the integral in (5.7) altogether, replac-

ing it with an integral that is sometimes more analytically tractable; in any

case it can readily be approximated to greater accuracy than is straightfor-

ward for (5.7) itself. The method starts from a parameter guess, θ′, and the

standard decomposition:

log fθ(y,b) = log fθ(b|y) + log fθ(y).

The idea is then to take the expectation of log fθ(y,b) with respect to

fθ′(b|y) (pay close attention to when θ is primed and when it is not). For

some models this expectation can readily be computed, but otherwise we
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can approximate it to relatively high accuracy. In any case we obtain

Eb|y,θ′ log fθ(y,b) = Eb|y,θ′ log fθ(b|y) + log fθ(y),

which it is convenient to rewrite as

Qθ′(θ) = Pθ′(θ) + l(θ) (5.9)

by definition of Q and P and recognising that the final term is simply the

log likelihood l(θ). Now precisely the same argument that leads to (4.4)

in Section 4.1 implies that Eb|y,θ′ log fθ(b|y) is maximised when θ =
θ′. So Pθ′ is maximised at Pθ′(θ

′). It follow that if Qθ′(θ) > Qθ′(θ
′),

then l(θ) > l(θ′), since we know that Pθ′(θ) < Pθ′(θ
′). That is, any

θ value that increases Qθ′(θ) relative to Qθ′(θ
′) must result from l(θ)

having increased, because Pθ′(θ) will have decreased. So any change we

make to θ that increases Qθ′(θ) must increase l(θ).

Qθ̂(θ) has a maximum at θ̂, because both Pθ̂(θ) and l(θ) have maxima

at θ̂. Further, Qθ′(θ) can only be maximised at θ′, if l(θ′) is a turning

point: otherwise Pθ′(θ) is maximised at θ′ while l(θ) is not.

Taken together these properties of Q imply that if we repeatedly find

θ∗ = argmaxθQθ′(θ), and then set θ′ ← θ∗, the resulting sequence of θ′

values leads to a monotonic increase in the likelihood and eventually con-

verges on a turning point of l(θ): hopefully θ̂. This iteration is known as

the EM algorithm from the two steps of first obtaining the function Qθ′(θ)
by taking an Expectation and then Maximising it with respect to θ.

In its basic form the EM algorithm is somewhat slow to converge when

close to θ̂, but Q also allows us to compute the gradient and Hessian of l
from it, thereby facilitating the application of Newton’s method to l, with-

out actually evaluating l. Differentiating (5.9) with respect to θ and evalu-

ating at θ = θ′ we find that

∂Qθ′(θ)

∂θ

∣

∣

∣

∣

θ=θ′

=
∂Pθ′(θ)

∂θ

∣

∣

∣

∣

θ=θ′

+
∂l(θ)

∂θ

∣

∣

∣

∣

θ=θ′

=
∂l(θ)

∂θ

∣

∣

∣

∣

θ=θ′

(5.10)

since Pθ′(θ) has a maximum at θ = θ′, and hence its derivatives vanish.

Some more work (e.g Davison, 2003, §5.5.2) establishes a result that is

also useful with (2.3):

∂2l(θ)

∂θ∂θT

∣

∣

∣

∣

θ=θ′

=
∂2Qθ′(θ)

∂θ∂θT

∣

∣

∣

∣

θ=θ′

+
∂2Qθ′(θ)

∂θ∂θ′T

∣

∣

∣

∣

θ=θ′

. (5.11)

Equation (5.11) also enables maxima of l(θ) to be distinguished from other

turning points that the EM algorithm might discover, since the Hessian will

be indefinite in the latter cases (having positive and negative eigenvalues).
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Higher order Laplace approximation for the E step

At this point the reader may reasonably object that the EM method require-

ment to evaluate

Eb|y,θ′ log fθ(y,b) =

∫

log fθ(y,b)fθ′(b|y)db (5.12)

involves an integral that in general looks no more tractable than the integral

(5.7) we are trying to avoid. In fact, there are many special cases where the

expectation is much easier than (5.7), which is where the real strength of

the approach lies. However it also turns out that a simple Laplace approxi-

mation (e.g. Steele, 1996) to (5.12) can be much more accurate than (5.8).

The key work is by Tierney et al. (1989), who consider approximation

of conditional expectations of the form

E{g(b)} =
∫

g(b)fθ(y,b)db
∫

fθ(y,b)db
,

via-first order Laplace approximation of both integrals. This fails if g is not

strictly positive, so consider estimating the moment generating function

M(s) = E[exp{sg(b)}] and using E(g) = d logM(s)/ds|s=0.

M(s) =

∫

exp{sg(b)}fθ(y,b)db
∫

fθ(y,b)db

=

∫

exp{sg(b) + log fθ(y,b)}db
∫

exp{log fθ(y,b)}db
=

∫

ehs(b)db
∫

eh(b)db

by definition of hs and h. Let b̂ maximise h and b̂s maximise hs. Fur-

thermore define H = −∇2h(b̂) and Hs = −∇2hs(b̂s). A standard first

order Laplace approximation of both integrals yields

M̂(s) =
|H|1/2fθ(y, b̂s)esg(b̂s)

|Hs|1/2fθ(y, b̂)
. (5.13)

Tierney et al. (1989) show that the error in this approximation is O(n−2)
provided that h/n and hs/n are of constant order (i.e. have magnitudes

that do not depend on n). Ê(g) = d log M̂ (s)/ds|s=0 is now the estimate

of E(g), which Tierney et al. (1989) also show has O(n−2) error. Using

the fact that b̂s = b̂ when s = 0, and the fact that the first derivatives of

fθ w.r.t. bs are therefore zero at s = 0, then evaluating the derivative of
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the log of (5.13) at s = 0 gives

Ê(g) = g(b̂)− 1

2

d

ds
log |Hs|

∣

∣

∣

∣

s=0

. (5.14)

To avoid requiring third derivatives w.r.t. b, Tierney et al. (1989) suggest

using centred finite differencing to approximate the derivative w.r.t. s. In

the context of the EM algorithm, g(b) = log fθ(y,b), and all other quan-

tities are evaluated at θ = θ′. So hs = s log fθ(y,b)+ log fθ′(y,b), and

the approximation then gives us Qθ′(θ) with O(n−2) error.

5.4 R random effects MLE example

Consider again the urchin growth model from Section 5.2. A more biolog-

ically realistic model for the variability in these data might be that

Vi =

{

ω exp(giai) ai < ami
pi/gi + pi(ai − ami) otherwise

where ami = log {pi/(giω)} /gi, log gi ∼ N(µg, σ
2
g) and log pi ∼

N(µp, σ
2
p) (all independent), so that

√
vi ∼ N(

√
Vi, σ

2). So in this model

each urchin has its own growth rates, drawn from log-normal distributions,

and the model parameters are ω, µg, σg , µp, σp and σ. Clearly the joint

density of the data and random effects is easy to evaluate here, but the

integral required to obtain the likelihood is intractable.

5.4.1 Direct Laplace approximation

To use Laplace approximation for the likelihood requires that we find the

maximum of the log joint density of random effects and data w.r.t. the

random effects, along with the corresponding Hessian. This entails writing

a routine to evaluate the joint density, and its gradient and Hessian w.r.t.

the random effects. An easy way to do this is to write out the joint density

as an R expression and then have the deriv function do the heavy lifting

(see Section 5.5.3). The only snag in the current case is that the urchins for

which ai < ami have to be dealt with separately from the others.

Here is R code for producing a function v0 with the arguments listed

in function.arg, which will return predicted volumes for not yet ma-

ture urchins, given values for the parameters and random effects, as well

as gradient and Hessian w.r.t. the random effects. Notice the use of log

parameterisations here.
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v0e <- expression(-log(2*pi*sigma^2)/2 -

(sqrt(y) - sqrt(exp(w)*exp(exp(g)*a)))^2/(2*sigma^2)

- log(2*pi) - log(sig.g*sig.p) -

(g-mu.g)^2/(2*sig.g^2) - (p-mu.p)^2/(2*sig.p^2))

v0 <- deriv(v0e,c("g","p"), hessian=TRUE,function.arg=

c("a","y","g","p","w","mu.g","sig.g","mu.p",

"sig.p","sigma"))

Similarly tedious code produces a function v1 for volumes of mature urchins.

Only the expression for the mean volume changes to produce this. Next we

need a function to evaluate the log joint density and its derivatives, suitable

for optimising. Let b denote the vector containing the random effects: gis
first, then pis. y is volume data and a contains the ages.

lfyb <- function(b,y,a,th) {

## evaluate joint p.d.f. of y and b + grad. and Hessian.

n <- length(y)

g <- b[1:n]; p <- b[1:n+n]

am <- (p-g-th[1])/exp(g)

ind <- a < am

f0 <- v0(a[ind],y[ind],g[ind],p[ind],

th[1],th[2],th[3],th[4],th[5],th[6])

f1 <- v1(a[!ind],y[!ind],g[!ind],p[!ind],

th[1],th[2],th[3],th[4],th[5],th[6])

lf <- sum(f0) + sum(f1)

g <- matrix(0,n,2) ## extract gradient to g...

g[ind,] <- attr(f0,"gradient") ## dlfyb/db

g[!ind,] <- attr(f1,"gradient") ## dlfyb/db

h <- array(0,c(n,2,2)) ## extract Hessian to H...

h[ind,,] <- attr(f0,"hessian")

h[!ind,,] <- attr(f1,"hessian")

H <- matrix(0,2*n,2*n)

for (i in 1:2) for (j in 1:2) {

indi <- 1:n + (i-1)*n; indj <- 1:n + (j-1)*n

diag(H[indi,indj]) <- h[,i,j]

}

list(lf=lf,g=as.numeric(g),H=H)

}

The code for creating the full Hessian matrix H makes it clear that the Hes-

sian is very sparse (mostly zeroes). What follows would be more efficient

if the sparsity was exploited, but this would be a distraction at present.

The next step is to write an approximate log-likelihood function. Its main

element is a loop to maximise the joint density w.r.t. the random effects,

using Newton’s method. Recall that to guarantee convergence we need to

check the Hessian for positive definiteness at each step and perturb it if

necessary. One way to do this is to check whether a Choleski decomposi-

tion of the Hessian is possible and to add a multiple of the identity matrix
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to it if needed. The Choleski factor also provides an efficient way of solv-

ing for the search direction, so the following function returns the Choleski

factor of the Hessian or its positive definite modification:

pdR <- function(H,k.mult=20,tol=.Machine$double.eps^.8) {

k <- 1; tol <- tol * norm(H); n <- ncol(H)

while (inherits(try(R <- chol(H + (k-1)*tol*diag(n)),

silent=TRUE),"try-error")) k <- k * k.mult

R

}

Finally, here is the approximate negative log likelihood:

llu<-function(theta,vol,age,tol=.Machine$double.eps^.8){

## Laplace approximate log likelihood for urchin model.

ii <- c(3,5,6)

theta[ii] <- exp(theta[ii]) ## variance params

n <- length(vol)

if (exists(".inib",envir=environment(llu))) {

b <- get(".inib",envir=environment(llu))

} else b <- c(rep(theta[2],n),rep(theta[4],n)); ## init

lf <- lfyb(b,vol,age,theta)

for (i in 1:200) { ## Newton loop...

R <- pdR(-lf$H) ## R’R = (perturbed) Hessian

step <- backsolve(R,forwardsolve(t(R),lf$g)) ## Newton

conv <- ok <- FALSE

while (!ok) { ## step halving

lf1 <- lfyb(b+step,vol,age,theta);

if (sum(abs(lf1$g)>abs(lf1$lf)*tol)==0) conv <- TRUE

kk <- 0

if (!conv&&kk<30&&

(!is.finite(lf1$lf) || lf1$lf < lf$lf)) {

step <- step/2;kk <- kk+1

} else ok <- TRUE

}

lf <- lf1;b <- b + step

if (kk==30||conv) break ## if converged or failed

} ## end of Newton loop

assign(".inib",b,envir=environment(llu))

R <- pdR(-lf$H,10)

ll <- lf$lf - sum(log(diag(R))) + log(2*pi)*n

-ll

}

We can save computer time by having llu save the maximising random

effects, b̂, between calls, and use the previously stored b̂ as starting values

next time it is called: this is achieved by the calls to get and assign, which

store and retrieve b̂ from the environment of llu. Notice the assumption

that a log parameterisation is used for the variance parameters.

Fitting can now be accomplished by optim, exactly as for the simpler

likelihood in Section 5.2.
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> th <- c(-4,-.2,log(.1),.2,log(.1),log(.5)) ## initial

> fit <- optim(th,llu,method="BFGS",vol=uv$vol,

+ age=uv$age,hessian=TRUE)

> 2*fit$value + 2*length(fit$par) ## AIC

[1] 196.5785

So all the extra work for a more biologically plausible model has at least

not increased the AIC.

5.4.2 EM optimisation

Now consider fitting the same model using the EM algorithm. Analytic

evaluation of the expectation step does not look feasible, so let us use the

method of Section 5.3.2. Direct Laplace approximation is based on differ-

entiation and maximisation of the log joint density of random effects and

data, log fθ(y,b). Higher order approximation of the E-step requires the

equivalent for s log fθ(y,b) + log fθ′(y,b), with arbitrary values of the

constant s. Here is a function to evaluate this, with its gradient and Hessian.

lfybs <- function(s,b,vol,age,th,thp) {

## evaluate s log f(y,b;th) + log f(y,b;thp)

lf <- lfyb(b,vol,age,thp)

if (s!=0) {

lfs <- lfyb(b,vol,age,th)

lf$lf <- lf$lf + s * lfs$lf;lf$g <- lf$g + s * lfs$g

lf$H <- lf$H + s * lfs$H

}

lf

}

Next we need a function to maximise this w.r.t. b. The following is re-

ally just a modification of llu, which returns log fθ(y, b̂) if s = 0, and

log |Hs|/2 otherwise, in accordance with the ingredients needed to com-

pute Qθ′(θ) using (5.14):

laplace <- function(s=0,th,thp,vol,age,b=NULL,

tol=.Machine$double.eps^.7) {

ii <- c(3,5,6);thp[ii] <- exp(thp[ii])

th[ii] <- exp(th[ii]) ## variance params

n <- length(vol)

## initialize b ...

if (is.null(b)) b <- c(rep(thp[2],n),rep(thp[4],n));

lf <- lfybs(s,b,vol,age,th,thp)

for (i in 1:200) { ## Newton loop to find b hat

R <- pdR(-lf$H) ## R’R = fixed Hessian, R upper tri.

step <- backsolve(R,forwardsolve(t(R),lf$g)) ## Newton

conv <- ok <- FALSE

while (!ok) {
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lf1 <- lfybs(s,b+step,vol,age,th,thp);

if (sum(abs(lf1$g)>abs(lf1$lf)*tol)==0 ||

sum(b+step!=b)==0) conv <- TRUE

kk <- 0

if (!conv&&kk<30&&(!is.finite(lf1$lf) ||

lf1$lf < lf$lf)) {

step <- step/2;kk <- kk+1

} else ok <- TRUE

}

dlf <- abs(lf$lf-lf1$lf);lf <- lf1;b <- b + step;

if (dlf<tol*abs(lf$lf)||conv||kk==30) break

} ## end Newton loop

if (s==0) {

return(list(g=lfyb(b,vol,age,th)$lf,b=b))

}

R <- pdR(-lf$H,10)

list(b=b,rldetH = sum(log(diag(R))))

}

The rest is straightforward. Here is a function to evaluate th.e Q function

(again storing b̂ to use as starting values at the next call). The derivative

required by (5.14) is obtained by finite differencing (see Section 5.5.2).

Q <- function(th,thp,vol,age,eps=1e-5) {

## 1. find b.hat maximising log joint density at thp

if (exists(".inib",envir=environment(Q))) {

b <- get(".inib",envir=environment(Q))

} else b <- NULL

la <- laplace(s=0,th,thp,vol,age,b=b)

assign(".inib",la$b,envir=environment(Q))

## 2. For s = -eps and eps find b maximising s log joint

## at th + log joint at thp along with log|H_s|.

lap <- laplace(s=eps/2,th,thp,vol,age,b=la$b)$rldetH

lam <- laplace(s= -eps/2,th,thp,vol,age,b=la$b)$rldetH

la$g - (lap-lam)/eps

}

The basic EM iteration is now routine:

> thp <- th <- rep(0,6); ## starting values

> for (i in 1:30) { ## EM loop

+ er <- optim(th,Q,control=list(fnscale=-1,maxit=200),

+ vol=uv$vol,age=uv$age,thp=thp)

+ th <- thp <- er$par

+ cat(th,"\n")

+ }

-1.30807 -0.104484 0.015933 -0.351366 -0.422658 -0.22497

-1.13297 -0.220579 0.049261 -0.240472 -0.724219 -0.42390

[7 iterations omitted]

-2.91226 -0.162600 -1.079699 -0.049739 -1.247416 -1.27902

[19 iterations omitted]

-3.39816 -0.322957 -1.550822 0.150278 -1.512047 -1.37022
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Figure 5.7 Checking plots for the full urchin model from Section
5.4. Top left: the predicted urchin volumes given the predicted
random effects are shown in black, with the raw data in grey. Top
right: Normal QQ-plot for the residual errors. Bottom left:
Normal QQ-plot for predicted random effects ĝ. Bottom right:
Normal QQ-plot for predicted random effects p̂. Both random
effects appear somewhat heavy tailed.

The Nelder-Mead method has been used to optimise Q, with a step limit

of 200 to avoid excessive refinement of an optimum that will anyway be

discarded at the next step. For the first few steps, far from the optimum, the

algorithm makes good progress, but thereafter progress is slow, which is

the main practical problem with the basic EM iteration. After the first few

steps it is better to switch to Newton based optimisation by making use of

(5.10) and (5.11).

5.4.3 EM-based Newton optimisation

Here is a simple routine to find derivatives of the log likelihood according

to (5.10) by finite differencing Q (see Section 5.5.2):

ll.grad <- function(theta,vol,age,eps=1e-4) {

q0 <- Q(theta,theta,vol,age)

n <- length(theta); g <- rep(0,n)

for (i in 1:n) {
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th <- theta; th[i] <- th[i] + eps

g[i] <- (Q(th,theta,vol,age)-q0)/eps

}

g

}

Given ll.grad we do not really need (5.11), but can simply use finite dif-

ferences of ll.grad to get the approximate Hessian of the log likelihood:

ll.hess <- function(theta,vol,age,eps=1e-4) {

g0 <- ll.grad(theta,vol,age,eps)

n <- length(theta); H <- matrix(0,n,n)

for (i in 1:n) {

th <- theta; th[i] <- th[i] + eps

H[i,] <- (ll.grad(th,vol,age,eps)-g0)/eps

}

B <- solve(H)

list(H=(H + t(H))/2,B=(B + t(B))/2)

}

Notice that the inverse Hessian is also computed, and both Hessian and in-

verse are made symmetric before returning. A Newton loop is then straight-

forward to implement: its only nonstandard feature is that step-length con-

trol must now be based on ensuring that, at the step end, the derivative in

the direction of the step is not negative (see the end of Section 5.1.1).

for (i in 1:30) {

g <- ll.grad(th,uv$vol,uv$age)

B <- ll.hess(th,uv$vol,uv$age)$B

eb <- eigen(B)

if (max(eb$values)>0) { ## force neg def.

d <- -abs(eb$values)

B <- eb$vectors%*%(d*t(eb$vectors))

}

step <- -B%*%g; step <- step/max(abs(step))

while(sum(step*ll.grad(th+step,uv$vol,uv$age))<0) {

step <- step/2 }

th <- th + step

cat(th,mean(abs(g)),"\n")

if (max(abs(g))<1e-4) break

}

Starting from the basic EM parameter estimates after 10 iterations, this

loop converges in 12 further iterations. By contrast, after 30 steps of the

basic EM iteration, some components of the log-likelihood gradient vector

still had magnitude greater than 1. The step-length limitation, so that the

maximum step component is of size 1, ensures that no ludicrously large

steps can cause numerical problems in evaluating Q. Parameter estimates

(log scale) and standard errors are as follows:
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> th;diag(-ll.hess(th,uv$vol,uv$age)$B)^.5

[1] -3.39180 -0.36804 -1.69383 0.18609 -1.50680 -1.35400

[1] 0.712693 0.188591 0.168546 0.039671 0.188626 0.257298

For practical purposes these results are indistinguishable from the first-

order Laplace approximation results. So in this case the extra effort of us-

ing higher order approximations to the log-likelihood is of little benefit,

other than to confirm the results of the first order Laplace approximation.

Actually, given that the difference between the MLE and the true parame-

ters is typically O(n−1/2) for the exact likelihood, it is not really surprising

that we often see no substantial improvement in using an O(n−2) approx-

imation in place of an O(n−1) approximation when computing the MLE.

Some model checking plots are shown in Figure 5.7. The random ef-

fects appear somewhat heavy tailed relative to normal: perhaps they should

be modelled as t distributed. Otherwise the model appears fairly convinc-

ing, with much of the variability explained by urchin-to-urchin growth rate

variability. The main practical objection is that the residual error is still a

little high to be explicable as measurement error. The way to make further

progress on this might be to seriously estimate the measurement error by

separate calibration measurements and to include this measured measure-

ment error in the model specification.

5.5 Computer differentiation

The preceding sections rely on a great deal of differentiation. If carried out

by hand this can rapidly become tedious, and anyone whose sense of self

worth is not reliant on carefully performing enormously lengthy routine

calculations will quickly find themselves looking for automated alterna-

tives. There are three possibilities:

1. Use a computer algebra system, such as Mathematica, Maple or Max-

ima7 to help with the differentiation. This works well for relatively sim-

ple models, although the results often require a certain amount of ‘hand

simplification’ before use.

2. Approximate the derivatives using finite differences. This is always pos-

sible, but is less accurate than the other methods.

3. Use automatic differentiation (AD), which computes numerically exact

derivatives directly from the computer code implementing the function

to be differentiated, by automatic application of the chain rule. Relative

to approach 1, this is feasible for much more complicated situations.

7 Maxima is free software.



116 Numerical maximum likelihood estimation

5.5.1 Computer algebra

A general discussion of computer symbolic algebra is beyond the scope

of this chapter. However, it is worth illustrating the basic symbolic differ-

entiation available in R function D, which will symbolically differentiate

R expressions with respect to single variables. As an example, consider

differentiating g(a, x) = {sin(ax)x2}−1 w.r.t. x:

> dx <- D(expression(1/(sin(a*x)*x^2)),"x"); dx

-((cos(a * x) * a * x^2 + sin(a * x) * (2 * x))/

(sin(a * x) * x^2)^2)

The expression defined by the first argument is differentiated by the vari-

able identified in the second argument (a character string). A ‘call’ is

returned, which can in turn be differentiated by D. For example, let us eval-

uate ∂2g/∂a∂x:

> D(dx,"a")

-(((cos(a * x) - sin(a * x) * x * a) * x^2 + cos(a * x)

* x * (2 * x))/(sin(a * x) * x^2)^2 - (cos(a * x) * a

* x^2 + sin(a * x) * (2 * x)) * (2 * (cos(a * x) * x

* x^2 * (sin(a * x) * x^2)))/((sin(a * x) * x^2)^2)^2)

This result would clearly benefit from some simplification.

5.5.2 Finite differences

Consider differentiating a sufficiently smooth function f(x) with respect

to the elements of its vector argument x. f might be something simple like

sin(x) or something complicated like the mean global temperature pre-

dicted by an atmospheric global circulation model, given an atmospheric

composition, forcing conditions and so on. A natural way to approximate

the derivatives is to use the finite difference (FD) approximation:

∂f

∂xi
≃ f(x+∆ei)− f(x)

∆
, (5.15)

where ∆ is a small constant and ei is a vector of the same dimension as

x, with zeroes for each element except the ith, which is 1. How big should

∆ be? As small as possible, right? Wrong. The difficulty is that computers

only store real numbers to finite precision (usually equivalent to about 16

places of decimals for a 64-bit double precision floating point number).

This means that if ∆ is too small, there is a danger that the computed

values of f(x + ∆ei) and f(x), will be identical and (5.15) will be in

error by 100%. Even in less extreme situations, almost all precision can be

lost. The following code snippet illustrates the issue:
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> a <- 1e16; b <- a + pi

> b-a; pi

[1] 4

[1] 3.141593

Clearly the exact value of b−a should be π, not 4, but π is a tiny proportion

of 1016. Hence when storing 1016 + π with about 16 places of decimals,

we lose all the information from 3.141593 after the decimal point.8. Such

loss of precision is known as cancellation error

It is possible to obtain a bound on the cancellation error involved in

(5.15). Suppose that we can calculate f to one part in ǫ−1 (the best we

can hope for here is that ǫ is the machine precision). Now let Lf be an

upper bound on the magnitude of f , and denote the computed value of f
by comp(f). We have |comp{f(x+∆ei)} − f(x+∆ei)| ≤ ǫLf and

|comp{f(x)} − f(x)| ≤ ǫLf which combine to imply that

∣

∣

∣

∣

comp{f(x+∆ei)− f(x)}
∆

− f(x+∆ei)− f(x)

∆

∣

∣

∣

∣

≤ 2ǫLf
∆

.

So the right hand side is an upper bound on the cancellation error resulting

from differencing two very similar quantities in finite precision arithmetic.

The cancellation error bound implies that we would like ∆ to be as large

as possible, but that would cause (5.15) to deteriorate as an approximation.

To investigate this we need a bound on the error in (5.15) that occurs even if

all the components on its right hand side are computed exactly. In a slightly

sloppy notation, Taylor’s theorem tells us that

f(x+∆ei) = f(x) +∇f(x)Tei∆+
1

2
∆2eT

i ∇2fei.

Rearranging while noting that∇f(x)Tei = ∂f/∂xi we have

f(x+∆ei)− f(x)

∆
− ∂f

∂xi
=

1

2
∆eT

i ∇2fei.

Now suppose that L is an upper bound on the magnitude of eT
i ∇2fei =

∂2f/∂x2
i . It follows that

∣

∣

∣

∣

f(x+∆ei)− f(x)

∆
− ∂f

∂xi

∣

∣

∣

∣

≤ L∆

2
.

8 b-a is 4 rather than 3 as a result of representing numbers using binary, rather than

decimal.
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That is to say, we have an upper bound on the finite difference truncation9

error.

So we want ∆ to be as small as possible to minimise truncation error,

and as large as possible to minimise cancellation error. Given that the total

error is bounded as follows,

err.fd ≤ L∆

2
+

2ǫLf
∆

,

it makes sense to choose ∆ to minimise the bound. That is, we should

choose

∆ ≈
√

4ǫLf
L

.

If the typical sizes of f and its second derivatives are similar, then

∆ ≈
√
ǫ

will not be too far from optimal. This is why the square root of the machine

precision is often used as the finite difference interval. If Lf 6≈ L or f is

not calculable to a relative accuracy that is a small multiple of the machine

precision, then consult §8.6 of Gill et al. (1981).

Other FD formulae

The finite difference approach just considered is forward differencing. Cen-

tred differences are more accurate, but more costly:

∂f

∂xi
≃ f(x+∆ei)− f(x−∆ei)

2∆
.

In the well-scaled case ∆ ≈ ǫ1/3 is about right.

Higher order derivatives can also be useful. For example,

∂2f

∂xi∂xj
≃ f(x+∆ei +∆ej)− f(x+∆ei)− f(x+∆ej) + f(x)

∆2
,

which in the well-scaled case will be most accurate for ∆ ≈ ǫ1/4. Obvi-

ously if exact first derivatives are available it would be preferable to differ-

ence those.

9 So called because it is the error associated with truncating the Taylor series

approximation to the function.
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5.5.3 Automatic differentiation

Automatic differentiation (AD) operates by differentiating a function based

directly on the computer code that evaluates the function. There are sev-

eral approaches, but the most elegant use the features of object-oriented

programming languages to achieve the desired end. The key feature of an

object-oriented language, from the AD perspective, is that every data struc-

ture, or object, in such a language has a class and the meaning of opera-

tors such as +, -, *, etc. depends on the class of the objects to which they

are applied. Similarly the action of a function depends on the class of its

arguments. See Section 3.6.

Suppose then, that we would like to differentiate

f(x1, x2, x3) = {x1x2 sin(x3) + ex1x2} /x3

w.r.t. its real arguments x1, x2 and x3.10 In R the code

(x1*x2*sin(x3)+ exp(x1*x2))/x3

would evaluate the function, if x1, x2 and x3 were initialised to be floating

point numbers.

Now define a new type of object of class "ad" that has a value (a float-

ing point number) and a "grad" attribute. In the current case this "grad"

attribute will be a 3-vector containing the derivatives of the value w.r.t. x1,

x2 and x3. We can now define versions of the arithmetic operators and

mathematical functions that will return class "ad" results with the correct

value and "grad" attribute, whenever they are used in an expression.

Here is an R function to create and initialise a simple class "ad" object:

ad <- function(x,diff = c(1,1)) {

## create class "ad" object. diff[1] is length of grad

## diff[2] is element of grad to set to 1.

grad <- rep(0,diff[1])

if (diff[2]>0 && diff[2]<=diff[1]) grad[diff[2]] <- 1

attr(x,"grad") <- grad

class(x) <- "ad"

x

}

Here it is in use, initialising x1 to 1, giving it a three dimensional "grad"

attribute, and setting the first element of grad to 1, since ∂x1/∂x1 = 1:

> x1 <- ad(1,c(3,1))

> x1

[1] 1

attr(,"grad")

10 This example function is taken from Nocedal and Wright (2006).
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[1] 1 0 0

attr(,"class")

[1] "ad"

Now the interesting part. We define versions of mathematical functions

and operators that are specific to class "ad" objects and correctly propagate

derivatives alongside values. Here is a sin function for class "ad":

sin.ad <- function(a) {

grad.a <- attr(a,"grad")

a <- as.numeric(a) ## avoid infinite recursion!

d <- sin(a)

attr(d,"grad") <- cos(a) * grad.a ## chain rule

class(d) <- "ad"

d

}

Here is what happens when it is applied to x1:

> sin(x1)

[1] 0.841471

attr(,"grad")

[1] 0.5403023 0.0000000 0.0000000

attr(,"class")

[1] "ad"

So the value of the result is sin(x1) and the first element of its "grad"

contains the derivative of sin(x1) w.r.t. x1 evaluated at x1 = 1.

Operators can also be overloaded in this way. For example, here is the

multiplication operator for class "ad":

"*.ad" <- function(a,b) { ## ad multiplication

grad.a <- attr(a,"grad")

grad.b <- attr(b,"grad")

a <- as.numeric(a)

b <- as.numeric(b)

d <- a*b ## evaluation

attr(d,"grad") <- a * grad.b + b * grad.a ## chain rule

class(d) <- "ad"

d

}

Continuing in the same way we can provide a complete library of mathe-

matical functions and operators for the "ad" class. Given such a library, we

can obtain the derivatives of a function directly from the code that would

simply evaluate it, given ordinary floating point arguments. For example,

here is some code evaluating the example function:

> x1 <- 1; x2 <- 2; x3 <- pi/2

> (x1*x2*sin(x3)+ exp(x1*x2))/x3

[1] 5.977259
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and here is the same code with the arguments replaced by "ad" objects:

> x1 <- ad(1,c(3,1))

> x2 <- ad(2,c(3,2))

> x3 <- ad(pi/2,c(3,3))

> (x1*x2*sin(x3)+ exp(x1*x2))/x3

[1] 5.977259

attr(,"grad")

[1] 10.681278 5.340639 -3.805241

attr(,"class")

[1] "ad"

You can check that these results are correct (actually to machine accuracy).

This simple propagation of derivatives alongside the evaluation of a

function is known as forward mode auto-differentiation. R is not the best

language in which to try to do this, and if you need AD for complex mod-

els it is often better to use existing software libraries in C++, for example,

which have done all the function and operator rewriting for you.

The deriv function in R

For functions that are not overly complex, R function deriv implements

forward mode AD using a ‘source translation’, rather than an operator over-

loading method. The expression to be differentiated is supplied as an R ex-

pression or one-sided formula, along with a character vector specifying the

variables with respect to which to differentiate. Repeating the preceding

example we have:

> f <- expression((x1*x2*sin(x3)+ exp(x1*x2))/x3)

> g <- deriv(f,c("x1","x2","x3"),

+ function.arg=c("x1","x2","x3"))

> g(1,2,pi/2)

[1] 5.977259

attr(,"gradient")

x1 x2 x3

[1,] 10.68128 5.340639 -3.805241

The argument function.arg tells deriv that we want a function (rather

than an expression) to be returned and what its arguments should be. There

is a further argument hessian, which if TRUE causes second derivatives to

be computed along with the gradients.

A caveat

For AD to work, it is not sufficient that the function being evaluated has

properly defined derivatives at the evaluated function value. It requires that

every function/operator used in the evaluation has properly defined deriva-

tives at its evaluated argument(s). This can create a problem with code
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that executes conditionally on the value of some variable. For example, the

Box-Cox transformation of a positive datum y is

B(y;λ) =

{

(yλ − 1)/λ λ 6= 0
log(y) λ = 0

.

If you code this up in the obvious way, then AD will never get the derivative

of B w.r.t. λ right if λ = 0.

Reverse-mode AD

If you require many derivatives of a scalar valued function, then forward-

mode AD will have a theoretical computational cost similar to finite differ-

encing, because at least as many operations are required for each derivative

as are required for function evaluation. In reality the overheads associated

with operator overloading make AD more expensive and alternative strate-

gies also carry overheads. Of course, the benefit of AD is higher accuracy,

and in many applications the cost is not critical.

An alternative with the potential for big computational savings is reverse-

mode AD. Again concentrate on the Nocedal and Wright (2006) example:

f(x1, x2, x3) = {x1x2 sin(x3) + ex1x2} /x3.

Any computer evaluating f must break the computation down into a se-

quence of elementary operations on one or two floating point numbers.

This can be thought of as a computational graph:

f=(x1x2sin x3+ e
x1 x2)/x3

x1

x2

x3

sin

x4

exp

x5

x6

x7 x8 f

*

* +

/
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where the nodes x4 to x8 are the intermediate quantities that will have to

be produced en route from the input values x1 to x3 to the final answer, f .

The arrows run from parent nodes to child nodes. No child can be evaluated

until all its parents have been evaluated. Simple left-to-right evaluation of

this graph results in this:

f=(x1x2sin x3+ e
x1 x2)/x3x1 = 1

x2 = 2

x3 = 1.57

sin

x4 = 2

exp

x5 = 1

x6 = 7.39

x7 = 2 x8 = 9.39 f = 5.98

*

* +

/

Now, forward-mode AD carries derivatives forward through the graph,

alongside values. For example, the derivative of a node with respect to input

variable x1 is computed using

∂xk
∂x1

=
∑

j parent of k

∂xk
∂xj

∂xj
∂x1

,

the right hand side being evaluated by overloaded functions and operators,

in the object oriented approach. The following illustrates this process, just

for the derivative w.r.t. x1:
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f=(x1x2sin x3+ e
x1 x2)/x3

x1 = 1

dx1

dx1

= 1
dx

4 dx
1 = 2

x2 = 2

dx2

dx1

= 0

dx4
dx2

= 1

x3 = 1.57

dx3

dx1

= 0 sin

dx5 dx3 = 0

df dx3 = 3.81

x4 = 2

dx4

dx1

= 2 exp

dx6 dx4 = 7.39

dx
7
dx

4 =
1

x5 = 1

dx5

dx1

= 0

dx7 dx5 = 2

x6 = 7.39

dx6

dx1

= 14.8

dx
8
dx

6 =
1

x7 = 2

dx7

dx1

= 2

dx8 dx7 = 1
x8 = 9.39

dx8

dx1

= 16.8

df dx8 = 0.64 f = 5.98

df

dx1

= 10.7

*

* +

/

Again computation runs left to right, with evaluation of a node only possi-

ble once all parent values are known.

If we require derivatives w.r.t. several input variables, then each node

will have to evaluate derivatives w.r.t. each of these variables, and this be-

comes expensive (in the previous graph, each node would contain multiple

evaluated derivatives). Reverse mode therefore does something ingenious.

It first executes a forward sweep through the graph, evaluating the function

and all the derivatives of nodes w.r.t. their parents, as follows:

f=(x1x2sin x3+ e
x1 x2)/x3x1 = 1 dx

4 dx
1 = 2

x2 = 2

dx4
dx2

= 1

x3 = 1.57

sin

dx5 dx3 = 0

df dx3 = 3.81

x4 = 2

exp

dx6 dx4 = 7.39

dx
7
dx

4 =
1

x5 = 1
dx7 dx5 = 2

x6 = 7.39

dx
8
dx

6 =
1

x7 = 2
dx8 dx7 = 1

x8 = 9.39
df dx8 = 0.64

f = 5.98

*

* +

/

The reverse sweep then works backwards from the terminal node, for
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which ∂f/∂f = 1, evaluating the derivative of f w.r.t. each node using

∂f

∂xk
=

∑

j is child of k

∂xj
∂xk

∂f

∂xj
.

f=(x1x2sin x3+ e
x1 x2)/x3

x1 = 1

df

dx1

= 10.7
dx

4 dx
1 = 2

x2 = 2

df

dx2

= 5.34

dx4
dx2

= 1

x3 = 1.57

df

dx3

= − 3.8 sin

dx5 dx3 = 0

df dx3 = 3.81

x4 = 2

df

dx4

= 5.34 exp

dx6 dx4 = 7.39

dx
7
dx

4 =
1

x5 = 1

df

dx5

= 1.27

dx7 dx5 = 2

x6 = 7.39

df

dx6

= 0.64

dx
8
dx

6 =
1

x7 = 2

df

dx7

= 0.64

dx8 dx7 = 1
x8 = 9.39

df

dx8

= 0.64

df dx8 = 0.64 f = 5.98

df

df
= 1

*

* +

/

The derivatives in grey are those calculated on the reverse sweep. The point

here is that there is only one derivative to be evaluated at each node, but

in the end we know the derivative of f w.r.t. every input variable. Reverse-

mode AD can therefore save a large number of operations relative to fi-

nite differencing or forward-mode AD. Once again, general-purpose AD

libraries automate the process for you, so that all you need to be able to

write is the evaluation code.

Unfortunately, reverse-mode efficiency comes at a heavy price. In for-

ward mode we could discard the values and derivatives associated with a

node as soon as all its children were evaluated. In reverse mode the values

of all nodes and the evaluated derivatives associated with every connec-

tion have to be stored during the forward sweep in order to be used in the

reverse sweep. This is a heavy storage requirement. For example, if f in-

volved the inversion of a 1000× 1000 matrix then we would have to store

some 2× 109 intermediate node values plus a similar number of evaluated

derivatives. That amounts to some 32 Gigabytes of storage before we even

consider the requirements for storing the structure of the graph. Much re-

search is concerned with hybrid AD strategies to simultaneously reduce the

operation and memory costs. See Griewank and Walther (2008) for more.

Using AD to improve FD

When fitting complicated or computer intensive models AD may be too ex-

pensive to use for routine derivative calculation during optimisation. How-
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ever, it can still provide a useful means for calibrating FD intervals. A ‘typ-

ical’ model run can be autodifferentiated and the finite difference intervals

adjusted to achieve the closest match to the AD derivatives. As optimisa-

tion progresses, one or two further calibrations of the FD intervals can be

carried out as necessary.

5.6 Looking at the objective function

Given the apparent generality of the preceding theory and methods, it is

easy to assume that if you can evaluate the log likelihood (or other objective

function), then it will be possible to optimise it and draw useful statistical

conclusions from the results. This assumption is not always true, and it is

prudent to produce plots to check that the objective is the well behaved

function imagined.

A simple example emphasises the importance of these checks. Consider

fitting an apparently innocuous dynamic model to a single time series by

least squares/maximum likelihood. The model is

nt+1 = rnt(1− nt/K), t = 0, 1, 2, . . . ,

where r and K are parameters and we will assume that n0 is known.

Further suppose that we have observations yt = nt + ǫt where ǫt ∼
i.i.d.

N(0, σ2) and σ is known. Estimation of r and K by least squares (or max-

imum likelihood, in this case) requires minimisation of

f(r,K) =
∑

i

{yi − ni(r,K)}2

w.r.t. r and K . We should try to get a feel for the behaviour of f . To see

how this can work, consider two simulated data examples. In each case

I used n0 = 20, K = 50 and σ = 1 for the simulations, but varied r
between the cases.

• In the first instance data were simulated with r = 2. If we now pretend

that we need to estimate r and K from such data, then we might look

at some r-transects and some K-transects through f . This figure shows

the raw data and an r-transect.
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r-transects with otherK values look equally innocuous, andK-transects

also look benign over this r range. So in this case f appears to be a nice

smooth function of r and K , and any half-decent optimisation method

ought to be able to find the optimum.

• In the second case data were simulated with r = 3.8.
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Now the objective has a minimum somewhere around 3.7, but it is sur-

rounded by other local minima in a highly irregular region, so that lo-

cating the actual minima would be a rather taxing problem. In addition

it is now unclear how we would go about quantifying uncertainty about

the ‘optimal’ θ: it will certainly be of no use appealing to asymptotic

likelihood arguments in this case.

In both of these examples, simple transects through the objective func-

tion provided useful information. In the first case everything seemed OK.

In the second case we would need to think very carefully about the pur-

pose of the optimisation, and about whether a reformulation of the basic

problem might be needed. Notice how the behaviour of the objective was

highly parameter dependent, something that emphasises the need to under-

stand models quite well before trying to fit them. In this case the dynamic

model, although very simple, can show a wide range of complicated be-

haviour, including chaos.
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5.6.1 Objective function transects are a partial view

Plotting transects through the objective function is a good idea, but they

can only give a limited and partial view when θ is multidimensional. For

example, the left hand plot, below, shows an x-transect through a function,

f(x, y), plotted on the right.
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From the left-hand plot it appears that the function has many local minima

and optimisation will be difficult. But in fact it has one local minimum, its

global minimum. Head downhill from any point x, y and you will eventu-

ally reach the minimum, as the right-hand plot shows.

The opposite problem can also occur. Here are x and y transects through

a second function g(x, y):
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From these plots you would be tempted to conclude that g is well behaved

and unimodal. The problem is that g actually looks like this:

x

y
g
(x,y)
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So, generally speaking, it is a good idea to plot transects through the ob-

jective function before optimisation, and to plot transects passing through

the apparent optimum after optimisation. However, bear in mind that tran-

sects only give partial views.

5.7 Dealing with multimodality

There is no universal prescription for dealing with multimodality, but the

following approaches may help:

• A common recommendation is to repeat optimisation a number of times

from radically different starting values, perhaps randomly generated.

This can help to indicate multimodality and to find the dominant mode.

• For relatively small-scale local optima, a bootstrapping approach can be

helpful. Suppose we have a log likelihood, l(θ), based on data vector y.

Start with a parameter guess, θ0, and iterate the following steps:

1. Starting at θ0, seek θ̂ = argmaxθ l(θ), by numerical optimisation.

2. Resample your data with replacement to produce a resampled data

vector y∗ and corresponding log-likelihood function l∗(θ).

3. Starting at θ̂, seek θ0 = argmaxθ l
∗(θ), by numerical optimisation.

Any auxiliary data are resampled alongside y (so that auxilliary data

stay with the datum to which they belong). The idea is that by randomly

perturbing the objective, it may be possible to escape local optima. For

greater perturbation, smaller re-samples can be used.

• It the objective appears pathologically multimodal, it is probably time to

reformulate the question being addressed.

Exercises

5.1 Rosenbrock’s function f(x, z) = a(z − x2)2 + (b − x)2 is a classic test

function for optimisation methods. Usually a = 100 and b = 1.

a. Write a function Rosenbrockwith vector arguments x and z and scalar

arguments a and b, with default values of 10 and 1, respectively. Using

contour and outer, produce a contour plot of f for −1.5 ≤ x ≤ 1.5

and −0.5 ≤ z ≤ 1.5.

b. Write a modified version of Rosenbrock, suitable for optimisation us-

ing optim. Optimise Rosenbrock using optim with starting values

x = −1, z = 1, and compare results using Nelder-Mead and BFGS.

c. Repeat the optimisation using nlm and nlminb.
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5.2 Write your own code to optimise Rosenbrock’s function by Newton’s method.

Optionally use R’s symbolic or automatic differentiation functions to obtain

the required gradient and Hessian.

5.3 Write your own code to optimise Rosenbrock’s function by BFGS.

5.4 Write functions suitable for use with optim to evaluate the negative log

likelihood and its gradient for the cell count example in Section 5.1.1. Hence,

find the MLE of δ using optim. Compute and compare 95% confidence

intervals for δ based on the Hessian of the log likelihood and generalised

likelihood ratio test inversion.

5.5 Write a function suitable for use with optim to evaluate the negative log

likelihood of the AIDS cases model of Section 5.1.1 (use dpois with the

log=TRUE option). Write a second function evaluating the negative log like-

lihood of an extended version of the model in which the dependence of the

log case rate on time is quadratic, rather than linear. Use a generalised likeli-

hood ratio test (GLRT) to compare the models, and also compute their AIC

values. What aspect of the GLRT might be suspect here?

5.6 R package MASS contains a dataframe geyser where geyser$waiting

gives the waiting times between eruptions of the Old Faithful geyser in Yel-

lowstone National Park. A possible model is that that the waiting times, ti,

are independently drawn from a mixture of two normal distributions, with

p.d.f.

f(ti) =
φ√
2πσ1

e
− 1

2σ2
1
(ti−µ1)

2

+
1− φ√
2πσ2

e
− 1

2σ2
2
(ti−µ2)

2

,

where parameter φ is bounded between 0 and 1. Find MLEs for the param-

eters and test whether p = 0.5. Are there any theoretical caveats on this

analysis? Produce appropriate model checking plots (not ‘residual’ plots!).

5.7 R package faraway contains data from an experiment on balance in human

subjects. There were 40 subjects, and the experiment was repeated a number

of times on each, standing on two different surfaces under three different

degrees of restriction of vision. Sex, age, height and weight of the subjects

were recorded. The following code loads the data, creates a variable indicat-

ing whether subjects were judged fully stable (1) or not (0), and converts

the subject identifiers to a factor variable:

library(faraway)

ctsib$stable <- ifelse(ctsib$CTSIB==1,1,0)

ctsib$Subject <- factor(ctsib$Subject)

Interest lies is in explaining stability in terms of the other variables. A pos-

sible model for the data involves a vector of subject-specific random effects

b, and is as follows:

stablei|b ∼ Bernoulli(µi) µi = eηi/(1 + eηi ),

where if measurement i if for subject j, of sex k, on surface m, and with
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vision restriction q, then

ηi = α+ γk + δm + φq + β̃Heighti + bj ,

where bj ∼ N(0, σ2
b ) (independent). The subject-specific random effects are

important, because we would expect subject-to-subject variability in their

balancing ability. More generally we can write the model for ηi in vector

matrix form as

η = Xβ + Zb, b ∼ N(0, Iσ2
b ).

X contains a column of Height data and columns of zeroes and ones iden-

tifying measurements to particular groups (Sex, Vision, etc.). Z contains

zeroes and ones in order to pick out the correct bj for each data row. The

following code creates suitable matrices:

X <- model.matrix(~ Sex+Height+Surface+Vision,ctsib)

Z <- model.matrix(~ Subject-1,ctsib)

a. Write an R function to evaluate the joint probability/density of stable

and the subject-specific random effects, along with its gradient and the

leading diagonal of its Hessian w.r.t. b. Only the leading diagonal of the

Hessian is required, as it turns out to be a diagonal matrix.

b. Write an R function to evaluate the negative log likelihood of the model

parameters, integrating out b by Laplace approximation.

c. Fit the model using optim to find the MLE.
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Bayesian computation

Recall that the Bayesian approach to statistics views the model parameters,

θ, as random variables with prior p.d.f., f(θ), and then answers the basic

questions of statistical inference using the posterior p.d.f.

f(θ|y) = f(y|θ)f(θ)
f(y)

,

(see Section 2.5). The principal practical challenges are that

f(y) =

∫

f(y|θ)f(θ)dθ (6.1)

is usually intractable for interesting models and that it is usually equally

intractable integrals of f(θ|y) that are of direct interest. There are then

two main strategies for making progress: either approximate the required

integrals or find a way of simulating from f(θ|y) without requiring such

integrals. The latter strategy is based on the fact that, for many statistical

purposes, the ability to simulate from a density is as good as being able

to evaluate the density, and sometimes better. Hybrid strategies are also

useful. For much more on the topics covered here see Gamerman and Lopes

(2006), Robert and Casella (2009), Gelman et al. (2013) and, at a more

advanced level, Robert (2007).

6.1 Approximating the integrals

One possibility is to evaluate the normalising constant (6.1), and other in-

teresting integrals, using Laplace approximation. For example, integrate

out θ in exactly the same way as b was integrated out in Section 5.3.1.

This relies on the integrand having only one important mode and, in the

context of (6.1), is unlikely to result in an exactly proper posterior f(θ|y).

Another approximation is based on recognising, from (6.1), that f(y) =

132
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Eθ{f(y|θ)}, and to approximate this expectation using the simulation

technique known as importance sampling. The idea is simple. Suppose we

want to estimate α = Ef{φ(X)} where X ∼ f(x). An obvious unbiased

estimator is obtained by simulating n deviates, xi, from f(x) and setting

α̂′ =
∑

i φ(xi)/n. The problem is that φ(xi) may be very close to zero for

many of the xi, so that our estimate is really based only on the few points

for which φ was non-negligible, making the approximation inaccurate and

highly variable. If we have access to a p.d.f. g(z) that has high probability

where φ(z) is high, and low probability otherwise, then we could use the

fact that α = Ef{φ(X)} = Eg{φ(Z)f(Z)/g(Z)} to obtain the alterna-

tive unbiased estimator:

α̃ =
1

n

n
∑

i=1

φ(zi)f(zi)/g(zi) where zi ∼ g(z).

This importance sampling estimator tends to improve on the naive version,

by placing the zi in better locations w.r.t. φ. The f(zi)/g(zi) are known as

importance weights. A problem in Bayesian analysis is that f(zi) is often

an un-normalised density, so it is necessary to normalise the importance

weights, leading to the modified importance sampling estimator,

α̂ =

∑n
i=1 φ(zi)f(zi)/g(zi)
∑n

i=1 f(zi)/g(zi)
where zi ∼ g(z),

which can also be used directly for other integrals of more immediate in-

terest than (6.1).

In the context of (6.1), it can be attractive to use the p.d.f. of

N(θ̂, {−∇2
θ log f(y, θ̂)}−1) (6.2)

as g(θ), where θ̂ is the maximiser of f(y,θ). This is motivated by the

Laplace approximation. Alternatively, to reduce the risk of extreme weights

in the tails of the distribution, tk(θ̂, {−∇2
θ log f(y, θ̂)}−1) can be used for

g, with k set to a small integer (see Section 1.6.1). Similar proposals can

be constructed for other integrals of interest.

Usually the quantities required from the posterior are expectations of

functions of θ according to the posterior distribution. That is, we require

integrals of the form

∫

φ(θ)f(θ|y)dθ =

∫

φ(θ)f(y|θ)f(θ)dθ
∫

f(y|θ)f(θ)dθ ,

and these can be estimated by direct application of (5.14) in Section 5.3.2.
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6.2 Markov chain Monte Carlo

The approximation methods just described are useful when we know that

the posterior distribution has a relatively simple form, preferably with a sin-

gle mode. However, these assumptions are doubtful in many cases where

the Bayesian approach is appealing, and more general methods are then

required. The key is to use the fact that

f(θ|y) ∝ f(θ,y) (= f(y|θ)f(θ)) ,
to devise methods for simulating from f(θ|y), which only require evalu-

ation of f(θ,y) with the observed data values plugged in for y. The re-

sulting Markov chain Monte Carlo (MCMC) methods simulate (correlated)

samples from the distribution of the model unknowns (parameters and any

random effects), given the data. Based on the unknowns at one step, a new

set of unknowns is generated in such a way that the stable distribution of

the resulting Markov chain is the distribution of interest. The development

of MCMC methods relies on being able to generate apparently random

numbers by computer: Appendix C discusses the extent to which this is

possible.

6.2.1 Markov chains

To use MCMC we do not require much theoretical background on Markov

chains, but some basic concepts are needed. A sequence of random vectors,

X1,X2,X3, . . ., constitutes a Markov chain if, for any j,

f(xj |xj−1,xj−2, . . . ,x1) = f(xj |xj−1).

For notational convenience let us rewrite the density of xj given xj−1 as

P (xj |xj−1), the transition kernel of the Markov chain. If there exists a

density fx such that

fx(xj) =

∫

P (xj |xj−1)fx(xj−1)dxj−1

(where fx denotes the same density on both sides), then this is the station-

ary distribution of the chain. Existence of a stationary distribution depends

on P being irreducible, meaning that wherever we start the chain, there is

a positive probability of visiting all possible values of X. If the chain is

also recurrent, meaning that if its length tends to infinity it will revisit any

non-negligible set of values an infinite number of times, then its station-

ary distribution is also its limiting distribution. This means that the chain

can be started from any possible value of X, and its marginal distribution
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will eventually converge on fx. In consequence as the simulation length,

J , tends to infinity,

1

J

J
∑

j=1

φ(Xj)→ Efx{φ(X)}

(also known as ergodicity). This extension of the law of large numbers (see

Section 1.10.2) to this particular sort of correlated sequence is what makes

MCMC methods useful, so the methods discussed in this chapter will be

set up to produce chains with the required properties.

6.2.2 Reversibility

Now we turn to the issue of constructing Markov chains to generate se-

quences θ1,θ2, . . . from f(θ|y). An MCMC scheme will generate sam-

ples from f(θ|y), if it satisfies the detailed balance condition (also termed

reversibility). Let P (θi|θj) be the p.d.f. of θi given θj , according to the

chain. We require

P (θj |θj−1)f(θj−1|y) = P (θj−1|θj)f(θj |y). (6.3)

The left hand side of (6.3) is the joint p.d.f. of θj ,θj−1 from the chain,

if θj−1 is from f(θ|y). Integrating w.r.t. θj−1 gives the corresponding

marginal density of θj ,
∫

P (θj |θj−1)f(θj−1|y)dθj−1 =

∫

P (θj−1|θj)f(θj |y)dθj−1

= f(θj |y).
That is, given θj−1 from f(θ|y), the chain generates θj also from f(θ|y)
as result of (6.3). So provided that we start with a θ1 that is not impossible

according to f(θ|y), then the chain will generate from the target distribu-

tion. How quickly it will converge to the high-probability region of f(θ|y)
is another matter.

6.2.3 Metropolis Hastings

The Metropolis-Hastings method constructs a chain with an appropriateP .

It works as follows:

1. Pick a proposal distribution q(θj |θj−1) (e.g. a normal centred on θj−1).

Then pick a value θ0, set j = 1 and iterate steps 2 and 3:
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2. Generate θ′
j from q(θj |θj−1).

3. Set θj = θ
′
j with probability

α = min

{

1,
f(y|θ′

j)f(θ
′
j)q(θj−1|θ′

j)

f(y|θj−1)f(θj−1)q(θ
′
j |θj−1)

}

, (6.4)

otherwise setting θj = θj−1. Increment j.

Note that the q terms cancel if q depends only on the magnitude of θj −
θj−1 (e.g. if q is a normal centred on θj−1). The same goes for the prior

densities, f(θ), if they are improper uniform. If both of these simplifica-

tions hold then we have α = min
{

1, L(θ′
j)/L(θj−1)

}

, so that we are

accepting or rejecting on the basis of the likelihood ratio.

An important consideration is that θ1 may be very improbable so that

the chain may take many iterations to reach the high-probability region

of f(θ|y). For this reason we usually need to discard a burn-in period

consisting of the first few hundred or thousand θj vectors simulated.

6.2.4 Why Metropolis Hastings works

As we saw in Section 6.2.2, the Metropolis-Hastings (MH) method will

work if it satisfies detailed balance. It does, and proof is easy. To simplify

notation let π(θ) = f(θ|y) ∝ f(y|θ)f(θ), so that the MH acceptance

probability from θ to θ′ is

α(θ′,θ) = min

{

1,
π(θ′)q(θ|θ′)

π(θ)q(θ′|θ)

}

.

We need to show that π(θ)P (θ′|θ) = π(θ′)P (θ|θ′). This is trivial if

θ′ = θ. Otherwise we know that P (θ′|θ) = q(θ′|θ)α(θ′,θ), from which

it follows that

π(θ)P (θ′|θ) = π(θ)q(θ′|θ)min

{

1,
π(θ′)q(θ|θ′)

π(θ)q(θ′|θ)

}

= min {π(θ)q(θ′|θ), π(θ′)q(θ|θ′)} = π(θ′)P (θ|θ′),

where the final equality is by symmetry of the third term above.

6.2.5 A toy example with Metropolis Hastings

To illustrate the basic simplicity of the approach, consider an example for

which simulation is certainly not required. Suppose we have 20 indepen-

dent observations xi, that can each be modelled as N(µ, σ2) random vari-
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ables, and we are interested in inference about µ and σ. In the absence of

real prior knowledge about these parameters, suppose that we decide on

prior independence and improper prior densities, so that f(µ) ∝ k and

f(log σ) ∝ c where k and c are constants (values immaterial). We work

with log σ, because σ is inherently positive.1

This specification sets up the Bayesian model. To simulate from the cor-

responding posterior for the parameters using MH we also need a proposal

distribution. In this case let us choose independent scaled t3 distributions

centred on the current parameter values for both parameters. This means

that we will propose new parameter values by simply adding a multiple of

t3 random deviates to the current parameter values: this is an example of a

random walk proposal. The proposed values are then accepted or rejected

using the MH mechanism.

Here is some R code to implement this example, using simulated x
data from N(1, 2). The parameters are assumed to be in vectors θ =
(µ, log σ)T to be stored columnwise in a matrix theta.

set.seed(1);x <- rnorm(20)*2+1 ## simulated data

n.rep <- 10000; n.accept <- 0

theta <- matrix(0,2,n.rep) ## storage for sim. values

ll0 <- sum(dnorm(x,mean=theta[1,1],

sd=exp(theta[2,1]),log=TRUE))

for (i in 2:n.rep) { ## The MH loop

theta[,i] <- theta[,i-1] + rt(2,df=3)*.5 ## proposal

ll1 <- sum(dnorm(x,mean=theta[1,i],

sd=exp(theta[2,i]),log=TRUE))

if (exp(ll1-ll0)>runif(1)) { ## MH accept/reject

ll0 <- ll1; n.accept <- n.accept + 1 ## accept

} else theta[,i] <- theta[,i-1] ## reject

}

n.accept/n.rep ## proportion of proposals accepted

Working on the log probability scale is a sensible precaution against prob-

abilities underflowing to zero (i.e. being evaluated as zero, merely because

they are smaller than the smallest number the computer can represent).

The acceptance rate of the chain is monitored, to try to ensure that it is

neither too high, nor too low. Too low an acceptance rate is obviously a

problem, because the chain then stays in the same state for long periods,

resulting in very high correlation and the need for very long runs in order

to obtain a sufficiently representative sample. A low acceptance rate may

result from a proposal that tries to make very large steps, which are al-

most always rejected. Less obviously, very high acceptance rates are also a

1 Note that a uniform prior on log σ puts a great deal of weight on σ ≈ 0, which can cause

problems in cases where the data contain little information on σ.
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Figure 6.1 Results of the Metropolis-Hastings method applied to
the toy model in Section 6.2.5. The left panels show the simulated
values for the parameters at each step of the chain, joined by
lines. The chains converge very rapidly and mix well in this case.
The right panels show histograms of the simulated values of the
parameters after discarding the first 1000 steps as burn-in.

problem because they only tend to occur when the proposal is making very

small steps, relative to the scale of variability suggested by the posterior.

This again leads to excessively autocorrelated chains and the need for very

long runs. It turns out that in many circumstances it is near optimal to ac-

cept about a quarter of steps (Roberts et al., 1997). Here we can control the

acceptance rate through the standard deviation of the proposal distribution:

some experimentation was needed to find that setting this to 0.5 gave an

acceptance rate of about 23%.

We need to look at the output. The following code nicely arranges plots

of the chain components against iteration, and histograms of the chain com-

ponents after discarding a burn-in period of 1000 iterations:

layout(matrix(c(1,2,1,2,3,4),2,3))

plot(1:n.rep,theta[1,],type="l",xlab="iteration",

ylab=expression(mu))

plot(1:n.rep,exp(theta[2,]),type="l",xlab="iteration",

ylab=expression(sigma))

hist(theta[1,-(1:1000)],main="",xlab=expression(mu))

hist(exp(theta[2,-(1:1000)]),main="",

xlab=expression(sigma))
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The results are shown in Figure 6.1. The left-hand plots show that the

chains appear to have reached a stable state very quickly (rapid conver-

gence) and then move rapidly around that distribution (good mixing). The

right-hand histograms illustrate the shape of the marginal distributions of

the parameters according to the posterior.

6.2.6 Designing proposal distributions

The catch with Metropolis-Hastings is the proposal distribution. To get the

chain to mix well we have to get it right, and for complex models it is

seldom the case that we can get away with updating all elements of the pa-

rameter vector with independent random steps, all with the same variance,

as in the toy example from the last section. In most practical applications,

several pilot runs of the MH sampler will be needed to ‘tune’ the proposal

distribution, along with some analysis of model structure. In particular:

1. With simple independent random walk proposals, different standard de-

viations are likely to be required for different parameters.

2. As its dimension increases it often becomes increasingly difficult to up-

date all elements of θ simultaneously, unless uselessly tiny steps are

proposed. The difficulty is that a purely random step is increasingly un-

likely to land in a place where the posterior is non-negligible as dimen-

sion increases. In addition it is hard to tune componentwise standard

deviations if all elements are proposed together. A solution is to break

the proposal down into smaller parts and to only update small mutually

exclusive subsets of the parameter vector at each step. The subset to up-

date can be chosen randomly, or we can systematically work through all

subsets in some order.2 This approach only affects the computation of

the proposal; the computation of the acceptance ratio is unchanged. But

notice that we increase the work required to achieve an update of the

whole vector, because the computations required for the accept/reject

decision have to be repeated for each subset of parameters.

3. It may be necessary to use correlated proposals, rather than updating

each element of θ independently. Bearing in mind the impractical fact

that the perfect proposal would be the posterior itself, it is tempting to

base the proposal on (6.2), when this is available (or its tk variant). One

can either use it as a static proposal distribution in an MH iteration or

simply use a scaled version of the covariance matrix as the basis for

2 In some rare cases working through all subsets in order can lead to undesirable cycles,

or irreversibility of moves: random ordering or random subset selection fixes this.
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taking multivariate normal or t distributed steps (with expectation 0).

Of course, in many cases we are simulating because other methods fail,

and there is little choice but to try and learn the appropriate correlation

structure from pilot runs or from the run itself, although this latter op-

tion takes us into the realm of adaptive MCMC and beyond the scope

of this book.

The issue of proposal design is discussed again in Section 6.5, after exam-

ining an example where slow mixing is evident.

6.2.7 Gibbs sampling

When considering the design of proposal distributions, two facts were im-

portant. First, it is often necessary to update parameters in blocks. Second,

the perfect proposal is the posterior itself: substituting it for q in (6.4), we

find that α = 1, so that such proposals would always be accepted. On its

own the second fact is impractical, but applied blockwise it can result in a

very efficient scheme known as Gibbs sampling.3

The basic idea is this. Suppose we have a random draw from the joint

posterior distribution of θ[−1] = (θ2, θ3, . . . θq)
T, and would like a draw

from the joint posterior distribution of the whole of θ. This is easy given

that f(θ|y) = f(θ1|θ[−1],y)f(θ[−1]|y) (see sections 1.4.2 or 1.4.3): sim-

ulate θ1 from f(θ1|θ[−1],y), append the result to θ[−1] and we are done.

There is nothing special about θ1 in this process. The same thing would

have worked for any other θi, or indeed for several θi simultaneously. In

fact, if we have access to the conditional distributions for all elements of

θ then we could simply cycle through the θi updating each in turn and

thereby generating a (correlated) sequence of draws from f(θ|y).
In general then, suppose that the parameter row vector is partitioned into

subvectors θ = (θ[1],θ[2], . . . ,θ[K]). Further define

θ̃
[−k]
j = (θ

[1]
j+1,θ

[2]
j+1, . . . ,θ

[k−1]
j+1 ,θ

[k+1]
j , . . . ,θ

[K]
j ).

Then, given an initial θ1, J steps of the Gibbs sampler proceed as follows

1. For j = 1, . . . , J repeat. . .

2. For k = 1, . . . ,K simulate θ
[k]
j+1 ∼ f(θ[k]|θ̃[−k]

j ,y).

Notice from the definition of θ̃
[−k]
j that we always condition on the most

recently simulated values.

3 In honour of the physical model to which it was first applied.
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At this point, the obvious question is how all those conditional distri-

butions are to be found. It is often natural to specify a model in terms of

a hierarchy of conditional dependencies, but these dependencies all run in

one direction, leaving the problem of working out the conditional depen-

dencies in the other direction. Alternatively, if we attempt to specify the

model directly in terms of all its conditional distributions, we will have the

no less tricky problem of checking that our specification actually corre-

sponds to a properly defined joint distribution.

Actually, the problem of identifying the conditionals is less daunting

than it first seems, and even if we cannot recognise the conditionals as be-

longing to some standard distribution, it is always possible to devise some

way of simulating from them, as the last resort simply using a Metropolis

Hastings step for the component. The main trick for recognising condition-

als is to use the fact that, for any p.d.f., multiplicative factors that do not

involve the argument of the p.d.f. must be part of the normalising constant.

To identify a p.d.f. it therefore suffices to recognise its form, to within a

normalising constant. The following example helps to clarify this.

6.2.8 Toy Gibbs sampling example

Consider again the toy example from Section 6.2.5, but this time with

proper priors on the parameters of the normal model. So we have n = 20
observations of a N(µ, φ) random variable, where 1/φ ∼ G(a, b) (a

gamma random variable, with p.d.f. f(y) = baya−1e−by/Γ(a)) and (in-

dependently) µ ∼ N(c, d). a, b, c and d are constants to be specified. The

joint density is given by the product of the three densities involved:

f(x, µ, φ) ∝ 1

φn/2
e−

∑

i(xi−µ)
2/(2φ)e−(µ−c)2/(2d) 1

φa−1
e−b/φ

where factors not involving x, φ or µ have been omitted because they only

contribute to the normalising constant. As we saw in Section 1.4.2, the con-

ditional densities are proportional to the joint density, at the conditioning

values. So we can read off the conditional for 1/φ, again ignoring factors

that do not contain φ (and hence contribute only to the normalising con-

stant):

f(1/φ|x, µ) ∝ 1

φn/2+a−1
e−

∑

i(xi−µ)
2/(2φ)−b/φ.

If this is to be a p.d.f., then it is recognisable as a G(n/2 + a,
∑

i(xi −
µ)2/2 + b) p.d.f.
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Figure 6.2 Results of Gibbs sampling applied to the toy model in
Section 6.2.8. The left panels show the simulated values for the
parameters at each step of the chain, joined by lines. The right
panels show histograms of the simulated values of the parameters
after discarding the first 1000 steps.

The conditional for µ is more tedious,

f(µ|x, φ) ∝ e−
∑

i(xi−µ)
2/(2φ)−(µ−c)2/(2d)

∝ e−(nµ2−2x̄nµ)/(2φ)−(µ2−2µc)/(2d)

= e−
1

2φd
(dnµ2−2x̄dnµ+φµ2−2µφc) = e−

dn+φ
2φd (µ2−2µ dnx̄+φc

dn+φ )

∝ e−
dn+φ
2φd (µ− dnx̄+φc

dn+φ )
2

,

where terms involving only
∑

i x
2
i and c2 were absorbed into the normal-

ising constant at the second ‘∝’, and the constant required to complete the

square at the final ‘∝’ has been taken from the normalising constant. From

the final line, we see that

µ|x, φ ∼ N

(

dnx̄+ φc

dn+ φ
,

φd

dn+ φ

)

.

Now it is easy to code up a Gibbs sampler:

n <- 20;set.seed(1);x <- rnorm(n)*2+1 ## simulated data

n.rep <- 10000;

thetag <- matrix(0,2,n.rep)

a <- 1; b <- .1; c <- 0; d <- 100 ## prior constants
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Figure 6.3 Results of Metropolis within Gibbs sampling applied
to the toy model of Section 6.2.8. The left panels show the
simulated values for the parameters at each step of the chain,
joined by lines. The right panels show histograms of the
simulated values of the parameters after discarding the first 1000
steps as a burn-in period.

xbar <- mean(x) ## store mean

thetag[,1] <- c(mu <- 0,phi <- 1) ## initial guesses

for (j in 2:n.rep) { ## the Gibbs sampling loop

mu <- rnorm(1,mean=(d*n*xbar+phi*c)/(d*n+phi),

sd=sqrt(phi*d/(d*n+phi)))

phi <- 1/rgamma(1,n/2+a,sum((x-mu)^2)/2+b)

thetag[,j] <- c(mu,phi) ## store results

}

The equivalent of Figure 6.1 is shown in Figure 6.2. Notice the rather lim-

ited effect of the change in prior between the two figures. This is because

even the proper priors used for the Gibbs sampler are very vague, provid-

ing very limited information on the probable parameter values (plot the

Γ(1, .1) density to see this), while the data are informative.

6.2.9 Metropolis within Gibbs example

As mentioned previously, we can substitute MH steps for any conditional

that we cannot obtain, or cannot be bothered to obtain. Recycling the toy

example one more time, let us suppose that the conditional for µ is simply

too much effort:
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a <- 1; b <- .1; c <- 0; d <- 100

mu <- 0; phi <- 1; n.accept <- 0

thetamg[,1] <- c(mu,phi)

for (j in 2:n.rep) {

mup <- mu + rnorm(1)*.8 ## proposal for mu

log.a <- sum(dnorm(x,mup,sqrt(phi),log=TRUE)) +

dnorm(mup,c,sqrt(d),log=TRUE) -

sum(dnorm(x,mu,sqrt(phi),log=TRUE)) -

dnorm(mu,c,sqrt(d),log=TRUE)

if (runif(1) < exp(log.a)) { ## MH accept?

mu <- mup;n.accept <- n.accept + 1

}

## Gibbs update of phi...

phi <- 1/rgamma(1,n/2+a,sum((x-mu)^2)/2+b)

thetamg[,j] <- c(mu,phi) ## store results

}

n.accept/n.rep

The acceptance rate is about 50% (actually about optimal in the single-

parameter case). Figure 6.3 shows the results. The µ chain is not quite as

impressive as in the pure Gibbs case, but beats the pure MH results.

6.2.10 Limitations of Gibbs sampling

Gibbs sampling largely eliminates the difficulty of choosing a good pro-

posal that complicates Metropolis Hastings, but this is not quite the free

lunch that it might appear. The catch is that Gibbs sampling produces

slowly moving chains if parameters have high posterior correlation, be-

cause sampling from the conditionals then produces very small steps. Some-

times updating parameters in blocks or re-parameterising to reduce poste-

rior dependence can then help to improve mixing. The other practical con-

sideration is that if improper priors are used with Gibbs sampling then it

is important to check that the posterior is actually proper: it is not always

possible to detect impropriety from the output of the sampler.

6.2.11 Random effects

A beauty of the Bayesian simulation approach is that there is almost noth-

ing to say about random effects: for simulation purposes they are simply

treated as if they were parameters. The point here is that if we have a sample

from the joint posterior f(θ,b|y) of the parameters and random effects,

then simply discarding the random effects from the sample leaves us with a

sample from the marginal posterior density f(θ|y). The only caveat is that

one would not usually specify values for the parameters of the distribution
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of the random effects directly, but instead would choose to place priors on

those parameters (often of a rather vague nature).

6.2.12 Checking for convergence

The great appeal of MCMC methods is their impressive generality. In prin-

ciple we can work with almost any model, and if we are prepared to simu-

late for enough iterations, then we will generate a sample from its posterior.

The difficulty is in identifying what is enough iterations. Well-designed

samplers for relatively benign posteriors may require only several thousand

or several hundred thousand iterations. In other situations all the computer

power on earth running for the age of the universe might be required to ade-

quately sample from the posterior: for example, when the posterior consists

of several well-separated and compact modes in a high-dimensional space,

where proposing a move that will take us from one mode to another is all

but impossible, let alone doing it often enough to sample from the modes in

the correct proportion. To appreciate the problem, suppose that your pos-

terior is like the final plot in Section 5.6.1, but without the middle peak.

In the MH setting, any proposal with a nonvanishing chance of making the

transition from one mode to another would lead to tiny acceptance rates. In

the Gibbs setting the conditionals would look like the penultimate plot in

Section 5.6.1, and it would be virtually impossible for Gibbs sampling to

make the transition from one peak to another.

So it is important to check for apparent convergence of MCMC chains.

Obvious checks are the sort of plots produced in the left-hand panels of

Figures 6.1 to 6.3, which give us some visual indication of convergence

and how well the chain is mixing. If there is any suspicion that the pos-

terior could be multimodal, then it is sensible to run multiple chains from

radically different starting points to check that they appear to be converg-

ing to the same distribution. If interest is actually in some scalar valued

function of the parameters h(θ), then it makes sense to produce the plots

and other diagnostics directly for this quantity.

One step up in sophistication from the simple trace plots is to examine

how specific quantiles of the sample, up to iteration j, behave when plotted

against j. For example, the following code produces plots that overlay the

0.025, 0.5 and 0.975 quantiles of the sample so far, on top of a simple line

plot of the chain’s progress:
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Figure 6.4 Basic MCMC checking plots, relating to the example
from Section 6.2.5 as discussed in Section 6.2.12. The left panels
show trace plots for the two chain components (grey) overlaid
with the evolution of the chain median (continuous), 0.025 and
0.975 quantiles (dashed). Everything is stabilising nicely here.
The right-hand panels show the equivalent autocorrelation
function plots for the chains, illustrating the substantial degree of
autocorrelation when using this sampler, which is higher for the µ
component than for the σ component.

qtplot <- function(theta,n.plot=100,ylab="") {

## simple MCMC chain diagnostic plot

cuq <- Vectorize(function(n,x) ## cumul. quantile func.

as.numeric(quantile(x[1:n],c(.025,.5,.975))),

vectorize.args="n")

n.rep <- length(theta)

plot(1:n.rep,theta,col="lightgrey",xlab="iter",

ylab=ylab,type="l")

iter <- round(seq(1,n.rep,length=n.plot+1)[-1])

tq <- cuq(iter,theta)

lines(iter,tq[2,])

lines(iter,tq[1,],lty=2);lines(iter,tq[3,],lty=2)

}

A call to qtplot(theta[1,],ylab=expression(mu)) produces the up-

per left plot in Figure 6.4, with a slightly modified call producing the lower
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left plot. In both cases it appears that the median and both the other quan-

tiles stabilise rapidly.

For slightly more formal checking it helps to have some idea of the effec-

tive sample size of the chains. Roughly speaking, what size of independent

sample from f(θ|y) would be equivalent to the correlated sample from our

MCMC scheme? Or, if we were to retain only every kth sample from the

chain, how large would k have to be before we could reasonably treat the

resulting thinned sample as approximately independent? To answer these

questions it is helpful to examine the autocorrelation function (ACF) of the

chain components, as shown in the plots on the right hand side of Figure

6.4, which are produced by, for example, acf(theta[1,]) in R. Appar-

ently retaining every 25th µ value and every 20th σ value from the chain

would give us almost independent samples.

Actually the acf function also returns the estimated correlations at each

lag (silently). For example,

> mu.ac <- acf(theta[1,])[[1]][,,1];mu.ac

[1] 1.0000000 0.8831924 0.7777484 0.6863556 0.6096274

[6] 0.5406225 0.4834136 0.4303171 0.3796966 0.3389512

. . . . . .

The autocorrelation length associated with a chain is defined as twice the

sum of the correlations minus 1. The summation is strictly over all lags

up to infinity, but in practice we can sum over the lags up to the point at

which autocorrelation appears to have vanished (see R package coda for a

better method). The corresponding effective sample size is then defined as

the sequence length divided by the autocorrelation length. For example,

> acl <- 2*sum(mu.ac)-1; acl

[1] 16.39729

> n.rep/acl ## effective sample size

[1] 609.8569

So the effective sample size for the µ component is about 600 (although

usually we would discard the burn-in period before computing this). Re-

peating the exercise for σ gives an autocorrelation length of around 10 and

an effective sample size of about 1000. For the Metropolis within Gibbs

sampler, considered previously, the autocorrelation length is only 6 for µ
and 1.3 for σ. For pure Gibbs the figure for µ drops to close to 1.

Armed with this information, more formal tests are possible. For ex-

ample, given multiple chains, we can subsample to obtain approximately

independent samples between each chain and then apply ANOVA meth-

ods to see if there appear to be variance components associated with the

difference between chains. With a single chain, we might want to divide
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the apparently converged chain into two parts and formally test whether

the two samples appear to come from the same distribution. A two-sample

Kolmogorov-Smirnov test is appropriate here, provided that the two sam-

ples are of independent draws from the two distributions, so again sub-

sampling is needed. Here is an example, for the simple µ chain:

> th0 <- theta[1,1001:5500]

> th1 <- theta[1,5501:10000]

> ind <- seq(1,4500,by=16) ## subsampling index

> ks.test(th0[ind],th1[ind])

Two-sample Kolmogorov-Smirnov test

data: th0[ind] and th1[ind]

D = 0.0745, p-value = 0.4148

alternative hypothesis: two-sided

With a p-value of 0.4 there is no evidence for a difference in distribution

between the two halves of the chain, so this result provides no reason to

doubt convergence. The exact choice of sampling interval is not important:

increasing the sampling interval to 25, as might be implied by simply ex-

amining the ACF, leads to the same conclusion. However, using a much

lower sampling rate is a disaster: failure to subsample at all completely

violates the independence assumption of the test, resulting in a computed

p-value around 10−13, and even a sampling interval of five results in an

erroneously low p-value of 0.016.

This section only scratches the surface of convergence checking. See

Robert and Casella (2009, Ch. 8) for more information, and the coda pack-

age in R for an extensive set of checking functions (Plummer et al., 2006).

6.3 Interval estimation and model comparison

Given reliable posterior simulations from a chain, interval estimates and

quantities for model comparison can be computed. The former is straight-

forward, because intervals can be based directly on the observed quantiles

of the simulated parameters. For example, with the simple toy model of

Section 6.2.9, it is easy to produce 95% credible intervals (CIs) for µ and

σ, as follows (discarding the first 1000 samples as burn-in):

quantile(thetamg[1,-(1:1000)],c(0.025,0.975)) ## CI mu

quantile(thetamg[2,-(1:1000)]^.5,c(0.025,0.975)) # CI sig

which yields 0.52 < µ < 2.22 and 1.39 < σ < 2.67. The next subsection

discusses model comparison.
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6.3.1 Computing the marginal likelihood and DIC

As discussed in Section 2.5.2 Bayesian model comparison presents some

fundamental difficulties, which it is important to be aware of before com-

puting anything. For now, suppose that our models are specified with mean-

ingful priors, so that marginal likelihood can form a meaningful basis for

model comparison. In that case importance sampling, as introduced in Sec-

tion 6.1, provides a reasonable way to compute the marginal likelihood,

f(y) =
∫

f(y|θ)f(θ)dθ, which is the basis for computing the Bayes

factor (introduced in Section 2.5.2) for model comparison. Recall that the

idea of importance sampling is to generate n random vectors θi from some

suitable density ∝ g(θ), and then use the estimate

f̂(y) =

∑

i f(y|θi)f(θi)/g(θi)
∑

i f(θi)/g(θi)
,

where the denominator is simply replaced by n if the density g is properly

normalised. It is tempting to use the results of MCMC sampling directly

here, and set g(θi) = f(y|θi)f(θi), in which case

f̂(y) =
n

∑

i 1/f(y|θi)
,

which is the harmonic mean of the likelihood over the simulations. Un-

fortunately this simple estimate is of poor quality. It need not have finite

variance, and its realised behaviour is often bizarre.4 The problem is that

the harmonic mean is dominated by the smallest values of f(y|θi) in the

sample, and the greater the sample, the smaller the smallest values become.

In consequence this estimate can depend strongly and systematically on

the simulation length n. This problem would not occur if we simply set

g(θi) = f(θi), but in the case of a highly informative likelihood and/or

diffuse priors such a scheme would put most of the simulated θi where the

integrand is negligible, resulting in high estimator variance.

An obvious solution is to base sampling on a mixture of the two ap-

proaches; that is, we simulate a sample from the prior and a sample from

the posterior and treat the combined sample as coming from the mixture

distribution g(θ) = αf(θ|y) + (1 − α)f(θ), where 0 < α < 1 and g is

now properly normalised. The difficulty, of course, is that f(θ|y) involves

the very normalising constant that we are trying to find, but plugging the

4 The poor performance is initially confusing, since from basic importance sampling

theory the proposal distribution appears to be ideal, but the pathology creeps in because

of the need to normalise the importance weights in this case.
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estimate of f̂(y) into the importance sampling estimate yields

f̂(y) =
1

n

n
∑

i=1

f(y|θi)f(θi)
αf(y|θi)f(θi)/f̂(y) + (1− α)f(θi)

, (6.5)

which can be solved, numerically, for f̂(y).5

To use this importance sampling based estimate in practice requires that

some care is taken to avoid underflow or overflow problems. Letting c =
log f̂(y) and ai = log f(y|θi), (6.5) can be rewritten as

log
n
∑

i

{

αe−β + (1− α)ec−ai−β)
}−1 − β − log n = 0,

where β is an arbitrary constant, which can be set to a nonzero value, if

necessary, to avoid overflow problems. Note that in practice the root c of

(6.5) may be unbounded below computationally, if the posterior probability

of the draws from the prior is vanishingly small computationally. This can

occur in high-dimensional settings and when using vague or uninforma-

tive priors, but in the latter case the marginal likelihood and Bayes factors

should anyway not be computed for the reasons given in Section 2.5.2.

To see this in action, suppose that we have generated 20,000 samples

using the Gibbs sampling code in Section 6.2.8, and that these samples are

stored in the two row matrix thetag. Now add 20,000 samples from the

prior, and compute the log likelihood for each sample:

n.prior <- 20000

thetap <- matrix(0,2,n.prior)

thetap[1,] <- rnorm(n.prior,c,sqrt(d))

thetap[2,] <- rgamma(n.prior,a,b)

th <- cbind(thetag,thetap) ## combined sample

alpha=ncol(thetag)/ncol(th)

lfy.th <- colSums(matrix(dnorm(x,rep(th[1,],each=n),

rep(sqrt(th[2,]),each=n),log=TRUE),n,n.rep+n.prior))

With these ingredients we can now solve for c = log f̂(y). The following

function implements the stabilised version of (6.5), computing a value for

β that should reduce underflow or overflow, if this is necessary:

5 It is easy to prove that the equation always has a single finite root by defining

k = 1/f̂(y) and then considering where the curve of 1/k versus k cuts the (monotonic)

curve of the right hand side against k. That the root is the marginal likelihood in the

large sample limit follows from the unbiasedness and consistency of importance

sampling when the true f(y) is substituted in the right hand side.
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fyf <- function(lfy,lfy.th,alpha,big=280) {

## log f(y) - log f(y|theta_i) = c - a_i ...

ac <- lfy - lfy.th

if (min(ac) < -big||max(ac) > big) { ## overflow?

beta <- sum(range(ac))/2

if (beta > big) beta <- big

if (beta < -big) beta <- -big

} else beta <- 0

n <- length(lfy.th)

ac <- ac - beta

ind <- ac < big ## index non-overflowing ac values

log(sum(1/(alpha*exp(-beta) + (1-alpha)*exp(ac[ind]))))-

beta - log(n)

}

The uniroot function in R can be used to solve for the log of f̂(y), as

follows:

>uniroot(fyf,interval=c(-100,0),lfy.th=lfy.th,alpha=alpha)

$root

[1] -44.64441

So the log of the marginal likelihood is approximately -44.6 here.6 If we

had two models to compare, then we could compute the log marginal likeli-

hood for the second model in the same way, form the log Bayes factor, and

then refer to Section 2.5.2 for interpretation of the result. Note, however,

that this example is really only useful for illustrating the computations: the

vague priors in this model cannot be treated as the sort of meaningful prior

information that would justify use of the Bayes factor for serious model

comparison.

Computations for the fractional Bayes factor

Recall from (2.7) in Section 2.5.2 that to compute the fractional Bayes

factor requires that the (estimated) marginal likelihood be divided by (an

estimate of)
∫

f(y|θ)bf(θ)dθ where b is constant in (0, 1). Let us call

the resulting quantity the ‘fractional marginal likelihood’ here. Given the

preceding computations it is easy to reuse (6.5) and estimate the required

integral using

∫

f(y|θ)bf(θ)dθ ≃ 1

n

n
∑

i=1

f(y|θi)b

αf(y|θi)/f̂(y) + (1− α)

6 This example can also be used to illustrate the problem with the harmonic mean

estimator based on the chain samples alone: running the chain for 10 times as many

iterations increases the harmonic mean estimate of the marginal likelihood by a factor of

around 10.
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Setting b = 0.3, here is some R code for the computation:

lfy <- uniroot(fyf,interval=c(-100,0),lfy.th=lfy.th,

alpha=alpha)$root

lfyb <- log(mean(exp(.3 * lfy.th -

log(.5 * exp(lfy.th-lfy) + .5))))

frac.ml <- lfy - lfyb ## log ’fractional ML’

The result is−29.3. To illustrate the robustness of the fractional approach,

the prior parameters in this example can be changed to b=0.01 and d=1000

(making the priors more vague). The marginal likelihood then drops from

−44.6 to −47.4, whereas the fractional version only drops to −29.4.

A crude Laplace approximate marginal likelihood estimate

In the large sample limit with informative data, the posterior covariance

matrix is the inverse Hessian of the log likelihood, which dominates the

log prior. Hence if Σ̂ is the estimated covariance matrix of θ from the

chain, while f̂ is the largest value of f(y|θ)f(θ) observed in the chain,

then applying a Laplace approximation as in Section 5.3.1 yields the rough

approximation

log f̂(y) ≃ log f̂ + p log(2π)/2 + log |Σ̂|/2,
where p = dim(θ). This approximation is computable directly from a sam-

ple from the posterior. For example, continuing the example from the pre-

vious subsection,

> V <- cov(t(thetag))

> lfyth <- lfy.th[1:n.rep] +

+ dnorm(thetag[1,],c,sqrt(d),log=TRUE) +

+ dgamma(thetag[2,],a,b,log=TRUE)

> max(lfyth) + log(2*pi) + sum(log(diag(chol(V))))

[1] -44.44495

which is comparable with the previous estimate. This approach only works

in circumstances in which a Laplace approximation is expected to work,

so it will only be useful when the posterior has a single important mode,

which can be reasonably approximated by a Gaussian.

Neither of the simple methods presented here is likely to work well

in very complex modelling situations. In such cases (and again assuming

that meaningful priors have been used) more sophisticated methods will be

needed: Friel and Pettitt (2008) is a good place to start.

Computing the DIC

Relative to the marginal likelihood, computing the DIC is very easy, and it

can legitimately be used with vague priors. Continuing the same example,
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Figure 6.5 Algal cell counts in samples taken from a laboratory
chemostat experiment, against hour.

> Dthbar <- -2*sum(dnorm(x,mean(thetag[1,]),

+ mean(thetag[2,])^.5,log=TRUE))

> pD <- mean(-2*lfy.th[1:n.rep]) - lfy.thbar

> DIC <- Dthbar + 2*pD; DIC; pD

[1] 83.79534

[1] 1.851937

So the DIC is 83.8 and the effective degrees of freedom, pD, is 1.85. As

with AIC we would favour models with a smaller DIC.

6.4 An MCMC example: algal growth
This section covers a non trivial example of using Metropolis Hastings

sampling. Figure 6.5 shows counts of algal cells in samples drawn from

a laboratory chemostat experiment. A possible model for the population

growth in the chemostat is that it follows a self-damping growth model,

such as

Nt+1 = erNte
−Nt/K+et , et ∼ N(0, σ2

e), (6.6)

where the independent et terms reflect the fact that the population growth

will not be fully deterministic. This model would usually operate with a

fixed timestep (e.g. t might index hour, or two hour period). If we want to

estimate N between Nt and Nt+1 then we might use linear interpolation.

The cell population, y, is then modelled as being a noisy observation of the

underlying population N , perhaps Gaussian, with unknown variance, σ2.

The first thing to note is that the data plotted in Figure 6.5 are not evenly

spaced in time. The spacing ranges from 0.4 to 5.1 hours. Hence we will

need to interpolate the solution to (6.6) in order to use this model for the

data. Because MCMC sampling will involve doing essentially the same in-
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terpolation repeatedly, it makes sense to try and do it efficiently. So here is a

function that supposes that you have evaluatedN at m discrete times, start-

ing at t0 and spaced dt apart, and that you want to use linear interpolation

to estimate the value of N at the times given in t. The following routine

returns vectors im, ip, wm and wp, each of the same length as t, such that if

N is the m vector of evenly spaced N values, N[im] *wm + N[ip] *wp

gives the vector of interpolated N estimates, corresponding to t. It also

returns dt and an appropriate value for m:

lint <- function(t,t0=0,dt=1) {

## produce interpolation indices and weights.

n <- length(t)

ts <- seq(t0,max(t),by=dt)

ts <- c(ts,max(ts)+dt)

m <- length(ts)

im <- floor((t-t0)/dt)+1;ip <- im+1;ip[ip>m] <- m

list(im=im,ip=ip,wm=(ts[ip] - t)/dt,

wp=(t - ts[im])/dt,m=m,dt=dt)

}

Armed with this function it is now possible to write a function to evaluate

the joint density of the cell count data, random effects and model parame-

ters. The obvious way to approach this is to write down the joint density of

y and e, but actually this can make sampling very difficult indeed. Because

early et values affect the whole subsequent sequence of Nt values, it can

be very difficult to propose acceptable moves. In fact for high r values it

is essentially impossible. However, there is no such problem if we work

directly in terms of the log state, nt = logNt. It is then easy to establish a

one-to-one transformation between the state vectorn and the random effect

vector e, (with determinant 1) and hence to evaluate the joint density of the

data, state vector and parameters. This leads to a function like the following

(where improper uniform priors are assumed on all log parameters):

lfey <- function(theta,n,y,li) {

## function evaluating log p.d.f. of y, n and

## theta of Ricker model

theta <- exp(theta) ## parameters are intrinsically +ve

r <- theta[1]; n0 <- theta[2]; K <- theta[3];

sigma.e <- theta[4]; sigma <- theta[5]

n.n <- length(n); ind <- 1:(n.n-1);

## state to r.e. transform...

e <- c(n[1]-log(n0),n[ind+1]-n[ind]-r+exp(n[ind])/K)

f.ne <- sum(dnorm(e,0,sigma.e,log=TRUE)) ## r.e. density

mu <- exp(li$wm*n[li$im] + li$wp*n[li$ip]) # interpolate

f.y <- sum(dnorm(y,mu,sigma,log=TRUE)) ## f(y|n)

f.y + f.ne ## joint log density

}
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Figure 6.6 First five panels from the top left: Algal model
MCMC chains for the model of Section 6.4 sampled every 25
steps. Final panel, bottom right: the state at the final step of the
simulation (black line) overlaid on the cell data (open circles).

Finding a proposal to update the parameters and whole state vector in one

go requires further work, as described in Sections 6.5.3 and 6.5.4. A sim-

pler approach is to make proposals for each element of the parameter and

state vector separately, either choosing the element to update at random in

each step or working through each element in turn at every step. The latter

approach is the basis for the following code. It is assumed that the data are

in a data frame called alg.

li <- lint(alg$hour,t0=0,dt=4) ## interpolation weights

## Intial values...

n0 <- 10;r <- .3; K <- 3000; sig.b <- .2; sigma <- 10

theta <- log(c(r,n0,K,sig.b,sigma)) ## parameter vector

## get initial state by interpolating data...

n <- log(c(alg$cell.pop[1],approx(alg$hour,alg$cell.pop,

1:(li$m-2)*li$dt)$y,max(alg$cell.pop)))

n.mc <- 150000 ## chain length

th <- matrix(0,length(theta),n.mc)

y <- alg$cell.pop

a.th <- rep(0,length(theta)); a.n <- 0 ## accept counter

sd.theta <- c(.2,.5,.3,.3,.2); sd.n <- .05 ## prop. sd

ll <- c(-Inf,-Inf,-Inf,log(.03),log(5)) ## low param lim

ul <- c(Inf,Inf,log(25000),Inf,Inf) ## upper param lim

lf0 <- lfey(theta,n,y,li)
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for (i in 1:n.mc) { ## mcmc loop

for (j in 1:5) { ## update parameters

theta0 <- theta[j]

theta[j] <- theta[j] + rnorm(1)*sd.theta[j]

lf1 <- lfey(theta,n,y,li)

if (runif(1)<exp(lf1-lf0)&&ll[j]<theta[j]

&&ul[j]>theta[j]) { ## accept

lf0 <- lf1

a.th[j] <- a.th[j] + 1

} else { ## reject

theta[j] <- theta0

lf1 <- lf0

}

} ## parameters updated

for (j in 1:li$m) { ## update state

nj <- n[j]

n[j] <- n[j] + rnorm(1)*sd.n

lf1 <- lfey(theta,n,y,li)

if (runif(1)<exp(lf1-lf0)) { ## accept

lf0 <- lf1

a.n <- a.n + 1

} else { ## reject

n[j] <- nj

lf1 <- lf0

}

} ## states updated

th[,i] <- theta ## store theta

if (i%%1000==0) cat(".")

} ## end of mcmc loop

Notice the ll and ul vectors, which serve to impose lower and upper

bounds, respectively, on some parameters (if both are present, then the

prior becomes a proper uniform p.d.f.). Also a.n and a.th are used to

monitor acceptance rates, which allowed sd.theta and sd.n to be tuned

in pilot runs to achieve acceptance rates around the 50% level appropriate

for single-element updates.

Figure 6.6 shows the results of the simulation, along with the simulated

population vector n at the final step, overlaid on the raw data. The initial

population n0 does not appear to be well identified, but otherwise mixing

seems reasonable. Using effectiveSize(mcmc(th[i,ind])) from the

coda package, the effective sample size for r is around 1800, for n0 it is

around 370, and for the other parameters it is more than 3000. n can be

transformed into a vector of et values, and we can compute residuals to

check the sampling error distribution. Here is some code to do this:

n0 <- exp(theta[2]); r <- exp(theta[1])

K <- exp(theta[3]); n.n <- length(n)

ind <- 1:(n.n-1);
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Figure 6.7 Normal QQ-plots, residuals against order, and ACF of
residuals for et (top row) and residuals (bottom row). The middle
plot on the bottom row indicates that the measurement error
model is not quite right at the start of the experiment: the error
variance is not constant. The top row also indicates slightly
heavier than normal tails in the et.

e <- c(n[1]-log(n0),n[ind+1]-n[ind]-r+exp(n[ind])/K)

rsd <- y - exp(n[li$ip]*li$wp+n[li$im]*li$wm)

par(mfrow=c(2,3),mar=c(5,5,1,1))

qqnorm(e); plot(e); acf(e)

qqnorm(rsd); plot(rsd); acf(rsd)

Figure 6.7 shows the results. Clearly, the measurement error model is not

quite right, but otherwise the model assumptions seem reasonably plausi-

ble. Finally, here is a 90% credible interval for r (having discarded the first

30000 simulations as burn-in):

> exp(quantile(th[1,30000:n.mc],c(.05,.95)))

5% 95%

0.1689796 0.2817391

6.5 Geometry of sampling and construction of better proposals

The algal growth example of the previous section highlights the difficulty

of constructing good proposals. To be able to tune the proposals and get

reasonable movement, it was necessary to resort to single-component up-

dates. This increased the cost of each complete update but still gave slow
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Figure 6.8 Effect of posterior correlation on MCMC mixing. In
both panels the posterior for θ is contoured in grey: over most of
the area shown, the posterior density is close to zero. The left
panel shows the progress of the chain from the point (0.5, 0.5),
when θ1 and θ2 are updated separately. The right panel shows the
progress when θ is updated jointly. Both chains were run for 400
steps, and the proposal standard deviations were tuned to obtain
optimal acceptance rates. The chains make slow progress because
steps have to be kept small in order to keep the θ within the area
of high posterior probability.

mixing. To design more efficient proposals it is necessary to understand

how the twin curses of dimensionality and correlation affect proposals.

6.5.1 Posterior correlation

Suppose that the posterior density of θ (including any random effects) im-

plies that the elements of θ are highly non-independent. In this case both

single-component updates and joint updates, based on independent jumps

for each component, will give slow mixing. Neither is able to take big steps

without frequently proposing highly improbable moves. The issue is illus-

trated in Figure 6.8. Neither componentwise nor joint but independent, pro-

posals use the correlation structure in the posterior, with the result that they

can only take small steps if the region of negligible posterior probability is

to be avoided. As a result the chain moves slowly.

The issue with correlation is a fundamental limitation for Gibbs sam-

pling (although re-parameterisation and/or updating parameters in blocks

can often help), but for Metroplois-Hastings sampling it is often possible to

exploit the correlation structure in the posterior to improve the proposals.
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The simplest approaches approximate the posterior density by a multivari-

ate normal density, which is then used as the basis for making proposals.

Two alternatives for obtaining a multivariate normal approximation are

to use (6.2) from Section 6.1, or to run a pilot chain, from which to extract

µ̂ ≃ E(θ) and Σ̂ ≃ cov(θ), so that the approximation is

θ|y ∼ N(µ̂, Σ̂). (6.7)

There are then two simple alternatives for using the approximation.

1. Use the density directly to make independent proposals where the ith

proposal is θ′
i ∼ N(µ̂, Σ̂). Because this is not a symmetric proposal

the ratio q(θ|θ′)/q(θ′|θ) is no longer identically 1, but the computation

simply involves calculating the ratio of the multivariate normal density

evaluated at the two parameter vector values.

2. Use a shrunken version of Σ̂ as the basis for proposing multivariate nor-

mal jumps in a random walk. So the ith proposal is θ′
i ∼ N(θi−1, Σ̂k2).

It turns out that for high dimensions k = 2.4/
√
d is about optimal (see

e.g. Gelman et al., 2013), although in any particular case some tuning

is likely to be beneficial. In this case the probability densities of a move

and the reverse move are equal, so the q ratio is 1.

Figure 6.9 illustrates the two approaches for a posterior shown as black

contours. The left-hand panel shows option 1, in which proposals are gen-

erated directly from the normal approximation contoured in grey. The pro-

posal is good in the centre of the distribution, but visits some of the tail re-

gions very infrequently, relative to their posterior density. Metropolis Hast-

ings compensates for this deficiency by leaving the chain stuck at such tail

values for a long time, on the rare occasions that they are proposed. The

black dot at the top right of the plot is such a tail value. What causes the

stickiness of the chain is the ratio q(θ|θ′)/q(θ′|θ). Reaching the point is

highly improbable according to the proposal, so q(θ|θ′) (which actually

does not depend on θ′ here) is tiny. In contrast θ′ is typically not in the far

tails of the proposal, so that q(θ′|θ) is modest: hence the ratio is tiny, the

MH acceptance probability is tiny, and it takes many iterations to leave the

point. In consequence option 1 is only advisable when the normal approx-

imation to the posterior is expected to be good.

The right panel of Figure 6.9 illustrates option 2: random walk updates

based on a shrunken version of the covariance matrix estimate. Proposal

densities are contoured in grey for two points: the open circle in the high

posterior density region, and the black circle in the tail region. The pro-

posal is reasonable in the high-density region. Similarly, the proposal has a
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Figure 6.9 Simple proposals based on a multivariate normal
(MVN) approximation of the posterior. The true posterior is
contoured in black. Left: An MVN approximation to the posterior
is contoured in grey, based on the empirical mean and covariance
matrix of a sample from the posterior. Proposals could be made
directly from this approximation, but then the probability of ever
proposing the point shown as a black dot is very low, despite it
having non-negligible posterior probability density. Hence when
such a proposal is made, the chain tends to get stuck at this point
for many iterations. Right: the density of a random walk proposal
for the same point as grey contours, where the covariance of the
proposal is a shrunken version of the covariance from the normal
approximation. Clearly the random walk proposal has a better
chance of reaching the point in the first place and of leaving it
again. Also contoured in grey is the proposal density for the point
marked by an open circle: the random walk proposal is also
reasonable in the high posterior density region.

reasonable chance of reaching the tail point in the first place and of leaving

it again.

6.5.2 The curse of dimensionality

The attentive reader will have noticed that the random walk proposal dis-

cussed in the previous section requires that the proposal standard deviation

is proportional to 1/
√
d where d is the dimension of θ. In other words,

as dimension increases, the change proposed for each component of θ has

to be reduced in order to get optimal mixing. Figure 6.10 illustrates the

inevitability of this effect by using Metropolis Hastings to sample from a

N(0, Id) density for d = 2 and then for d = 100. A random walk proposal
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Figure 6.10 Metropolis Hastings sampling from N(0, Id) for
d = 2 (left) and d = 100 (right). In both cases proposals were of
the form θ′i+1 ∼ N(θi, Idσp). Different σp were used for d = 2
and d = 100, each tuned to give the largest possible effective
sample size. Notice how mixing is much slower for the higher
dimensional problem: a simple result of geometry.

θ′
i+1 ∼ N(θi, Idσ

2
p) is used, where σp is tuned to achieve the maximum

effective sample size, separately for each d. Clearly there is no issue with

correlation here, but mixing is still very slow for the relatively high dimen-

sional problem.

This effect is geometrically inescapable when using symmetric random

walk proposals. The fundamental problem is that, as the dimension in-

creases, a symmetric random walk proposes ever fewer jumps that actually

have increased posterior density, relative to the starting point. Figure 6.11

illustrates this dropoff when moving from d = 1 to d = 2 dimensions, con-

sidering the simple case in which the target posterior density is N(0, Id)
and the proposal is based on independent U(−

√
d,
√
d) (approx.) incre-

ments for each element of θ. As d increases, this problem becomes ever

more severe, especially near the centre of the distribution. Indeed consid-

ering such uniform proposals from points like the black blobs in Figure

6.11, it is easy to work out the probability of a proposal falling in the re-

gion of increased posterior probability. It is half the volume of an r-radius

d-ball divided by the volume of a d-dimensional hyper cube of side length

2r: πd/2/{Γ(d/2+1)2d+1}. This probability drops from 0.5 for d = 1 to

less than 1% by d = 8.

The example used here to illustrate the issue is far from pathological.

There is no correlation present, and the density is as well behaved as we

could hope. In addition, we could transform any multivariate normal den-
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Figure 6.11 Symmetric random walk proposals become less
probable with increasing dimension. Left: a one dimensional
N(0, 1) p.d.f. About 68% of draws from N(0, 1) are more
probable than the black blob, whereas 99.7% of draws are more
probable than the black square. Consider proposing a symmetric
uniformly distributed jump from the black blob that could just
reach θ = 0. The possible range of such a proposal is illustrated
by the horizontal line through the blob: 50% of such proposals
(shown in grey) have higher probability than the starting value,
and 50% lower (shown in black). The same proportions apply if
the proposal is used starting from the black square. Right: the
situation in two dimensions when the density is N(0, I2) . Again
68% of draws from N(0, I2) are more probable than the black
blob, and 99.7% are more probable than the black circle. Again
consider symmetric uniform proposals centred on the points and
just capable of reaching 0, 0 for the black blob. The regions
uniformly covered by the proposals are shown as squares centred
on the two points. For a proposal to land in an area of increased
density, it must be within the black contour passing through the
starting point (i.e within the region shaded grey). Clearly for the
black blob far fewer than 50% of proposals will end up in the grey
region of increased probability. Further out in the tails, where the
black square is, the chance is higher, but still less than 50%.

sity to this case without loss of generality, and in the large sample limit

many posteriors tend to multivariate normality.
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6.5.3 Improved proposals based on approximate posterior normality

These basic issues have given rise to a great deal of work on adaptive

Metropolis-Hastings schemes that use nonsymmetric proposals with an im-

proved tendency to make moves that will increase the posterior, while tak-

ing relatively large steps. Most of this work is well beyond our scope here.

Instead let us consider developing some simple improved schemes, based

on the preceding insights.

The big advantage of the fixed multivariate normal proposal is that it

tends to propose more points near the centre of the distribution than in the

tails, but its disadvantage is that it may not visit poorly approximated tails

often enough, so it gets stuck in them when it does visit. The advantage of

the random walk is that it can get into the tails without getting stuck there,

but does so by making many proposals into low-probability regions. An

obvious hybrid strategy is to propose moves from a mixture distribution.

With tunable probability γ propose from N(µ̂, Σ̂) otherwise propose from

N(θi, Σ̂k2). The probability density for the proposal and its reverse now

have to be computed from the mixture distribution to compute the MH q
ratio, but this is unproblematic.

A simpler alternative that directly addresses the tendency of symmetric

random walks to propose improbable moves in high dimensions is to move

the centre of such proposals from θi, in the direction of µ̂. Defining ‖θ −
µ̂‖2

Σ̂
= (θ − µ̂)TΣ̂−1(θ − µ̂) and

m(θ) =

{

θ − γ(θ − µ̂)/‖θ − µ̂‖Σ̂ ‖θ − µ̂‖Σ̂ > γ
θ otherwise

,

the proposal density becomes N(m(θ), Σ̂k2). We must choose γ and can

typically afford to increase k somewhat.

6.5.4 Improved proposals for the algal population example

The samplers constructed in Section 6.4 have rather disappointing perfor-

mance, in terms of effective sample size for computational effort. 150,000

iterations still only gave an effective sample size of around 370 for n0, and

each of those updates required an accept/reject computation for each ele-

ment of θ and n separately. This section compares the simple improved

updates discussed in the previous subsection based on the covariance ma-

trix of the parameters according to the first run.

If the state vectors n for each iteration are stored as columns of a matrix
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Figure 6.12 Algal model MCMC output equivalent to Figure 6.6,
for 50000 iterations using a fixed multivariate normal proposal,
based on the mean and covariance matrix from a pilot run. Notice
how the chain becomes stuck where the posterior density is
moderate but the proposal density is very low; it then takes a large
number of iterations to become unstuck: see the discussion
around Figure 6.9 for an explanation of this phenomenon.

nn, then the first step is to compute the mean and covariance matrix for the

vector b = (θT,nT)T:

## tn is params and state, discarding burn-in...

tn <- rbind(th,nn)[,-(1:20000)]

mu <- rowMeans(tn) ## mu hat

V <- cov(t(tn)) ## Sigma hat

Before going further it is important to look at pairs plots of the rows of

tn to see whether N(µ̂, Σ̂) can be expected to capture anything useful

about the posterior. In this case it can, so first consider using N(µ̂, Σ̂) as a

fixed proposal. All proposals can be generated up front, using, for example

mvrnorm from the MASS library in R:

library(MASS)

sp <- mvrnorm(n.mc,mu,V)

so sp contains one proposal per row. The q ratio in the MH acceptance

probability requires the density of each proposal, and the following will

evaluate the log of these for all rows of sp:
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Figure 6.13 Algal model MCMC output equivalent to Figure 6.6,
for 50000 iterations using a random walk proposal with correlated
multivariate normal jumps, based on a shrunken version of the
covariance matrix from a pilot run. Although much more efficient
than the chain used for Figure 6.6, the curse of dimensionality
discussed in Section 6.5.2 means that progress is still fairly slow.

dmvn <- function(x,mu,V) {

## one vec in each col of x

R <- chol(V)

z <- forwardsolve(t(R),x-mu)

-colSums(z^2)/2-sum(log(diag(R)))-log(2*pi)*length(mu)/2

}

lfsp <- dmvn(t(sp),mu,V)

Hence, if the chain is in state b = sp[i,] and the proposal is b′
= sp[j,],

then exp(lfsp[i]-lfsp[j]) gives q(b|b′)/q(b′|b). Figure 6.12 shows

output from the chain with this proposal. Notice the lengthy period in

which the chain is stuck, as discussed in Section 6.5.1 and Figure 6.9.

Clearly, these results are not satisfactory. We definitely cannot discard the

stuck section of chain, because the stuck section is the only thing ensuring

that this region of the posterior is sampled in the correct proportion. But the

facts that this section exists and that there is only one such section are clear

indications that we have not run the chain for long enough to adequately

sample this region of the posterior.

The random walk proposal in which b′ ∼ N(b, Σ̂k2) does not get

stuck in this way. sp <-mvrnorm(n.mc,rep(0,ncol(V)),V) can be used

to generate the jumps up front, so the proposals are bp <-b + sp[i,]*k.
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Now the q ratio is 1. Figure 6.13 shows results for such a chain. Minimum

effective sample sizes of around 350 from 50000 iterations indicate that this

approach is quite a bit more efficient than the original sampler of Section

6.4, which required 150,000 much more expensive steps to achieve the

same. However the curse of dimensionality still leads to slow mixing here.

Of the alternatives in Section 6.5.3, the biased random walk gives bet-

ter results than the mixture proposal for this problem and is also easier to

implement, so let us consider it here. The densities required for the q ra-

tio cannot be computed up front now, so we need to be able to compute

them efficiently during the computation. This is easy if the Choleski de-

composition of the covariance matrix is computed before the iteration, so

the following implementation does this:

rwp <- mvrnorm(n.mc,rep(0,nrow(V)),V) ## used for jumps

dmvnr <- function(x,mu,R) {

## computes log density of x~N(mu,R’R)

z <- forwardsolve(t(R),x-mu)

-sum(z^2)/2 - sum(log(diag(R))) - log(2*pi)*length(mu)/2

}

R <- chol(V) ## R’R = V

th <- matrix(0,length(ll),n.mc)

theta <- ind <- 1:5

b0 <- b <- mu ## combined theta and n

th[,1] <-theta <- b[ind]; n <- b[-ind]

lf0 <- lfey(theta,n,y,li)

accept <- 0

gamma=.5; ## dist. to move prop. mu towards overall mean

k <- 2.4/sqrt(length(b))*1.2 ## jump scale

## compute first proposal mean vector, muw...

z <- forwardsolve(t(R),b-mu); dz <- sqrt(sum(z^2))

if (dz>gamma) muw <- b - (b-mu)*gamma/sqrt(sum(z^2)) else

muw <- b

for (i in 2:n.mc) { ## mcmc loop

muw.0 <- muw ## mean of current state

b0 <- b

b <- muw.0 + rwp[i,] * k ## proposal from N(muw.0,V*k^2)

## find mean of proposal starting from b...

z <- forwardsolve(t(R),b-mu);dz <- sqrt(sum(z^2))

if (dz>gamma) muw <- b-(b-mu)*gamma/sqrt(sum(z^2)) else

muw <- b

theta <- b[ind]; n <- b[-ind]

lf1 <- lfey(theta,n,y,li)
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Figure 6.14 Algal model MCMC output equivalent to Figure 6.6,
for 50000 iterations using a biased random walk proposal with
correlated multivariate normal jumps, based on a shrunken
version of the covariance matrix from a pilot run, and with a mean
moved from the current state of the chain towards the overall
mean from the pilot run. This is the most efficient of the samplers
tried here.

q.rat <- dmvnr(b0,muw,R*k)-dmvnr(b,muw.0,R*k)

if (runif(1) < exp(lf1-lf0+q.rat)&&

sum(theta>ul|theta<ll) == 0) { ## accept

accept <- accept + 1

lf0 <- lf1

} else { ## reject

b <- b0

muw <- muw.0

}

th[,i] <- theta

if (i%%3000==0) cat(".")

} ## end of loop

This chain achieves a minimum effective sample size of 1200 in 50000 it-

erations: the better mixing can be seen in Figure 6.14. In terms of computer

time per minimum effective sample size, this sampler is approximately 100

times more efficient than the original sampler in Section 6.4. Notice that

it only worked because the posterior normality approximation was not too

bad in this case: had the posterior been less amenable, then something more

sophisticated would have been required.
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Figure 6.15 Part of the DAG for the algal model introduced in
Section 6.4, assuming the priors introduced in Section 6.6. The
figure focuses on a section of the graph relating to an observation
at time τ lying between discrete simulation times t and t+ 1.
Most of the edges connected to nodes nt−2 and nt+1 are not
shown. Notice how the left and rightmost nodes, which are fixed
constants defining priors, have no parents. Conversely, the
observed data node yt has no children, but this is a feature of this
model, rather than being a requirement of the formalism.

6.6 Graphical models and automatic Gibbs sampling

The implementation of MCMC samplers is obviously rather time consum-

ing, and the question of automating the construction of samplers arises. It

turns out that automatic Gibbs sampling can be very successfully imple-

mented for Bayesian graphical models in which the dependency structure

between variables in the model can be represented by a directed acyclic

graph (DAG). The basic trick is to break down simulation from a high-

dimensional posterior into a sequence of Gibbs sampling steps of intrinsi-

cally low dimension.

The automation process is bound up with the model’s DAG structure, so

we need to explore the concepts here. Graphs already featured in Section

5.5.3, where computational graphs (examples of DAGs) were used in auto-

matic differentiation. A directed graph consists of a set of nodes connected

by directed edges: arrows. These arrows run from parents to children. Ev-

ery variable in a graphical model is a node, and the key feature of such

models is that the distribution of a variable/node is completely known if

you know the values of all its parent nodes. The fact that the graphs are

acyclic means that no node is its own ancestor: you cannot find a path

through the graph that follows edges in the direction of the arrows and

arrives back at the node you started from.
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It is helpful to distinguish three types of node.

1. Stochastic nodes are variables with a distribution that depends stochas-

tically on other nodes. They may be observed (i.e. correspond to data),

or unobserved (parameters or random effects).

2. Deterministic nodes are nodes that are deterministic (logical) functions

of other nodes. They cannot be observed.

3. Constants are fixed numbers and have no parents.

There are two types of arrows. Deterministic/logical relationships between

nodes are usually shown as dashed arrows, whereas stochastic relationships

are shown as solid arrows.

Figure 6.15 illustrates a portion of the DAG for the algal population

model of Section 6.4, assuming that proper gamma(αj , λj) priors have

been specified for r, K , 1/σ2
e and 1/σ2. The parentless nodes at the far

left and right of the figure are the constants specifying the various gamma

priors: actual numbers would have to be supplied here. The portion of the

graph shown surrounds a data node yτ whose time of observation lies be-

tween discrete update times t and t+1, so that its expected value is obtained

by linear interpolation between nodes nt and nt+1. The fact that this linear

interpolation is purely deterministic is the reason that the arrows from nt
and nt−1 to deterministic node µτ are dashed.

Now consider what makes graphical models convenient for automatic

Gibbs sampling. Generically, let xi denote the variable corresponding to

the ith node of the graph. From the dependencies encoded in the graph it

follows that the joint density of the (non constant) nodes is

f(x) =
∏

i

f(xi|parent{xi}), (6.8)

where the product is over the non constant nodes. If this is not obvious, start

with the childless (terminal) nodes and work back using the basic relations

between conditional and joint densities covered in Section 1.4.2.

Gibbs sampling involves simulating from the full conditionals of all

stochastic nodes other than those corresponding to data, which are fixed

at their observed values. It turns out that these conditionals usually involve

far fewer terms than the full joint density. From the definition of a condi-

tional p.d.f.,

f(xj |x−j) =
f(x)

∫

f(x)dxj
=

∏

i f(xi|parent{xi})
∫
∏

i f(xi|parent{xi})dxj
,

but the only terms in the product that have to stay inside the integral are
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those that involve xj : the conditional density of xj given its parents, and

the conditional densities of each child of xj , given that child’s parents. All

other terms in (6.8) can be taken out of the integral and therefore cancel

between the top and bottom of f(xj|x−j). In short,

f(xj |x−j) =
f(xj |parent{xj})

∏

i∈child{j} f(xi|parent{xi})
∫

f(xj|parent{xj})
∏

i∈child{j} f(xi|parent{xi})dxj
∝ f(xj |parent{xj})

∏

i∈child{j}

f(xi|parent{xi}),

so that, however complicated the model and corresponding DAG, f(xj |x−j),
required for the Gibbs update of xj , depends only on the parent-conditional-

densities of xj and its children.

6.6.1 Building the samplers

The preceding discussion forms the basis for the automatic construction

of Gibbs samplers. The model’s DAG structure is used to identify the rela-

tively small number of terms that play a part in each f(xj |x−j), an attempt

is made to identify the exact distribution for f(xj|x−j), and when this is

not possible a more costly general-purpose sampler is constructed. Identi-

fication of the exact distributions rests on known conjugacy relationships

between distributions, while the ingenious method of slice sampling is of-

ten useful otherwise.

Conjugate distributions

Again consider,

f(xj |x−j) ∝ f(xj|parent{xj})
∏

i∈child{j}

f(xi|parent{xi}).

The right hand side has exactly the structure of a prior, f(xj |parent{xj}),
for xj , multiplied by a likelihood term for xj , in which the children xi
play the role of data. This fact allows what is known about conjugacy of

distributions to be exploited in automatically ascertaining the density that

gives f(xj |x−j).
If the prior and posterior distribution for some quantity are from the

same family7, for a given likelihood, then that distribution is said to be con-

jugate for that likelihood. We have already seen an example of this when

7 For example, a normal prior yields a normal posterior, or a gamma prior yields a gamma

posterior. Of course, the parameters of the distributions change from prior to posterior.
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constructing the simple Gibbs sampler in Section 6.2.8: there the normal

distribution was shown to be conjugate for the mean of a normal likeli-

hood term, while the gamma distribution was conjugate for the precision

(reciprocal variance) of a normal. A whole library of such standard con-

jugacy results is known,8 and can therefore be exploited in the automatic

construction of Gibbs samplers.

Slice sampling

When no convenient analytic form for a density f(xj|x−j) can be ob-

tained, then some other stochastic simulation method must be employed

for that density. A beautifully simple approach is slice sampling (Neal,

2003). The basic observation is this: if we plot kf(x) against x for any

finite non-zero k, and then generate a coordinate x, y from a uniform den-

sity over the region bounded by kf(x) and the x axis, then the resulting x
value will be a draw from f(x).

The problem, of course, is that generating directly from the required

uniform density of x, y is no easier than generating from f(x) itself. The

simplicity arises when we consider a Gibbs update of x and y. Trivially

f(y|x) ∼ U(0, kf(x))

while

f(x|y) ∼ U(x : kf(x) ≥ y),

so a Gibbs update would draw a y uniformly from the interval (0, kf(x))
and then draw x uniformly from the set of x values for which kf(x) ≥ y
(the ‘slice’ of the technique’s name). The only problem now is identify-

ing the required set of x values. For a unimodal distribution, this set will

constitute a single interval, which may be easy to locate, but for multi-

modal distributions several intervals may need to be identified. Of course,

in practice it is only necessary to identify an interval or a set of intervals

that bracket the required set: then we can generate uniformly on the brack-

eting interval(s) until we obtain an x such that kf(x) ≥ y. If the bracketing

interval(s) are too wide this will be inefficient, of course.

8 Bayesian statisticians had to have something to do between the reading of the Reverend

Bayes’ paper to the Royal Society of London in 1763, and the advent of computers

cheap enough to make the Metropolis Hastings algorithm of 1953/1970 something

usable for those with a smaller budget than the US atomic weapons program.
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6.6.2 BUGS and JAGS

The most widely used software for statistics via automatically constructed

Gibbs samplers is BUGS (Bayesian Updating via Gibbs Sampling), now

followed by openBUGS, which has an R package interface brugs. BUGS

established a simple language for the specification of graphical models,

leading to other implementations including JAGS (Just Another Gibbs Sam-

pler), with the R interface package rjags, which is covered here.

JAGS has to be installed as a standalone program and can be used as

such, but it is very convenient to use it via rjags, which is the method

covered here. rjags also provides easy integration with the coda package

for convergence diagnostics. JAGS models are specified in a text file using

a dialect of the BUGS language. The name of this file, together with a list

providing the corresponding data, is supplied to the jags.model function,

which calls JAGS itself to automatically generate a sampler, returned as

an object of class "jags". This object can then be used to generate sam-

ples using calls to jags.samples or the closely related coda.samples

(depending on exactly what format you would like the data returned in).

Toy example

Recall the toy normal model example of Section 6.2.8 in which we have

n = 20 observations yi ∼ N(µ, φ), where 1/φ ∼ G(a, b) (a gamma

random variable) and (independently) µ ∼ N(c, d). a, b, c and d are con-

stants. In graphical model terms each yi, µ and τ = 1/φ are stochastic

nodes, whereas a, b, c and d are constant nodes: the graph has 26 nodes

in total. The BUGS language is set up for convenient specification of each

node, and their relationships (directed edges). Here is the contents of the

file norm.jags coding up our toy model

model {

for (i in 1:N) {

y[i] ~ dnorm(mu,tau)

}

mu ~ dnorm(0.0, 0.01)

tau ~ dgamma(0.05,0.005)

}

For anyone who has read this far, the language is very intuitive. The sym-

bol ~ specifies a stochastic dependence (i.e. a → in the graph), with the

BUGS/JAGS statement y[i] ~ dnorm(mu,tau) being exactly equivalent

to the mathematical statement yi ∼ N(µ, 1/τ). By default the normal dis-

tribution is parameterised in terms of its precision, rather than its variance.

Notice the use of loops to deal with vectors. R programmers are used to
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Figure 6.16 ACFs computed by autocorr.plot from the coda
package for the toy model simulated using JAGS in Section 6.6.2.
There is little autocorrelation here: to get more detail on the low
correlations the acfplot function could be used.

avoiding loops for populating vectors, but here there is no problem: this

code is going to be compiled by JAGS to produce a sampler, and the R

efficiency concerns do not apply.

Here is the R code to get JAGS to build a sampler from R, given 20

observations in a vector, y:

library(rjags)

setwd("some/directory/somewhere")

jan <- jags.model("norm.jags",data=list(y=y,N=20))

Function setwd sets R’s working directory to the location of norm.jags.

jags.model then creates the sampler, setting the nodes identified in data

to their observed values. JAGS counts N as a constant node in the model, so

it reports that the model has 27 nodes, rather than the 26 counted before.

The jags.model function also runs a number of adaptation iterations,

tuning those component samplers that can be tuned to try to optimise their

performance. The n.adapt argument controls the number of adaptation

iterations and has a default value of 1000. At this stage jan contains a

JAGS model object, which is ready to use to generate samples. Once built

and initialized the sampler can be used:

> um <- jags.samples(jan,c("mu","tau"),n.iter=10000)

|*************************************************| 100%

The second argument, c("mu","tau"), specifies the nodes that should be

monitored at each step, and n.iter gives the number of steps (by setting

argument thin to an integer greater than 1, we could monitor every thin
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steps). The results are stored in a two element list um, which could be used

to produce a plot almost identical to Figure 6.2.

rjags can also create output in a manner convenient for use with the

MCMC diagnostics package coda. Here is some code to do this, plot the

chain ACFs shown in Figure 6.16 and compute effective sample sizes:

> er <- coda.samples(jan,c("mu","tau"),n.iter=10000)

|*************************************************| 100%

> autocorr.plot(er)

> effectiveSize(er)

mu tau

9616.071 10000.000

JAGS has a built-in function dic.samples for obtaining the DIC for a

model. It uses a slightly different computation for pD, which requires sam-

ples from two independent chains (see argument n.chains of jags.model).

For example,

jan <- jags.model("norm.jags",data=list(y=y,N=20),

n.chains=2)

dic.samples(jan,n.iter=10000)

The importance sampling method of Section 6.3.1 can also be used to

estimate the marginal likelihood with JAGS. The sample for the posterior

can be obtained as just shown, whereas the sample from the prior is ob-

tainable by setting up and running the model with no data. The slightly

inconvenient part is that log f(y|θ) has to be coded up again, externally to

the JAGS model. But now let’s move on to a less trivial example.

6.6.3 JAGS algal population example

The algal population growth model of Section 6.4 can easily be imple-

mented in JAGS. The graph in this case has 874 nodes, and a portion of it

is shown in Figure 6.15. The contents of the model specification file are as

follows:

model {

n[1] ~ dnorm(n0,tau)

for (i in 2:M) {

n[i] ~ dnorm(n[i-1] + r - exp(n[i-1]/K),tau)

}

for (i in 1:N) {

mu[i] <- wm[i]*n[im[i]] + wp[i]*n[ip[i]]

y[i] ~ dnorm(exp(mu[i]),tau0)

}

K ~ dgamma(1.0,.001)

tau ~ dgamma(1.0,.1)
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Figure 6.17 40 replicates of the underlying state exp(n) of the
algal population model of section 6.6.3, as simulated using JAGS,
shown as grey lines. The observed data are shown as open circles.
Clearly the state is too variable towards the end of the data.

r ~ dgamma(1.0,.1)

n0 ~ dgamma(1.0,.1)

tau0 ~ dgamma(1.0,.1)

}

Notice that there are two loops now. The first iterates the dynamic model

for the log population for M steps. The second loop works through the N
observed population nodes y[i], relating them to the n[i]. The required

linear interpolation is implemented via the deterministic nodes mu[i], us-

ing the interpolation indices and weights as generated by the function lint

defined in Section 6.4. The notation ‘<-’ is equivalent to the dashed arrows

in Figure 6.15.

The R code to use this model is a little more involved for this example,

because we need to produce interpolation weights and an initial value for

the state vector n. Without a reasonable initial value JAGS is unsuccessful

at initialising this model.

library(rjags)

setwd("~location/of/model/file")

li <- lint(alg$hour,t0=0,dt=4)

dat <- list(y=alg$cell.pop,N=length(alg$cell.pop),M=li$m,

ip=li$ip,im=li$im,wp=li$wp,wm=li$wm)

## initial state for n by linear interpolation of data...

ni <- log(c(alg$cell.pop[1],approx(alg$hour,alg$cell.pop,
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Figure 6.18 Histogram of the galaxies data from the MASS
library (divided by 1000). The data show speeds of 82 galaxies,
and the existence of several modes in the underlying distribution
would be evidence for voids and large clusters in the far universe.

1:(li$m-2)*li$dt)$y,max(alg$cell.pop)))

jal <- jags.model("algae.jags",data=dat,inits=list(n=ni),

n.adapt=10000)

ug <- coda.samples(jal,c("n0","r","K","tau0"),

n.iter=40000,thin=10)

Here only every 10th sample has been stored in ug. According to coda the

effective sample sizes are 1891, 559, 514 and 4000 for K , n0, r and τ0,

respectively, and other diagnostic plots look reasonable. Let us look at the

underlying state n, by having JAGS monitor it every 1000 iterations:

pop <- jags.samples(jal,c("n"),n.iter=40000,thin=1000)

plot(alg)

ts <- 0:(li$m-1)*li$dt

for (i in 1:40) lines(ts,exp(pop$n[,i,1]),col="grey")

with(alg,points(hour,cell.pop))

The results are shown in Figure 6.17: clearly the state is too variable at high

population sizes, and the model would benefit from some modification.

6.6.4 JAGS mixture model example

Figure 6.18 shows astronomical data on the speeds of 82 galaxies, where

it is scientifically interesting to know whether the underlying distribution

is multimodal (this is one of those classic datasets from the statistical lit-

erature). A popular approach to modelling such data is to use a mixture

distribution; for example, to treat the data as coming from a mixture of
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normal densities. Letting y denote the speed of a randomly chosen galaxy

in 1000kms−1 the p.d.f. might be

f(y) =
K
∑

k=1

αkφ(y;µk, σ
2
k),

where φ(y;µk, σ
2
k) denotes a normal p.d.f. with mean µk and variance

σ2
k, while positive mixture weights, αk, sum to 1. A common approach to

MCMC sampling from the posterior for the mixture parameters is to in-

troduce auxiliary allocation variables, zi say, which indicate from which

component of the mixture each observation comes. Sampling is then from

the posterior of the component mean and variances and the auxiliary vari-

ables. Notice the technical nuisance that we can permute the indices on

µk, σ
2
k without changing the model (the ‘label switching problem’). In the

one-dimensional case we could deal with this by re-parameterising, or just

ignore it, but in the interests of keeping the pictures pretty I adopt the sim-

ple pragmatic devise of explicitly assigning one of the observations to each

component (i.e. treat K of the zi as known). Otherwise the zi will be mod-

elled as taking value k with probability αk, where the αk follow a Dirich-

let distribution (see Section A.2.4). Normal priors are used for the µk, and

gamma priors are used for the 1/σ2
k.

The JAGS code is as follows, where zi is comp[i], comp.tau[k] is

1/σ2
k and comp.mu is µk:

model {

for (i in 1:N) {

comp[i] ~ dcat(pc[1:K]) ## assign obs. to comp.s

mu[i] <- comp.mu[comp[i]] ## pick out comp. mean

tau[i] <- comp.tau[comp[i]] ## pick out comp. prec.

y[i] ~ dnorm(mu[i],tau[i]) ## f(y|theta)

}

## set up priors...

pc[1:K] ~ ddirch(K.ones) ## Dirichlet prior

for (i in 1:K) {

comp.tau[i] ~ dgamma(1,.1)

comp.mu[i] ~ dnorm(p.mean[i],1e-2)

}

}

This can be utilised from R using something like the following, where a

three component mixture is considered:

library(MASS);library(rjags)

y <- galaxies/1000 ## note y in ascending order

K <- 3;p.mean <- c(10,21,34) ## setting prior means & K

## fix obs closest to prior means to components...
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Figure 6.19 Chains for means and standard deviations of a three
component mixture model for the galaxy data, simulated using
JAGS, as discussed in Section 6.6.4.

comp <- rep(NA,N); comp[1] <- 1;comp[N] <- K

if (K>2) for (j in 2:(K-1)) {

abs(y-p.mean[j])->zz; comp[which(zz==min(zz))] <- j

}

n.sim <- 20000

jam <- jags.model("mixture.jags",data=list(y=y,N=N,K=K,

K.ones=rep(1,K),p.mean=p.mean,comp=comp),n.chains=1)

um <- jags.samples(jam,c("comp.mu","comp.tau"),

n.iter=n.sim,thin=10)

Output from the chains is shown in Figure 6.19.

How many components should the mixture contain? The priors used in

this case are vague and fairly arbitrary, so basing inference on posterior

model probabilities or Bayes factors does not seem justified. The presence

of the zi allocation variables also makes it improbable that we are in the

regime where the DIC is well justified. If we were to reformulate, and

use maximum likelihood estimation directly with the likelihood based on

the mixture distribution, then the BIC might be a possibility (provided we

carefully check that the label switching problem can indeed be eliminated

by a re-parameterisation compatible with the MLEs). However, a simpler

approach based on predictive posterior simulation makes more scientific

sense for this simple univariate situation.

Essentially we would like to choose the model most likely to produce

data like the data we actually observe, and the obvious way to check this is

to simulate new data given the posterior distributions of the model param-

eters. This is easy within JAGS. We simply add further nodes to the model
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Figure 6.20 QQ-plots for galaxy data, when theoretical quantiles
are generated by posterior simulation for K equal to 2 (left), 3
(middle) and 4 (right). Plots for K > 5 look very similar to the
right panel.

to allow replicate data to be simulated. Here is the snippet of code to add

to our original JAGS code to do this:

for (i in 1:N) {

compp[i] ~ dcat(pc[1:K]) ## assign obs to comps

mup[i] <- comp.mu[compp[i]] ## pick out comp mean

taup[i] <- comp.tau[compp[i]] ## pick out comp prec

yp[i] ~ dnorm(mup[i],taup[i]) ## pred. of y~f(y|theta)

}

So yp now contains new data simulated according to the posterior distribu-

tion of the model parameters (note that the auxilliary variables are drawn

anew and not from their posterior). Having set this model up, exactly as

before, we would sample from it, monitoring yp

um <- jags.samples(jam,c("yp"),n.iter=n.sim,thin=10)

To compare the posterior predictive distribution to that of the actual data we

could look at QQ-plots, plot(q,sort(y)), based on quantile estimates

q <-quantile(um$yp[,,1],((0:81)+.5)/82). Figure 6.20 shows such

plots for K = 2 to 4. More formally we could use the posterior pre-

dictive sample in yp to form the empirical c.d.f. of y, and then compute

ui = F̂−1(yi), which should be indistinguishable from U(0, 1) if the

model is correct. Here is some code to compute such ui and to test them

for unifomity using a standard Kolmogorov-Smirnov test:

n <- length(as.numeric(um$yp[,,1]))

uq <- (1:n-0.5)/n

u <- approx(sort(um$yp[,,1]),uq,y)$y

ks.test(u,"punif")

The resulting p-value of 0.32 provides no evidence that the galaxy data
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Figure 6.21 Trace plots from the urchin model of Section 6.6.5,
simulated using JAGS. There is clear negative correlation between
omega and mug, with consequent slow mixing of these chains.

are not from a three component mixture, although the corresponding QQ-

plot shows some deviation from a straight line. A two component mixture

gives a quite ugly QQ-plot and a lower p-value, but still not into the firmly

rejectable range. By four components the p-value is over 0.98 and the QQ-

plot pretty much a straight line. Five components yields a marginally higher

p-value, after which it starts to decline again. So with even the slightest

preference for simplicity we would select the four component mixture, al-

though it is hard to rule out a lower K given these data. See Gelman et al.

(2013) for much more on checking via posterior model simulation.

6.6.5 JAGS urchin growth example

Now consider the urchin growth model of Section 5.4, but with vague

gamma priors on the variance parameters and normal priors on mean pa-

rameters. Here is the JAGS model specification file (urchin.jags), where

because the distributional assumption is on the square root of the observed



6.6 Graphical models and automatic Gibbs sampling 181

volume, we need a data section in the model specification in order to im-

plement the square root transformation:9

data {

for (i in 1:N) { rv[i] <- sqrt(v[i])}

}

model {

for (i in 1:N) {

p[i] ~ dlnorm(mup,taup)

g[i] ~ dlnorm(mug,taug)

am[i] <- log(p[i]/(g[i]*omega))/g[i]

murv[i] <- (a[i] < am[i])*sqrt(omega*exp(g[i]*a[i])) +

(a[i] >= am[i])*sqrt(p[i]/g[i] + p[i]*(a[i]-am[i]))

rv[i] ~ dnorm(murv[i],tauv)

}

tauv ~ dgamma(1.0,.1)

taup ~ dgamma(1.0,.1)

taug ~ dgamma(1.0,.1)

mup ~ dnorm(0,0.0001)

mug ~ dnorm(0,0.0001)

omega ~ dgamma(1.0,.1)

}

Note that log(p[i]) ~ dnorm(mup,taup) cannot be used in place of

p[i] ~ dlnorm(mup,taup), and TRUE/FALSE are interpreted as 1/0 in

arithmetic expressions. Here is some code to set up and simulate from this

model, assuming data in dataframe uv:

N <- nrow(uv)

jan <- jags.model("urchin.jags",

data=list(v=uv$vol,a=uv$age,N=N))

um <- jags.samples(jan,c("mup","mug","taup","taug",

"omega","tauv"),n.iter=100000,thin=100)

Mixing is slow for omega and mug, which appear to have high posterior

correlation (correlation coefficient -0.9): see the trace plots in Figure 6.21.

Now let us look at the predicted urchin volumes for two draws from the

model, overlaid on the observed volumes:

rn <- jags.samples(jan,c("murv"),n.iter=1001,thin=1000)

par(mfrow=c(1,2))

plot(uv,col="grey",pch=19);

points(uv$age,rn$murv[,1,]^2,pch=19,cex=.5)

plot(uv,col="grey",pch=19);

points(uv$age,rn$murv[,2,]^2,pch=19,cex=.5)

The results are shown in Figure 6.22 and look reasonably plausible. It

would also be worth simulating volumes from the posterior distribution

of the model parameters by adding a replicate loop into the JAGS code,

9 This is slightly different from the way BUGS deals with data transformation.
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Figure 6.22 Two draws from the posterior distribution of the
urchin volumes, shown as black dots overlaid on the data shown
as grey circles.

which is like the existing loop but with p, g, am, murv and rv replaced by

predictive versions pp, gp, amp, murvp and rvp, respectively. rvp could

then be monitored and compared to the original root volume data.

Exercises

6.1 The nhtemp data introduced in Section 2.1 can be modelled using the tα
based model given as the second example in that section.

a. Write a Metropolis Hastings sampler to simulate from the posterior of

µ, σ and α, assuming improper uniform priors on µ and σ, but a proper

geometric prior with p = 0.05 for α− 1.

b. Check that the chains have converged.

c. Check the feasibility of the model with the aid of simulated new data

from the posterior.

d. Produce an alternative model in which µi increases linearly with year,

sample from the posterior distribution of the parameters in this case, and,

by producing an appropriate credible interval, test whether there is evi-

dence that average temperature is changing over the years.

e. Compare DIC values for the two versions of the model, and check whether

they imply the same conclusion as the credible interval in this case.

6.2 Repeat the analysis from question 6.1 using JAGS.

6.3 Produce code to reproduce Figure 6.10 from Section 6.5.2, and investigate

the use of the final improved proposal scheme of Section 6.5.3 using this

example (of course in this case a static multivariate normal proposal would

be optimal!)

6.4 Use JAGS to simulate from the posterior of the parameters of the bone mar-

row survival model given in Example 4 of Section 2.1. Use vague priors.
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6.5 Model (6.6) in Section 6.4 can produce highly nonlinear ‘chaotic’ dynamics

for sufficiently large values of r.

a. Simulate a time series of 50 data points from (6.6), using r = 3.8, K =

20, N0 = 10, and assuming that what is actually observed is not Nt, but

rather Yt ∼ Poi(Nt).

b. Write code to simulate from the posterior of the model parameters, given

the simulated yt, bearing in mind that the interpolation required in Sec-

tion 6.4 is not needed here, although it is still sensible to work in terms

of nt = logNt rather than directly in terms of et.

c. Once the sampler is working, try writing a sampler that works in terms

of et rather than nt, and try to work out why it mixes so badly.

6.6 Produce a better model of the geyser data from the MASS library, intro-

duced in Exercise 5.6, using both waiting times and duration of the

eruptions. Sample from the posterior density of its parameters.
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Linear models

This book has focused on general statistical methods that can be used with

non standard models for statistical inference. This generality comes at the

price of approximation, either through resort to large sample theory, in

the case of most applications of maximum likelihood estimation, or use

of stochastic simulation (or Laplace approximation) in the case of most

Bayesian analyses. There is, however, one class of widely used statistical

models for which inference, given the model, does not rely on approxima-

tion. These are linear models, and this chapter briefly covers their general

theory and use.

A linear model is one in which a response vector y is linear in some

parameters β and some zero mean random errors ǫ, so that

y = Xβ + ǫ.

The model matrix X is determined by some known predictor variables

(also known as covariates1), observed along with each response observa-

tion yi. Usually the elements of ǫ are assumed to be mutually independent

with constant variance σ2. For the purposes of finding confidence intervals

and testing hypotheses for β, the ǫi are also assumed to have a normal

distribution.

Two types of predictor variable form the basic ingredients of X.

1. Metric predictor variables are measurements of some quantity that may

help to predict the value of the response. For example, if the response is

the blood pressure of patients in a clinical trial, then age, fat mass and

height are potential metric predictor variables.

2. Factor variables are labels that serve to categorize the response mea-

surements into groups, which may have different expected values. Con-

tinuing the blood pressure example, factor variables might be sex and

1 Response and predictor variables are sometimes known as ‘dependent’ and

‘independent’ variables, a particularly confusing terminology, not used here.

184
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drug treatment received (drug A, drug B or placebo, for example). Some-

what confusingly, the groups of a factor variable are referred to as levels

although the groups generally have no natural ordering, and even if they

do, the model structure ignores it.

To understand the construction of X it helps to consider an example. Sup-

pose that along with yi we have metric predictor variables xi and zi and

factor variable gi, which contains labels dividing yi into three groups. Sup-

pose further that we believe the following model to be appropriate:

yi = γgi + α1xi + α2zi + α3z
2
i + α4zixi + ǫi, i = 1, . . . , n,

where there is a different γ parameter for each of the three levels of gi.
Collecting the γ and α parameters into one vector, β, we can rewrite the

model in matrix-vector form as

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where y1 - y3 are in group 1, y4 is in group 2, and yn is in group 3 of

the factor g. Notice how the factor levels/groups each get a dummy in-

dicator column in the model matrix, with elements showing whether the

corresponding yi belongs to the group or not. Notice also how the metric

variables can enter the model nonlinearly: the model is linear in the param-

eters and error term, but not necessarily in the predictors.

7.1 The theory of linear models

This section shows how the parameters, β, of the linear model

µ = Xβ, y ∼ N(µ, Inσ
2) (7.1)

can be estimated by least squares. It is assumed that X is a matrix, with

n rows, p columns and rank p (n > p). It is also shown that the resulting

estimator, β̂, is unbiased and that, given the normality of the data, β̂ ∼
N(β, (XTX)−1σ2). Results are also derived for setting confidence limits
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on parameters and for testing hypotheses about parameters: in particular

the hypothesis that several elements of β are simultaneously zero.

In this section it is important not to confuse the length of a vector with

its dimension. For example (1, 1, 1)T has dimension 3 and length
√
3. Also

note that no distinction has been made notationally between random vari-

ables and particular observations of those random variables: it is usually

clear from the context which is meant.

7.1.1 Least squares estimation of β

Point estimates of the linear model parameters, β, can be obtained by the

method of least squares; that is, by minimising the residual sum of squares

S =
n
∑

i=1

(yi − µi)
2,

with respect to β, where µ = Xβ. This fitting objective follows directly

from the log likelihood for the model, but even without the assumption of

normality, the Gauss-Markov theorem says that minimising S w.r.t. β will

produce the minimum variance linear unbiased estimator of β.

To use least squares with a linear model, written in general matrix-vector

form, first recall the link between the Euclidean length of a vector and the

sum of squares of its elements. If v is any vector of dimension, n, then

‖v‖2 ≡ vTv ≡∑n
i=1 v

2
i . Hence

S = ‖y − µ‖2 = ‖y −Xβ‖2.

Since S is simply the squared (Euclidian) length of the vector y−Xβ,

its value will be unchanged if y −Xβ is rotated or reflected. This obser-

vation is the basis for a practical method for finding β̂ and for developing

the distributional results required to use linear models.

Specifically, as with any real matrix, X can always be decomposed

X = Q

[

R

0

]

= QfR, (7.2)

where R is a p×p upper triangular matrix,2 and Q is an n×n orthogonal

matrix, the first p columns of which form Qf . Recall that orthogonal ma-

trices rotate/reflect vectors, but do not change their length. Orthogonality

also means that QQ
T = QTQ = In. Multiplying y−Xβ by QT implies

2 That is, Ri,j = 0 if i > j. See also Section B.5.



7.1 The theory of linear models 187

that

‖y −Xβ‖2 = ‖QTy −QTXβ‖2 =
∥

∥

∥

∥

QTy −
[

R

0

]

β

∥

∥

∥

∥

2

.

Defining p vector f and n− p vector r so that

[

f

r

]

≡ QTy, yields3

‖y −Xβ‖2 =
∥

∥

∥

∥

[

f

r

]

−
[

R

0

]

β

∥

∥

∥

∥

2

= ‖f −Rβ‖2 + ‖r‖2.

The length of r does not depend on β and ‖f −Rβ‖2 can be reduced to

zero by choosing β so that Rβ equals f . Hence,

β̂ = R−1f (7.3)

is the least squares estimator of β. Notice that ‖r‖2 = ‖y − Xβ̂‖2, the

residual sum of squares for the model fit.

7.1.2 The distribution of β̂

The distribution of the estimator, β̂, follows from that of QTy. Multivari-

ate normality of QTy follows from that of y, and since the covariance

matrix of y is Inσ
2, the covariance matrix of QTy is

VQTy = QTInQσ2 = Inσ
2.

Furthermore,

E

[

f

r

]

= E(QTy) = QTXβ =

[

R

0

]

β

⇒ E(f) = Rβ and E(r) = 0.

So we have that

f ∼ N(Rβ, Ipσ
2) and r ∼ N(0, In−pσ

2)

with both vectors independent of each other.

Turning to the properties of β̂ itself, unbiasedness follows immediately:

E(β̂) = R−1E(f) = R−1Rβ = β.

3 If the final equality is not obvious recall that ‖x‖2 =
∑

i
x2

i , so if x =

[

v

w

]

,

‖x‖2 =
∑

i
v2i +

∑

i
w2

i = ‖v‖2 + ‖w‖2.
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Since the covariance matrix of f is Ipσ
2, it also follows from (1.5) in Sec-

tion 1.5.1 that the covariance matrix of β̂ is

Vβ̂ = R−1IpR
−Tσ2 = R−1R−Tσ2. (7.4)

Furthermore, since β̂ is just a linear transformation of the normal random

vector f , it must have a multivariate normal distribution:

β̂ ∼ N(β,Vβ̂).

This result is not usually directly useful for making inferences aboutβ, be-

cause σ2 is generally unknown and must be estimated, thereby introducing

an extra component of variability that should be accounted for.

7.1.3 (β̂i − βi)/σ̂β̂i ∼ tn−p

This section derives a result that is generally useful for testing hypotheses

about individual βi, as well as for finding confidence intervals for βi. Since

the n− p elements of r are i.i.d. N(0, σ2) random variables,

1

σ2
‖r‖2 = 1

σ2

n−p
∑

i=1

r2i ∼ χ2
n−p

(see Section A.1.2). The mean of a χ2
n−p r.v. is n − p, so this result is

sufficient (but not necessary) to imply that

σ̂2 = ‖r‖2/(n− p) (7.5)

is an unbiased estimator of σ2. The independence of the elements of r and

f also implies that β̂ and σ̂2 are independent.4

Now consider a single-parameter estimator, β̂i, with standard deviation,

σβ̂i
, given by the square root of element i, i of Vβ̂ . An unbiased estimator

of Vβ̂ is V̂β̂ = Vβ̂σ̂
2/σ2 = R−1R−Tσ̂2, so an estimator, σ̂β̂i

, is given

by the square root of element i, i of V̂β̂ , and it is clear that σ̂β̂i
= σβ̂i

σ̂/σ.

Hence, using Section A.1.3,

β̂i − βi
σ̂β̂i

=
β̂i − βi
σβ̂i

σ̂/σ
=

(β̂i − βi)/σβ̂i
√

1
σ2 ‖r‖2/(n− p)

∼ N(0, 1)
√

χ2
n−p/(n − p)

∼ tn−p

(7.6)

(where the independence of β̂i and σ̂2 has been used). This result enables

4 Recall that ‖r‖2 = ‖y −Xβ̂‖2.
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confidence intervals for βi to be found and is the basis for hypothesis tests

about individual βis (for example, H0 : βi = 0).

7.1.4 F-ratio results

It is also of interest to obtain distributional results for testing, for exam-

ple, the simultaneous equality to zero of several model parameters. Such

tests are particularly useful for making inferences about factor variables

and their interactions, because each factor (or interaction) is typically rep-

resented by several elements of β. Suppose that we want to test

H0 : µ = X0β0 against H1 : µ = Xβ,

where X0 is ‘nested’ within X (meaning that Xβ can exactly match any

X0β0, but the reverse is not true). Without loss of generality we can as-

sume that things are actually arranged so that X = [X0 : X1]: it is always

possible to re-parameterise the model so that this is the case. Suppose that

X0 and X1 have p − q and q columns, respectively, and let β0 and β1

be the corresponding subvectors of β. The null hypothesis can hence be

rewritten as H0 : β1 = 0.

Now consider (7.2), the original QR decomposition of X, in partitioned

form:

X = Q

[

R

0

]

⇒ QTX =

[

R

0

]

⇒ QT[X0 : X1] =

[

R̃0 : R1

0

]

⇒ QTX0 =

[

R̃0

0

]

,

where R̃0 is the first p− q columns of R. Since R is upper triangular, the

last q rows of R̃0 are 0, so let R0 denote the first p− q rows of R̃0 (i.e. the

first p− q rows and columns of R). Rotating y−X0β0 using QT implies

that

‖y−X0β0‖2 =
∥

∥

∥

∥

QTy−
[

R0

0

]

β0

∥

∥

∥

∥

2

= ‖f0−R0β0‖2+‖f1‖2+‖r‖2,

where QTy has been partitioned into f and r, exactly as before, but f

has then been further partitioned into p − q vector f0 and q vector f1 so

that f =

[

f0
f1

]

. Since the residual sum of squares for this null model is

now ‖f1‖2 + ‖r‖2, ‖f1‖2 is the increase in the residual sum of squares

that results from dropping X1 from the model (i.e. from setting β1 = 0).
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That is, ‖f1‖2 is the difference in residual sum of squares between the ‘full

model’ and the ‘null model’.

Now, we know that f ∼ N(Rβ, Ipσ
2), but in addition we know that

β1 = 0 under H0 (i.e. the last q elements of β are zero). Hence

E

[

f0
f1

]

= Rβ = (R̃0 : R1)

[

β0

β1

]

= (R̃0 : R1)

[

β0

0

]

= R̃0β0 =

[

R0

0

]

β0 =

[

R0β0

0

]

.

So, if H0 is true, E(f1) = 0 and f1 ∼ N(0, Iqσ
2). Consequently

1

σ2
‖f1‖2 ∼ χ2

q.

We also know that f1 and r are independent. So, forming an F-ratio statis-

tic, assuming H0 and using Section A.1.4, we have

F =
‖f1‖2/q

σ̂2
=

1
σ2 ‖f1‖2/q

1
σ2 ‖r‖2/(n − p)

∼
χ2
q/q

χ2
n−p/(n − p)

∼ Fq,n−p, (7.7)

and this result can be used to find the p-value for the hypothesis test.

Remember that the term ‖f1‖2 is the difference in residual sum of squares

between the two models being compared, and q is the difference in their

degrees of freedom. So we could also write F as

F =
(‖y −X0β̂0‖2 − ‖y −Xβ̂‖2)/{dim(β)− dim(β0)}

‖y −Xβ̂‖2/{n − dim(β)}
.

7.1.5 The influence matrix

One useful matrix is the influence matrix (or hat matrix) of a linear model.

This is the matrix that yields the fitted value vector, µ̂, when post-multiplied

by the data vector, y. Recalling the definition of Qf , as being the first p
columns of Q, f = QT

f y, and so

β̂ = R−1QT
f y.

Furthermore µ̂ = Xβ̂ and X = QfR so

µ̂ = QfRR−1QT
f y = QfQ

T
f y.

So the matrix A ≡ QfQ
T
f is the influence (hat) matrix such that µ̂ = Ay.

The influence matrix has two interesting properties. First, the trace of the
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influence matrix is the number of (identifiable) parameters in the model,

since

tr(A) = tr(QfQ
T
f ) = tr(QT

f Qf ) = tr(Ip) = p.

Second, AA = A, a property known as idempotency. Proof is simple:

AA = QfQ
T
fQfQ

T
f = QfIpQ

T
f = QfQ

T
f = A.

7.1.6 The residuals, ǫ̂, and fitted values, µ̂

The influence matrix is helpful in deriving properties of the fitted values, µ̂,

and the residuals, ǫ̂. µ̂ is unbiased, since E(µ̂) = E(Xβ̂) = XE(β̂) =
Xβ = µ. The covariance matrix of the fitted values is obtained from the

fact that µ̂ is a linear transformation of the random vector y, which has

covariance matrix Inσ
2, so that, using (1.5) from Section 1.5.1,

Vµ̂ = AInA
Tσ2 = Aσ2,

by the idempotence (and symmetry) of A. The distribution of µ̂ is degen-

erate multivariate normal.

Similar arguments apply to the residuals:

ǫ̂ = y − µ̂ = (I−A)y,

so

E(ǫ̂) = E(y) − E(µ̂) = µ− µ = 0.

As in the fitted value case, we have

Vǫ̂ = (In−A)In(In−A)Tσ2 = (In − 2A+AA) σ2 = (In −A)σ2.

Again, the distribution of the residuals is degenerate normal. The results for

the residuals are useful for model checking, because they allow the residu-

als to be standardised to have constant variance, if the model is correct.

7.1.7 The geometry of linear models

Least squares estimation of linear models amounts to finding the orthogo-

nal projection of the n dimensional response data y onto the p dimensional

linear subspace spanned by the columns of X. The linear model states that

E(y) lies in the space spanned by all possible linear combinations of the

columns of the n× p model matrix X, and least squares seeks the point in
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Figure 7.1 Illustration of the geometry of least squares. Left: a
straight line fit to three x, y data. Right: the space in which the y
coordinates of the data define a single point, while the columns of
the model matrix (solid and dashed line) span the subspace shown
in grey. The least squares estimate of E(y) is the orthogonal
projection of the data point onto the model subspace.

that space that is closest to y in Euclidean distance. Figure 7.1 illustrates

this geometry for the model,


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
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7.1.8 Results in terms of X

The presentation so far has been in terms of the method actually used to

fit linear models in practice (employing the QR decomposition5). By tak-

ing this approach, results (7.6) and (7.7) can be derived concisely, without

recourse to advanced linear algebra. However, for historical reasons, these

results are more usually presented in terms of the model matrix, X, rather

than the components of its QR decomposition.

First consider the covariance matrix of β̂. This becomes (XTX)−1σ2,

5 A few programs still fit models by solution of XTXβ̂ = XTy, but this is less

computationally stable than the rotation method described here, although it is a bit faster.
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which is easily seen to be equivalent to (7.4):

Vβ̂ = (XTX)−1σ2 =
(

RTQT
fQfR

)−1
σ2 =

(

RTR
)−1

σ2

= R−1R−Tσ2.

The expression for the least squares estimates is β̂ = (XTX)−1XTy,

which is equivalent to (7.3):

β̂ = (XTX)−1XTy = R−1R−TRTQT
f y = R−1QT

f y = R−1f .

It follows that the influence matrix can be written as A = X(XTX)−1XT.
These results are of theoretical interest, but should not usually be used for

computational purposes.

7.1.9 Interactions and identifiability

The preceding theory assumed that X has full rank. When working with

factors some care is required to ensure that this happens. The issue is easiest

to appreciate by considering the simple linear model

yi = α+ γk(i) + ǫi,

where α and the γk are parameters while k(i) gives the group to which

observation i belongs. Conceptually this model makes good sense: α is the

overall mean, whereas γk is the departure from the overall mean caused by

being a member of the kth group. The problem is that α and the γk are not

identifiable. Any constant c could be added to α and simultaneously sub-

tracted from all the γk, without changing the model-predicted distribution

of the yi. Hence there is no way that the model parameters can uniquely be

determined from the data. This lack of identifiability leads directly to rank

deficiency of X, as is easily seen by writing out an example of the model

matrix. Suppose, arbitrarily, that there are three groups, so that

X =





























1 1 0 0
1 . . .
1 1 0 0
1 0 1 0
1 . . .
1 0 1 0
1 0 0 1
1 . . .
1 0 0 1





























.
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Any column of X is a simple linear combination of the other three, so

that the matrix is rank 3. The lack of identifiability can be removed by

placing a single linear constraint on the model parameters, the simplest

of which is to set one of the parameters to zero. This could be α, but a

choice that generalises to multiple factor models is to leave α free and to

set the first level of the factor to zero, thereby removing the corresponding

column of the model matrix and restoring full rank. If you write out an

example model with m factor variables and an intercept, you will see that

m constraints are required. Setting the first level of each factor to zero is

a simple automatic way of generating them and is also the default in R.

Notice that these constraints do not change what the model says about the

distribution of the response. All that changes is the interpretation of the

parameters: α is now the mean for the first level of the factor, whereas the

γ2, γ3, etc. are the differences between each of the factor levels and the

first.

Often in linear models we are interested in ‘interaction’ terms involving

several predictors. Formally an interaction is generated in a model when

the parameter for one predictor variable depends on another predictor vari-

able (for example, the slope of a regression on age itself depends on the

factor variable sex). It turns out that the model matrix columns associated

with an interaction are given by all possible pairwise products of the model

matrix columns for the effects that make up the interaction. Furthermore,

if those effects are identifiable (perhaps by having had constraints imposed

already), then the interactions constructed in this way are also identifiable.

This is assuming that the data are sufficient to estimate the effect: for ex-

ample, we cannot estimate the interaction coefficient associated with being

over 50 and exercising for more than five hours a week from a sample that

contains no individuals in this category.

As an example, consider a model with two factors and one metric vari-

able, with an interaction of the factors and of the first factor with the metric

variable. To save ink suppose that each factor has two levels. The model is

yi = α+ γk(i) + δj(i) + ηk(i),j(i) + νxi + ωk(i)xi + ǫi.

Suppose there are 14 observations, the first 8 from the first level of the first

factor, and the remainder from the second level, and that observations al-

ternate between levels 1 and 2 of the second factor. Then the rank-deficient

full model matrix is shown on the left, while a full rank version is shown

on the right, using the simple constraints just described:
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
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






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















1 1 0 1 0 1 0 0 0 x1 x1 0
1 1 0 0 1 0 0 1 0 x2 x2 0
1 1 0 1 0 1 0 0 0 x3 x3 0
1 1 0 0 1 0 0 1 0 x4 x4 0
1 1 0 1 0 1 0 0 0 x5 x5 0
1 1 0 0 1 0 0 1 0 x6 x6 0
1 1 0 1 0 1 0 0 0 x7 x7 0
1 1 0 0 1 0 0 1 0 x8 x8 0
1 0 1 1 0 0 1 0 0 x9 0 x9
1 0 1 0 1 0 0 0 1 x10 0 x10
1 0 1 1 0 0 1 0 0 x11 0 x11
1 0 1 0 1 0 0 0 1 x12 0 x12
1 0 1 1 0 0 1 0 0 x13 0 x13
1 0 1 0 1 0 0 0 1 x14 0 x14
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1 0 1 0 x2 0
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1 0 1 0 x4 0
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1 0 0 0 x7 0
1 0 1 0 x8 0
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1 1 1 1 x10 x10
1 1 0 0 x11 x11
1 1 1 1 x12 x12
1 1 0 0 x13 x13
1 1 1 1 x14 x14
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Now consider a general n × p model matrix, X, of rank r < p, with

corresponding parameter vector β. All that least squares does is to find the

point in the space spanned by the columns of X that is as close as possi-

ble to y (in the Euclidean sense). So we could remove the rank-deficiency

problem by defining β = Cβ̃, where C is any p × r matrix such that

X̃ = XC is of (full) rank r. β̃ is the r vector of constrained parame-

ters and X̃ the corresponding model matrix. This observation implies that

we have considerable freedom to define constraint matrices C so that the

constrained parameters are interpretable. These alternative constrained pa-

rameterisations are known as alternative contrasts.

7.2 Linear models in R

The lm function in R is used to fit linear models to data and is the prototype

for a large number of other functions for fitting standard classes of models.

The first argument to lm is a model formula that specifies the response vari-

able and the structure of the model matrix. The second, optional, argument

is a dataframe containing the variables referred to by the model formula.

lm estimates the model using exactly the QR method covered earlier, hav-

ing first imposed any necessary identifiability constraints. It returns a fitted

model object of class "lm".

The returned fitted model object can be interrogated by various method

functions for printing, summarizing, producing residual plots and so on.

Here is a short example in which data are simulated from

yi = α+ γk(i) + δxi + ǫi,

and the parameters are then estimated from the resulting data by least

squares:

> set.seed(0);g <- rep(1:3,10); x <- runif(30)

> y <- 1 + x + g + rnorm(30) * 0.5

> g <- factor(g)
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> dat <- data.frame(y=y,g=g,x=x)

>

> mod <- lm(y ~ g + x,dat)

> mod ## causes print method to be called for mod

Call:

lm(formula = y ~ g + x, data = dat)

Coefficients:

(Intercept) g2 g3 x

2.0362 0.9812 2.1461 0.8590

The structure of the model is specified using the formula y ~ g + x, where

the fact that g is declared to be of class "factor" causes it to be treated as

such in the model fitting. lm has automatically implemented identifiability

constraints here, setting the first coefficient for factor g to zero, so that the

intercept is now the intercept for level 1 of factor g.

A more extensive summary of the model can also be obtained as follows:

> summary(mod)

Call:

lm(formula = y ~ g + x, data = dat)

Residuals:

Min 1Q Median 3Q Max

-0.64293 -0.26466 -0.07511 0.27505 0.89931

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.0362 0.2023 10.067 1.84e-10 ***
g2 0.9812 0.1873 5.237 1.80e-05 ***
g3 2.1461 0.1849 11.605 8.76e-12 ***
x 0.8590 0.2579 3.331 0.0026 **
---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1

Residual standard error: 0.411 on 26 degrees of freedom

Multiple R-squared: 0.8436, Adjusted R-squared: 0.8256

F-statistic: 46.75 on 3 and 26 DF, p-value: 1.294e-10

After printing the model call and a summary of the residual distribution, the

coefficient table gives the parameter estimates and their standard errors, as

well as a t statistic for testing each parameter for equality to zero and the

p-value for such a test (based on Section 7.1.3). Notice how coefficients are

identified by the name of the predictor variable with which they are associ-

ated (R knows nothing about what we might choose to call the coefficients;

it only knows about the associated variables). The output from this table
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can also be used to compute confidence intervals for the model coefficients

using the results from Section 2.7. The Residual standard error is σ̂,

and the F-statistic is the F-ratio for testing the null hypothesis that a

constant is as good a model for the mean response as the model actually

fitted. The associated p-value suggests not, in this case.

The R-squared statistics are measures of how closely the model fits the

response data. The idea is that, after fitting, the part of the variability left

unexplained is the variability of the residuals, so the proportion of variabil-

ity unexplained is the ratio of the residual variance to the original variance

of the yi. One minus the unexplained variance is the explained variance

r2 = 1−
∑

i ǫ̂
2
i/n

∑

i(yi − ȳ)2/n
.

This conventional definition (from which the n’s can be cancelled) uses

biased variance estimators. As a result r2 tends to overestimate how well a

model is doing. The adjusted r2 avoids this overestimation to some extent

by using unbiased estimators,

r2adj = 1−
∑

i ǫ̂
2
i/(n− p)

∑

i(yi − ȳ)2/(n− 1)
,

where p is the number of model parameters. r2adj can be negative.6

High r2 values (close to 1) indicate a close fit, but a low r2 is not neces-

sarily indicative of a poor model: it can simply mean that the data contain

a substantial random component.

7.2.1 Model formulae

In R, model formulae are used to specify the response variable and model

structure. Consider the example

y ~ x + log(z) + x:z

The variable to the left of ~ specifies the response variable, whereas every-

thing to the right specifies how to set up the model matrix. ‘+’ indicates

to include the variable to the left of it and the variable to the right of it (it

does not mean that they should be summed). ‘:’ denotes the interaction of

the variables to its left and right. So if x is a metric variable then the above

formula specifies:

yi = β1 + β2xi + β3 log(zi) + β4xizi + ǫi

6 This occurs when the fit of the model to data is purely imaginary.
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whereas if x is a factor variable the model is

yi = β1 + γk(i) + β2 log(zi) + αk(i)zi + ǫi.

Notice how an intercept term is included by default.

In addition to ‘+’ and ‘:’ several other symbols have special meanings

in model formulae:

• ‘*’ means to include main effects and interactions, so a * b is the same

as a + b + a:b.

• ‘^’ is used to include main effects and interactions up to a specified level.

So (a+b+c)^2 is equivalent to a + b + c + a:b + a:c + b:c, for

example, while (a+b+c)^3 would also add a:b:c. Notice that this oper-

ator does not generate all the second-order terms you might be expecting

for metric variables.

• ‘-’ excludes terms that might otherwise be included. For example, -1

excludes the intercept otherwise included by default, and x * z - z

would produce x + x:z.

As we have seen, you can use simple mathematical functions in model

formulae to transform variables, but outside the argument to a function the

usual arithmetic operators all have special meanings. This means that if we

want to restore the usual arithmetic meaning to an operator in a formula,

then we have to take special measures to do this, by making the expression

the argument of the identity function I(). For example, y ~I(x+z) would

specify the model yi = α+β(xi+zi)+ǫi. Occasionally the model matrix

should include a column for which the corresponding β coefficient is fixed

at 1. Such a column is known as an offset: offset(z) would include a

column, z, of this type. See ?formula in R for more details.

7.2.2 Model checking

As with all statistical modelling it is important to check the plausibility of

a linear model before conducting formal statistical inference. It is pointless

computing AIC, testing hypotheses or obtaining confidence intervals for a

model that is clearly wrong, because all these procedures rest on the model

being at least plausible. For linear models the key assumptions are those of

constant variance and independence, and the residuals should be examined

for any evidence that these have been violated. Normality of the residuals

should also be checked, if the other assumptions are viable, but the central

limit theorem tends to mean that normality is of only secondary importance

to the other assumptions.
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Figure 7.2 Leverage: the basic problem. The solid black line
shows the least squares straight line fit to the 100 data shown as
open circles. In this case the fit is reasonable for all the data. The
dashed line shows the least squares straight line fit when the point
at x = 10 is moved to the position shown as a solid black disc. To
accommodate the datum far from the other points, the line has
been forced to fit the remaining 99 data rather poorly.

Often the constant variance assumption is violated because the variance

actually depends on the mean of the response, so plots of ǫ̂i against µ̂i, can

be very useful. Independence tends to be violated when observations that

are nearby in space or time are correlated, or when something is wrong with

the mean structure of the model, such as a predictor having been omitted,

or included incorrectly (specified as a linear effect when a quadratic was

appropriate, for example). Plots of residuals against predictors and poten-

tial predictors are useful, as well as estimation of the degree of correlation

in space and time.

Another thing to check is whether some individual observations are hav-

ing undue influence on the modelling results. Points with very large resid-

uals can sometimes be problematic: perhaps they are recorded incorrectly

or are observations that simply do not belong in the same population as the

rest of the data. Large outliers should be investigated. Sometimes there is

something wrong with the corresponding observations, justifying exclusion

of these points from the analysis, but sometimes, on closer investigation,

these are the observations that contain the most interesting information

in the dataset. If there appears to be nothing unusual about outliers apart
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Figure 7.3 Default model checking plots for the cars model
discussed in Section 7.2.2. The left-hand plots both suggest
increasing variance with the mean and the top right plot indicates
some departure from normality in the residuals. The lower right
plot suggests that, although a couple of points have rather high
leverage, their actual influence on the fit is not unduly large.

from them being outliers, then it is prudent to repeat the analysis with and

without them, to check the sensitivity of conclusions to these points. How-

ever, outliers should almost never be discarded simply for being outliers

(if Geiger and Marsden had discarded the outliers in Rutherford’s 1909

experiment, they would have left the nucleus of the atom undiscovered).

A related issue is that of leverage: some points have undue influence

not because their response variable is noticeably out of line, but because

an unusual combination of predictor variables makes the whole fit unduly

sensitive to the value of the corresponding response observation. Figure 7.2

illustrates this issue.

As an example of some basic model checking, consider a model for the

cars data supplied with R. The data give stopping distance in feet for

cars stopping from a range of speeds in miles per hour and were gathered

in the 1920s. Theoretically the stopping distance for a car is made up of

a driver reaction distance and a braking distance. The former comes from

the fixed length of time taken for the driver to respond to the stop signal
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and apply the brakes, so this distance should be directly proportional to

speed. Once the brakes are applied, the distance is determined by the rate

at which the brakes can dissipate the car’s kinetic energy. Brakes dissipate

kinetic energy in direct proportion to the distance travelled, and the total

amount of energy to dissipate is proportional to the square of speed, so this

component of the distance should be proportional to initial speed squared,

suggesting a model

disti = β0 + β1speedi + β2speed
2
i + ǫi

(if the reasoning behind the model is correct then β0 should be approxi-

mately zero). Let us fit this model to the cars data and then examine the

default residual plots for an "lm" object:

b <- lm(dist ~ speed + I(speed^2),data=cars)

par(mfrow=c(2,2))

plot(b)

Figure 7.3 shows the results. The top left plot of ǫ̂i against µ̂i shows some

indication of increasing variance with mean, which would somewhat vio-

late the constant variance assumption, although the effect is not extreme

here. The other feature to look for is a pattern in the average value of

the residuals as the fitted values change. The solid curve shows a run-

ning average of the residuals to help judging this: there is no obvious pat-

tern here, which is good. The remaining plots shows standardised residuals

ǫ̂i/(σ̂
√
1−Aii), which should appear approximately N(0, 1) distributed

if the model is correct (see Section 7.1.6). The lower left plot shows the

square root of the absolute value of the standardised residuals against the

fitted value (again with a running average curve). If all is well, the points

should be evenly spread with respect the vertical axis here, with no trend

in their average value. A trend in average value is indicative of a problem

with the constant variance assumption, and is clearly visible in this case.

The top right plot shows the ordered standardised residuals against quan-

tiles of a standard normal: the systematic deviation from a straight line at

the top right of the plot indicates a departure from normality in the residu-

als. The lower right plot is looking at leverage and influence of residuals,

by plotting standardised residuals against a measure of leverage, Aii. A

combination of high residuals and high leverage indicates a point with sub-

stantial influence on the fit. A standard way of measuring this is via Cook’s

distance, which measures the change in all model fitted-values on omission

of the data point in question. It turns out that Cook’s distance is a function

of Aii and the standardised residuals, so contours of Cook’s distance values

are shown on the plot. Cook’s distances over 0.5 are considered borderline
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Figure 7.4 Fitted car model predictions overlaid on observed
data, as discussed in Section 7.2.3.

problematic, whereas values over 1 are usually considered highly influ-

ential, so points to the right of these contours warrant investigation. Here

there seems to be no problem.

Given these plots, an obvious model to try is one in which variability

increases with speed; for example, ǫi ∼ N(0, σ2speedi).

lm(dist ~ speed + I(speed^2),data=cars,weights=1/speed)

would fit this and does indeed improve matters, but it is time to move on,

noting that in most serious analyses we would need to plot residuals against

predictors, rather than relying solely on the default plots.

7.2.3 Prediction

After fitting a model, one common task is to predict the expected response

from the model at new values of the predictor variables. This is easy: sim-

ply use the new predictor variable values to create a prediction matrix, Xp,

in exactly the same way as the original values were used to create X. Then

the predictions are µ̂p = Xpβ̂, and µ̂p ∼ N(µp,Xp(XTX)−1XpTσ2).
In R the method function predict.lm automates the process. The follow-

ing code uses it to add a predicted distance curve, with 2 standard error

bands, to a plot of the cars data:

with(cars,plot(speed,dist))

dat <- data.frame(speed = seq(0,25,length=100))

fv <- predict(b,newdata=dat,se=TRUE)
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lines(dat$speed,fv$fit)

lines(dat$speed,fv$fit + 2 * fv$se.fit,lty=2)

lines(dat$speed,fv$fit - 2 * fv$se.fit,lty=2)

The results are shown in Figure 7.4.

7.2.4 Interpretation, correlation and confounding

On examination of the summary of the cars model, something strange

stands out:

> summary(b)

Call:

lm(formula = dist ~ speed + I(speed^2), data = cars)

Residuals:

Min 1Q Median 3Q Max

-28.720 -9.184 -3.188 4.628 45.152

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.47014 14.81716 0.167 0.868

speed 0.91329 2.03422 0.449 0.656

I(speed^2) 0.09996 0.06597 1.515 0.136

Residual standard error: 15.18 on 47 degrees of freedom

Multiple R-squared: 0.6673, Adjusted R-squared: 0.6532

F-statistic: 47.14 on 2 and 47 DF, p-value: 5.852e-12

The p-values for all the model terms are very high, despite the fact that the

predictions from the model as a whole clearly indicate that there is good

evidence that the model is better than zero or a constant model. These p-

values cannot be taken as an indication that all the terms can be dropped

from the model, but why not? The answer is that the p-values are testing

whether the corresponding coefficients could really be zero given that the

other terms remain in the model (i.e. are nonzero). If the estimators for the

various coefficients are not independent, then dropping one term (setting it

to zero) will change the estimates of the other coefficients and hence their

p-values. For this reason, if we were to consider dropping terms then we

should drop only one at a time, refitting after each drop. It often makes

sense for the single dropped term to be the one with the highest p-value.

Only if all the coefficient estimators are independent can we dispense with

this cautious approach and drop all the terms with high p-values from a

model in one go. However, such independence usually only arises for mod-

els of ‘balanced’ data from experiments designed to achieve it.
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Lack of independence between estimators creates difficulties in the in-

terpretation of estimates. The basic issue is that correlation between pa-

rameter estimators typically arises from correlation between the variables

to which the parameters relate, but if predictor variables are correlated it

is not possible to entirely separate out their effects on the response by ex-

amining the results of model fitting. As an example, consider modelling

blood pressure in a group of patients using the predictor variables height

and weight. Here is a simple simulation in which the real driver of blood

pressure is weight, but height and weight are correlated:

n <- 50; set.seed(7)

height <- rnorm(n,180,10)

weight <- height^2/400+rnorm(n)*5

bp <- 80 + weight/2 + rnorm(n)*10

Now fit bpi = β0 + β1heighti + β2weighti + ǫi, and summarise it:

> summary(lm(bp~height+weight))

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 32.76340 30.57422 1.072 0.2894

height 0.45497 0.26894 1.692 0.0973 .

weight 0.09462 0.27248 0.347 0.7299

...

In this case most of the effect on blood pressure has been attributed to

height, basically because the correlation between height and weight is

about 0.9, so that it is not possible to determine which variable is actu-

ally driving the response. Comparison with the two single-effect models

emphasises the difficulty:

> summary(lm(bp~height))

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 25.4937 22.0782 1.155 0.254

height 0.5382 0.1209 4.453 5.05e-05 ***
...

> summary(lm(bp~weight))

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 81.3987 10.6049 7.676 6.83e-10 ***
weight 0.5054 0.1260 4.012 0.00021 ***
...

Notice how both model coefficients were modified by the presence of the

other correlated predictor (the true coefficient values being 0 for height
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and 0.5 for weight). Another way of looking at this is that height is such

a good proxy for weight in these data that we can’t tell whether weight or

its proxy is the better predictor. On reflection, the only way to determine

which is the causal variable here is to control for the other one. That is, to

find a way of comparing different heights with weight held constant, and

different weights with height held constant. Case control studies operate

this way, by trying to identify pairs of patients matched on every relevant

variable except for the variable being investigated.

The obvious related problem is the problem of hidden confounders,

which are variables not in the model that are related to both the response

and one or more of the predictors that are included. Since the included pre-

dictors act as proxies for the confounders, their coefficient estimates are

distorted by including both a component relating to their direct affect, and

a component relating to their effect as a proxy for the confounder.

The issue of hidden confounding and correlation is a major reason for

basing causal inference (such as deciding ‘does this drug work or not?’) on

designed experiments. With appropriate design we can ensure that param-

eters associated with the different effects controlled for in the experiment

are independent. Furthermore, by random allocation of experimental units

(e.g. patients) to the different levels of the factors controlled for, we can

break any association between the factor variables controlled by the exper-

iment and variables that could otherwise be confounders. See Section 2.6.

7.2.5 Model comparison and selection

The results of Section 7.1.4 allow the comparison of nested linear models

by hypothesis testing, and the R function anova automates this. As an ex-

ample consider testing the null model disti = βspeed2i + ǫi against the

full model for the cars data considered earlier. The following performs the

appropriate F-ratio test (using the variance modification suggested by the

model checking):

> b <- lm(dist~speed+I(speed^2),data=cars,weights=1/speed)

> b0 <- lm(dist~I(speed^2)-1 ,data=cars,weights=1/speed)

> anova(b0,b)

Analysis of Variance Table

Model 1: dist ~ I(speed^2) - 1

Model 2: dist ~ speed + I(speed^2)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 49 756.11

2 47 663.42 2 92.693 3.2834 0.04626 *
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so there is some evidence against the null model in this case. If anova

is called with a single argument, then a table is produced based on the

sequence of ever simpler models obtained by removing terms sequentially

from the model. Each row of the table tests one model in the sequence

against the closest more complicated model in the sequence. Such tables

only really make sense in the context of balanced designed experiments

where the effects are independent. Otherwise the drop1 function is usually

a better bet: it produces the table obtained by F-ratio test comparison of the

full model with each of the models produced by dropping a single effect

from the full model.

The AIC function compares models by AIC (see Section 4.6). For exam-

ple,

> AIC(b0,b)

df AIC

b0 2 414.8026

b 4 412.2635

which again suggests that that the larger model is preferable here. BIC is

also available.

Model selection strategies

When faced with large numbers of possible prediction terms in a model,

model comparison methods are often used to try and sort through the space

of possible models to find one that is ‘best’ in some sense. A traditional

approach is backwards selection, which starts with the ‘largest plausible

model’ and consists of repeatedly deleting the model term with the highest

p-value (as reported by drop1) and refitting, until all p-values are below

some threshold. Forward selection starts from a simple model and repeat-

edly adds in the single predictor term for which there is most evidence

in an F-ratio test, until no more terms would lead to significant improve-

ment. Forward selection is slightly problematic theoretically, because early

in the process it is likely that both models being compared are demon-

strably wrong, which invalidates the theoretical basis for the test. Perhaps

more seriously, early in the process the residual variance may be seriously

inflated as a result of important terms not yet being included in the model,

which means that the early tests lack power and termination may occur

far too soon. Pragmatically, however, it may be the only solution for large

problems. Naturally there are also backward-forward strategies, in which

cycles of backward and forward selection are alternated until convergence,

to allow terms that were dropped early on the possibility of re-entering the

model.
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Selection strategies based on hypothesis testing are somehow searching

for the simplest model compatible with the data. As an alternative to this

approach we can also use AIC to compare the alternative models. The step

function in R automates the process of backward, forward, or backward-

forward selection based on AIC. In simple cases it may also be possible to

fit all possible submodels of some initial largest model, and just select the

submodel with the smallest AIC.

Another selection approach, which has gained popularity when there are

large numbers of predictors relative to the number of data, is to penalise

the model coefficients towards zero, in such a way that as the penalization

increases, many of the coefficient estimates become zero (see e.g. Hastie

et al., 2001). For example, the model fitting problem becomes

β̂ = argmin
β

‖y −Xβ‖2 + λ
p
∑

i=1

|βi|,

where penalisation parameter λ is increased to force successively more

terms out of the model. Obviously, care must be taken to standardise the

predictors appropriately for this Lasso method to make sense.

7.3 Extensions

Linear models have proved so useful that they have been generalised in

several ways.

• Linear mixed models augment the linear model structure with a much

richer linear structure for the random variability in the data (e.g. Pinheiro

and Bates, 2000). The basic model becomes

y = Xβ + Zb+ ǫ, b ∼ N(0,ψ), ǫ ∼ N(0, Iσ2),

where β, σ2 and ψ are now parameters (ψ usually has some structure

so that it actually depends on only a small set of parameters θ). Z is

a model matrix specifying how the stochastic structure of the response

depends on the random effects, b. Inference is now based on maximum

likelihood estimation using the fact that y ∼ N(Xβ, Iσ2 + ZψZT)
(and in practice usually exploiting any special structure in Z and ψ).

One interesting and computationally useful fact is that, given the other

parameters, β̂ and the modes of b|y are the minimisers of

‖y −Xβ − Zb‖2/σ2 + bTψ−1b,

a penalized least squares problem. See lme from library nlme in R.
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• Generalised linear models (GLMs) allow the response variable to have

any exponential family distribution (Poisson, gamma, binomial, etc.)

while some nonlinearity is allowed into the mean structure (McCullagh

and Nelder, 1989). Defining µi = E(yi) a generalised linear model has

the form

g(µi) = Xiβ, yi ∼ EF(µi, φ),

where g is some known monotonic function (identity or log, for exam-

ple), Xi is the ith row of X, and EF(µi, φ) denotes some exponential

family distribution with mean µi and scale parameterφ. Xβ is known as

the linear predictor for such models and is often denoted η. Maximum

likelihood estimation theory provides the basis for model estimation and

further inference for these models, but there are many links to the lin-

ear models of this chapter. In particular, noting that for any exponential

family distribution var(yi) = V (µi)φ, where V is a known function, it

turns out that MLE by Newton’s method is equivalent to the iterative es-

timation of working weighted linear models, as follows (here using the

expected Hessian). Set µ̂i = yi + ∆i and η̂i = g(µ̂i) (where ∆i is a

small perturbation that may be made to ensure the existence of η̂i) and

iterate the following two steps to convergence:

1. For i = 1, . . . , n form η̂i = g(µ̂i), zi = g′(µ̂i)(yi − µ̂i) + η̂i, and

wi = V (µ̂i)
−1g′(µ̂i)

−2.

2. Compute

β̂ = argmin
β

n
∑

i=1

wi(zi −Xiβ)
2

and update η̂i = Xiβ̂, and µ̂i = g−1(η̂i).

At convergence (4.5) becomes β̂ ∼ N(β, (XTWX)−1φ), where W

is the diagonal matrix of converged wi (this is a large sample approxi-

mation, of course). See glm in R for fitting these models.

• Generalised additive models (GAMs) are generalised linear models in

which the linear predictor depends linearly on unknown smooth func-

tions of predictors (e.g. Wood, 2006). In general the model becomes

g(µi) = X∗
iβ

∗ +
∑

j

Lijfj , yi ∼ EF(µi, φ)

where X∗
iβ

∗ is the parametric component of the linear predictor (often

just an intercept term), the fk are smooth functions of one or more pre-

dictors, and the Lij are linear functionals. The most common example
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is where the Lij are functionals of evaluation, so that the model is

g(µi) = X∗
iβ

∗ +
∑

j

fj(xji), yi ∼ EF(µi, φ)

where xji denotes the ith observation of the jth predictor (possibly a

vector). The model is accompanied by precise characterisation of what

is meant by a smooth function, in the form of measures of function wig-

gliness such as the spline penalty
∫

f ′′(x)2dx.

The models offer convenient flexibility relative to purely parametric

GLMs, but at the cost that the functions must be estimated, which in-

cludes estimating how smooth they should be. A convenient approach

replaces each fj with a linear basis expansion fj(x) =
∑K

k=1 bjk(x)γk
where the γk are coefficients to be estimated, and the bjk(x) are basis

functions, chosen to have good approximation theoretic properties (such

as spline bases). K is chosen to strike a balance between avoiding ap-

proximation error bias and achieving computational efficiency. Given

the basis expansion, the GAM now has the form of a rather richly pa-

rameterised GLM, g(µi) = Xiβ, where X contains the originalX∗ and

columns containing each of the basis functions evaluated at the covari-

ate values (or linear functionals of these) and β contains the collected

parameters. The penalties become quadratic forms, βTSjβ, where the

Sj are matrices of known coefficients.

To avoid overfit, estimation is by penalised maximum likelihood esti-

mation, so we seek

β̂ = argmax
β

l(β)− 1

2

∑

j

λjβ
TSjβ.

The λj are tunable smoothing parameters controlling the fit-smoothness

tradeoff. In fact, given values for the smoothing parameters, β̂ can be

obtained by a penalised version of the iterative weighted least squares

method used to fit GLMs. All that changes is that at the second step of

the algorithm we have

β̂ = argmin
β

n
∑

i=1

wi(zi −Xiβ)
2 +

∑

j

λjβ
TSjβ.

To estimate the λj there are two main approaches. The first chooses the

λi to optimise an estimate of how well the model would fit new data

(not used in the estimation), such as AIC or some cross-validation score.
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The alternative treats the penalties as being induced by improper Gaus-

sian priors on the model coefficients β ∼ N{0, τ(∑j λjSj)
−} (the

covariance matrix here is a pseudoinverse of the total penalty matrix).

A Laplace approximation can then be used to integrate the β out of the

marginal likelihood for the λj and φ, and this marginal likelihood can be

maximised to estimate the scale parameter (if needed) and the smooth-

ing parameters. The computations resemble those used for estimating

the variance parameters of random effects, but some care is needed in

the interpretation. It is rarely the case that the modeller believes that the

fk would be resampled afresh from their priors on each replication of the

data, so the procedure is really best thought of as Bayesian. In any case

the fk have the dual interpretation of being smooth functions and pos-

terior modes of random fields. Inference is most usefully based on the

large-sample Bayesian result β ∼ N{β̂, (XTWX +
∑

j λjSj)
−1φ}.

See function gam in R package mgcv.

Unsurprisingly, these various extensions have been combined, yielding gen-

eralised linear mixed models (GLMMs) and generalised additive mixed

models (GAMMs), for example. Given the link between estimating smooth

functions and estimating random effects, these latter extensions are com-

putable by methods almost identical to those used for GAMs. Full Bayesian

approaches to these model classes are also available via MCMC (see e.g.

Fahrmeir et al., 2004, the stand alone BayesX package, and its R interface),

or higher order approximation based on nested Laplace approximation (see

Rue et al., 2009, the stand alone INLA package and its R interface).

Exercises

7.1 Find an expression for the least squares estimate of β in the model yi =

βxi = ǫi, in terms of xi and yi, by minimising
∑

i(yi − βxi)
2 w.r.t. β.

7.2 This question provides an alternative derivation of the least squares esti-

mates. Let S(β) denote ‖y −Xβ‖2. If XTXβ0 = XTy, show that

S(β)− S(β0) = ‖X(β − β0)‖2.

What does this tell you about β0?

7.3 Show that

σ̂2 =
‖r‖2
n− p

is an unbiased estimator of the residual variance σ2 by considering only

E(r2i ) (and not assuming normality).
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7.4 Show that, in the usual linear modelling notation, XTy = XTµ̂. Hence if a

linear model contains an intercept term, show what the sum of the residuals,
∑

i ǫ̂i, must be.

7.5 Write out the following three models in the form y = Xβ + ǫ (note: y, β

and ǫ are always vectors, whereas X is a matrix). In all cases y is the re-

sponse variable, ǫ the residual ‘error’ and other Greek letters indicate model

parameters.

a. The ‘balanced one-way ANOVA model’, yij = βi+ǫij , where i = 1 . . . 3

and j = 1 . . . 2.

b. A model with two explanatory variables: a factor variable and a continu-

ous variable, x:

yi = βj + γxi + ǫi if obs. i is from factor level j

Assume that i = 1 . . . 6, that the first two observations are for factor level

1 and the remaining four for factor level 2, and that the xi’s are 0.1, 0.4,

0.5, 0.3, 0.4 and 0.7.

c. A model with two explanatory factor variables and only one observation

per combination of factor variables: yij = α + βi + γj + ǫij . The first

factor (β) has three levels and the second factor has four levels.

7.6 A statistician has fitted two alternative models to response data yi. The

first is yi = β0 + β1xi + ǫi and the second is yi = β0 + β1xi + γj +

ǫi if yi from group j. In R the factor variable containing the group labels is

trt. The statistician wants to test the null hypothesis that the simpler model

is correct. To do this, both models are fitted in R, and a fragment of the

summary for each is shown here:

> summary(b0)

lm(formula = y ~ x)

...

Resid standard error: 0.3009 on 98 degrees of freedom

> summary(b1)

lm(formula = y ~ x + trt)

...

Resid standard error: 0.3031 on 95 degrees of freedom

In R this test could be conducted via anova(b0,b1), but instead perform

the test using just the information given (and pf in R).

7.7 Consider the cars model of Section 7.2.2. This question is about the me-

chanics of estimating that model using the QR decomposition.

a. Create a model matrix X, for the model, using the data in the cars data

frame and the model.matrix.

b. Now form the QR decomposition of X as follows

qrx <- qr(X) ## returns a QR decomposition object

Q <- qr.Q(qrx,complete=TRUE) ## extract Q

R <- qr.R(qrx) ## extract R
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c. Look at R to confirm its structure. Confirm that Q is an orthogonal matrix.

Confirm that ‖Qx‖2 = ‖x‖2 for any x of appropriate dimension, by

trying some example x’s (why does this happen?).

d. Obtain f and r (in the notation of Section 7.1.1).

e. Evaluate β̂ using R and f .

f. Confirm that ‖r‖2 = ‖y −Xβ̂‖2 for this model.

g. Estimate σ2 as σ̂2 = ‖r‖2/(n− p).

h. Using σ̂2 and R, obtain an estimate of the estimator covariance matrix

V
β̂

corresponding to β̂.

7.8 A material of unknown volume is divided into four roughly equal parts by

cutting it in two first and then cutting the resulting pieces in two. Two alterna-

tive methods of estimating the (different) volumes of each part are suggested

A. Make two estimates of the volume of each section.

B. Make two estimates of the volume of each of the 2 parts formed first, and

one estimate of the volume of the each of the 4 final pieces.

Assuming that each estimate is independent and unbiased with variance σ2,

show that the variances of the least squares estimates of the four volumes

are 0.5σ2 by method A and 0.6σ2 by method B. Hint: use the (XTX)−1σ2

form of the parameter estimator covariance matrix.

7.9 A distillery sets up and sponsors a hill race dubbed the ‘Whisky Challenge’,

for promotional purposes. To generate extra interest from elite fell runners

in the first year, it is proposed to offer a prize for every runner who com-

pletes the course in less than a set time, T0. The organisers need to set T0
high enough to generate a big field of participants, but low enough that they

do not bankrupt the distillery. To this end they approach you to come up

with a predicted winning time for the race. To help you do this, the hills

data frame in R package MASS provides winning times for 35 Scottish hill

races. To load the data and examine it, type library(MASS);hills in

R. Find and estimate a suitable linear model for predicting winning times

(minutes) in terms of race distance dist (miles) and the total height climbed

climb (feet). If you are not sure where to start look up ‘Naismith’s Rule’

on Wikipedia. The Whisky Challenge is to be a 7-mile race, with 2400 feet

of ascent.
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Some distributions

This appendix covers some standard distributions useful in the construction

of models. The gamma function occurs frequently and is defined as

Γ(x) =

∫ ∞

0

tx−1e−tdt.

See ?gamma in R to evaluate it numerically. Note that if n is a positive

integer then Γ(n) = (n− 1)!
It is also convenient to define the beta function,

B(a, b) =
∫ 1

0

ta−1(1− t)b−1dt =
Γ(a)Γ(b)

Γ(a+ b)
,

where a > 0 and b > 0 (both real). See ?beta in R.

A.1 Continuous random variables: the normal and its relatives

The normal distribution is ubiquitous in statistics, so we start with it and

its relatives.

A.1.1 Normal distribution

A random variable X follows a normal (or ‘Gaussian’) distribution with

mean µ and variance σ2 if it has probability density function

f(x) =
1√
2πσ

exp

{

− 1

2σ2
(x− µ)2

}

, −∞ < x <∞,

σ2 > 0, but µ is unrestricted. Standard notation is X ∼ N(µ, σ2). The

central limit theorem of Section 1.9 ensures the central place of the nor-

mal distribution in statistics, both as a limiting distribution of estimators

and as a reasonable model for many variables that can be characterised as
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the sum of other random variables. The multivariate normal is equally im-

portant, and is characterised in Section 1.6 (see Section 6.5.4 or B.2 for

its generation). Z ∼ N(0, 1) is a standard normal random variable. See

?dnorm in R. Continuous positive variables are often modelled as being

log-normally distributed; that is, the logarithm of the variable is assumed

normally distributed. See ?dlnorm in R.

In Bayesian statistics it is often convenient to parameterise the normal

in terms of the precision, τ = 1/σ2. The normal distribution is conjugate

for µ and the gamma distribution is conjugate for τ .

A.1.2 χ2 distribution

Let Z1, Z2, . . . , Zn be a set of independent N(0, 1) random variables.

Then X =
∑n

i=1 Z
2
i is a χ2

n random variable, with p.d.f.

f(x) =
1

2Γ(n/2)

(x

2

)n/2−1

e−x/2, x ≥ 0.

Standard notation is X ∼ χ2
n. E(X) = n and var(X) = 2n. χ2 ran-

dom variables often occur when sums of squares of random variables are

involved. The χ2
2 distribution is also the exponential distribution with λ =

1/2, and if U ∼ U(0, 1) then −2 log(U) ∼ χ2
2. Notice that the distribu-

tion is also defined for non-integer n. See ?dchisq in R.

A.1.3 t and Cauchy distributions

Let Z ∼ N(0, 1) and independently X ∼ χ2
n. Then T = Z/

√

X/n has

a t distribution with n degrees of freedom. In short T ∼ tn. The p.d.f. is

f(t) =
Γ(n/2 + 1/2)√

nπΓ(n/2)
(1 + t2/n)−n/2−1/2, −∞ < t <∞,

and n ≥ 1 need not be an integer. E(T ) = 0 if n > 1, but is otherwise

undefined. var(T ) = n/(n− 2) for n > 2, but is infinite otherwise. t∞ is

N(0, 1), whereas for n < ∞ the tn distribution is ‘heavier tailed’ than a

standard normal. t1 is also known as the Cauchy distribution. See Section

1.6.1 for a multivariate version and Section 2.7 for applications. In R see

?dt and ?dcauchy.
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A.1.4 F distributions

Let Xn ∼ χ2
n and independently Xm ∼ χ2

m.

F =
Xn/n

Xm/m

has an F distribution with n and m degrees of freedom. In short F ∼
Fn,m. The p.d.f. is

f(x) =
Γ(n/2 +m/2)nn/2mm/2

Γ(n/2)Γ(m/2)

xn/2−1

(m+ nx)n/2+m/2
, x ≥ 0.

E(F ) = m/(m − 2) if m > 2. The square root of an F1,n r.v. has a

tn distribution. The F distribution is central to hypothesis testing in linear

models and as an approximate reference distribution when using gener-

alised likelihood ratio tests in the presence of nuisance scale parameters

(see Section 2.7). See ?df in R.

A.2 Other continuous random variables

Moving beyond relatives of the normal distribution, two classes of ran-

dom variable are particularly important: non-negative random variables,

and those defined on the unit interval.

A.2.1 Beta distribution

A random variable, X , defined on the unit interval, [0, 1], has a beta distri-

bution if its p.d.f. has the form

f(x) =
xα−1(1− x)β−1

B(α, β) ,

where α > 0 and β > 0 are shape parameters. Standard notation is X ∼
Beta(α, β) (although others are used as well):

E(X) =
α

α+ β
and var(X) =

αβ

(α+ β)2(α+ β + 1)
.

In R see ?dbeta: shape1 is α and shape2 is β. The beta distribution is of-

ten used as a prior for probabilities (where it is often conjugate).Beta(1, 1)
is the uniform distribution on [0, 1] (so f(x) = 1). For the uniform, which

can be defined over any finite interval, see ?dunif in R.
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A.2.2 Gamma and exponential distributions

A positive random variable X has a gamma distribution with shape param-

eter α > 0 and scale parameter θ > 0 if its p.d.f. is

f(x) =
xα−1e−x/θ

θαΓ(α)
.

E(X) = αθ and var(X) = (αθ2). Standard notation isX ∼ Gamma(α, θ),
but beware that the distribution is often written in terms of the rate param-

eter β = 1/θ or even directly in terms of the mean of X and a scale pa-

rameter. See ?dgamma, where shape is α and scale is θ. In JAGS gamma

is parameterised using α and β, in that order.

The gamma(1, λ−1) is the exponential distribution, for which X ≥ 0
(i.e. zero is possible). Its p.d.f. simplifies to f(x) = λ exp(−λx), while

E(X) = λ−1 and var(X) = λ−2. It is useful for describing the time

between independent random events. See ?dexp in R.

A.2.3 Weibull distribution

Random variable, T , has a Weibull distribution if its p.d.f. is

f(t) =
k

λ

(

t

λ

)k−1

e−t
k/λk

, t ≥ 0

and 0 otherwise. k > 0 and λ > 0. This distribution is often used to model

time-to-failure (or other event) data, in which case the failure (event) rate

(also known as the hazard function) is given by k/λ(t/λ)k−1 .

E(T ) = λΓ(1+1/k) and var(T ) = λ2
{

Γ(1 + 2/k)− Γ(1 + 1/k)2
}

.

In R see ?dweibull where k is shape and λ is scale.

A.2.4 Dirichlet distribution

Consider X, an n vector of non-negative random variables, Xi, where
∑n

i=1 Xi = 1. X has a Dirichlet distribution with parameters α1, . . . αn if

its p.d.f. is

f(x) =
Γ(α0)

∏n
i=1 Γ(αi)

n
∏

i=1

xαi−1
i ,
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where α0 =
∑n

i=1 αi.

E(Xi) =
αi
α0

and var(Xi) =
αi(α0 − αi)

α2
0(α0 + 1)

.

The Dirichlet distribution is typically used as a prior distribution for vectors

of probabilities that must sum to 1.

A.3 Discrete random variables

A.3.1 Binomial distribution

Consider n independent trials each with probability of success p. The total

number of successes, x = 0, 1, . . . , n, follows a binomial distribution with

probability function,

f(x) =
n!

x!(n − x)!
px(1− p)n−x.

E(X) = np and var(X) = np(1− p). See ?dbinom in R.

A.3.2 Poisson distribution

Letting the binomial n → ∞ and p → 0, while holding their product

constant at np = λ, yields the Poisson distribution, with probability mass

function

f(x) =
λxe−λ

x!
,

where x can be any non-negative integer. E(X) = var(X) = λ. The

Poisson distribution is often used for count data that can be thought of as

counts of rare events. See ?dpois in R.

A.3.3 Negative binomial distribution

Often count data show higher variance than is consistent with a Poisson dis-

tribution, but if we allow the Poisson parameter, λ, to itself have a gamma

distribution, then we end up with a more dispersed count distribution: the

negative binomial. X ∼ NB(n, p) if its probability function is

f(x) =
Γ(x+ n)

Γ(n)x!
(1− p)xpn,
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where x is a non-negative integer. E(X) = n(1 − p)/p and var(X) =
n(1 − p)p2. If n → ∞ and p → 1 in such a way that E(X) is held

constant at λ, then this tends to Poi(λ). See ?dnbinom in R. In JAGS the

parameter n is known as r.

A.3.4 Hypergeometric distribution

This distribution is useful in problems involving sampling without replace-

ment. Suppose you have an urn containing m white balls and n black balls,

and you sample k balls from the urn randomly and without replacement.

The number of white balls drawn follows a hypergeometric distribution.

See ?dhyper in R.

A.3.5 Geometric distribution

Consider a sequence of independent trials, each with probability p of suc-

cess. If X is the number of failures before the first success, then it follows

a geometric distribution, with probability function

f(x) = p(1− p)x

for non-negative integers x. E(X) = (1 − p)/p while var(X) = (1 −
p)/p2. See ?dgeom in R.



Appendix B

Matrix computation

Statistical computation often involves numerical computation with matri-

ces. It is quite easy to get this wrong, producing code that is orders of mag-

nitude less efficient or less stable than could be achieved. This appendix in-

troduces the basics of stability and efficiency in matrix computation, along

with some standard matrix decompositions useful in statistics. See Golub

and Van Loan (2013) or Watkins (1991) for more detail.

B.1 Efficiency in matrix computation

Consider this simple example in R.

n <- 2000

A <- matrix(runif(n*n),n,n)

B <- matrix(runif(n*n),n,n)

y <- runif(n)

system.time(f0 <- A%*%B%*%y) ## case 1

user system elapsed

31.50 0.03 31.58

system.time(f1 <- A%*%(B%*%y)) ## case 2

user system elapsed

0.08 0.00 0.08

f0 and f1 are identical to machine precision, but f1 took much less time to

compute. Why? The answer is to do with how the multiplications were or-

dered in the two cases, and the number of floating point operations (flops)

required by the two alternative orderings.

1. In the first case AB was formed first, and the resulting matrix used to

pre-multiply the vector y.

2. In the second case, the vector By was formed first and was then pre-

multiplied by A.

The first case took more time because the number of floating point opera-

tions (+, -, *, /) required to multiply A and B was about 2n3, whereas the
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number of flops required to multiply an n × n matrix by an n vector is

only about 2n2. Hence f0 cost about 2n3 + 2n2 operations, whereas f1

cost only 4n2. So the first alternative required about n/2 times as many

operations as the second.1

Another simple matrix operation is the evaluation of the trace of a matrix

product. Again different ways of computing the same quantity lead to rad-

ically different computation times. Consider the computation of tr(AB)
where A is 5000 × 100 and B is 100 × 5000:

n <- 5000;m <- 100

A <- matrix(runif(n*m),n,m)

B <- matrix(runif(n*m),m,n)

system.time(sum(diag(A%*%B)))

user system elapsed

10.46 0.11 10.58

system.time(sum(diag(B%*%A)))

user system elapsed

0.2 0.0 0.2

system.time(sum(A*t(B)))

user system elapsed

0.02 0.00 0.02

1. The first method forms AB, at a flop cost of 2n2m and then extracts

the leading diagonal and sums it.

2. The second method uses the fact that tr(AB) = tr(BA). It forms BA

at flop cost of 2nm2 and then extracts the leading diagonal of the result

and sums it.

3. The third method makes direct use of the fact that tr(AB) =
∑

ij AijBji,

at a cost of 2nm. It is the fastest because no effort is wasted in calcu-

lating unused off-diagonal matrix elements.

Notice that method 1 is not just wasteful of flops, but also requires storage

of an n× n matrix, which is much larger than either A or B.

Unfortunately, it is not generally possible to automatically choose the

most efficient alternative when computing with matrices. Even the appar-

ently simple problem of choosing the best order in which to perform matrix

multiplication is difficult to automate. However, for many statistical com-

puting problems, a small amount of effort in identifying the best ordering

at the coding stage pays big dividends in terms of improved computing

1 The ratio of timings observed is not exactly 1000 here, because R also spends time

interpreting the instructions, setting up storage and so on, which is a significant part of

the cost of producing f1; low level optimisation also has an impact on timing.
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speeds. In general, the important thing is to be constantly aware of the po-

tential for careless coding with matrices to be hugely inefficient, and to

consider flop count in all matrix computations.

Generally when flop counting it is important to know whether the count

is proportional to n2 or to n3 (for example), as n → ∞, but much less

important to know whether it is 2n2 or 4n2, say. For this reason, it is often

sufficient to simply consider how the cost scales with the problem size, in

the n→∞ limit, without worrying about exact constants of proportional-

ity. So we simply consider whether an algorithm is O(n2) or O(n3) (‘order

n2 or order n3’), for example.

B.2 Choleski decomposition: a matrix square root

Positive definite matrices are the ‘positive real numbers’ of matrix alge-

bra. They have particular computational advantages and occur frequently

in statistics, because covariance matrices are usually positive definite (and

always positive semi-definite). So let’s start with positive definite matrices,

and their matrix square roots. To see why matrix square roots might be

useful, consider the following.

Example Generating multivariate normal random variables. There exist

very quick and reliable methods for simulating i.i.d. N(0, 1) random de-

viates, but suppose that N(µ,Σ) random vectors are required. Clearly we

can generate vectors z from N(0, I). If we could find a matrix R such that

RTR = Σ, then y ≡ RTz + µ ∼ N(µ,Σ), because the covariance

matrix of y is RTIR = RTR = Σ and E(y) = E(RTz+ µ) = µ.

In general the square root of a positive definite matrix is not uniquely

defined, but there is a unique upper triangular square root of any positive

definite matrix: its Choleski factor. The algorithm for finding the Choleski

factor is easily derived. Consider a 4×4 example first. The defining matrix

equation is









R11 0 0 0
R12 R22 0 0
R13 R23 R33 0
R14 R24 R34 R44

















R11 R12 R13 R14

0 R22 R23 R24

0 0 R33 R34

0 0 0 R44









=









A11 A12 A13 A14

A12 A22 A23 A24

A13 A23 A33 A34

A14 A24 A34 A44









.
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If the component equations of this expression are written out and solved

in the right order, then each contains only one unknown, as the following

illustrates (unknowns are in bold):

A11 = R11
2

A12 = R11R12

A13 = R11R13

A14 = R11R14

A22 = R2
12 +R22

2

A23 = R12R13 +R22R23

.

.

Generalising to the n×n case, and using the convention that
∑0

k=1 xi ≡ 0,

we have

Rii =

√

√

√

√Aii −
i−1
∑

k=1

R2
ki, and Rij =

Aij −
∑i−1

k=1 RkiRkj

Rii

, j > i.

Working through these equations in row order, from row one, and starting

each row from its leading diagonal component, ensures that all right-hand-

side quantities are known at each step. Choleski decomposition requires

n3/3 flops and n square roots. In R it is performed by function chol, which

calls routines in LAPACK or LINPACK.2

Example (continued) The following simulates 1000 random draws from

N









1
−1
3



 ,





2 −1 1
−1 2 −1
1 −1 2









and checks their observed mean and covariance:

V <- matrix(c(2,-1,1,-1,2,-1,1,-1,2),3,3)

mu <- c(1,-1,3)

R <- chol(V) ## Choleski factor of V

Z <- matrix(rnorm(3000),3,1000) ## 1000 N(0,I) 3-vectors

Y <- t(R)%*%Z + mu ## 1000 N(mu,V) vectors

## and check that they behave as expected...

rowMeans(Y) ## observed mu

2 Actually, numerical analysts do not consider the Choleski factor to be a square root in

the strict sense, because of the transpose in A = RTR.
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[1] 1.0924086 -0.9694124 2.9926779

(Y-mu)%*%t(Y-mu)/1000 ## observed V

[,1] [,2] [,3]

[1,] 2.066872 -1.039062 1.003980

[2,] -1.039062 2.054408 -0.980139

[3,] 1.003980 -0.980139 1.833971

As a second application of the Choleski decomposition, consider evalu-

ating the log likelihood of µ and Σ:

l = −n

2
log(2π)− 1

2
log(|Σ|)− 1

2
(y − µ)TΣ−1(y − µ).

If we were simply to invert Σ to evaluate the final term, it would cost 2n3

flops, and we would still need to evaluate the determinant. A Choleski-

based approach is much better. It is easy to see that Σ−1 = R−1R−T,

where R is the Choleski factor of Σ. So the final term in the log likelihood

can be written as zTz where z = R−T(y − µ). Notice that we do not

actually need to evaluate R−T, but simply to solve RTz = y − µ for z.

To see how this is done, consider a 4× 4 case again:








R11 0 0 0
R12 R22 0 0
R13 R23 R33 0
R14 R24 R34 R44

















z1
z2
z3
z4









=









y1 − µ1

y2 − µ2

y3 − µ3

y4 − µ4









.

If this system of equations is solved from the top down, then there is only

one unknown (shown in bold) at each stage:

R11z1 = y1 − µ1

R12z1 +R22z2 = y2 − µ2

R13z1 +R23z2 +R33z3 = y3 − µ3

R14z1 +R24z2 +R34z3 +R44z4 = y4 − µ4

The generalisation of this forward substitution process to n dimensions is

obvious, as is the fact that it costs O(n2) flops: much cheaper than explicit

formation of R−T, which would involve applying forward substitution to

find each column of the unknown R−T in the equation RTR−T = I, at

O(n3) cost.

In R there is a routine forwardsolve for doing forward substitution

with a lower triangular matrix (and a routine backsolve for performing the

equivalent back substitution with upper triangular matrices). Before using

it, we still need to consider |Σ|. Again the Choleski factor helps. From
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the general properties of determinants we know that |RT||R| = |Σ|, but

because R is triangular |RT| = |R| = ∏n
i=1 Rii. So given the Choleski

factor, the calculation of the determinant is O(n).

Example The following evaluates the log likelihood of the covariance

matrix V and mean vector mu, from the previous example, given an observed

yT = (1, 2, 3):

y <- 1:3; n <- length(y)

z <- forwardsolve(t(R),y-mu)

logLik <- -n*log(2*pi)/2-sum(log(diag(R)))-sum(z*z)/2

logLik

[1] -6.824963

Note that Choleski decomposition of a matrix that is not positive def-

inite will fail. Positive semi-definite is no better, because in that case a

leading diagonal element of the Choleski factor will become zero, so that

computation of the off-diagonal elements on the same row is impossible.

Positive semi-definite matrices are reasonably common, so this is a prac-

tical problem. For the positive semi-definite case, it is possible to modify

the Choleski decomposition by pivoting; that is, by reordering the rows

and columns of the original matrix so that the zeroes end up at the end of

the leading diagonal of the Choleski factor, in rows that are all zero. This

is not pursued further here. Rather let us consider a more general matrix

decomposition, that provides matrix square roots along with much else.

B.3 Eigen-decomposition (spectral-decomposition)

Any symmetric matrix, A can be written as

A = UΛUT, (B.1)

where the matrix U is orthogonal and Λ is a diagonal matrix, with ith

leading diagonal element λi (conventionally λi ≥ λi+1). Post-multiplying

both sides of the decomposition by U we have

AU = UΛ.

Considering this system one column at a time and writing ui for the ith

column of U we have

Aui = λiui.

So the λi are the eigenvalues of A, and the columns of U are the cor-

responding eigenvectors. (B.1) is the eigen-decomposition or spectral de-

composition of A.
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State-of-the-art schemes for eigen-decomposition are fairly intricate, but

do not use the determinant and characteristic equation of A. One practical

scheme is as follows: (i) the matrix A is first reduced to tri-diagonal form

using repeated pre- and post-multiplication by simple rank-one orthogonal

matrices called Householder rotations, and (ii) an iterative scheme called

QR-iteration3 then pre-and post-multiplies the tri-diagonal matrix by even

simpler orthogonal matrices, in order to reduce it to diagonal form. At

this point the diagonal matrix contains the eigenvalues, and the product of

all the orthogonal matrices gives U. Eigen-decomposition is O(n3), but a

good symmetric eigen routine is around 10 times as computationally costly

as a Choleski routine.

An immediate use of the eigen-decomposition is to provide an alterna-

tive characterisation of positive (semi-) definite matrices. All the eigenval-

ues of a positive (semi-) definite matrix must be positive (non-negative) and

real. This is easy to see. Were some eigenvalue, λi to be negative (zero),

then the corresponding eigenvector ui would result in uT
i Aui being neg-

ative (zero). At the same time the existence of an x such that xTAx is

negative (zero) leads to a contradiction unless at least one eigenvalue is

negative (zero).4

B.3.1 Powers of matrices

Consider raising A to the power m.

Am = AAA · · ·A = UΛUTUΛUT · · ·UΛUT

= UΛΛ · · ·ΛUT = UΛmUT,

where Λm is just the diagonal matrix with λmi as the ith leading diagonal

element. This suggests that any real valued function, f , of a real valued

argument, which has a power series representation, has a natural generali-

sation to a symmetric matrix valued function of a symmetric matrix argu-

ment; that is

f ′(A) ≡ Uf ′(Λ)UT,

where f ′(Λ) denotes the diagonal matrix with ith leading diagonal element

f(λi). For example, exp(A) = U exp(Λ)UT.

3 Not to be confused with QR decomposition.
4 We can write x = Ub for some vector b. So xTAx < 0 ⇒ bTΛb < 0 ⇒

∑

b2iΛi < 0

⇒ Λi < 0 for some i.
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B.3.2 Another matrix square root

For matrices with non-negative eigenvalues we can generalise to non-integer

powers. For example, it is readily verified that
√
A = U

√
ΛUT has the

property that
√
A
√
A = A. Notice (i) that

√
A is not the same as the

Choleski factor, emphasizing the non-uniqueness of matrix square roots

and (ii) that, unlike the Choleski factor,
√
A is well defined for positive

semi-definite matrices (and can therefore be computed for any covariance

matrix).

B.3.3 Matrix inversion, rank and condition

Continuing in the same vein we can investigate matrix inversion by writing

A−1 = UΛ−1UT,

where the diagonal matrix Λ−1 has ith leading diagonal element λ−1
i .

Clearly we have a problem if any of the λi are zero, for the matrix inverse

will be undefined. A matrix with no zero eigenvalues is termed full rank.

A matrix with any zero eigenvalues is rank deficient and does not have an

inverse. The number of nonzero eigenvalues is the rank of a matrix.

For some purposes it is sufficient to define a generalised inverse or pseu-

doinverse when faced with rank deficiency, by finding the reciprocal of the

nonzero eigenvalues, but setting the reciprocal of the zero eigenvalues to

zero. This is not pursued here.

It is important to understand the consequences of rank deficiency quite

well when performing matrix operations involving matrix inversion/matrix

equation solving. This is because near rank deficiency is rather easy to

achieve by accident, and in finite precision arithmetic it is as bad as rank

deficiency. First consider trying to solve

Ax = y

for x when A is rank deficient. In terms of the eigen-decomposition the

solution is

x = UΛ−1UTy.

So y is rotated to become y′ = UTy, the elements of y′ are then divided

by the eigenvalues, λi, and the reverse rotation is applied to the result. The

problem is that y′
i/λi is not defined if λi = 0. This is just a different

way of showing something that you already know: rank-deficient matrices

cannot be inverted. But the approach also helps in understanding near rank

deficiency and ill conditioning.
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An illustrative example highlights the problem. Suppose that an n × n
symmetric matrix A has n − 1 distinct eigenvalues ranging from 0.5 to

1, and one much smaller magnitude eigenvalue ǫ. Further suppose that we

wish to compute with A on a machine that can represent real numbers to

an accuracy of 1 part in ǫ−1. Now consider solving the system

Ax = u1 (B.2)

for x, where u1 is the dominant eigenvector of A. Clearly the correct so-

lution is x = u1, but now consider computing the answer. As before we

have a formal solution,

x = UΛ−1UTu1,

but although analytically u′
1 = UTu1 = (1, 0, 0, . . . , 0)T, the best we

can hope for computationally is to get u′
1 = (1 + e1, e2, e3, . . . , en)

T

where the numbers ej are of the order of ±ǫ. For convenience, suppose

that en = ǫ. Then, approximately, Λ−1u′
1 = (1, 0, 0, . . . , 0, 1)T , and

x = UΛ−1u′
1 = u1 +un, which is not correct. Similar distortions would

occur if we used any of the other first n − 1 eigenvectors in place of u1:

they all become distorted by a spurious un component, with only un itself

escaping.

Now consider an arbitrary vector y on the right-hand-side of (B.2).

We can always write it as some weighted sum of the eigenvectors y =
∑

wiui. This emphasises how bad the ill-conditioning problem is: all but

one of y’s components are seriously distorted when multiplied by A−1.

By contrast, multiplication by A itself would lead only to distortion of the

un component of y, and not the other eigenvectors, but the un component

is the component that is so heavily shrunken by multiplication by A that it

makes almost no contribution to the result, unless we have the misfortune

to choose a y that is proportional to un and nothing else.

A careful examination of the preceding argument reveals that what really

matters in determining the seriousness of the consequences of near rank

deficiency is the ratio of the largest magnitude to the smallest magnitude

eigenvalues:

κ = max |λi|/min |λi|.
This quantity is a condition number for A.5 Roughly speaking it is the

factor by which errors in y will be multiplied when solving Ax = y for

5 Because the condition number is so important in numerical computation, there are

several methods for getting an approximate condition number more cheaply than via

eigen decomposition — e.g. see ?kappa in R.
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x. Once κ begins to approach the reciprocal of the machine precision we

are in trouble. A system with a large condition number is referred to as

ill-conditioned. Orthogonal matrices have κ = 1, which is why numerical

analysts like them so much.

Example Consider a simple simulation in which data are simulated from

a quadratic model, and an attempt is made to obtain least squares estimates

of the linear model parameters directly from β̂ = (XTX)−1XTy.

set.seed(1); n <- 100

xx <- sort(runif(n))

y <- .2*(xx-.5)+(xx-.5)^2 + rnorm(n)*.1

x <- xx+100

X <- model.matrix(~ x + I(x^2))

beta.hat <- solve(t(X)%*%X,t(X)%*%y)

Error in solve.default(t(X) %*% X, t(X) %*% y) :

system is computationally singular:

reciprocal condition number = 3.98648e-19

This is an apparently innocuous linear model fitting problem. However, the

simple fact that the x range is from 100 to 101 has caused the columns

of X to be sufficiently close to linear dependence that XTX is close to

singular, as we can confirm by direct computation of its condition number:

XtX <- crossprod(X) ## form t(X)%*%X (efficiently)

lambda <- eigen(XtX)$values

lambda[1]/lambda[3] ## the condition number of X’X

[1] 2.506267e+18

Of course, this raises two obvious questions. Could we have diagnosed

the problem directly from X? And how does the lm function avoid this

problem (it is able to fit this model)? Answers to these questions follow,

but first consider a trick for reducing κ.

B.3.4 Preconditioning

The discussion of condition numbers related to systems involving unstruc-

tured matrices (albeit presented only in the context of symmetric matrices).

Systems involving matrices with special structure are sometimes less sus-

ceptible to ill-conditioning than naive computation of the condition number

would suggest. For example, if D is a diagonal matrix, then we can accu-

rately solve Dy = x for y, however large κ(D) is: overflow or underflow

are the only limits.

This basic fact can sometimes be exploited to rescale a problem to im-

prove computational stability. As an example consider diagonal precondi-
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tioning of the computation of (XTX)−1 considered previously. For XTX

we have

solve(XtX)

Error in solve.default(XtX) :

system is computationally singular:

reciprocal condition number = 3.98657e-19

But now suppose that we create a diagonal matrix D, with elements Dii =
1/
√

(XTX)ii. Clearly,

(XTX)−1 = D(DXTXD)−1D,

but (DXTXD)−1 turns out to have a much lower condition number than

XTX:

D <- diag(1/diag(XtX)^.5)

DXXD <- D%*%XtX%*%D

lambda <- eigen(DXXD)$values

lambda[1]/lambda[3]

[1] 4.29375e+11

As a result we can now compute the inverse of XTX:

XtXi <- D%*%solve(DXXD,D) ## computable inverse of X’X

XtXi %*% XtX ## how accurate?

(Intercept) x I(x^2)

[1,] 9.999941e-01 -3.058910e-04 0.005661011

[2,] 1.629232e-07 1.000017e+00 0.001764774

[3,] -6.816663e-10 -8.240750e-08 0.999998398

This is not perfect, but is better than no answer at all.

B.3.5 Asymmetric eigen-decomposition

If positive definite matrices are the positive reals of the square matrix

system, and symmetric matrices are the reals, then asymmetric matrices

are the complex numbers. As such they have complex eigenvectors and

eigenvalues. It becomes necessary to distinguish right and left eigenvec-

tors (one is no longer the transpose of the other), and the right and left

eigenvector matrices are no longer orthogonal matrices (although they are

still inverses of each other). Eigen-decomposition of asymmetric matri-

ces is still O(n3), but is substantially more expensive than the symmet-

ric case. For example, using a basic R setup on a Linux laptop asym-

metric eigen-decomposition took four times longer than symmetric eigen-

decomposition for a 1000 × 1000 matrix.

The need to compute with complex numbers somewhat reduces the prac-

tical utility of the eigen-decomposition in numerical methods for statistics.
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It would be better to have a decomposition that provides some of the useful

properties of the eigen-decomposition without the inconvenience of com-

plex numbers. The singular value decomposition (SVD) meets this need.

B.4 Singular value decomposition

The singular values, di, of an r× c matrix, A (r ≥ c) are the non-negative

square roots of the eigenvalues of ATA. If A is positive semi-definite then

its singular values are just its eigenvalues, of course. For symmetric matri-

ces, eigenvalues and singular values differ only in sign, if at all. However,

the singular values are also well defined and real for matrices that are not

even square, let alone symmetric.

Related to the singular values is the singular value decomposition,

A = UDV
T,

where U has orthogonal columns and is the same dimension as A, while

c× c matrix D = diag(di) (usually arranged in descending order), and V

is a c× c orthogonal matrix.

The singular value decomposition is computed using a similar approach

to that used for the symmetric eigen problem: orthogonal bi-diagonalization,

followed by QR iteration atO(rc2) cost (it does not involve formingATA).

It is more costly than symmetric eigen-decomposition, but cheaper than the

asymmetric equivalent. For a 1000 × 1000 matrix, SVD took about 2.5

times as long as symmetric eigen-decomposition using R.

The number of its nonzero singular values gives the rank of a matrix,

and the SVD is the most reliable method for numerical rank determination

(by examining the size of the singular values relative to the largest singular

value). In a similar vein, a general definition of the condition number is the

ratio of largest and smallest singular values: κ = d1/dc.

Example Continuing the example of the simple quadratic regression fit-

ting failure, consider the singular values of X:

d <- svd(X)$d ## get the singular values of X

d

[1] 1.010455e+05 2.662169e+00 6.474081e-05

Clearly, numerically X is close to being rank 2, rather than rank 3. Turning

to the condition number,

d[1]/d[3]

[1] 1560769713



B.5 The QR decomposition 231

κ ≈ 2×109 is rather large, especially as it is easy to show that the condition

number of XTX must then be κ2 ≈ 4 × 1018. So we now have a pretty

clear diagnosis of the cause of the original problem.

In fact the SVD provides not only a diagnosis of the problem, but also

one possible solution. We can rewrite the solution to the normal equations

in terms of the SVD of X:

(XTX)−1XTy = (VDUTUDVT)−1VDUTy

= (VD2VT)−1VDUTy

= VD−2VTVDUTy

= VD−1UTy

Notice two things:

1. The condition number of the system that we have ended up with is ex-

actly the condition number of X (i.e. the square root of the condition

number involved in the direct solution of the normal equations).

2. Comparing the final right-hand-side expression to the representation of

an inverse in terms of its eigen-decomposition, it is clear thatVD−1UT

is a sort of pseudoinverse of X.

The SVD has many uses. One interesting one is low-rank approximation

of matrices. In a well-defined sense, the best rank k ≤ rank(X) approxi-

mation to a matrix X can be expressed in terms of the SVD of X as

X̃ = UD̃VT

where D̃ is D with all but the k largest singular values set to 0. Using

this result to find low-rank approximations to observed covariance matri-

ces is the basis for several dimension-reduction techniques in multivariate

statistics (although, of course, a symmetric eigen-decomposition is then

equivalent to SVD). One issue with this sort of approximation is that the

full SVD is computed, despite the fact that part of it is then to be discarded

(be careful with routines that ask you how many eigen or singular vectors

to return: I saved 0.1 of a second, out of 13, by getting R routine svd to

only return the first columns of U and V). Look up Lanczos methods and

Krylov subspaces for approaches that avoid this sort of waste.

B.5 The QR decomposition

The SVD provided a stable solution to the linear model fitting example,

but at a rather high computational cost, prompting the question of whether
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similar stability could be obtained without the full cost of SVD. The QR

decomposition provides a positive answer, as was shown in Section 7.1.1.

We can write any r × c rectangular matrix X (r ≥ c) as the product of

columns of an orthogonal matrix and an upper triangular matrix:

X = QR,

where R is upper triangular and Q is of the same dimension as X, with

orthogonal columns (so QTQ = I, but QQ
T 6= I). The QR decompo-

sition has a cost of O(rc2), but it is about one-third of the cost of SVD.

The SVD and QR approaches are the most numerically stable methods for

least squares problems, but there is no magic here: it is quite possible to

produce model matrices so close to co-linear that these methods also fail.

The lesson here is that if possible we should try to set up models so that

condition numbers stay low.

Another application of the QR decomposition is determinant calculation.

If A is square and A = QR then

|A| = |Q||R| = |R| =
∏

i

Rii,

since R is triangular, while Q is orthogonal with determinant 1. Usually

we need

log |A| =
∑

i

log |Rii|,

which underflows to −∞ much less easily than |A| underflows to zero.

B.6 Sparse matrices

Many statistical problems involve sparse matrices: matrices that contain a

very high proportion of zeroes. This sparsity can be exploited to save on

computer memory and floating point operations. We need only store the

nonzero entries of a sparse matrix, along with the location of those entries,

and need only perform floating point operations when they involve nonzero

matrix elements. Many libraries exist for exploiting sparse matrices, such

as the Matrix package in R. The main difficulty in exploiting sparsity is

infil: a sparse matrix rarely has a sparse inverse or Choloeski factor, for

example, and even the product of two sparse matrices is often not sparse.

However, it is the case that a pivoted version of a matrix (one in which

rows and columns are reordered) has a sparse Choleski factor, for example:

so with careful structuring, efficiency can be achieved in some cases. See

Davis (2006) for a good introduction.
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Random number generation

Chapter 6, in particular, took it for granted that we can produce random

numbers from various distributions. Actually we can’t. The best that can

be done is to produce a completely deterministic sequence of numbers that

appears indistinguishable from a random sequence with respect to any rel-

evant statistical property that we choose to test.1 In other words, we may be

able to produce a deterministic sequence of numbers that can be very well

modelled as being a random sequence from some distribution. Such deter-

ministic sequences are referred to as sequences of pseudorandom numbers,

but the pseudo part usually gets dropped at some point.

The fundamental problem, for our purposes, is to generate a pseudoran-

dom sequence that can be extremely well modelled as i.i.d. U(0, 1). Given

such a sequence, it is fairly straightforward to generate deviates from other

distributions, but the i.i.d. U(0, 1) generation is where the problems lie.

Indeed if you read around this topic, most books will largely agree about

how to turn uniform random deviates into deviates from a huge range of

other distributions, but advice on how to obtain the uniform deviates in the

first place is much less consistent.

C.1 Simple generators and what can go wrong

Since the 1950s there has been much work on linear congruential gener-

ators. The intuitive motivation is something like this. Suppose I take an

integer, multiply it by some enormous factor, rewrite it in base - ‘some-

thing huge’, and then throw away everything except for the digits after the

decimal point. Pretty hard to predict the result, no? So, if I repeat the oper-

ation, feeding each step’s output into the input for the next step, a more or

1 Hence the interesting paradox that although statistical methods in general may be viewed

as methods for distinguishing between the deterministic and the random, many statistical

methods rely fundamentally on the inability to distinguish random from deterministic.

233
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less random sequence might result. Formally the pseudorandom sequence

is defined by

Xi+1 = (aXi + b)modM,

where b is 0 or 1, in practice. This is started with a seed X0. The Xi are in-

tegers (< M , of course), but we can define Ui = Xi/M . Now the intuitive

hope that this recipe might lead to Ui that are reasonably well modelled by

i.i.d. U(0, 1) r.v.s is only realized for some quite special choices of a and

M , and it takes some number theory to give the generator any sort of the-

oretical foundation (see Ripley, 1987, Chapter 2).

An obvious property to try to achieve is full period. We would like the

generator to visit all possible integers between 1−b and M−1 once before

it starts to repeat itself (clearly the first time it revisits a value, it starts to

repeat itself). We would also like successive Uis to appear uncorrelated. A

notorious and widely used generator called RANDU, supplied at one time

with IBM machines, met these basic considerations with

Xi+1 = (65539Xi)mod231.

This appears to do very well in 1 dimension.

n <- 100000 ## code NOT for serious use

x <- rep(1,n)

a <- 65539;M <- 2^31;b <- 0 ## Randu

for (i in 2:n) x[i] <- (a*x[i-1]+b)%%M

u <- x/(M-1)

qqplot((1:n-.5)/n,sort(u))
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Similarly a plot of Ui vs Ui−1 indicates no worries with serial correlation:
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## Create data frame with U at 3 lags...

U <- data.frame(u1=u[1:(n-2)],u2=u[2:(n-1)],u3=u[3:n])

plot(U$u1,U$u2,pch=".")
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We can also check visually what the distribution of the triples (Ui, Ui−1, Ui−2)
looks like:

library(lattice)

cloud(u1~u2*u3,U,pch=".",col=1,screen=list(z=40,x=-70,y=0))

u2
u3

u1

Clearly not quite so random looking. Experimenting a little with rotations

gives:

cloud(u1~u2*u3,U,pch=".",col=1,screen=list(z=40,x=70,y=0))
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u2u3

u1

The triples lie on one of 15 planes. Actually it can be shown that this must

happen (see Ripley, 1987, §2.2).

Does this deficiency matter in practice? Much of the statistical use of

random numbers is for processes somehow equivalent to high dimensional

integration. Statistical estimators of integrals have nonzero variance, but

can be designed to be unbiased, and this unbiasedness is usually not af-

fected by the dimension of the integral. Deterministic attempts at inte-

gration tend to evaluate the integrand on a discrete lattice. They have no

variance, but their bias is determined by the lattice spacing, and for fixed

computational effort this bias increases sharply with dimension. As a result,

statistical estimation of high-dimensional integrals usually outperforms de-

terministic quadrature rules. However, the unbiasedness of such estimators

relies on being able to generate random numbers. If we are actually gener-

ating numbers on a lattice, then there is a danger that our statistical estima-

tors may suffer from the same bias problems as deterministic integration.

So the first lesson is to use generators that have been carefully engi-

neered by people with a good understanding of number theory and have

then been empirically tested (Marsaglia’s Diehard battery of tests provides

one standard test set). For example, if we stick with simple congruential

generators, then

Xi = (69069Xi−1 + 1)mod232 (C.1)

is a much better bet. Here is its triples plot, for which no amount of rotation

provides any evidence of structure:
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u2u3

u1

Although this generator is much better than RANDU, it is still problem-

atic. An obvious infelicity is the fact that a very small Xi will always be

followed by an unusually small Xi+1 (consider Xi = 1, for example).

This is not a property that would be desirable in a time series simulation,

for example. Not quite so obvious is the fact that for any congruential gen-

erator of period M , then k-tuples, Ui, Ui−1, . . . , Ui−k+1 will tend to lie on

a finite number of k − 1 dimensional planes (e.g. for RANDU we saw 3-

tuples lying on two dimensional planes.) There will be at most M1/k such

planes, and as RANDU shows, there can be far fewer. The upshot of this

is that if we could visualize 8 dimensions, then the 8-tuple plot for (C.1)

would be just as alarming as the 3D plot was for RANDU. Eight is not an

unreasonably large dimension for an integral.

Generally then, it would be nice to have generators with better behaviour

than simple congruential generators, and in particular we would like gen-

erators where k-tuples appear uniformly distributed on [0, 1]k for as high a

k as possible (referred to as having a high k-distribution).

C.2 Building better generators

An alternative to the congruential generators are generators that focus on

generating random sequences of 0s and 1s. In some ways this seems to be

the natural fundamental random number generation problem when using

modern digital computers, and at the time of writing it also seems to be

the approach that yields the most satisfactory results. Such generators are

often termed shift-register generators. The basic approach is to use bitwise

binary operations to make a binary sequence ‘scramble itself’. An example
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is the Marsaglia (2003) Xorshift generator as recommended in Press et al.

(2007).

Let x be a 64-bit variable (i.e. an array of 64 0s or 1s). The generator is

initialised by setting to any value (other than 64 0s). The following steps

then constitute one iteration (update of x):

x← x ∧ (x >> a)

x← x ∧ (x << b)

x← x ∧ (x >> c)

Each iteration generates a new random sequence of 0s and 1s. ∧ denotes

‘exclusive or’ (XOR), and >> and << are right-shift and left shift, re-

spectively, with the integers a, b and c giving the distance to shift. a = 21,

b = 35 and c = 4 appear to be good constants (but see Press et al., 2007,

for some others).

If you are a bit rusty on these binary operators then consider an 8-bit

example where x=10011011 and z=01011100:

• x<<1 is 00110110: the bit pattern is shifted leftwards, with the leftmost

bit discarded, and the rightmost set to zero.

• x<<2 is 01101100: the pattern is shifted 2 bits leftwards, which also

entails discarding the 2 leftmost bits and zeroing the two rightmost.

• x>>1 is 01001101: shift the pattern 1 bit rightwards.

• x^z is 11000111:a 1 where the bits in x and z disagree, and a 0 where

they agree.

The Xorshift generator is very fast, has a period of 264−1, and passes the

Diehard battery of tests (perhaps unsurprising as Marsaglia is responsible

for that too). These shift-register generators suffer similar granularity prob-

lems to congruential generators (there is always some k for which [0, 1]k

cannot be very well covered by even 264 − 1 points), but tend to have all

bit positions ‘equally random’, whereas lower order bits from congruential

generator sequences often have a good deal of structure.

Now we reach a fork in the road. To achieve better performance in

terms of longer period, larger k-distribution, and fewer low-order correla-

tion problems, there seem to be two main approaches: the first pragmatic,

and the second more theoretical.

1. Combine the output from several ‘good’, well-understood, simple gen-

erators using operations that maintain randomness (e.g. XOR and addi-

tion, but not multiplication). When doing this, the output from the com-

bined generators is never fed back into the driving generators. Prefer-
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ably combine rather different types of generator. Press et al. (2007)

make a convincing case for this approach. Wichmann and Hill (1982),

available in R, is an example of such a combined generator, albeit based

on three very closely related generators.

2. Use more complicated generators: non-linear or with a higher dimen-

sional state that just a single Xi (see Gentle, 2003). For example, use

a shift-register type generator based on maintaining the history of the

last n bit-patterns, and using these in the bit scrambling operation. The

Matsumoto and Nishimura (1998) Mersenne Twister is of this type. It

achieves a period of 219937 − 1 (that is not a misprint: 219937 − 1 is a

‘Mersenne prime’2), and is 623-distributed at 32 bit accuracy. That is,

its 623-tuples appear uniformally distributed (each appearing the same

number of times in a full period) and are spaced 2−32 apart (without the

ludicrous period this would not be possible). It passes the Diehard tests,

is the default generator in R, and C source code is freely available.

C.3 Uniform generation conclusions

This brief discussion shows that random number generation and use of

pseudorandom numbers, are nontrivial topics that require some care. That

said, most of the time, provided you pick a good modern generator, you

will probably have no problems. As general guidelines:

1. Avoid using black-box routines supplied with low level languages such

as C: you do not know what you are getting, and there is a history of

these being botched.

2. Do make sure you know what method is being used to generate any

uniform random deviates that you use and that you are satisfied that it

is good enough for your purposes.

3. For any random number generation task that relies on k-tuples hav-

ing uniform distribution for high k, be particularly careful about what

generator you use. This includes any statistical task that is somehow

equivalent to high-dimensional integration.

4. The Mersenne Twister is probably the sensible default choice in most

cases at present. For high-dimensional problems it remains a good idea

to check answers with a different high-quality generator. If results differ

significantly, then you will need to find out why (probably starting with

the ‘other’ generator).

2 Numbers this large are often described as being ‘astronomical’, but this does not really

do it justice: there are probably fewer than 2270 atoms in the universe.
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Note that I have not discussed methods used by cryptographers. Cryp-

tographers want to use (pseudo)random sequences of bits (0s and 1s) to

scramble messages. Their main concern is that if someone were to inter-

cept the random sequence and guess the generator being used, that individ-

ual should not be able to infer the state of the generator. Achieving this goal

is quite computer intensive, which is why generators used for cryptography

are usually over-engineered for simulation purposes.

C.4 Other deviates

Once you have a satisfactory stream of i.i.d. U(0, 1) deviates, then gen-

erating deviates from other standard distributions is much more straight-

forward. Conceptually, the simplest approach is inversion. We know that if

X is from a distribution with continuous c.d.f. F , then F (X) ∼ U(0, 1).
Similarly, if we define the inverse of F by F−(u) = min(x|F (x) ≥ u),
and if U ∼ U(0, 1), then F−(U) has a distribution with c.d.f. F (this time

with not even a continuity restriction on F itself).

As an example here is inversion used to generate one million i.i.d.N(0, 1)
deviates in R:

system.time(X <- qnorm(runif(1e6)))

user system elapsed

0.22 0.01 0.24

For most standard distributions (except the exponential), there are better

methods than inversion, and the happy situation exists where textbooks

tend to agree about what these are. Ripley (1987, Ch. 3) is a good place to

start, while the lighter version is provided by Press et al. (2007, Ch. 7). R

has many of these methods built in.
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