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Generalized linear models, GLM

1. A GLM models a univariate response, yi as

g{E(yi)} = Xiβ where yi ∼ Exponential family

2. g is a known, smooth monotonic link function.
3. Xi is the ith row of a known model matrix, which depends

on measured predictor variables (covariates).
4. β is an unknown parameter vector, estimated by MLE.
5. Xβ (= η) is the linear predictor of the model.
6. Class includes log-linear models, general linear

regression, logistic regression,. . .
7. glm in R implements this class.



Generalized additive models, GAM

1. A GAM (semi-parametric GLM) is a GLM where the linear
predictor depends linearly on unknown smooth functions.

2. In general

g{E(yi)} = Aiθ +
∑

j

Lij fj where yi ∼ Exponential family

3. Parameters, θ, and smooth functions, fj , are unknown.
4. Parametric model matrix, A, and linear functionals, Lij ,

depend on predictor variables.
5. Examples of Lij fj : f1(xi), f2(zi)wi ,

∫
ki(v)fj(v)dv , . . .



Specifying GAMs in R with mgcv

I library(mgcv) loads a semi-parametric GLM package.
I gam(formula,family) is quite like glm.
I The family argument specifies the distribution and link

function. e.g. Gamma(log).
I The response variable and linear predictor structure are

specified in the model formula.
I Response and parametric terms exactly as for lm or glm.
I Smooth functions are specified by s or te terms. e.g.

log{E(yi)} = α + βxi + f (zi), yi ∼ Gamma,

is specified by. . .
gam(y ˜ x + s(z),family=Gamma(link=log))



More specification: by variables

I Smooth terms can accept a by variable argument, which
allows Lij fj terms other than just fj(xi).

I e.g. E(yi) = f1(zi)wi + f2(vi), yi ∼ Gaussian, becomes
gam(y ˜ s(z,by=w) + f(v))

i.e. f1(xi) is multiplied by wi in the linear predictor.
I e.g. E(yi) = fj(xi , zi) if factor gi is of level j , becomes

gam(y ˜ s(x,z,by=g) + g)

i.e. there is one smooth function for each level of factor
variable g, with each yi depending on just one of these
functions.



Yet more specification: a summation convention

I s and te smooth terms accept matrix arguments and by
variables to implement general Lij fj terms.

I If X and L are n × p matrices then
s(X,by=L)

evaluates Lij fj =
∑

k f (Xik )Lik for all i .
I For example, consider data yi ∼ Poi where

log{E(yi)} =

∫
ki(x)f (x)dx ' 1

h

p∑

k=1

ki(xk )f (xk )

(the xk are evenly spaced points).
I Let Xik = xk ∀ i and Lik = ki(xk )/h. The model is fit by

gam(y ˜ s(X,by=L),poisson)



How to estimate GAMs?

I The gam calls on the previous slides would also estimate
the specified model — it’s useful to have some idea how.

I We need to estimate the parameters, θ, and the smooth
functions, fj .

I This includes estimating how smooth the fj are.
I To begin with we need decide on two things

1. How to represent the fj by something computable.
2. How to formalize what is meant by smooth.

I . . . here we’ll discuss only the approach based on
representing the fj with penalized regression splines (as in
R package, mgcv).



Bases and penalties for the fj

I Represent each f as a weighted sum of known basis
functions, bk ,

f (x) =
K∑

k=1

γkbk (x)

Now only the γk are unknown.
I Spline function theory supplies good choices for the bk .
I K is chosen large enough to be sure that bias(f̂ ) ¿ var(f̂ ).
I Choose a measure of function wiggliness e.g.

∫
f ′′(x)2dx = γTSγ, where Sij =

∫
b′′i (x)b′′j (x)dx .



Basis & penalty example
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A computable GAM

I Representing each fj with basis functions bjk we have,

g{E(yi)} = Aiθ +
∑

j

Lij fj = Aiθ +
∑

j

∑

k

γjkLijbjk = Xβ

where X contains A and the Lijbjk , while β contains θ and
the γj vectors.

I For notational convenience we can re-write the wiggliness
penalties as γT

j S jγj = βTSjβ, where Sj is just S j padded
with extra zeroes.

I So the GAM has become a parametric GLM, with some
associated penalties.

I The Lij fj are often confounded via the intercept. So the fj
are usually constrained to sum to zero, over the observed
values. A reparameterization achieves this.



Estimating the model

I If the bases are large enough to be sure of avoiding bias,
then MLE of the model will overfit/undersmooth.

I . . . so we use maximum penalized likelihood estimation.

minimize − 2l(β) +
∑

j

λjβ
TSjβ w.r.t. β (1)

where l is the log likelihood.
I λjβ

TSjβ forces fj to be smooth.
I How smooth is controlled by λj , which must be chosen.
I For now suppose that an angel has revealed values for λ

in a dream. We’ll eliminate the angel later.
I Given λ, (1) is optimized by a penalized version of the

IRLS algorithm used for GLMs



Bayesian motivation

I We can be more principled about motivating (1).
I Suppose that our prior belief is that smooth models are

more probable than wiggly ones.
I We can formalize this belief with an exponential prior on

wiggliness

∝ exp(−1
2

∑

j

λjβ
TSjβ)

I ⇒ an improper Gaussian prior β ∼ N(0, (
∑

j λjβ
TSjβ)−).

I In this case the posterior modes, β̂, of β|y are the
minimizers of (1).



The distribution of β|y

I The Bayesian approach gives us more. . .
I For any exponential family distribution var(yi) = φV (µi)

where µi = E(yi). Let W−1
ii = V (µi)g′(µi)

2.
I The Bayesian approach gives the large sample result

β|y ∼ N(β̂, (XTWX +
∑

j

λjSj)
−1φ)

I This can be used to get CIs with good frequentist
properties (by an argument of Nychka, 1988, JASA).

I Simulation from β|y is a very cheap way of making any
further inferences required.

I mgcv uses this result for inference (e.g. ?vcov.gam).



Degrees of Freedom, DoF

I Penalization reduces the freedom of the parameters to
vary.

I So dim(β) is not a good measure of the DoF of a GAM.
I A better measure considers the average degree of

shrinkage of the coefficients, β̂.
I Informally, suppose β̃ is the unpenalized parameter vector

estimate, then approximately β̂ = Fβ̃ where
F = (XTWX +

∑
j λjSj)

−1XTWX.
I The Fii are shrinkage factors and tr(F) =

∑
i Fii is a

measure of the effective degrees of freedom (EDF) of the
model.



Estimating the smoothing parameters, λ

I We need to estimate the appropriate degree of smoothing,
i.e. λ.

I This involves
1. Deciding on a statistical approach to take.
2. Producing a computational method to implement it.

I There are 3 main statistical approaches
1. Choose λ to minimize error in predicting new data.
2. Treat smooths as random effects, following the Bayesian

smoothing model, and estimate the λj as variance
parameters using a marginal likelihood approach.

3. Go fully Bayesian by completing the Bayesian model with a
prior on λ (requires simulation and not pursued here).



A prediction error criterion: cross validation
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1. Choose λ to try to minimize the error predicting new data.
2. Minimize the average error in predicting single datapoints

omitted from the fit. Each datum left out once in average.
3. Invariant version is Generalized Cross Validation, GCV:

Vg(λ) =
lmax − l(β̂λ)

(n − EDFλ)2



Marginal likelihood based smoothness selection
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1. Choose λ to maximize the average likelihood of random
draws from the prior implied by λ.

2. If λ too low, then almost all draws are too variable to have
high likelihood. If λ too high, then draws all underfit and
have low likelihood. The right λ maximizes the proportion
of draws close enough to data to give high likelihood.

3. Formally, maximize e.g. Vr (λ) = log
∫

f (y|β)fλ(β)dβ.



Prediction error vs. likelihood λ estimation
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1. Pictures show GCV and REML scores for different
replicates from same truth.

2. Compared to REML, GCV penalizes overfit only weakly,
and so tends to undersmooth.



Computational strategies for smoothness selection

1. Single iteration. Use an approximate V to re-estimate λ at
each step of the PIRLS iteration used to find β̂.

2. Nested iteration. Optimize V w.r.t. λ by a Newton method,
with each trial λ requiring a full PIRLS iteration to find β̂λ.

I 1 need not converge and is often no cheaper than 2.
I 2 is much harder to implement efficiently.
I In mgcv, 1 is known as performance iteration, and 2 is

outer iteration.
I gam defaults to 2 (see method and optimizer

arguments).
I gamm (mixed GAMs) and bam (large datasets) use 1.



Summary

I A semi-parametric GLM has a linear predictor depending
linearly on unknown smooth functions of covariates.

I Representing these functions with intermediate rank linear
basis expansions recovers an over-parameterized GLM.

I Maximum penalized likelihood estimation of this GLM
avoids overfit by penalizing function wiggliness.

I It uses penalized iteratively reweighted least squares.
I The degree of penalization is chosen by REML, GCV etc.
I Viewing the fitting penalties as being induced by priors on

function wiggliness, provides a justification for PMLE and
implies a posterior distribution for the model coefficients
which gives good frequentist inference.
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