#### Basis Penalty Smoothers

#### **Simon Wood** Mathematical Sciences, University of Bath, U.K.

### Estimating functions

- It is sometimes useful to estimate smooth functions from data, without being too precise about the functional form.
- When estimating such unknown functions there are 2 desirable properties
  - 1. A reasonable approximation to the truth, without too much mis-specification bias.
  - 2. Reasonable computational efficiency.
- The basis-penalty approach is a reasonable compromise between these objectives.

#### Bases and penalties

Write the function to be estimated as

$$f(x) = \sum_{k}^{K} \beta_{k} b_{k}(x)$$

where  $\beta_k$  are coefficients to be estimated, and  $b_k(x)$  are known *basis functions* chosen for convenience.

- PROBLEM: If K is large enough definitely avoid underfit, it will probably overfit!
- SOLUTION: During fitting, penalize departure from smoothness with a penalty, e.g....

$$\mathcal{P}(f) = \int f''(x)^2 dx = \beta^{\mathsf{T}} \mathbf{S} \beta$$

Why does  $\int f''(x)^2 dx = \beta^T \mathbf{S} \beta$ ?

We can write f" in terms of β and a vector of basis function derivatives

$$f''(x) = \sum_{k}^{K} \beta_{k} b_{k}''(x) = \boldsymbol{\beta}^{\mathsf{T}} \mathbf{b}(x)$$

where  $\mathbf{b}(x) = [b_1''(x), b_2''(x), \ldots]^{\mathsf{T}}$ .

Then the penalty can also be re-written

$$\int f''(x)^2 dx = \int \boldsymbol{\beta}^{\mathsf{T}} \mathbf{b}^{\mathsf{T}}(x) \mathbf{b}(x) \boldsymbol{\beta} dx$$
$$= \boldsymbol{\beta}^{\mathsf{T}} \int \mathbf{b}^{\mathsf{T}}(x) \mathbf{b}(x) dx \boldsymbol{\beta} = \boldsymbol{\beta}^{\mathsf{T}} \mathbf{S} \boldsymbol{\beta}$$

where  $\mathbf{S} = \int \mathbf{b}^{\mathsf{T}}(x)\mathbf{b}(x)dx$ , a matrix of fixed coefficients.

#### Basis & Penalty example



#### A simple basis

Before considering smoothing in detail, consider linearly interpolating x\*, y\* data.



► The interpolant (red) can be written  $f(x) = \sum_k \beta_k b_k(x)$ , where the  $b_k$  are *tent funtions*:there is one per data point (•).

#### The tent basis

- The k<sup>th</sup> tent function is 1 at x<sup>\*</sup><sub>k</sub> and descends linearly to zero at x<sup>\*</sup><sub>k±1</sub>. Elsewhere it is zero.
- The full set look like this...



• Under this definition of  $b_k(x)$ ,  $\beta_k = y_k^* \dots$ 

#### The interpolating basis

So the interpolating function is represented by multiplying each tent function by its coefficient (β<sub>k</sub> = y<sup>\*</sup><sub>k</sub>) and summing the results...



Given the basis functions and coefficients, we can predict the value of the interpolant anywhere in the range of the x\* values.

### Prediction matrix

- Suppose that we have a series of points  $x_k^*, y_k^*$  to interpolate.
- The x<sup>\*</sup><sub>k</sub> values define the tent basis, and the y<sup>\*</sup><sub>k</sub> give the coefficients β<sub>k</sub>.
- Now suppose that we want to evaluate the interpolant at a series of values x<sub>i</sub>.

• If 
$$\mathbf{f} = [f(x_1), f(x_2), \ldots]^T$$
, then

$$\mathbf{f} = \mathbf{X} \boldsymbol{\beta}$$

where the prediction matrix is given by

#### Regression with a basis

Suppose that we want to model these data



- One model is  $a_i = f(t_i) + \epsilon_i$ , where f is an unknown function.
- We could set f(t) = ∑<sub>k</sub> β<sub>k</sub> b<sub>k</sub>(t) where the b<sub>k</sub> are tent functions, based on a set of t<sup>\*</sup><sub>k</sub> values spaced evenly through the range of observed times.

#### Regression model form

- Viriting the model in vector from we have  $\mathbf{a} = \mathbf{f} + \boldsymbol{\epsilon}$ , where  $\mathbf{f}^{\mathsf{T}} = [f(t_1), f(t_2), \ldots]$ .
- Let X be a prediction matrix produced using the tent basis, so that X<sub>ij</sub> = b<sub>j</sub>(t<sub>i</sub>). The model becomes

$$\mathsf{a} = \mathsf{X}eta + \epsilon$$

- So we have a linear model, with model matrix **X**.
- This can be estimated by standard linear modelling methods.
- Let's try it out in R.

A simple regression smoother in R

```
First an R function for producing tent functions.
tf <- function(x,xk=seq(0,1,length=10),k=1) {
## generate kth tent function from set defined by xk
yk <- xk*0;yk[k] <- 1
approx(xk,yk,x)$y
}</pre>
```

 And now a function to use it for making prediction/model matrices.

```
tf.X <- function(x,xk=seq(0,1,length=10)) {
## tent function basis matrix given knot sequence xk
    nk <- length(xk); n <- length(x)
    X <- matrix(NA,n,nk)
    for (i in 1:nk) X[,i] <- tf(x,xk,i)
    X
}</pre>
```

#### Fitting the mcycle data

K <- 40 ## basis dimension t0 <- min(mcycle\$times);t1 <- max(mcycle\$times) tk=seq(t0,t1,length=K) ## knot sequence X <- tf.X(x=mcycle\$times,xk=tk) ## model matrix b <- coef(lm(mcycle\$accel~X-1)) ## fit model Xp <- tf.X(x=0:120/2,xk=tk) ## prediction matrix plot(mcycle\$times,mcycle\$accel,ylab="accel",xlab="time") lines(0:120/2,Xp%\*%b,col=2,lwd=2)



► Far too wiggly! Reduce K

# Reducing K

• After some experimentation, K = 15 seems reasonable...



- ▶ ... but K selection is a bit fiddly and ad hoc.
  - 1. Models with different K are not nested, so we can't use hypothesis testing.
  - 2. We have little choice but to fit with every possible *K* value if AIC is to be used.
  - 3. Very difficult to generalize this approach to model selection to models with more than one function.

### Smoothing

- Using the basis for *regression* was ok, but there are some problems in choosing K and deciding where to put the *knots*, t<sup>\*</sup><sub>k</sub>.
- ▶ To overcome these consider using the basis for *smoothing*.
  - 1. Make K 'large enough' that bias is negligible.
  - 2. Use even  $x_k^*$  spacing.
  - 3. To avoid overfit, penalize the wiggliness of f using, e.g.

$$\mathcal{P}(f) = \sum_{k+1}^{K-1} (\beta_{k-1} - 2\beta_k + \beta_{k+1})^2$$

### Evaluating the penalty

To get the penalty in convenient form, note that

$$\begin{bmatrix} \beta_1 - 2\beta_2 + \beta_3 \\ \beta_2 - 2\beta_3 + \beta_4 \\ \vdots \end{bmatrix} = \begin{bmatrix} 1 & -2 & 1 & 0 & . & . \\ 0 & 1 & -2 & 1 & .. \\ \vdots & \vdots & \ddots & \vdots & . & . \\ \vdots & \vdots & \vdots & \vdots & \vdots & . & . \end{bmatrix} \boldsymbol{\beta} = \mathbf{D}\boldsymbol{\beta}$$

by definition of  $\boldsymbol{\mathsf{D}}$ 

Hence

$$\mathcal{P}(f) = \boldsymbol{\beta}^{\mathsf{T}} \mathbf{D}^{\mathsf{T}} \mathbf{D} \boldsymbol{\beta} = \boldsymbol{\beta}^{\mathsf{T}} \mathbf{S} \boldsymbol{\beta}$$

by definition of  $\boldsymbol{S}.$ 

### Penalized fitting

Now the penalized least squares estimates are

$$\hat{oldsymbol{eta}} = rg\min_eta \sum_i \{oldsymbol{a}_i - f(t_i)\}^2 + \lambda \mathcal{P}(f)$$

smoothing parameter λ controls the fit-wiggliness tradeoff.
For computational purposes this is re-written

$$\hat{\boldsymbol{eta}} = \arg\min_{\boldsymbol{eta}} \|\mathbf{a} - \mathbf{X}\boldsymbol{eta}\|^2 + \lambda \boldsymbol{eta}^{\mathsf{T}} \mathbf{S}\boldsymbol{eta}.$$

In fact we can re-write again

$$\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} \left\| \begin{bmatrix} \mathbf{a} \\ \mathbf{0} \end{bmatrix} - \begin{bmatrix} \mathbf{X} \\ \sqrt{\lambda} \mathbf{D} \end{bmatrix} \boldsymbol{\beta} \right\|^2$$

... least squares for an augmented linear model!

#### Penalized mcycle fit

D <- diff(diff(diag(K))) ## t(D)%\*%D is penalty coef matrix sp <- 2 ## square root smoothing parameter XD <- rbind(X,D\*sp) ## augmented model matrix y0 <- c(mcycle\$accel,rep(0,nrow(D))) ## augmented data b <- lm(y0~XD-1) ## fit augmented model plot(mcycle\$times,mcycle\$accel,ylab="accel",xlab="time") lines(0:120/2,Xp%\*%coef(b),col=2,lwd=2)



time

#### Diversion: avoiding the penalty

- The penalized fit is much nicer than the regression fit, but much theory will be needed to select λ and account for the fact that we penalized. Couldn't we avoid the penalty?
- To some extend the answer is yes!
- Given the penalty we can re-parameterize in such a way that the basis functions are orthogonal, and arranged in decreasing order of penalization.
- ▶ i.e. we can express the original smooth in terms of a set of basis functions than are orthonormal, and where the k<sup>th</sup> is smoother than the (k − 1)<sup>th</sup>, according to the penalty.
- We can use such a basis unpenalized, and perform smoothness selection by deciding how many basis functions to drop, starting from the first. Formal hypothesis testing or AIC can be used to aid the decision.

#### The natural basis

- $\blacktriangleright$  Let a smoother have model matrix  ${\bf X}$  and penalty matrix  ${\bf S}.$
- Form QR decomposition X = QR, followed by symmetric eigen-decomposition

$$\mathbf{R}^{-\mathsf{T}}\mathbf{S}\mathbf{R}^{-1} = \mathbf{U}\mathbf{\Lambda}\mathbf{U}^{\mathsf{T}}$$

- Define  $\mathbf{P} = \mathbf{U}^{\mathsf{T}} \mathbf{R}$ . And reparameterize  $\beta' = \mathbf{P}\beta$ .
- In the new parameterization the model matrix is X' = QU, which has orthogonal columns. (X = X'P.)
- The penalty matrix is now the diagonal matrix Λ (eigenvalues in decreasing order down leading diagonal).
- $\Lambda_{ii}$  is now the wiggliness of the *i*<sup>th</sup> basis function.

### Natural basis regression smoothing

.

.

.

```
▶ qrx <- qr(X)
  RD <- forwardsolve(t(qr.R(qrx)),t(D))</pre>
  es <- eigen(RD%*%t(RD),symmetric=TRUE)</pre>
  Xs <- qr.qy(qrx,rbind(es$vectors,matrix(0,nrow(X)-nrow(RD),nrow(RD))))</pre>
  b <- lm(mcycle$accel~Xs-1) ## unpenalized full fit</pre>
  summary(b)
  . . .
  Coefficients:
        Estimate Std. Error t value Pr(>|t|)
  Xs1
        0.8267
                   23.5508 0.035 0.9721
  Xs2 -8.2636
                   23.5508 -0.351 0.7265
     .
                   .
                               .
  Xs30 -5.8426 23.5508 -0.248 0.8046
  Xs31
        -10.4568
                   23.5508 -0.444 0.6581
  Xs32 -126.5964
                   23.5508 -5.375 5.64e-07 ***
  Xs33 117.9980
                   23.5508 5.010 2.58e-06 ***
                   23.5508 5.809 8.70e-08 ***
  Xs34 136.8142
  Xs35 260.9345
                   23.5508 11.080 < 2e-16 ***
```

Since basis is orthogonal, I can legitimately look for the low to high p-value cut off.

.

.

▶ This suggests deleting the first 31 basis functions (out of 40).

## NP refit

```
> b0 <- lm(mcycle$accel~Xs[,-c(1:31)]-1)
> anova(b0,b)
Analysis of Variance Table
Model 1: mcycle$accel ~ Xs[, -c(1:31)] - 1
Model 2: mcycle$accel ~ Xs - 1
Res.Df RSS Df Sum of Sq F Pr(>F)
```

```
Model 2: mcycle$accel ~ Xs - 1
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 124 62336
2 93 51582 31 10755 0.6255 0.9304
> AIC(b0,b)
    df AIC
b0 10 1215.381
b 41 1252.194
```

▶ The reduced model b0 is clearly better.

 Since this is just an ordinary linear model it is perfectly legitimate to use AIC and F-ratio testing here.

## The NP fit

plot(mcycle\$times,mcycle\$accel,ylab="accel",xlab="time")
lines(mcycle\$times,fitted(b0),col=3,lwd=2)



- ...a nice smooth fit without having to leave the inferential framework of standard linear models.
- This would work just as well in a GLM.
- However with multiple correlated predictors model selection would not be so straightforward.

Back to penalized fitting!

#### Effective Degrees of Freedom

- Penalization restricts the freedom of the coefficients to vary. So with 40 coefficients we have < 40 *effective degrees of freedom* (EDF).
- How the penalty restricts the coefficients is best seen in the natural parameterization. (Let y be the response.)
- Without penalization the coefficients would be  $\tilde{\beta}' = \mathbf{X}'^T \mathbf{y}$ .
- With penalization the coefficients are  $\hat{\beta}' = (\mathbf{I} + \lambda \mathbf{\Lambda})^{-1} \mathbf{X}'^T \mathbf{y}$ .

• i.e. 
$$\hat{\beta}_j = \tilde{\beta}_j (1 + \lambda \Lambda_{jj})^{-1}$$
.

- So (1 + λΛ<sub>jj</sub>)<sup>-1</sup> is the shrinkage factor for the i<sup>th</sup> coefficient, and is bounded between 0 and 1. It gives the EDF for β̂<sub>j</sub>.
- So total EDF is  $tr\{(1 + \lambda \Lambda_{jj})^{-1}\} = tr(\mathbf{F})$ , where  $\mathbf{F} = (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{S})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{X}\}$ , the 'EDF matrix'.

### Smoothing bias

The formal expression for the penalized least squares estimates is β̂ = (X<sup>T</sup>X + λS)<sup>-1</sup>X<sup>T</sup>y

Hence

$$E(\hat{\beta}) = (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{S})^{-1}\mathbf{X}^{\mathsf{T}}E(\mathbf{y})$$
  
=  $(\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{S})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{X}\beta$   
=  $\mathbf{F}\beta \neq \beta$ 

- Smooths are baised!
- This is the price paid for reducing bias when you don't know the functional form in advance.
- The bias makes frequentist inference difficult (including bootstrapping!).

### A Bayesian smoothing model

- We penalize because we think that the truth is more likely to be smooth than wiggly.
- Things can be formalized by putting a prior on wiggliness

wiggliness prior  $\propto \exp(-\lambda \boldsymbol{\beta}^{\mathsf{T}} \mathbf{S} \boldsymbol{\beta}/(2\sigma^2))$ 

- ... equivalent to a prior β ~ N(0, S<sup>-</sup>σ<sup>2</sup>/λ) where S<sup>-</sup> is a generalized inverse of S.
- From the model  $\mathbf{y}|\boldsymbol{\beta} \sim N(\mathbf{X}\boldsymbol{\beta}, \mathbf{I}\sigma^2)$ , so from Bayes' Rule

$$eta | \mathbf{y} \sim N(\hat{eta}, (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{S})^{-1}\sigma^2)$$

Finally  $\hat{\sigma}^2 = \|\mathbf{y} - \mathbf{X}\hat{\beta}\|^2 / \{n - \operatorname{tr}(\mathbf{F})\}$  is useful.

## Using the $\beta | \mathbf{y}$ distribution

- It is very cheap to simulate from the distribution of β|y, allowing easy Bayesian inference about any quantity derived from the model.
- Confidence/credible intervals for the smooth can be constructed without simulation. 'Across the function' they have very good frequentist properties. (Nychka, 1988)
- Nychka's idea
  - Construct an interval C(x) so that if x is chosen randomly,  $Pr{f(x) \in C(x)} = .95$  (say).
  - ► Choosing x randomly turns bias{ f(x) f(x)} into a zero mean random variable.
  - Basing C(x) on the sum of sampling variability and 'random bias' yields the Bayesian intervals (approximatly).
  - So by construction, the Bayesian intervals have close to nominal 'across the function' coverage.

#### **P-values**

- You might want to test whether the a smooth could be replaced by a constant (or other parametric term).
- This sits uncomfortably with the Bayesian approach, but there are several alternatives:
  - 1. Functions in the null space of the penalty are not penalized by smoothing, so under the null the parameter estimates are unbiased, and a purely frequentist approach can be taken, however the correct degrees of freedom to use is problematic.
  - 2. Given Nychka's result on the good frequentist properties of Bayesian intervals, it is possible to try and 'invert' the intervals to obtain p-values.
  - If testing is really a key part of the analysis, it may be better to simply use unpenalized models, via the natural parameterization trick.

#### Adding a CI to mcycle fit

```
V <- solve(t(XD)%*%XD)  ## (X'X+\lambda S)^{-1}
ldF <- rowSums(V*(t(X)%*%X)) ## diag(F)
n <- nrow(X)
sig2 <- sum(residuals(b)[1:n]^2)/(n-sum(ldF))
V <- V*sig2 ## posterior covariance matrix
## get s.e. of predicted curve
f.se <- rowSums((Xp%*%V)*Xp)^.5 ## diag(Xp%*%V%*%t(Xp))
t <- 0:120/2; f <- Xp%*%coef(b)
lines(t,f+2*f.se,col=3,lwd=2)
lines(t,f-2*f.se,col=3,lwd=2)
title(paste("EDF =",round(sum(ldF),digits=2)))
```



EDF = 13.7

```
time
```

Time to consider  $\lambda$  selection...