
Basis Penalty Smoothers

Simon Wood
Mathematical Sciences, University of Bath, U.K.

Estimating functions

I It is sometimes useful to estimate smooth functions from
data, without being too precise about the functional form.

I When estimating such unknown functions there are 2
desirable properties

1. A reasonable approximation to the truth, without too much
mis-specification bias.

2. Reasonable computational efficiency.

I The basis-penalty approach is a reasonable compromise
between these objectives.

Bases and penalties

I Write the function to be estimated as

f (x) =
K∑

k

βkbk(x)

where βk are coefficients to be estimated, and bk(x) are
known basis functions chosen for convenience.

I PROBLEM: If K is large enough definitely avoid underfit, it
will probably overfit!

I SOLUTION: During fitting, penalize departure from
smoothness with a penalty, e.g.. . .

P(f) =

∫
f ′′(x)2dx = βTSβ

Why does
∫

f ′′(x)2dx = βTSβ?

I We can write f ′′ in terms of β and a vector of basis function
derivatives

f ′′(x) =
K∑

k

βkb′′k (x) = βTb(x)

where b(x) = [b′′1(x), b′′2(x), . . .]T.

I Then the penalty can also be re-written

∫
f ′′(x)2dx =

∫
βTbT(x)b(x)βdx

= βT

∫
bT(x)b(x)dxβ = βTSβ

where S =
∫

bT(x)b(x)dx , a matrix of fixed coefficients.

Basis & Penalty example

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

basis functions

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4
6

8
10

x

y

⌠
⌡

f"(x)2dx = 377000

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4
6

8
10

x

y

⌠
⌡

f"(x)2dx = 63000

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4
6

8
10

x

y

⌠
⌡

f"(x)2dx = 200

A simple basis

I Before considering smoothing in detail, consider linearly
interpolating x∗, y∗ data.

0 2 4 6 8

1
2

3
4

x

y

I The interpolant (red) can be written f (x) =
∑

k βkbk(x),
where the bk are tent funtions:there is one per data point (•).

The tent basis

I The kth tent function is 1 at x∗k and descends linearly to zero
at x∗k±1. Elsewhere it is zero.

I The full set look like this. . .

0 2 4 6 8

0
1

2
3

4

x

b k
(x

)

I Under this definition of bk(x), βk = y∗k . . .

The interpolating basis

I So the interpolating function is represented by multiplying
each tent function by its coefficient (βk = y∗k) and summing
the results. . .

0 2 4 6 8

0
1

2
3

4

x

y

I Given the basis functions and coefficients, we can predict the
value of the interpolant anywhere in the range of the x∗

values.

Prediction matrix

I Suppose that we have a series of points x∗k , y∗k to interpolate.

I The x∗k values define the tent basis, and the y∗k give the
coefficients βk .

I Now suppose that we want to evaluate the interpolant at a
series of values xi .

I If f = [f (x1), f (x2), . . .]
T , then

f = Xβ

where the prediction matrix is given by

X =




b1(x1) b2(x1) b3(x1) .
b1(x2) b2(x2) . .

. . . .

. . . .




Regression with a basis

I Suppose that we want to model these data

10 20 30 40 50

−
10

0
−

50
0

50

time

ac
ce

l

I One model is ai = f (ti) + εi , where f is an unknown function.

I We could set f (t) =
∑

k βkbk(t) where the bk are tent
functions, based on a set of t∗k values spaced evenly through
the range of observed times.

Regression model form

I Writing the model in vector from we have a = f + ε, where
fT = [f (t1), f (t2), . . .].

I Let X be a prediction matrix produced using the tent basis, so
that Xij = bj(ti). The model becomes

a = Xβ + ε

I So we have a linear model, with model matrix X.

I This can be estimated by standard linear modelling methods.

I Let’s try it out in R.

A simple regression smoother in R

I First an R function for producing tent functions.
tf <- function(x,xk=seq(0,1,length=10),k=1) {

generate kth tent function from set defined by xk

yk <- xk*0;yk[k] <- 1

approx(xk,yk,x)$y

}

I And now a function to use it for making prediction/model
matrices.
tf.X <- function(x,xk=seq(0,1,length=10)) {

tent function basis matrix given knot sequence xk

nk <- length(xk); n <- length(x)

X <- matrix(NA,n,nk)

for (i in 1:nk) X[,i] <- tf(x,xk,i)

X

}

Fitting the mcycle data

I K <- 40 ## basis dimension

t0 <- min(mcycle$times);t1 <- max(mcycle$times)

tk=seq(t0,t1,length=K) ## knot sequence

X <- tf.X(x=mcycle$times,xk=tk) ## model matrix

b <- coef(lm(mcycle$accel~X-1)) ## fit model

Xp <- tf.X(x=0:120/2,xk=tk) ## prediction matrix

plot(mcycle$times,mcycle$accel,ylab="accel",xlab="time")

lines(0:120/2,Xp%*%b,col=2,lwd=2)

10 20 30 40 50

−
10

0
−

50
0

50

time

ac
ce

l

I Far too wiggly! Reduce K

Reducing K

I After some experimentation, K = 15 seems reasonable. . .

10 20 30 40 50

−
10

0
−

50
0

50

time

ac
ce

l

I . . . but K selection is a bit fiddly and ad hoc.

1. Models with different K are not nested, so we can’t use
hypothesis testing.

2. We have little choice but to fit with every possible K value if
AIC is to be used.

3. Very difficult to generalize this approach to model selection to
models with more than one function.

Smoothing

I Using the basis for regression was ok, but there are some
problems in choosing K and deciding where to put the knots,
t∗k .

I To overcome these consider using the basis for smoothing.

1. Make K ‘large enough’ that bias is negligible.
2. Use even x∗k spacing.
3. To avoid overfit, penalize the wiggliness of f using, e.g.

P(f) =
K−1∑

k+1

(βk−1 − 2βk + βk+1)
2

Evaluating the penalty

I To get the penalty in convenient form, note that




β1 − 2β2 + β3

β2 − 2β3 + β4

.

.


 =




1 −2 1 0 . .
0 1 −2 1 ..
.
.


 β = Dβ

by definition of D

I Hence
P(f) = βTDTDβ = βTSβ

by definition of S.

Penalized fitting

I Now the penalized least squares estimates are

β̂ = arg min
β

∑

i

{ai − f (ti)}2 + λP(f)

smoothing parameter λ controls the fit-wiggliness tradeoff.

I For computational purposes this is re-written

β̂ = arg min
β
‖a− Xβ‖2 + λβTSβ.

I In fact we can re-write again

β̂ = arg min
β

∥∥∥∥
[

a
0

]
−

[
X√
λD

]
β

∥∥∥∥
2

I . . . least squares for an augmented linear model!

Penalized mcycle fit

I D <- diff(diff(diag(K))) ## t(D)%*%D is penalty coef matrix

sp <- 2 ## square root smoothing parameter

XD <- rbind(X,D*sp) ## augmented model matrix

y0 <- c(mcycle$accel,rep(0,nrow(D))) ## augmented data

b <- lm(y0~XD-1) ## fit augmented model

plot(mcycle$times,mcycle$accel,ylab="accel",xlab="time")

lines(0:120/2,Xp%*%coef(b),col=2,lwd=2)

10 20 30 40 50

−
10

0
−

50
0

50

time

ac
ce

l

Diversion: avoiding the penalty

I The penalized fit is much nicer than the regression fit, but
much theory will be needed to select λ and account for the
fact that we penalized. Couldn’t we avoid the penalty?

I To some extend the answer is yes!

I Given the penalty we can re-parameterize in such a way that
the basis functions are orthogonal, and arranged in decreasing
order of penalization.

I i.e. we can express the original smooth in terms of a set of
basis functions than are orthonormal, and where the kth is
smoother than the (k − 1)th, according to the penalty.

I We can use such a basis unpenalized, and perform
smoothness selection by deciding how many basis functions to
drop, starting from the first. Formal hypothesis testing or AIC
can be used to aid the decision.

The natural basis

I Let a smoother have model matrix X and penalty matrix S.

I Form QR decomposition X = QR, followed by symmetric
eigen-decompostion

R−TSR−1 = UΛUT

I Define P = UTR. And reparameterize β′ = Pβ.

I In the new parameterization the model matrix is X′ = QU,
which has orthogonal columns. (X = X′P.)

I The penalty matrix is now the diagonal matrix Λ (eigenvalues
in decreasing order down leading diagonal).

I Λii is now the wiggliness of the i th basis function.

Natural basis regression smoothing
I qrx <- qr(X)

RD <- forwardsolve(t(qr.R(qrx)),t(D))

es <- eigen(RD%*%t(RD),symmetric=TRUE)

Xs <- qr.qy(qrx,rbind(es$vectors,matrix(0,nrow(X)-nrow(RD),nrow(RD))))

b <- lm(mcycle$accel~Xs-1) ## unpenalized full fit

summary(b)

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

Xs1 0.8267 23.5508 0.035 0.9721

Xs2 -8.2636 23.5508 -0.351 0.7265

.

Xs30 -5.8426 23.5508 -0.248 0.8046

Xs31 -10.4568 23.5508 -0.444 0.6581

Xs32 -126.5964 23.5508 -5.375 5.64e-07 ***

Xs33 117.9980 23.5508 5.010 2.58e-06 ***

Xs34 136.8142 23.5508 5.809 8.70e-08 ***

Xs35 260.9345 23.5508 11.080 < 2e-16 ***

.

I Since basis is orthogonal, I can legitimately look for the low to
high p-value cut off.

I This suggests deleting the first 31 basis functions (out of 40).

NP refit

I > b0 <- lm(mcycle$accel~Xs[,-c(1:31)]-1)

> anova(b0,b)

Analysis of Variance Table

Model 1: mcycle$accel ~ Xs[, -c(1:31)] - 1

Model 2: mcycle$accel ~ Xs - 1

Res.Df RSS Df Sum of Sq F Pr(>F)

1 124 62336

2 93 51582 31 10755 0.6255 0.9304

> AIC(b0,b)

df AIC

b0 10 1215.381

b 41 1252.194

I The reduced model b0 is clearly better.

I Since this is just an ordinary linear model it is perfectly
legitimate to use AIC and F-ratio testing here.

The NP fit

I plot(mcycle$times,mcycle$accel,ylab="accel",xlab="time")

lines(mcycle$times,fitted(b0),col=3,lwd=2)

10 20 30 40 50

−
10

0
−

50
0

50

time

ac
ce

l

I . . . a nice smooth fit without having to leave the inferential
framework of standard linear models.

I This would work just as well in a GLM.

I However with multiple correlated predictors model selection
would not be so straightforward.

Back to penalized fitting!

Effective Degrees of Freedom

I Penalization restricts the freedom of the coefficients to vary.
So with 40 coefficients we have < 40 effective degrees of
freedom (EDF).

I How the penalty restricts the coefficients is best seen in the
natural parameterization. (Let y be the response.)

I Without penalization the coefficients would be β̃′ = X′Ty.

I With penalization the coefficients are β̂′ = (I + λΛ)−1X′Ty.

I i.e. β̂j = β̃j(1 + λΛjj)
−1.

I So (1 + λΛjj)
−1 is the shrinkage factor for the i th coefficient,

and is bounded between 0 and 1. It gives the EDF for β̂j .

I So total EDF is tr{(1 + λΛjj)
−1} = tr(F), where

F = (XTX + λS)−1XTX}, the ‘EDF matrix’.

Smoothing bias

I The formal expression for the penalized least squares
estimates is β̂ = (XTX + λS)−1XTy

I Hence

E (β̂) = (XTX + λS)−1XTE (y)

= (XTX + λS)−1XTXβ

= Fβ 6= β

I Smooths are baised!

I This is the price paid for reducing bias when you don’t know
the functional form in advance.

I The bias makes frequentist inference difficult (including
bootstrapping!).

A Bayesian smoothing model

I We penalize because we think that the truth is more likely to
be smooth than wiggly.

I Things can be formalized by putting a prior on wiggliness

wiggliness prior ∝ exp(−λβTSβ/(2σ2))

I . . . equivalent to a prior β ∼ N(0,S−σ2/λ) where S− is a
generalized inverse of S.

I From the model y|β ∼ N(Xβ, Iσ2), so from Bayes’ Rule

β|y ∼ N(β̂, (XTX + λS)−1σ2)

I Finally σ̂2 = ‖y − Xβ̂‖2/{n − tr(F)} is useful.

Using the β|y distribution

I It is very cheap to simulate from the distribution of β|y,
allowing easy Bayesian inference about any quantity derived
from the model.

I Confidence/credible intervals for the smooth can be
constructed without simulation. ‘Across the function’ they
have very good frequentist properties. (Nychka, 1988)

I Nychka’s idea
I Construct an interval C (x) so that if x is chosen randomly,

Pr{f (x) ∈ C (x)} = .95 (say).
I Choosing x randomly turns bias{f̂ (x)− f (x)} into a zero

mean random variable.
I Basing C (x) on the sum of sampling variability and ‘random

bias’ yields the Bayesian intervals (approximatly).
I So by construction, the Bayesian intervals have close to

nominal ‘across the function’ coverage.

P-values

I You might want to test whether the a smooth could be
replaced by a constant (or other parametric term).

I This sits uncomfortably with the Bayesian approach, but there
are several alternatives:

1. Functions in the null space of the penalty are not penalized by
smoothing, so under the null the parameter estimates are
unbiased, and a purely frequentist approach can be taken,
however the correct degrees of freedom to use is problematic.

2. Given Nychka’s result on the good frequentist properties of
Bayesian intervals, it is possible to try and ‘invert’ the intervals
to obtain p-values.

3. If testing is really a key part of the analysis, it may be better
to simply use unpenalized models, via the natural
parameterization trick.

Adding a CI to mcycle fit

V <- solve(t(XD)%*%XD) ## (X’X+\lambda S)^{-1}

ldF <- rowSums(V*(t(X)%*%X)) ## diag(F)

n <- nrow(X)

sig2 <- sum(residuals(b)[1:n]^2)/(n-sum(ldF))

V <- V*sig2 ## posterior covariance matrix

get s.e. of predicted curve

f.se <- rowSums((Xp%*%V)*Xp)^.5 ## diag(Xp%*%V%*%t(Xp))

t <- 0:120/2; f <- Xp%*%coef(b)

lines(t,f+2*f.se,col=3,lwd=2)

lines(t,f-2*f.se,col=3,lwd=2)

title(paste("EDF =",round(sum(ldF),digits=2)))

10 20 30 40 50

−
10

0
−

50
0

50

time

ac
ce

l

EDF = 13.7

Time to consider λ selection. . .

