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Introduction

» We have seen how to

1.

2.
3.
4.

turn model y; = f(x;) + ¢; into y = X3 + € and a wiggliness
penalty B7Sg.

estimate 3 given X as 3 = arg ming ||y — X8||2 + A\37SB.
estimate A by GCV, AIC, REML etc.

use B|A ~ N(3, (XTX + AS)15?) for inference.

» ...all this can be extended to models with multiple smooth
terms, for exponential family response data ...



Additive Models

» Consider the model

Yi :Ai0+27§(xﬁ)+6i, ei ~ N(0,07)
J

» A, is the i*" row of the model matrix for any parametric terms,
with parameter vector 8. Assume it includes an intercept.
» f; is a smooth function of covariate x;, which may vector
valued.
» The f; are confounded via the intercept, so that the model is
only estimable under identifiability constraints on the f;.

> The best constraints are ) ; fi(x;) =0 V j.
> If f = [f(x1), f(x2),...] then the constraint is 1Tf =0, i.e. f

is orthogonal to the intercept. This results in minimum width
Cls for the constrained f;.1

Lthis fact is not often appreciated in the literature



Representing the model

» Choose a basis and penalty for each f;.
> Let the model matrix for f; be X and let A\3TS3 be the
penalty (more generally 3=, \;87S;3).
> Reparameterize to absorb the constraint 17X = 0 as follows
1. Form QR decompostion

Q{ I; ] = XT"1 and partition Q:[Y Z}

2. Setting B8 = Z3' then

YT
1'™Xg=[R 0][ZT ]Zﬂ’_o.

3. So set XUl = XZ and S; = Z7SZ. . .the constrained model
and penalty matrices for ;.



The estimable AM

» Now y; = A;0 + > . fi(xji) + €; becomes y = X3 + € where
j J\"J
X =[A:xH.x@: ..

and 3 contains @ followed by the basis coefficients for the f;.
> After suitable padding of the S; with zeroes the penalty
becomes ZJ- )\J-BTSJ-B.
> Now 3 = arg ming|ly — XB|]> + > \BTS;B.
» Again A can be estimated by GCV, REML etc.



Linear functional generalization

> Occasionally we may want a model that depends on an f; in
some way other than simple evaluation. So let Lj be a linear
operator and consider an extended model

yi=Ai0+> Lifi(x) +ei
J
e.g. Lijfi = [ ki(x)f(x)dx (ki known), or just L;jf; = f(x;).
» Dropping j for now, we can discretize L;f(x) ~ >, Luf(xx).

> So Lif(x)~>, Z,-k)N(k,B, where X, is k8 row of model
matrix evaluating f(x) at the points x.

> Then the model matrix for L;f(x) is LX. The penalties are
just those for f.

» Hence the extended model can be written in the same general
form as the simple AM.



Generalized Additive Models

» Generalizing again, we have

g(ui) = A0+ Lifi(x), yi~ EF(u;,0)
J

where g is a known smooth monotonic link function and EF
an exponential family distribution.
» Set up model matrix and penalties as before.

» Estimate 3 by penalized MLE. Defining the Deviance.
D(B) = 2{lnax — 1(B)} (Imax is saturated log likelihood). ..

~

B =arg mﬁi}n D(B) + Z )\j,@TSj,B
J

> X estimation is by generalizations of GCV, REML etc.



GAM computation: 3|y

> Penalized likelihood maximization is by Penalized IRLS.
» Initialize 7 = g(y) and iterate the following to convergence.

1. Compute z; and w; from #); (and fi;) as for any GLM.
2. Compute a revised 3 estimate

B =arg mBin Z’: wi(z — XiB)? + Z )\J-,@TSJ',@

and hence revised estimates 7} and fi.

» Newton based versions of w; and z; are best here, as it makes
A estimation easier.



EDF, Bly and ¢

> Let S = Zj )\J'SJ' and W = diag{E(W,-)}.

» The Effective Degrees of Freedom matrix becomes
F=(XTWX + S)"IXTwX

» Then the EDF is tr(F). EDFs for individual smooths are found
by summing the F;; values for their coefficients.

» In the n — oo limit
Bly ~ N(B, (XTWX + ) *¢)

» The scale parameter can be estimated by

¢ = Z wi(zi — XiB3)?/{n — tr(F)}.

i



A estimation

» There are 2 basic computational strategies for A selection.

1. Single iteration schemes estimate A at each PIRLS iteration
step, by applying GCV, REML or whatever to the working
penalized linear model. This approach need not converge.

2. Nested iteration, defines a A selection criterion in terms of the
model deviance and optimizes it directly. Each evaluation of
the criterion requires an ‘inner’ PIRLS to obtain ,[:b\. This
converges, since a properly defined function of A is optimized.

» The second option is usually preferable on grounds of
reliability, but the first option can be made very memory
efficient with very large datasets.

» The first option simply uses the smoothness selection criteria

for the linear model case, but the second requires that these
be extended. ..



Deviance based A selection criteria

» Mallows’ C,/ UBRE generalizes to
V, = D(B)) + 2¢tr(F)
» GCV generalizes to
Vg = nD(B)/{n — tr(F)}>

» Laplace approximate (negative twice) REML is

_DPB)+BTSB
= 9 5(¢)

+ (log | XTWX + S| — log |S|+) — M, log(27 ).

Vr



Nested iteration computational strategy

» Optimization wrt p = log A is by Newton's method, using
analytic derivatives.
» For each trial A used by Newton's method. ..
1. Re-parameterize for maximum numerical stability in computing
B and terms like log [S|.
2. Compute 3 by PIRLS (full Newton version).
3. Calculate derivatives of 3 wrt p by implicit differentiation.
4. Evaluate the A selection criterion and its derivatives wrt p
» ... after which all the ingredients are in place for Newton's
method to propose a new A value.

» As usual with Newton's method, some step halving may be
needed, and the Hessian will have to be peturbed if it is not
positive definite.



One last generalization: GAMM

» A generalized additive mixed model has the form

g(/‘l) = A10+Z LUE(XJ)—FZba b~ N(va)v Yi~ EF(:“MQS)
J

» ...actually this is not much different to a GAM. The random
effects term Zb is just like a smooth with penalty b+~ 1b.

» If 9p~! can be written in the form >k ASk then the GAMM
can be treated exactly like a GAM. (gam).

» Alternatively, using the mixed model representation of the
smooths, the GAMM can be written in standard GLMM form
and estimated as a GLMM. (gamm/gamm4).

» The latter option is often preferable when there are many
random effects, and the former when there are fewer.



Inference for GAMMs

» For many GAMMs we are interested in making inferences
about the smooths, but are using the other random effects to
model ‘nuisance’ randomness.

> In this case we often want to use the large sample result
Bly ~ N(B, (XTWX +5)"1¢)

for inference, where W1 = W1 4+ ZTZ/¢.

» The point here is that inference about the smooths and other
fixed effects takes account of the uncertainty induced by both
random effects and residual variability.

» Note that W usually has exploitable sparse structure, so that
its inverse is not too expensive.



Summary

v

A GAM is simply a GLM in which the linear predictor partly
depends linearly on some unknown smooth functions.

GAMs are estimated by a penalized version of the method
used to fit GLMs.

An extra criterion has to be optimized to find the smoothing
parameters.

A GAMM is simply a GLMM in which the linear predictor
partly depends linearly on some unknown smooth functions.

From the mixed model representation of smooths, GAMMs
can be estimated as GAMs or GLMMs.

Inference for GAMs and GAMMs is really Bayesian, but
without any need to simulate.



