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Introduction

I We have seen how to

1. turn model yi = f (xi ) + εi into y = Xβ + ε and a wiggliness
penalty βTSβ.

2. estimate β given λ as β̂ = arg minβ ‖y − Xβ‖2 + λβTSβ.
3. estimate λ by GCV, AIC, REML etc.
4. use β|λ ∼ N(β̂, (XTX + λS)−1σ2) for inference.

I . . . all this can be extended to models with multiple smooth
terms, for exponential family response data . . .



Additive Models

I Consider the model

yi = Aiθ +
∑

j

fj(xji ) + εi , εi ∼ N(0, σ2)

I Ai is the i th row of the model matrix for any parametric terms,
with parameter vector θ. Assume it includes an intercept.

I fj is a smooth function of covariate xj , which may vector
valued.

I The fj are confounded via the intercept, so that the model is
only estimable under identifiability constraints on the fj .

I The best constraints are
∑

i fj(xi ) = 0 ∀ j .

I If f = [f (x1), f (x2), . . .] then the constraint is 1Tf = 0, i.e. f
is orthogonal to the intercept. This results in minimum width
CIs for the constrained fj .
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1this fact is not often appreciated in the literature



Representing the model

I Choose a basis and penalty for each fj .

I Let the model matrix for fj be X and let λβTSβ be the
penalty (more generally

∑
j λjβ

TSjβ).

I Reparameterize to absorb the constraint 1TX = 0 as follows

1. Form QR decompostion

Q

[
R
0

]
= XT1 and partition Q =

[
Y Z

]

2. Setting β = Zβ′ then

1TXβ =
[

R 0
] [

YT

ZT

]
Zβ′ = 0.

3. So set X[j] = XZ and Sj = ZTSZ. . . the constrained model
and penalty matrices for fj .



The estimable AM

I Now yi = Aiθ +
∑

j fj(xji ) + εi becomes y = Xβ + ε where

X = [A : X[1] : X[2] : · · · ]

and β contains θ followed by the basis coefficients for the fj .

I After suitable padding of the Sj with zeroes the penalty
becomes

∑
j λjβ

TSjβ.

I Now β̂ = arg minβ ‖y − Xβ‖2 +
∑

j λjβ
TSjβ.

I Again λ can be estimated by GCV, REML etc.



Linear functional generalization

I Occasionally we may want a model that depends on an fj in
some way other than simple evaluation. So let Lij be a linear
operator and consider an extended model

yi = Aiθ +
∑

j

Lij fj(xj) + εi

e.g. Lij fj =
∫

ki (x)fj(x)dx (ki known), or just Lij fj = f (xji ).

I Dropping j for now, we can discretize Li f (x) ' ∑
k L̃ik f (xk).

I So Li f (x) ' ∑
k L̃ikX̃kβ, where X̃k is kth row of model

matrix evaluating f (x) at the points xk .

I Then the model matrix for Li f (x) is L̃X̃. The penalties are
just those for f .

I Hence the extended model can be written in the same general
form as the simple AM.



Generalized Additive Models

I Generalizing again, we have

g(µi ) = Aiθ +
∑

j

Lij fj(xj), yi ∼ EF(µi , φ)

where g is a known smooth monotonic link function and EF
an exponential family distribution.

I Set up model matrix and penalties as before.

I Estimate β by penalized MLE. Defining the Deviance.
D(β) = 2{lmax − l(β)} (lmax is saturated log likelihood). . .

β̂ = arg min
β

D(β) +
∑

j

λjβ
TSjβ

I λ estimation is by generalizations of GCV, REML etc.



GAM computation: β̂|y

I Penalized likelihood maximization is by Penalized IRLS.
I Initialize η̂ = g(y) and iterate the following to convergence.

1. Compute zi and wi from η̂i (and µ̂i ) as for any GLM.
2. Compute a revised β estimate

β̂ = arg min
β

∑

i

wi (zi − Xiβ)2 +
∑

λjβ
TSjβ

and hence revised estimates η̂ and µ̂.

I Newton based versions of wi and zi are best here, as it makes
λ estimation easier.



EDF, β|y and φ̂

I Let S =
∑

j λjSj and W = diag{E (wi )}.
I The Effective Degrees of Freedom matrix becomes

F = (XTWX + S)−1XTWX

I Then the EDF is tr(F). EDFs for individual smooths are found
by summing the Fii values for their coefficients.

I In the n →∞ limit

β|y ∼ N(β̂, (XTWX + S)−1φ)

I The scale parameter can be estimated by

φ̂ =
∑

i

wi (zi − Xi β̂)2/{n − tr(F)}.



λ estimation

I There are 2 basic computational strategies for λ selection.

1. Single iteration schemes estimate λ at each PIRLS iteration
step, by applying GCV, REML or whatever to the working
penalized linear model. This approach need not converge.

2. Nested iteration, defines a λ selection criterion in terms of the
model deviance and optimizes it directly. Each evaluation of
the criterion requires an ‘inner’ PIRLS to obtain β̂λ. This
converges, since a properly defined function of λ is optimized.

I The second option is usually preferable on grounds of
reliability, but the first option can be made very memory
efficient with very large datasets.

I The first option simply uses the smoothness selection criteria
for the linear model case, but the second requires that these
be extended. . .



Deviance based λ selection criteria

I Mallows’ Cp/ UBRE generalizes to

Va = D(β̂λ) + 2φtr(Fλ)

I GCV generalizes to

Vg = nD(β̂λ)/{n − tr(F)}2

I Laplace approximate (negative twice) REML is

Vr =
D(β̂) + β̂TSβ̂

φ
− 2ls(φ)

+ (log |XTWX + S| − log |S|+)−Mp log(2πφ).



Nested iteration computational strategy

I Optimization wrt ρ = log λ is by Newton’s method, using
analytic derivatives.

I For each trial λ used by Newton’s method. . .

1. Re-parameterize for maximum numerical stability in computing
β̂ and terms like log |S|+.

2. Compute β̂ by PIRLS (full Newton version).
3. Calculate derivatives of β̂ wrt ρ by implicit differentiation.
4. Evaluate the λ selection criterion and its derivatives wrt ρ

I . . . after which all the ingredients are in place for Newton’s
method to propose a new λ value.

I As usual with Newton’s method, some step halving may be
needed, and the Hessian will have to be peturbed if it is not
positive definite.



One last generalization: GAMM

I A generalized additive mixed model has the form

g(µi ) = Aiθ+
∑

j

Lij fj(xj)+Zb, b ∼ N(0, ψ), yi ∼ EF(µi , φ)

I . . . actually this is not much different to a GAM. The random
effects term Zb is just like a smooth with penalty bTψ−1b.

I If ψ−1 can be written in the form
∑

k λkSk then the GAMM
can be treated exactly like a GAM. (gam).

I Alternatively, using the mixed model representation of the
smooths, the GAMM can be written in standard GLMM form
and estimated as a GLMM. (gamm/gamm4).

I The latter option is often preferable when there are many
random effects, and the former when there are fewer.



Inference for GAMMs

I For many GAMMs we are interested in making inferences
about the smooths, but are using the other random effects to
model ‘nuisance’ randomness.

I In this case we often want to use the large sample result

β|y ∼ N(β̂, (XTW̃X + S)−1φ)

for inference, where W̃−1 = W−1 + ZTψZ/φ.

I The point here is that inference about the smooths and other
fixed effects takes account of the uncertainty induced by both
random effects and residual variability.

I Note that W̃ usually has exploitable sparse structure, so that
its inverse is not too expensive.



Summary

I A GAM is simply a GLM in which the linear predictor partly
depends linearly on some unknown smooth functions.

I GAMs are estimated by a penalized version of the method
used to fit GLMs.

I An extra criterion has to be optimized to find the smoothing
parameters.

I A GAMM is simply a GLMM in which the linear predictor
partly depends linearly on some unknown smooth functions.

I From the mixed model representation of smooths, GAMMs
can be estimated as GAMs or GLMMs.

I Inference for GAMs and GAMMs is really Bayesian, but
without any need to simulate.


