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Generalized linear model

» The linear model y; = X;3 + ¢;, ¢; ~ N(0,02) can be written
wi=XiB  yi~ N(ui,o?).

where p; = E(y;).

» A Generalized linear model (GLM) extends this somewhat

g(pi)=XiB  yi ~EF(ui, )

» g is any smooth monotonic link function.

EF(ui, @) is any exponential family distribution (e.g. Normal,
gamma, Poisson, binomial, Tweedie, etc. )

¢ is a known or unknown scale parameter

X3 (= m) is the linear predictor

v

v

v



The link function, g

» Common link functions are log, square root and logit

(log{ i /(1 = pi)})-
> g acts a little bit like the data transformations used before
GLMs. However note:

» The link function transforms E(y;).
» The link function does not transform y; itself.
» So, with a GLM we can transform the systematic part of a
model, without changing the distribution of the random
variability.



The exponential family

» A distribution is in the exponential family if its probability
(density) function can be written in a particular general form.

» For our purposes, what matters is that if y is from an
exponential family distributions, then we can write:

var(y) = V()¢

where V is a known variance function of = E(y), and ¢ is
a scale parameter (known or unknown).

» Actually GLM theory can be made to work based only on
knowledge of V/, without needing to know the full distribution
of y, using quasi-likelihood theory.



GLMs: scope

Generalized linear models include many familiar model types, for
example:
» Linear models. ldentity link, normal distribution.
» Models for analysis of contingency tables. Log link, Poisson
distribution.
» Logistic regression. ‘logit’ or ‘probit’ link, binomial
distribution.
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Example: AIDS rate model

» A simple model for these data might be

E(y,) = Noeﬁlti yi~ Poi

> y; is new cases in year t;; Np is number of new cases in 1980.
» Model is for exponential increase of the expected rate.
» Observed number of cases, follows a Poisson distribution.

» The model is non-linear, but taking logs yields

log (E(yi)) = log(No) + futi
= [o + Biti, yi ~ Poi

i.e. a GLM with a log link (8p = log(/\p)).



GLM estimation

Model estimation is by maximum likelihood, via a Newton type method. e.g. for the

AIDS model the log-likelihood function looks like this ...
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IRLS

For GLMs, MLE by a Newton type method can be expressed
as an lteratively Re-weighted Least Squares scheme. ..
Initialize 7); = g(y;), then iterate the following steps.
1. Form pseudodata z = g’(2;)(yi — i)/ + i and iterative
weights, w; = «;/ {V(ﬂ;)g’(ﬁ;)Q}.
2. Minimize the weighted sum of squares ), w;(z; — XiB3)? w.r.t.
3 to obtain a new B, and hence new 7 and fi.

> ai =1+ (yi — i)(V//Vi + &' /&) gives Newton's method.

a; = 1 gives Fisher scoring, where the expected Hessian of the
likelihood replaces the actual Hessian in Newton's method.

Newton convergences faster. Every EF has a canonical link for
which the Newton = Fisher.

At convergence (3 is the MLE (both methods!).



Distribution of ﬁ

» In the large sample limit, by MLE theory (or from the
weighted least squares),

B ~ N(B,(XTWX)14).

» Hence, Cls for any ; can be calculated.
» Often ¢ is known. e.g. ¢ = 1 for Poisson or binomial.

» If ¢ is unknown, can use a Pearson estimate:

6= wi(zi — X;B)’/(n— dim(8))

i

(then need to use t,_gim(g) distribution for Cl's).



Deviance

» It is useful to have a quantity for GLMs which behaves like the
residual sum of squares of a linear model. This is the deviance.

» We can write the model log likelihood, /(3), as a function of
the p: I(p). Then the deviance is

D =2{l(y)— (@)} ¢

» It turns out that D can be evaluated without knowing ¢, but
for hypothesis testing we need the scaled deviance D* = D/ ¢.
(When ¢ =1, D* = D).



Properties of deviance

» The deviance reduces as the model fit improves.
» If the model exactly fits the data then the deviance is zero.
» As a rough approximation
2
D* ~ Xn—dim(83)

if the model is correct. Approximation can be good in some
cases and is exact for the strictly linear model.

» This suggests an alternative scale parameter estimator

¢ =D/{n—dim(8)}.
(Since E(x2) = p and D* = D/¢.)



Model Comparison

» Nested GLMs 0 and 1, with py and p; parameters, can be
compared using a generalized likelihood ratio test. . .
» In terms of the scaled deviance, if model 0 is correct then
Dg B Dik ~ Xiznfpo'
1. If ¢ =1 this means that under model 0: Dy — Dy ~ th—Po'

2. If ¢ is unknown, then the GLRT leads to the approximate
result that, under model 0

(Do —D)/(P =)
Dl/(nfpl) PL—Po,n—p1+

» AIC can be used if we want the best model for prediction,
rather than the simplest model supportable by the data.



Residuals for GLMs

» For GLMs we need to check the assumptions that the data are
independent and have the assumed mean-variance
relationship, and are consistent with the assumed
distribution.

» From the raw residuals €; = y; — p; it is very difficult to check
the mean variance relationship or distribution.

» We therefore standardize the residuals, so that they have
approximately constant variance, and behave something like
residuals for an ordinary linear model.



Pearson residuals

» Pearson residuals are obtained by dividing the raw residuals by
their scaled standard deviation, according to the model

p Yi — Iai
& = T
V(1)

» Hence, if the model mean variance relationship is OK, the
variability of these residuals should appear to be fairly
constant, when they are plotted against fitted values or
predictors.

» Pearson residuals are still skewed, if the distribution is skewed.



Deviance residuals

» For a linear model the residual sum of squares is the sum of
the squared residuals.

» For a GLM the deviance can be written as the sum of
deviances for each datum:

D=> d

» Since the deviance is supposed to behave a bit like the RSS,
then by analogy we can view \/d; as a residual.

> Specifically ¢ = sign(y; — 11i)V/d;, behave quite like residuals
from a linear model.



glmin R

GLMs are fitted using glm, which functions much like 1m

» A model formula specifies the response variable on the left,
and the structure of the linear predictor on the right.

» A data argument is usually supplied, containing the variables
referred to by the formula.

» glm returns a fitted model object.
But we must now specify a distribution and link.
» The family argument achieves this.

» e.g. glm(...,family=poisson(link=log)) would fit a
model with a log link assuming a Poisson response variable.



AIDS model example

belg.aids <- data.frame(cases=c(12,14,33,50,67,74,123,
141,165,204,253,246,240) ,year=1:13)
aml <- glm(cases ~ year,data=belg.aids,
family=poisson(link=log))

plot(aml)
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...clear trend in the residual mean + some overly influential
points.



AIDS model example Il

Try a quadratic time dependence?

am2 <- glm(cases ~ year+I(year~2),data=belg.aids,
family=poisson(link=log))

plot(am2)
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AIDS example Il

Now, examine the fitted model, first with the default print method
> am?2

Call: glm(formula=cases”year+I(year~2),
family=poisson(link=log) ,data=belg.aids)

Coefficients:
(Intercept) year I(year~2)
1.90146 0.55600 -0.02135

Degrees of Freedom: 12 Total (i.e. Null); 10 Residual
Null Deviance: 872.2
Residual Deviance: 9.24 AIC: 96.92



summary.glm (edited)

> summary (am2)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.45903 -0.64491 0.08927 0.67117 1.54596

Coefficients:

Estimate Std. Error z value Pr(>|zl|)
(Intercept) 1.901459 0.186877 10.175 < 2e-16 **x
year 0.556003 0.045780 12.145 < 2e-16 *x*x
I(year~2) -0.021346 0.002659 -8.029 9.82e-16 *x*x

(Dispersion parameter for poisson family taken to be 1)
Null deviance: 872.2058 on 12 degrees of freedom

Residual deviance: 9.2402 on 10 degrees of freedom
AIC: 96.924



Hypothesis testing

We can also use a GLRT/ analysis of deviance to test the null
hypothesis that am1 is correct, against the alternative that am2 is

> anova(aml,am2,test="Chisq") ## NOT doing ANOVA!
Analysis of Deviance Table

Model 1: cases ~ year
Model 2: cases ~ year + I(year~2)

Resid. Df Resid. Dev Df Deviance P(>|Chil)
1 11 80.686

2 10 9.240 1  71.446 2.849e-17

...very strong evidence against am1.



Further model improvement?

Would a cubic term be an improvement?

> ## NOT doing ANOVA!
Analysis of Deviance Table

Model 1: cases ~ year + I(year~2)

Model 2: cases ~ year + I(year~2) + I(year~3)
Resid. Df Resid. Dev Df Deviance P(>|Chil)

1 10 9.2402

2 9 9.0081 1 0.2321 0.6300

... no evidence that it would.



AIC comparison

> AIC(aml,am2,am3)
df AIC
aml 2 166.36982
am2 3 96.92358
am3 4 98.69148

So, both hypothesis testing and AIC agree that the quadratic
model, am2 is the most appropriate.



predict

» predict method functions are the standard way of obtaining
predictions from a fitted model object.

» The predictor variable values at which to predict are supplied
in a newdata dataframe. If absent the values used for fitting
are employed.

» The following predicts from am2, with standard errors.

year <- seq(1,13,length=100)
fv <- predict(am2,newdata=data.frame(year=year),se=TRUE)

Now we can plot the data, fitted curve, and standard error

bands:
plot(belg.aids$year+1980,belg.aids$cases) # data
lines(year+1980,exp(fv$fit) ,col=2) # fit

lines(year+1980,exp(fv$fit+2*fv$se),col=3) # upper c.l.
lines(year+1980,exp(fv$fit-2+fv$se),col=3) # lower c.l.



Fitted AIDS model
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