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Linear models

» We have data on a response variable, y, the variability in
which is believed to be partly predicted by data on some
predictor variables, X1, Xo . . ..

» We model this using a linear model

Vi = Bo + X181 + XigB2 + . .. + XimfBm + €;

» The parameters, (3;, must be estimated from data

» The random variables, ¢;, account for the variability in the
response not explained by the predictors

» Assumptions: the ¢;’s have zero mean (E(¢;) = 0) and
constant variance o2. They are also independent: knowing
the value of ¢; tells you nothing new about that value of ¢;;.



Linear model features

» A key difference in kind between 3;'s and ¢;'s is this: if a
replicate data set were generated the 3;'s would be the
same, but the ¢;’s would all be different.

» For some purposes (Hy testing etc.) we assume that the
¢;’s are Normally distributed.
» Why linear model?
» Because the response is a (weighted) linear combination of
the parameters and the random error.
» The model can depend non-linearly on the predictors.



LM example 1

» Fitting a straight line through the origin. (e.g. simple model
relating birth rate, y, and population size, x).

» Model might be:

VYi=xiB+e €~ NO,0?)




LM examples 2

» Fitting a ‘plane’ to x, z, y data
Yi=DBo+B1Xi+ B2z + e €~ N(0,0%)
» Fitting a polynomial to x, y data. e.g. the cubic

Vi =Bo+ Bi1Xi+ Bax? + Bax® + ¢ e ~ N(0,02)
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LM example 3

Suppose you have grouped data. A simple model might be

something like

Yi = B + € if y; is from group j
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group



LM example 3 continued

» Why is this a linear model? Define dummy variables:

o 1 if y; in group j
Y71 0  otherwise

then, y; = B + ¢; if y; is from group j, becomes ...
Vi = Xi1B1 + XioB2 + Xi333 + €;

» Variables that group data are known as factors. The group
labels are known as levels. Statistical software treats such
variables specially and generates corresponding dummy
variables automatically.



Matrix vector form 1

» Linear model theory, and the understanding of mixed
modelling extensions of linear models, requires that the
linear model be written in matrix vector notation.

» To see how this works consider writing out the model,

Yi = 61+ X0 + €, forallj ...

o= [+ X102+ €
Yo = [B1+Xef2+e

Yn = B1+XnB2+¢€n



Matrix vector form 2

» In matrix vector form this system of equations is

)2 1 X €1
Z _ 1T X {51 ] ) €2
| | L |
Yn LI €n
» Generally this is written:
y=X8+¢

where X is known as the model matrix, and X3 (= n) is the
linear predictor.



|dentifiability

» Consider the ‘balanced one-way ANOVA model’:

wherei=1...3andj=1...2.
» In matrix-vector form...

Y11
Yi2
Y21
Y22
Y31
L V32

» Problem! 3T = (a + k, 81 — k, B2 — k, 33 — K) gives the
same X3, for any k. X is rank deficient: there is an infinite
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set of best fit parameter!
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Yij=a+ B+ ¢
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|dentifiability constraints

» As we have seen, models involving factors can suffer from
identifiability problems.

» A sure sign of this is that the model matrix, X, is column
rank deficient: some of its columns can be made up of
linear combinations of the others.

» To deal with this problem, apply just enough linear
constraints on the parameters that the problem goes away.

» The simplest constraint is to set just enough parameters to
zero that the model becomes identifiable.



|dentifiability constraints

» For the 1-way ANOVA model we might set 5y = 0, so:

1100 100
1100 o 100
1010 m_}110[§]
1010 Bo 110 2
100 1|/ g 10 1|L5%
100 1| 10 1]

» The reduced X3 can match any value of the unreduced
version, given the right choice of parameter values.

» Note also that the right hand X has full column rank.

» Imposition of constraints is automatic in modelling

software, but interpretation requires awareness of it, and
that there are many alternative constraints possible.



LM theory

» So, for any linear model, we have y = X3 + € where
e ~ N(0,10?), and X is full rank n x p.

» This implies a log likelihood'
1(8.0%) = — 2 log(270?) — 515 ly — XB|?
’ 2 202
» Hence the maximum likelihood estimates of 3 are
B = argmin|ly - Xg|*

i.e. the least squares estimates of 3.
» Formally 3 = (X™X)~ X"y (never used for computation!).
» |ly — X3||? is known as the residual sum of squares.

'|lv||® = v"v i.e. the squared Euclidian length of v



LM inference

v

Standard likelihood results give 3 ~ N(3, (X™X)~"0?), but
this result is exact in this case, not just approximate.

» Similarly the GLRT result is exact. Let Xq be the n x py null
model matrix (nested in X), then if the null model is correct

ly — XoBol? = lly - XBI2 _ »
o2 P—Po

» ...but unfortunately these general MLE results are only
exact if o is known, which is unusual.
» 52 = |y — XB||2/(n — p) is unbiased (but is not the MLE).

» It turns out that exact results can be obtained even when
52 is used in place of o2.



LM inference 2

» Suppose that that &E, is the estimated variance of j3; as
read from the /" leading diagonal element of (X™X)~152.
» An exact result can be used for inference about 5;

Bi — Bi

Oa
Bi

» Similarly, for model comparison, under the null model

(Ily — XoBol® — [ly = XBI*)/(P —Po) _ £
52 p—po,n—p

is an exact result to use for hypothesis testing.



The Influence Matrix

» Let y; = E(y;). Clearly i = X33, and hence
i = X(XTX)~1XTy.
» A = X(X"X)~'XT is the influence matrix or hat matrix.

» The leading diagonal elements of A are a measure of how
influential individual data points are in the model fit.
» A also has some interesting properties
1. AA = X(XTX) " XTX(XTX)~'XT = X(XTX)~'XT = A.
2. tr(A) = tr(X(X™X)~'XT) = tr((X"X)~'XTX) = tr(I,) = p.
3. Clearly 8[),/6}/, = A,','.



LM checking

» The residuals are ¢, = y; — [i;.
» If the model fits they should be approximately i.i.d N(0, o2).

» The exact distribution can be obtained from the fact that
éE=(1-A)y...
é ~ N(0, (1 — A)s?)

This can be used to standardize the residuals to have
exactly constant variance, if the ¢; have constant variance.
» Residuals are plotted to check that they
1. have constant variance, rather than variance varying with p;
or some predictor.
2. are independent, rather than varying with p; or some
predictor, or being serially correlated w.r.t to some predictor.
3. are approximately normally distributed.



Stable 3 computation
» Can QR decompose X

R
x-a[®]-an

» Qis L. Qq isits first p columns. Ris p x p upper triangular.
» Hence for any vector, v, ||Qv|? = ||v||?, so

R

= |Qfy - RBJ? +llQzy|?

2
ly-Xg* = llQ'y - Q'Xg|? =

» Since ||QLy||? does not depend on 3 then

B=RQjy



Linear models in R

» R has extensive facilities for linear modelling.

» The main linear model fitting function is 1m.
» The basic approach is:
1. The model structure is specified using a model formula,
supplied to 1m.
2. 1m fits the model, dealing with identifiability constraints,

model matrix construction and fitting internally, and returns
a fitted model object.

3. The fitted model object is interrogated using methods
functions to e.g. extract model summaries, perform F-ratio
testing, produce residual plots, extract estimates etc.

» This basic approach is the same for linear models,
generalized linear models, generalized linear mixed
models, generalized additive models, etc.



Model matrices in R

» In R a model matrix, X, is usually set up automatically,
using a model formula. Usually this is done ‘behind the
scenes’ when a modelling function is used, but for now
we’ll look at the process explicitly.

» As an example consider data frame hubble in the library
gamair. This contains Velocities, y, and Distances, x of
24 galaxies (relative to us).

» We might try modelling these data with a straight line
vi = Bo + B1x; + €;. The model formula y ~ x would set
this up. The variable to the left of ~ specifies the response
variable, whereas everything to the right of ~ specifies the
linear predictor/model matrix.

> Let'stryit...



model .matrix

» library (gamair) ;data (hubble)
model .matrix (y~“x,data=hubble)

(Intercept) X
1 1 2.00
2 1 9.16
3 1 16.14

» model .matrix actually ignores the response in the
formula. Note that the data argument tells it where to find
the variables referred to in the formula.

» By default a constant is included in the linear predictor,
unless a -1 is added to the formula. suppose that we want
a quadratic model and no constant term. ..

model .matrix (y " x+I(x"2)-1,data=hubble)



More model .matrix

» PlantGrowth contains data on plant weight under 2
growth treatments and a control. A possible model. ..

w; = o+ G if plant i is from group j

» model . .matrix (weight "group,data=PlantGrowth)
(Intercept) grouptrtl grouptrt2

1 1 0 0
2 1 0 0
10 1 0 0
11 1 1 0
12 1 1 0

» model.matrix treated group as a factor variable and
has automatically imposed identifiability constraints.



Factor variables in R

» How did model .matrix ‘know’ how to treat group?

» Because the variable group has been assigned a class
factor. This means that each unique value of group is
treated as the label identifying a group (i.e. as the level of a
factor).

» Type PlantGrowth$group and notice how the levels of
group are printed last.

» To declare a variable to be a factor one uses something
like:
x <- c¢(1,1,1,"a","a",1,"c","c","a")
x <— factor (x)



Model formulae in general

Considery ~ a*b + x:z + I(v"2) -1

>

>

>

|

+ means and. i.e. c+d means that the linear predictor
depends on c and d.

x : z mean the interaction of x and z.

axbisshortfor a + b + a:b.

I (v"2) means that the linear predictor depends on v2.

The identity function 1 () simply returns its evaluated
argument, thereby returning the usual meaning to
arithmetic operations within the formula.

-1 means that the linear predictor has no constant.



Imin R

» Within R, linear models are fitted using 1m () .

» The model to fit is specified using a ‘model formula’.
» The data to fit are best supplied in a ‘data frame’.
» The function returns a “itted model object’.

» For example, the model
Yi = Bo+ XiB1 + ZiB2 + €;

would be estimated with a command like
mod.l <- Im(y -~ x + z , dat)

» v ~ x + z isthe model formula.
» dat is a ‘data frame’ containing the variables referred to in

the formula.
» The object returned by 1m has been assigned to an object,

mod. 1.



Example CO, and Global temperature
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» CO. is p.p.m. measured at Siple station Antarctica.

» Temperatures are mean global anomalies (from 1961-1990
mean).

» Try temp; = By + 1C02; + €;.



CO» continued

» If data are in data frame gw then fit as follows.

> gw.modl<-1m(temp~co2,data=gw)
> gw.modl

Call:
Im(formula = temp ~ co2, data = gw)

Coefficients:
(Intercept) co?2
-2.83996 0.00872

» Suggests an increase of 0.0087 C for each extra p.p.m.
CO,, but we need to check model assumptions. ..



Model checking with plot (gw.mod1)

» Some default residual plots are produced by plot (gw.modl).

Scale-Location plot

Residuals

Residuals vs Fitted

Normal Q-Q plot

Cook’s distance plot
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» There is a trend in the mean of the residuals, violating independence.
» The QQ plot is close to a straight line, so normality is OK.

» The residual magnitudes seem consistent with constant variance.

» The 42nd observation has a very high influence on the results.




Revising the CO, model

» Naively, we might add a CO3 term to the model, but this is
not very physical. A better model would recognize inter
year correlation in mean temperature. e.g. assuming data
are in time order,

temp; = fBo + $1C02; + fotemp;_1 + €.

» Note that we are not assuming that the the ¢; are
measurement errors: rather they represent ‘unexplained
variability in the mean temperature’.



Fit the revised model

n <- nrow (gw)
gw.mod2<-Ilm(temp[2:n] "co2[2:n]+temp[l: (n-1)],data=gw)
plot (gw.mod2)

Residuals

... this is much better. All assumptions look OK now.
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Residuals vs Fitted

Normal Q-Q plot

Scale-Location plot

Cook'’s distance plot
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Hypothesis testing

» s there formal evidence that the revised model is better
than the initial model?

» Can test this by using the anova method for 1m models to
perform an F-ratio test.
> gw.modO<-Im(temp[2:n] co2[2:n],data=gw) # must fit same data!
> anova (gw.mod0, gw.mod2)
Analysis of Variance Table

Model 1: temp[2:n] ~ co2[2:n]

Model 2: temp([2:n] 7 co2[2:n] + temp[l:(n - 1)]
Res.Df RSS Df Sum of Sg F Pr(>F)

1 39 0.48759

2 38 0.42501 1 0.06258 5.5957 0.02321 «

Signif. codes: 0 "#%%x’ 0.001 "%%’ 0.01 "’ 0.05 ’".” 0.1 " " 1



Final CO, model

» So we reject the null hypothesis that the simple model is
correct.
» Now examine the fitted full model

> summary (gw.mod2)

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -1.919990 0.568855 -3.375 0.00171 xx*
co2[2:n] 0.005896 0.001715 3.437 0.00144 x%

temp[l:(n — 1)] 0.347253 0.146798 2.366 0.02321 =«
Signif. codes: 0 "x%%x’ 0.001 ’"%%’ 0.01 "%’ 0.05 ".” 0.1 7 " 1
Residual standard error: 0.1058 on 38 degrees of freedom

Multiple R-Squared: 0.6694, Adjusted R-squared: 0.652
F-statistic: 38.47 on 2 and 38 DF, p-value: 7.37e-10



CO, follow up

>

>

>

We would probably go on to obtain confidence intervals for
parameters. e.g. for 3¢ the ‘CO, effect’

> bl <- .005896; cb <- gt (.975,df=38)%.001715

> c(bl-cb,bl+cb)

[1] 0.002424164 0.009367836

i.e. each extra p.p.m. CO, seems to be associated with a
global mean temperature rise of between .0024 and .0094
Celsius.

Note the importance of checking the model assumptions:
failing to do this can lead to the use of inadequate models
and lead to completely invalid conclusions.



Summary

Linear models can all be written y = X3 + €, where € ~ N(0,15?)

The parameters 3 are estimated by minimizing ||y — X3||2 w.r.t. B8.

The formal expression for the estimates is 8 = (XTX)~'XTy.

82 = |ly — XB|1?/(n — dim(8))

B~ N(B, (XTX)~15?).

Model comparison/ hypothesis testing is done using F-ratio tests.

Models must be checked by careful examination of the residuals & = y — X3.
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