
More advanced use of mgcv

Simon Wood

Mathematical Sciences, University of Bath, U.K.

Fine control of smoothness: gamma

◮ Suppose that we fit a model but a component is too wiggly.

◮ For GCV/AIC we can increase the ‘cost’ of degrees of freedom
to be more BIC like. i.e. multiply the EDF by log(n)/2. . .

◮ b <- gam(accel~s(times,k=40),data=mcycle)

plot(b,residuals=TRUE,pch=20,cex=.5) ## Too wiggly!!

gamma <- log(nrow(mcycle))/2 ## BIC like penalization

‘gamma’ multiplies the EDF in GCV or AIC score...

b <- gam(accel~s(times,k=40),data=mcycle,gamma=gamma)

plot(b,residuals=TRUE,pch=20,cex=.5)

10 20 30 40 50

−
10

0
0

50
10

0

times

s(
tim

es
,1

1.
23

)

10 20 30 40 50

−
10

0
0

50
10

0

times

s(
tim

es
,9

.1
3)

Fine control of smoothness: sp

◮ Alternatively the sp argument to gam (or to individual s
terms) can be used to fix some smoothing parameters.

◮ ## try adaptive...

b <- gam(accel~s(times,bs="ad"),data=mcycle)

plot(b,residuals=TRUE,pch=20,cex=.5) ## not adaptive enough?!

Decrease some elements of sp. sp[i] < 0 => estimate sp[i]...

b <- gam(accel~s(times,bs="ad"),data=mcycle,sp=c(-1,1e-5,1e-5,-1,-1))

plot(b,residuals=TRUE,pch=20,cex=.5) ## hmm!

10 20 30 40 50

−
10

0
0

50
10

0

times

s(
tim

es
,8

.7
5)

10 20 30 40 50

−
10

0
0

50
10

0

times

s(
tim

es
,8

.2
7)

Posterior inference

◮ Suppose that we want to make inferences about some
non-linear functional of the model. Simulation from the
distribution β|y is the answer.

◮ For example we might be interested in the trough to peak
difference in the mcycle model just fitted.
pd <- data.frame(times=seq(10,40,length=1000))

Xp <- predict(b,pd,type="lpmatrix") ## map coefs to fitted curves

beta <- coef(b);Vb <- vcov(b) ## posterior mean and cov of coefs

n <- 10000

br <- mvrnorm(n,beta,Vb) ## simulate n rep coef vectors from post.

a.range <- rep(NA,n)

for (i in 1:n) { ## loop to get trough to peak diff for each sim

pred.a <- Xp%*%br[i,] ## curve for this replicate

a.range[i] <- max(pred.a)-min(pred.a) ## range for this curve

}

quantile(a.range,c(.025,.975)) ## get 95% CI

2.5% 97.5%

134.1007 170.0738

Posterior simulation versus bootstrapping

◮ Posterior simulation is very quick.

◮ It is much more efficient than bootstrapping.

◮ In any case bootstrapping is problematic. . .

1. For parametric bootstrapping the smoothing bias causes
problems, the model simulated from is biased and the fits to
the samples will be yet more biased.

2. For non-parametric ‘case-resampling’ the presence of replicate
copies of the same data causes undersmoothing, especially
with GCV based smoothness selection.

◮ An objection to posterior simulation is that we condition on λ̂.

◮ This is fixable, by simulation of replicate λ vectors, and then
simulating β vectors from the distribution implied by each λ,
but in practice it usually adds little.

by variables

◮ mgcv allows smooths to ‘interact’ with simple parametric
terms and factor variables, using the by argument to s and te.

◮ Starting with metric by variables, consider the model

yi = α + f (ti)xi + ǫi

where f is a smooth function.

◮ gam(y ~ s(t,by=x)) would fit this (smooth not centered).

◮ No extra theory is required. gam just has to multiply each
element of the i th row of the model matrix for f (ti) by xi for
each i , and everything else is unchanged.

◮ Such models are sometimes called ‘varying coefficient models’.
The idea is that the linear regression coefficient for xi is
varying smoothly with ti .

◮ When the smooth term is a function of location then the
models are known as ‘geographic regression models’.

Example geographic regression

◮ The dataframe mack contains data from a fisheries survey
sampling mackerel eggs.

44 46 48 50 52 54 56 58

−
14

−
10

−
6

−
4

−
2

lat

lo
n

◮ One model is that egg densities are determined by a quadratic
in (transformed) sea bed depth, but that the coefficients of
this quadratic vary with location. . .

Mackerel model fit

◮ The model can be fitted by
mack$log.na <- log(mack$net.area)

mack$t.bd <- (mack$b.depth)^.25

b <- gam(egg.count ~ offset(log.na) + s(lon,lat) + s(lon,lat,by=t.bd)+

s(lon,lat,by=I(t.bd^2)),

data=mack,family=Tweedie(p=1.1,link=log),method="ML")

for (i in 1:3) { plot(b,select=i);lines(coast)}

 −
5

 −5

 0

 5
 10

 15

 20

s(lon,lat,25.01)

−14 −10 −6 −4 −2

44
46

48
50

52
54

56
58

lon

la
t

 −
5

 −5

 0

 0

 5

 5

 10

 15

 20

−1se

 −10

 −10

 −5

 −5

 0
 5

 10

 15

+1se

 −2

 0
 2

 2
 4

 4

 6

s(lon,lat,3):t.bd

−14 −10 −6 −4 −2

44
46

48
50

52
54

56
58

lon

la
t

 −2
 0

 2

 4

 4

 6

 6

−1se

 −4
 −2

 0

 2

 2

 4

+1se

 −
0.

4

 −0.2

 −
0.

2

 0

 0.2

s(lon,lat,21.31):I(t.bd^2)

−14 −12 −10 −8 −6 −4 −2

44
46

48
50

52
54

56
58

lon

la
t

 −0.4

 −0.2

 −0.2

 0

 0

 0.2

 0.4

−1se

 −
0.

6

 −0.4

 −
0.

4

 −0.2

 −0.2

 0

 0.2

+1se

Concurvity

◮ Notice how uncertain the contours are in the previous model.

◮ There is a concurvity problem with the model.
◮ The covariate t.bd is itself very well modelled as a smooth

function of the other covariates lon and lat . . .
> b.conc <- gam(t.bd~s(lon,lat,k=50),data=mack,method="ML")

> summary(b.conc)

...

edf Ref.df F p-value

s(lon,lat) 46.83 48.82 100.3 <2e-16 ***

...

R-sq.(adj) = 0.885 Deviance explained = 89.4%

◮ Logically this means that all the model terms could be fairly
well approximated by smooth functions of location. . .

◮ This is a difficult issue to deal with.

Smooth-factor interactions

◮ Occasionally a smooth-factor interaction is required.

◮ The by variable argument to s and te permits this.

◮ Iff d is a factor, and x is continuous then

s(x,by=d)

creates a separate (centered) smooth of x for each level of d.

◮ To force the smooths to all have the same smoothing
parameter, set the id argument to something, e.g.

s(x,by=d,id=1)

◮ Note that the smooths are all subject to centering constraints.
With a metric by variable this would not the case (unless the
by variable is a constant, which it should not be).

Factor by example

◮ As an example recall the discrete Height class version of the
trees data. We could try the model
log E (Volumei) = fk(Girthi) if tree i is height class k.

◮ ct5 <- gam(Volume~s(Girth,by=Hclass) + Hclass,

family=Gamma(link=log),data=trees,method="REML")

par(mfrow=c(1,3));plot(ct5)

8 10 12 14 16 18 20

−
1.

0
0.

0
0.

5
1.

0
1.

5
2.

0

Girth

s(
G

ir
th

,1
.1

8)
:H

cl
as

sS
m

al
l

8 10 12 14 16 18 20

−
1.

0
0.

0
0.

5
1.

0
1.

5
2.

0

Girth

s(
G

ir
th

,1
.6

1)
:H

cl
as

sM
ed

iu
m

8 10 12 14 16 18 20

−
1.

0
0.

0
0.

5
1.

0
1.

5
2.

0

Girth

s(
G

ir
th

,1
):

H
cl

as
sL

ar
ge

◮ Notice that with factor by variables the smooths have
centering constraints applied, hence the need for the separate
Hclass term in the model.

The summation convention

◮ s and te smooth terms accept matrix arguments and by

variables to implement general Lij fj terms.

◮ If X and L are n × p matrices then

s(X,by=L)

evaluates Lij fj =
∑

k f (Xik)Lik for all i .

◮ For example, consider data yi ∼ Poi where

log{E(yi)} =

∫
ki (x)f (x)dx ≃

1

h

p∑
k=1

ki (xk)f (xk)

(the xk are evenly spaced points).

◮ Let Xik = xk ∀ i and Lik = ki (xk)/h. The model is fit by

gam(y ~ s(X,by=L),poisson)

Summation example: predicting octane

◮ Consider predicting octane rating of fuel from near infrared
spectrum of the fuel.

1000 1200 1400 1600

0.
0

0.
4

0.
8

1.
2

octane = 85.3

wavelength (nm)

lo
g(

1/
R

)

◮ There are 60 such spectrum (ki (x)) - octane (yi) pairs (x is
wavelength), and a model might be

yi = α +

∫
f (x)ki (x)dx + ǫi

where f (x) is a smooth function of wavelength.

Fitting the octane model

◮ The following fits the model
◮ library(pls);data(gasoline);gas <- gasoline

nm <- seq(900,1700,by=2) ## create wavelength matrix...

gas$nm <- t(matrix(nm,length(nm),length(gas$octane)))

b <- gam(octane~s(nm,by=NIR,bs="ad"),data=gas)

plot(b,rug=FALSE,shade=TRUE,main="Estimated function")

plot(fitted(b),gas$octane,...)

1000 1200 1400 1600

−
8

−
4

0
2

4
6

Estimated function

nm

s(
nm

,7
.9

):
N

IR

84 85 86 87 88 89
84

86
88

octane

fitted

m
ea

su
re

d

◮ . . . can predict octane quite well from NIR spectrum.

Model selection

◮ Various model selection strategies are possible. Two stand out

1. Use backward selection, based on GCV, REML or AIC, possibly
guided by termwise approximate p-values and plots.

2. Let smoothness selection do all the work by adding a penalty
on the null space of each smooth. gam(...,select=TRUE)
does this.

◮ The second option is nicely consistent with how we select
between models of different smoothness, but works the
optimizer rather hard.

◮ If H0 type selection is desired approximate p-values can be
used, or we can increase gamma so that single term deletion by
AIC is equivalent to using a significance level of e.g. 5% as
opposed to the AIC default of 15%. i.e. set gamma = 3.84/2.

◮ It is rare for fully automatic selection to be fully satisfactory.

Mackerel selection example

◮ As an example, consider the mack data again, but this time
we’ll use an additive structure, with a number of candidate
predictors. . .

> b2 <- gam(egg.count ~ offset(log.na) + s(lon,lat,k=100) + s(t.bd)

+ + s(temp.20m)+s(c.dist)+s(temp.surf)+s(vessel,bs="re"),

+ data=mack,family=Tweedie(p=1.3,link=log),

+ method="ML",select=TRUE)

> b2

...

Estimated degrees of freedom:

5.6647e+01 2.8944e+00 3.1203e-04 1.2619e+00 2.4552e-04 2.8475e+00

total = 64.65149

ML score: 1555.35

◮ So the smooths of temp.20m and temp.surf have been
penalized out of the model.

Mackerel selection example continued

◮ Refitting we have. . .
◮ b3 <- gam(egg.count ~ offset(log.na) + s(lon,lat,k=100) + s(t.bd)

+ s(c.dist)+s(vessel,bs="re"),

data=mack,family=Tweedie(p=1.3,link=log),

method="ML")

data(coast)

par(mfrow=c(1,3));plot(b3)
 −

2

 −2

 −1

 −
1

 −1 −
1 0

 0

 1

 2

 2

 3

s(lon,lat,57.35)

−14 −10 −6 −4 −2

44
46

48
50

52
54

56
58

lon

la
t

 −1

 −1

 −
1

 0

 0

 0

 0

 1

 1

 2

 2

 2

 3

−1se

 −
3

 −3

 −2

 −
2

 −2

 −2

 −1

 −1

 0

 1

 1

 2

 2

+1se

2 3 4 5 6 7 8

−
3

−
2

−
1

0
1

t.bd

s(
t.b

d,
2.

95
)

0.0 0.5 1.0 1.5 2.0 2.5

−
3

−
2

−
1

0
1

c.dist
s(

c.
di

st
,1

)

Time to stop

◮ Goodbye.

