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Generalized linear mixed model

I So far we have allowed very flexible models for the expected
response and very simplistic models for its stochastic
component. Let’s fix that.

I A Generalized linear mixed model (GLMM) has the form

g(µi ) = Xiβ + Zib, b ∼ N(0, ψθ), yi ∼ EF(µi , φ)

I Z is a model matrix for the random effects b.

I The parameters are β, φ and θ, the latter parameterizing b’s
covariance matrix, ψθ.

I First consider finding estimates β̂ and posterior modes b̂,
given φ and θ. φ̂ and θ̂ will be covered subsequently.



β̂ and b̂ — Bayesian

I Treat β as random variables with improper uniform priors, and
then find their posterior modes (MAP estimates).

I f (β,b|y) ∝ f (y|β,b)f (β,b) ∝ f (y|β,b)f (b) where f (y|β,b)
is determined by the EF used, and f (b) is N(0, ψθ).

I Maximization of f (β,b|y) is achievable by Penalized IRLS.
I Initialize η̂i = g(yi ), then iterate the following steps.

1. Form pseudodata zi and weights wi , exactly as for a GLM,
except using linear predictor η̂ = Xβ̂ + Zb̂.

2. Minimize the penalized weighted sum of squares∑
i wi (zi − Xiβ − Zib)2/φ + bTψ−1

θ b w.r.t. β,b to obtain a

new β̂, b̂, and hence new η̂ and µ̂.

I In LMM case don’t need to iterate, and b̂ = Ê (b|y).



β̂ by MLE

I Integrate out b by Laplace approximation. . .

fβ(y) ' fβ(y, b̂)
(2π)dim(b)/2

|ZTWZ/φ + ψθ|−1/2

I This is exact for a LMM, in which case W = I and
L(β) = fβ(y) is maximized by the MAP estimates.

I For other GLMMs MAP and MLE differ, but are close if W
varies only ‘slowly’ with β.

I Most users of GLMMs are Bayesians out of laziness, and use
the MAP estimates. So will we . . .



φ̂ and θ̂ — Laplace approximation

I To estimate φ and θ we need to integrate β and b out of
fβ(y,b), and optimize the result w.r.t. φ, θ.

I The result of the integration is known as marginal likelihood
or restricted likelihood, Lr .

I The integral can be obtained by Laplace approximation, with
the resulting expression dependent on φ, θ via β̂, b̂ and ψθ

plus direct dependence on φ.

I lr = log Lr can be optimized numerically w.r.t. φ, θ, with each
lr evaluation requiring a PIRLS loop to find β̂, b̂.

I For a LMM the Laplace approximation is exact, and the
PIRLS iteration is not needed.

I A cheaper, but less reliable method is PQL. . .



φ̂ and θ̂ — PQL

I Consider the expression minimized at each PIRLS step:

Q =
∑

i

wi (zi − Xiβ − Zib)2/φ + bTψ−1
θ b

I −Q/2 is a (rough) quadratic approximation to the log of the
part of fβ(y,b) which needs to be integrated w.r.t. b.

I It is also exactly the log of the part of fβ(y,b) which would
need to be integrated w.r.t. b for a weighted LMM.

I So, at each PIRLS step, why not estimate this weighted LMM
to optimize Q w.r.t. β,b, and get estimates of φ and θ into
the bargain? No reason!

I This is ‘PQL’. It works surprisingly well, except for binary data.



Distributional results

I Distributions for φ̂, θ̂ are from large sample MLE theory
applied to lr or the PQL working model lr .

I Distributions for β̂ (conditional on φ̂, θ̂) are from MLE theory
applied to l(β̂), if this is computed. (Conditionally exact for
LMM).

I Alternatively use the large sample Bayesian result

[
β
b

]
∼ N

([
β̂

b̂

]
,

[
XTWX XTWZ
ZTWX ZTWZ + ψθ/φ

]−1

φ

)



Model Comparison

I If fixed effects are the same in the alternative models, then lr
can be used for GLRT testing or AIC model comparison.

I If fixed effects differ then estimation has to be performed
without integrating out β: then GLRT and AIC can be used.

I When using the GLRT take care that the null model is not
restricting alternative model parameters to the edge of the
parameter space. If it is, the results are only a rough guide.

I PQL estimated model comparison is difficult. The working lr
is not really a valid basis for model comparison.



Residuals and fitted values

I We can produce fitted values at different levels, depending on
which components of b are set to their unconditional mean 0,
and which are set to their conditional mean E(bi |y).

I At the highest level the fitted values are: µ̂ = Xβ̂ + Zb̂

I The residuals ε̂ = y − µ̂ are examined to check assumptions
about ε.

I b̂ is examined to check the random effects assumptions. Note
that if b ∼ N(0, ψθ) then

√
ψθ

−1b ∼ N(0, I). Standardizing
b̂ in the same way is a help when model checking.



Mixed models in R

I Three R packages provide the mixed modelling methods
described above.

I Recommended package nlme provides function lme for Linear
Mixed Modelling. It is particularly useful when the random
effects have a nested structure.

I Recommended package bundle MASS provides a function
glmmPQL for fitting generalized linear mixed models using
PQL, based on iterative calls to lme.

I Doug Bates’ package lme4 provides functions lmer (glmer)
for fitting (generalized) linear mixed models. In the
generalized case Laplace approximation is used.



lme

I nlme provides linear mixed model functions for R.

I The linear mixed model fitting function is lme.
I lme is used in a similar way to lm.

I A model formula specifies the response (on the left) and the
fixed effects model structure (on the right).

I A data argument is used to pass a data frame containing the
data to be modelled.

I A fitted model object is returned

But the random effects model must also be specified
I A model formula, or list of model formulae, specifies the

random effects model structure.



lme mixed model form

I lme assumes that your data are grouped and that you want
the following model for the i th group.

yi = Xiβ + Zibi + εi , bi ∼ N(0,ψθ), εi ∼ N(0,Λ).

where the bi are independent between groups.

I Note what varies with group (e.g. bi ), and what does not (i.e.
θ, β and Λ).

I Λ is often Iσ2, but it may have a more complicated structure,
to allow residual correlation within groups.

I The model is a special case of the general model considered
thus far.

I If we have just one group then the general model is recovered.



Calling lme

I Because of the assumed model structure, two parts must be
supplied for the random effects specification.

1. A grouping factor (or factors) indicating how the data are
divided into groups.

2. A model formula (or formulae) specifying the random effects
model matrix for each group.

I For example (assuming x and z are not factors)

lme(y~x+z,dat,~z|g)

fits the model, b ∼ N(0, Iσ2
b) and

yi = β0 + β1xi + β2zi + bjzi + εi if gi = j .



Specifying random model

I An alternative to
lme(y~x+z,dat,~z|g)

is
lme(y~x+z,dat,list(g=~z))

I In both cases the formula, ~z, specifies the random effect
model matrix used at each level of the grouping factor, g.

I Nested groups are supported. e.g. ~z+x/g/f would repeat the
same random effects structure at each level of g and each
combination of levels of g and f.

I list(g=~z+x,f=~z+x) does the same, but also allows
different random effects structures at each grouping level.



Simple example:Rail

I 6 Railway rails were each tested 3 times, by sending an
ultrasonic pulse along the rail, and measuring the time it
takes.

I Data are in data frame Rail, which contains variables Rail
ID and travel time.

I A suitable model has a random effect for each rail and a fixed
overall mean travel time, so that,

yi = β + bj + εi if yi relates to rail j . b ∼ N(0, I6σ
2).

I In lme terms Rail is the grouping factor. Exercise: write out
the model for rail i in standard lme form.



Rail model: lme form

The model for the i th rail is simply

yi =




1
1
1


 [

β
]
+




1
1
1


 [

bi

]
+ εi

where bi ∼ N(0, σ2
b) and the components of εi are i.i.d. N(0, σ2).

β, σ2
b and σ2 are the parameters to be estimated.



Fitting the Rail model

> library(nlme)

> rm <- lme(travel~1,Rail,list(Rail=~1))

> rm

Linear mixed-effects model fit by REML

Data: Rail

Log-restricted-likelihood: -61.0885

Fixed: travel ~ 1

(Intercept)

66.5

Random effects:

Formula: ~1 | Rail

(Intercept) Residual

StdDev: 24.80547 4.020779

Number of Observations: 18

Number of Groups: 6



summary(rm)

> summary(rm)

Linear mixed-effects model fit by REML

Data: Rail

AIC BIC logLik

128.177 130.6766 -61.0885

Random effects: # sigma_b and sigma

Formula: ~1 | Rail

(Intercept) Residual

StdDev: 24.80547 4.020779

Fixed effects: travel ~ 1 # beta

Value Std.Error DF t-value p-value

(Intercept) 66.5 10.17104 12 6.538173 0

...



Confidence intervals: intervals

> intervals(rm)

Approximate 95% confidence intervals

Fixed effects: ## beta

lower est. upper

(Intercept) 44.33921 66.5 88.66079

Random Effects: ## sigma_b

Level: Rail

lower est. upper

sd((Intercept)) 13.27434 24.80547 46.35341

Within-group standard error: ## sigma

lower est. upper

2.695007 4.020779 5.998747



predict method for lme

predict method similar to that for lm, but

I no se argument.

I can control the level at which to predict

> predict(rm) ## default highest level: use E(b|y) for all b

1 1 1 2 2 2 3

54.10852 54.10852 54.10852 31.96909 31.96909 31.96909 84.50894

3 3 4 4 4 5 5

84.50894 84.50894 95.74388 95.74388 95.74388 50.14325 50.14325

5 6 6 6

50.14325 82.52631 82.52631 82.52631

> predict(rm,level=0) ## set level=0: E(b)=0 used for all b

1 1 1 2 2 2 3 3 3 4 4 4 5

66.5 66.5 66.5 66.5 66.5 66.5 66.5 66.5 66.5 66.5 66.5 66.5 66.5

...



Loblolly pine example

I Loblolly data frame contains height of a number of
Loblolly pine trees at different ages.

I We expect some tree-to-tree variability from a mean growth
trajectory, plus auto-correlation for within tree measurements.

I A possible model is

heightji = β0 + β1ageji + β2age
2
ji + β3age

3
ji

+ b0 + bj1ageji + bj2age
2
ji + bj3age

3
ji + εji

the εji are zero mean normal random variables, with within
tree correlation given by ρ(εj ,i , εj ,i−1) = φ. bj ∼ N(0,ψ)



Fitting problems

I The lme optimizer sometimes fails, but the situation can
usually be rectified by changing some of the control
parameters for optimization, via e.g.

lme(...,control=lmeControl(msMaxIter=100,niterEM=1000))

I msMaxIter controls the maximum number of Newton
iterations used in MLE or REML.

I niterEM controls the number of EM algorithm steps used to
find initial values for θ, before using Newton’s method.
Non-convergence can often be eliminated by increasing this,
but other failures may require it to be reduced (especially
errors mentioning MEEM or NaNs).

I For a full list of control constants see ?lmeControl.

I It can also help to experiment with starting values for
parameters.



Fitting the Loblolly model

lmc <- lmeControl(niterEM=500,msMaxIter=100)

m0 <- lme(height ~ age + I(age^2) + I(age^3),Loblolly,

random=list(Seed=~age+I(age^2)+I(age^3)),

correlation=corAR1(-.5,form=~age|Seed),control=lmc)

plot(m0)

Fitted values (ft)
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Try again. . .

m1<-lme(height ~ age + I(age^2) + I(age^3)+ I(age^4),

Loblolly,random=list(Seed=~age+I(age^2)+I(age^3)),

correlation=corAR1(-.5,form=~age|Seed),control=lmc)

plot(m1)

Fitted values (ft)
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Improved Loblolly model

m2<-lme(height~age+I(age^2)+I(age^3)+I(age^4)+I(age^5),

Loblolly,random=list(Seed=~age+I(age^2)+I(age^3)),

correlation=corAR1(-.5,form=~age|Seed),control=lmc)

plot(m2)

Fitted values (ft)
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More model checking

plot(m2,Seed~resid(.))# any pattern in resid vs. tree?

qqnorm(m2,~resid(.)) # are resids normal?

Residuals (ft)
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qqnorm(m2,~ranef(.))# now check random effects?



Checking random effects, b

Random effects
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Is autocorrelation needed?

> m3 <- lme(height ~ age + I(age^2) + I(age^3) +

+ I(age^4) + I(age^5),Loblolly,control=lmc,

+ random=list(Seed=~age+I(age^2)+I(age^3)))

> anova(m3,m2) ## GLRT

Model df AIC BIC logLik Test L.Ratio p-value

m3 1 17 250.5 290.5 -108.2

m2 2 18 239.4 281.8 -101.7 1 vs 2 13.1041 3e-04

I AIC and hypothesis testing both strongly support retention of
the autocorrelation model.

I Question: are the GLRT assumptions met for this test?



Simpler random effects structure?

> m4 <- lme(height ~ age + I(age^2) + I(age^3)+

+ I(age^4)+ I(age^5),Loblolly,control=lmc,

+ random=list(Seed=~age+I(age^2)),

+ correlation=corAR1(-.1,form=~age|Seed))

> anova(m4,m2)

Model df AIC BIC logLik Test L.Ratio p-value

m4 1 14 253.8 286.8 -112.9

m2 2 18 239.4 281.8 -101.7 1 vs 2 22.4004 2e-04

I AIC and hypothesis testing both suggest that the cubic tree
specific effect is needed in the model.

I Question: are the GLRT assumptions met in this case?



Simpler random effects correlation?

I We have assumed that ψθ can be any positive definite matrix.
Let’s try a simple diagonal structure, for ψθ. . .
> m5<-lme(height~age+I(age^2)+I(age^3)+

+ I(age^4)+I(age^5),Loblolly,random=

+ list(Seed=pdDiag(~age+I(age^2)+I(age^3))),

+ correlation=corAR1(-.5,form=~age|Seed),control=lmc)

> anova(m5,m2)

Model df AIC BIC logLik Test L.Ratio p-value

m5 1 12 293.71 321.99 -134.85

m2 2 18 239.36 281.78 -101.68 1 vs 2 66.35 <.0001

I AIC and GLRT both imply that the diagonal covariance
matrix is insufficient.

I Question: are the GLRT assumptions met here?



Follow up?

I We can test things about the fixed effects (conditional on θ̂)
as follows:
> anova(m2)

numDF denDF F-value p-value

(Intercept) 1 65 41.528 <.0001

age 1 65 9957.451 <.0001

I(age^2) 1 65 656.343 <.0001

I(age^3) 1 65 51.842 <.0001

I(age^4) 1 65 361.458 <.0001

I(age^5) 1 65 69.200 <.0001

I intervals and a summary of the selected model, m2, would
also be examined. Some quite advanced plotting facilities are
available in nlme, for example: plot(augPred(m2))



Loblolly fit
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lme4:lmer

I Use of lmer is easier than lme.

I One formula specifies the model. Terms of the form (x|g)
indicate random effects: g is a grouping factor; x determines
the random effect model matrix for each level of g.

I Here’s the Rail example again
> lmer(travel~(1|Rail),data=Rail)

Linear mixed model fit by REML

Formula: travel ~ (1 | Rail)

Data: Rail

AIC BIC logLik deviance REMLdev

128.2 130.8 -61.09 128.6 122.2

Random effects:

Groups Name Variance Std.Dev.

Rail (Intercept) 615.311 24.8055

Residual 16.167 4.0208

Number of obs: 18, groups: Rail, 6

Fixed effects:

Estimate Std. Error t value

(Intercept) 66.50 10.17 6.539



glmmPQL

I PQL estimation of GLMMs is available in the glmmPQL
routine in the MASS library.

I Use of glmmPQL is very similar to use of lme, except that a
family argument is now needed.

I glmmPQL operates by iteratively calling lme, and returns the
final fitted model object returned by lme, at convergence.

I The PQL iterations are not guaranteed to converge, and the
routine may fail.



Bristol Channel Sole Eggs
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Sole Egg Model

I Observe egg densities, yij in 4 distinct age classes at each of
several sampling stations at 5 times of year.

I Want to know rate of spawning, and total number of eggs
spawned.

I yij is observed density for stage j at sampling station i , then

E(yij |bi ) = ∆ijR(loi , lai , ti )e
−δ(ti )aij bi .

I R is spawning rate at (loi , lai , ti ); δ is mortality rate; ∆ij is
the j th age class duration, while aij is the mid-point age of the
class. The log(bi ) are i.i.d. N(0, σ2

b) random effects for
sampling station.



Linearized Sole Egg Model

I The model is linearized by a log link.

log{E(yij |bi )} = log(∆ij) + r(loi , lai , ti )− δ(ti )aij + log(bi )

where r = log R.

I r can modelled using a cubic in loi , lai and ti , and −δ
modelled using a quadratic in time.

I Assume var(yij |bi ) ∝ E(yij |bi )

I Then the model has the structure of a GLMM, and can be
estimated by glmmPQL.



Sole data preparation

The data are available in data frame sole, in the gamair package.
Some manipulation is needed first:

sole$off <- log(sole$a.1-sole$a.0) # offset term

sole$a<-(sole$a.1+sole$a.0)/2 # mean stage age

solr<-sole # make copy for rescaling

## rescale terms for better numerical behaviour...

solr$t<-solr$t-mean(sole$t)

solr$t<-solr$t/var(sole$t)^0.5

solr$la<-solr$la-mean(sole$la)

solr$lo<-solr$lo-mean(sole$lo)

## make a lable for sampling station...

solr$station <-

factor(with(solr,paste(-la,-lo,-t,sep="")))



Sole model fitting

Here is the command to fit the model, in full horrible detail . . .

b<-glmmPQL(eggs~offset(off)+lo+la+t+I(lo*la)+I(lo^2)+

I(la^2)+I(t^2)+I(lo*t)+I(la*t)+I(lo^3)+

I(la^3)+I(t^3)+I(lo*la*t)+I(lo^2*la)+

I(lo*la^2)+I(lo^2*t)+I(la^2*t)+I(la*t^2)+

I(lo*t^2) # end log spawn

+ a +I(a*t)+I(t^2*a), # death term

random=list(station=~1),data=solr,

family=quasi(link=log,variance="mu"))

Now we need residual plots. . .



Sole residuals

fv <- exp(fitted(b4)+solr$off) # note need to add offset

resid <- solr$egg-fv # raw residuals

plot(fv^.5,solr$eggs^.5);abline(0,1,lwd=2)

plot(fv^.5,resid/fv^.5)

plot(fv^.5,resid)

fl<-sort(fv^.5)

## add 1 s.d. and 2 s.d. reference lines

lines(fl,fl);lines(fl,-fl);lines(fl,2*fl,lty=2);lines(fl,-2*fl,lty=2)
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Model selection

I We can base model selection on backward selection using
summary(b).

I Can also use anova(b,type="marginal"), which is more
useful if the model has factor variables, as it gives p-values for
whole term removal.

I Actually only 4 terms get dropped from b in this way.

I Can also look at CI for σ2
b

> intervals(b4,which="var-cov")

Level: station

lower est. upper

sd((Intercept)) 0.8398715 0.9599066 1.097097



Spawning rate predictions
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lme4: glmer

I glmer fits GLMMs by Laplace approximation.

I It is just like lmer, except that the exponential family and link
function are supplied by a glm style family argument.

I The fit of the sole model would look like this
br <- glmer(eggs~offset(off)+lo+la+t+I(lo*la)+I(lo^2)+

I(la^2)+I(t^2)+I(lo*t)+I(la*t)+I(lo^3)+

I(la^3)+I(t^3)+I(lo*la*t)+I(lo^2*la)+

I(lo*la^2)+I(lo^2*t)+I(la^2*t)+I(la*t^2)+

I(lo*t^2) # end log spawn

+ a +I(a*t)+I(t^2*a) + # death term

(1|station), ## station random effect

data=solr,

quasi(link=log,variance="mu"))

I . . . but it is not clear that quasi really works with Laplace
approximate fitting!



Moving on

I Notice how cumbersome the specification of the Sole egg
model was.

I Time for GAMs!


