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Generalized linear mixed model

> So far we have allowed very flexible models for the expected
response and very simplistic models for its stochastic
component. Let's fix that.

» A Generalized linear mixed model (GLMM) has the form

g(ui) =XiB+Zb, b~ N(0,1vy), vy~ EF(ui,o)

» Z is a model matrix for the random effects b.

» The parameters are 3, ¢ and 0, the latter parameterizing b's
covariance matrix, ¥g.

» First consider finding estimates B and posterior modes b,
given ¢ and 6. ¢ and 0 will be covered subsequently.



B and b — Bayesian

v

Treat B as random variables with improper uniform priors, and
then find their posterior modes (MAP estimates).

f(B;bly) o f(y|B, b)f(B,b) o f(y|B, b)f(b) where f(y|3,b)
is determined by the EF used, and f(b) is N(0, vy).
Maximization of f(3,bly) is achievable by Penalized IRLS.
Initialize 7j; = g(y;), then iterate the following steps.

1. Form pseudodata z; and weights w;, exactly as for a GLM,
except using linear predictor n = X,B + Zb.

2. Minimize the penalized weighted sum of squares
S wi(z — XiB —Z;b)?/é + b, b w.rt. B,b to obtain a
new B, b, and hence new 7 and fi.
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In LMM case don't need to iterate, and b = E(bly).
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3 by MLE

» Integrate out b by Laplace approximation. ..

(27T)dim(b)/2
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fa(y) = f(y. b)

» This is exact for a LMM, in which case W =1 and
L(B) = fa(y) is maximized by the MAP estimates.

» For other GLMMs MAP and MLE differ, but are close if W
varies only ‘slowly’ with 3.

» Most users of GLMMs are Bayesians out of laziness, and use
the MAP estimates. So will we ...



é and 6 — Laplace approximation

» To estimate ¢ and 8 we need to integrate 8 and b out of
fa(y,b), and optimize the result w.r.t. ¢, 6.

» The result of the integration is known as marginal likelihood
or restricted likelihood, L,.

» The integral can be obtained by Laplace approximation, with
the resulting expression dependent on ¢, 0 via 3,b and 1y
plus direct dependence on ¢.

» |/, = log L, can be optimized numerically w.r.t. ¢, 8, with each
Ir evaluation requiring a PIRLS loop to find 3, b.

» For a LMM the Laplace approximation is exact, and the
PIRLS iteration is not needed.

A cheaper, but less reliable method is PQL. ..
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éand H — PQL

» Consider the expression minimized at each PIRLS step:

Q=) wi(zi—XiB—Zb)*/¢+b ;b

» —Q/2is a (rough) quadratic approximation to the log of the
part of fg(y, b) which needs to be integrated w.r.t. b.

> It is also exactly the log of the part of f5(y, b) which would
need to be integrated w.r.t. b for a weighted LMM.

» So, at each PIRLS step, why not estimate this weighted LMM
to optimize @ w.r.t. 3,b, and get estimates of ¢ and 0 into
the bargain? No reason!

» This is 'PQL’. It works surprisingly well, except for binary data.



Distributional results

» Distributions for QAS, 0 are from large sample MLE theory
applied to /, or the PQL working model /,.

» Distributions for 3 (conditional on ¢, 8) are from MLE theory

~

applied to /(3), if this is computed. (Conditionally exact for
LMM).
» Alternatively use the large sample Bayesian result

81 _n([8 XTWX XTwz !
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Model Comparison

> If fixed effects are the same in the alternative models, then /,
can be used for GLRT testing or AIC model comparison.

» If fixed effects differ then estimation has to be performed
without integrating out 3: then GLRT and AIC can be used.

» When using the GLRT take care that the null model is not
restricting alternative model parameters to the edge of the
parameter space. If it is, the results are only a rough guide.

» PQL estimated model comparison is difficult. The working I,
is not really a valid basis for model comparison.



Residuals and fitted values

» We can produce fitted values at different levels, depending on
which components of b are set to their unconditional mean 0,
and which are set to their conditional mean E(b;ly).

» At the highest level the fitted values are: 1 = XB +Zb

» The residuals € =y — fi are examined to check assumptions
about e.

» b is examined to check the random effects assumptions. Note
that if b ~ N(0, ) then /1y~ *b ~ N(0,1). Standardizing
b in the same way is a help when model checking.



Mixed

models in R

Three R packages provide the mixed modelling methods
described above.

Recommended package nlme provides function 1me for Linear
Mixed Modelling. It is particularly useful when the random
effects have a nested structure.

Recommended package bundle MASS provides a function
glmmPQL for fitting generalized linear mixed models using
PQL, based on iterative calls to 1me.

Doug Bates' package 1me4 provides functions lmer (glmer)
for fitting (generalized) linear mixed models. In the
generalized case Laplace approximation is used.



1me

» nlme provides linear mixed model functions for R.

» The linear mixed model fitting function is 1me.
» lme is used in a similar way to 1m.
» A model formula specifies the response (on the left) and the
fixed effects model structure (on the right).
» A data argument is used to pass a data frame containing the
data to be modelled.
> A fitted model object is returned
But the random effects model must also be specified

» A model formula, or list of model formulae, specifies the
random effects model structure.



1me mixed model form

» lme assumes that your data are grouped and that you want
the following model for the it" group.

yi=XiB+Zb;+¢€;, bi~N(0,g), € ~NO,A).

where the b; are independent between groups.

» Note what varies with group (e.g. b;), and what does not (i.e.
0, 3 and A).

» A is often lo2, but it may have a more complicated structure,
to allow residual correlation within groups.

» The model is a special case of the general model considered
thus far.

» If we have just one group then the general model is recovered.



Calling 1me

» Because of the assumed model structure, two parts must be
supplied for the random effects specification.

1. A grouping factor (or factors) indicating how the data are
divided into groups.

2. A model formula (or formulae) specifying the random effects
model matrix for each group.

» For example (assuming x and z are not factors)
lme(y~x+z,dat, " zlg)
fits the model, b ~ N(0,15%) and

Vi = Bo+ Bixi + Bazi + bjzi + €; if gi = J.



Specifying random model

» An alternative to
lme(y~x+z,dat, zlg)

lme(y~x+z,dat,list(g="2))
» In both cases the formula, ~z, specifies the random effect
model matrix used at each level of the grouping factor, g.

» Nested groups are supported. e.g. “z+x/g/f would repeat the
same random effects structure at each level of g and each
combination of levels of g and £.

» list(g="z+x,f="2z+x) does the same, but also allows
different random effects structures at each grouping level.



Simple example:Rail

» 6 Railway rails were each tested 3 times, by sending an
ultrasonic pulse along the rail, and measuring the time it
takes.

» Data are in data frame Rail, which contains variables Rail
ID and travel time.

» A suitable model has a random effect for each rail and a fixed
overall mean travel time, so that,

yi = B+ b + ¢ if y; relates to rail j. b~ N(0,15057).

» In 1me terms Rail is the grouping factor. Exercise: write out
the model for rail i in standard 1me form.



Rail model: 1me form

The model for the it" rail is simply

1 1
Yi = 1 [ﬁ]-ﬁ- 1 [b,‘]‘i‘G,‘
1 1

where b; ~ N(0,032) and the components of €; are i.i.d. N(0,0?).
0, atz, and o2 are the parameters to be estimated.



Fitting the Rail model

> library(nlme)
> rm <- lme(travel~1,Rail,list(Rail="1))

> rm
Linear mixed-effects model fit by REML
Data: Rail

Log-restricted-likelihood: -61.0885
Fixed: travel ~ 1
(Intercept)
66.5
Random effects:
Formula: ~1 | Rail
(Intercept) Residual
StdDev: 24.80547 4.020779
Number of Observations: 18
Number of Groups: 6



summary (rm)

> summary (rm)
Linear mixed-effects model fit by REML

Data: Rail
AIC BIC logLik
128.177 130.6766 -61.0885
Random effects: # sigma_b and sigma

Formula: ~1 | Rail
(Intercept) Residual
StdDev: 24.80547 4.020779
Fixed effects: travel ~ 1 # beta
Value Std.Error DF t-value p-value
(Intercept) 66.5 10.17104 12 6.538173 0



Confidence intervals: intervals

> intervals(rm)
Approximate 95% confidence intervals

Fixed effects: ## beta
lower est. upper
(Intercept) 44.33921 66.5 88.66079
Random Effects: ## sigma_b
Level: Rail
lower est. upper
sd((Intercept)) 13.27434 24.80547 46.35341
Within-group standard error: ## sigma
lower est. upper

2.695007 4.020779 5.998747



predict method for 1me

predict method similar to that for 1m, but
> no se argument.

» can control the level at which to predict

> predict(rm) ## default highest level: use E(bly) for all b
1 1 1 2 2 2 3
54.10852 54.10852 54.10852 31.96909 31.96909 31.96909 84.50894
3 3 4 4 4 5 5
84.50894 84.50894 95.74388 95.74388 95.74388 50.14325 50.14325
5 6 6 6
50.14325 82.52631 82.52631 82.52631

> predict(rm,level=0) ## set level=0: E(b)=0 used for all b
1 1 1 2 2 2 3 3 3 4 4 4 5
66.5 66.5 66.5 66.5 66.5 66.5 66.5 66.5 66.5 66.5 66.5 66.5 66.5



Loblolly pine example

» Loblolly data frame contains height of a number of
Loblolly pine trees at different ages.

» We expect some tree-to-tree variability from a mean growth
trajectory, plus auto-correlation for within tree measurements.

» A possible model is
height; = Bo + ﬁlagej,- + ﬂzagej%- + ﬁ3agej3,.
+ bo + bjiagej; + bjzagefi + bj3agef3i T i

the ¢j; are zero mean normal random variables, with within
tree correlation given by p(€j i, €j,i—1) = ¢. bj ~ N(0, )



Fitting problems

Ime(...

The 1me optimizer sometimes fails, but the situation can
usually be rectified by changing some of the control
parameters for optimization, via e.g.

,control=lmeControl (msMaxIter=100,niterEM=1000))

msMaxIter controls the maximum number of Newton
iterations used in MLE or REML.

niterEM controls the number of EM algorithm steps used to
find initial values for @, before using Newton's method.
Non-convergence can often be eliminated by increasing this,
but other failures may require it to be reduced (especially
errors mentioning MEEM or NaNs).

For a full list of control constants see ?71meControl.

It can also help to experiment with starting values for
parameters.



Fitting the Loblolly model

1mc <- 1lmeControl(niterEM=500,msMaxIter=100)

m0 <- lme(height ~ age + I(age”2) + I(age~3),Loblolly,
random=1ist (Seed="age+I(age~2)+I(age~3)),
correlation=corAR1(-.5,form="age|Seed) ,control=lmc)

plot (m0)
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Try again. ..

mi<-1lme(height ~ age + I(age”2) + I(age™3)+ I(age™4),
Loblolly,random=list (Seed="age+I(age~2)+I(age”3)),
correlation=corAR1(-.5,form="age|Seed) ,control=lmc)
plot(ml)
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Improved Loblolly model

m2<-1me (height~age+I(age~2)+I(age~3)+I(age~4)+I(age”5),
Loblolly,random=list (Seed="age+I(age~2)+I(age”3)),
correlation=corAR1(-.5,form="age|Seed) ,control=lmc)
plot(m2)
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More model checking

plot(m2,Seed"resid(.))# any pattern in resid
qgnorm(m2,“resid(.)) # are resids normal?

vs.

tree?
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Checking random effects, b
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Is autocorrelation needed?

> m3 <- Ime(height ~ age + I(age”2) + I(age~™3) +
+ I(age~4) + I(age~5),Loblolly,control=lmc,
+ random=list (Seed="age+I(age"2)+I(age~3)))
> anova(m3,m2) ## GLRT

Model df AIC BIC logLik Test L.Ratio p-value
m3 1 17 250.5 290.5 -108.2

m2 2 18 239.4 281.8 -101.7 1 vs 2 13.1041 3e-04

» AIC and hypothesis testing both strongly support retention of
the autocorrelation model.

» Question: are the GLRT assumptions met for this test?



Simpler random effects structure?

> m4 <- 1lme(height ~ age + I(age™2) + I(age~3)+

+ I(age~4)+ I(age”5),Loblolly,control=lmc,
+ random=list (Seed="age+I(age~2)),
+ correlation=corAR1(-.1,form="age|Seed))

> anova(m4,m2)

Model df AIC BIC logLik Test L.Ratio p-value
m4 1 14 253.8 286.8 -112.9

m2 2 18 239.4 281.8 -101.7 1 vs 2 22.4004 2e-04

» AIC and hypothesis testing both suggest that the cubic tree
specific effect is needed in the model.

» Question: are the GLRT assumptions met in this case?



Simpler random effects correlation?

» We have assumed that 1oy can be any positive definite matrix.
Let’s try a simple diagonal structure, for ). ..
> mb<-1lme(height~age+I(age~2)+I(age~3)+
+ I(age~4)+I(age~5),Loblolly,random=
+ list(Seed=pdDiag(~age+I(age~2)+I(age”3))),
+ correlation=corAR1(-.5,form="age|Seed) ,control=lmc)
> anova(m5,m2)
Model df AIC BIC 1logLik Test L.Ratio p-value
m5 1 12 293.71 321.99 -134.85
m2 2 18 239.36 281.78 -101.68 1 vs 2 66.35 <.0001

» AIC and GLRT both imply that the diagonal covariance
matrix is insufficient.

» Question: are the GLRT assumptions met here?



Follow up?

» We can test things about the fixed effects (conditional on é)
as follows:

> anova(m2)
numDF denDF F-value p-value

(Intercept) 1 65 41.528 <.0001
age 1 65 9957.451 <.0001
I(age~2) 1 65 656.343 <.0001
I(age~3) 1 65 51.842 <.0001
I(age~4) 1 65 361.458 <.0001
I(age”5) 1 65 69.200 <.0001

» intervals and a summary of the selected model, m2, would
also be examined. Some quite advanced plotting facilities are
available in nlme, for example: plot (augPred(m2))



Loblolly fit

Height of tree (ft)
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1me4d :1mer

» Use of 1mer is easier than 1lme.

» One formula specifies the model. Terms of the form (x|g)
indicate random effects: g is a grouping factor; x determines
the random effect model matrix for each level of g.

» Here's the Rail example again

> lmer(travel~(1|Rail) ,data=Rail)
Linear mixed model fit by REML
Formula: travel ~ (1 | Rail)
Data: Rail
AIC BIC logLik deviance REMLdev
128.2 130.8 -61.09 128.6 122.2
Random effects:

Groups  Name Variance Std.Dev.
Rail (Intercept) 615.311 24.8055
Residual 16.167  4.0208

Number of obs: 18, groups: Rail, 6

Fixed effects:
Estimate Std. Error t value
(Intercept) 66.50 10.17  6.539



glmmPQL

» PQL estimation of GLMMs is available in the glmmPQL
routine in the MASS library.

» Use of glmmPQL is very similar to use of 1me, except that a
family argument is now needed.

» glmmPQL operates by iteratively calling 1me, and returns the
final fitted model object returned by 1me, at convergence.

» The PQL iterations are not guaranteed to converge, and the
routine may fail.



Bristol Channel Sole Eggs
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Sole Egg Model

> Observe egg densities, y;; in 4 distinct age classes at each of
several sampling stations at 5 times of year.

» Want to know rate of spawning, and total number of eggs
spawned.

> yj; is observed density for stage j at sampling station /, then
E(y,-j|b,-) = A,'J'R(IO,', la;, t,')e_s(ti)a’jb,'.

> R is spawning rate at (loj,la;, t;); 6 is mortality rate; Aj; is
the j*" age class duration, while ajj is the mid-point age of the
class. The log(b;) are i.i.d. N(0,0%) random effects for
sampling station.



Linearized Sole Egg Model

» The model is linearized by a log link.
log{E(y;j|bi)} = log(Aj) + r(lo;,1a;, t;) — 6(ti)a;; + log(b;)

where r = log R.

» r can modelled using a cubic in lo;, la; and t;, and —d
modelled using a quadratic in time.

> Assume var(y;j|bi) o< E(y;i|bi)

» Then the model has the structure of a GLMM, and can be
estimated by glmmPQL.



Sole data preparation

The data are available in data frame sole, in the gamair package.
Some manipulation is needed first:

sole$off <- log(sole$a.l-sole$a.0) # offset term
sole$a<-(sole$a.1+sole$a.0)/2 # mean stage age
solr<-sole # make copy for rescaling
## rescale terms for better numerical behaviour...
solr$t<-solr$t-mean(sole$t)
solr$t<-solr$t/var(sole$t) 0.5
solr$la<-solr$la-mean(sole$la)
solr$lo<-solr$lo-mean(sole$lo)
## make a lable for sampling statiom...
solr$station <-
factor(with(solr,paste(-la,-lo,-t,sep="")))



Sole model fitting

Here is the command to fit the model, in full horrible detail ...

b<-glmmPQL (eggs~offset (off)+lo+la+t+I(lo*xla)+I(lo~2)+
I(1a~2)+I(t"2)+I(lo*t)+I(laxt)+I(lo"3)+
I(1a~3)+I(t"3)+I(loxlaxt)+I(lo~2*la)+
I(lo*1a”2)+I(lo"2*t)+I(la"2*t)+I(laxt"2)+
I(lo*t"2) # end log spawn
+ a +I(axt)+I(t"2*a), # death term
random=1list(station="1) ,data=solr,
family=quasi(link=log,variance="mu"))

Now we need residual plots. ..



Sole residuals

fv <- exp(fitted(b4)+solr$off) # note need to add offset

resid <- solr$egg-fv # raw residuals
plot(fv~.5,solr$eggs".5) ;abline(0,1,1lwd=2)

plot(fv”~.5,resid/fv".5)

plot(fv~.5,resid)

fl<-sort(fv~.5)

## add 1 s.d. and 2 s.d. reference lines
lines(f1,fl);lines(f1l,-f1);lines(f1,2*fl,1ty=2);lines(f1l,-2%f1,1ty=2)

eggs
o %o 2 %;g 0
scaled residuals
raw residuals
0




Model selection

» We can base model selection on backward selection using
summary (b).

» Can also use anova(b,type="marginal"), which is more
useful if the model has factor variables, as it gives p-values for
whole term removal.

» Actually only 4 terms get dropped from b in this way.

» Can also look at Cl for 012)
> intervals(b4,which="var-cov")
Level: station

lower est. upper
sd((Intercept)) 0.8398715 0.9599066 1.097097



Spawning rate predictions
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lmed: glmer

» glmer fits GLMMs by Laplace approximation.

> It is just like lmer, except that the exponential family and link
function are supplied by a glm style family argument.
» The fit of the sole model would look like this
br <- glmer(eggs~offset(off)+lo+la+t+I(lo*la)+I(lo"2)+
I(1a”2)+I(t"2)+I(lo*t)+I(la*xt)+I(lo"3)+
I(1a~3)+I(t"3)+I(lo*la*t)+I(lo"2%la)+
I(lo*la”2)+I(1lo"2%t)+I(la"2*%t)+I(laxt~2)+
I(lo*t"2) # end log spawn
+ a +I(a*xt)+I(t"2*a) + # death term
(1|station), ## station random effect
data=solr,
quasi(link=log,variance="mu"))

> ...but it is not clear that quasi really works with Laplace
approximate fitting!



Moving on

» Notice how cumbersome the specification of the Sole egg
model was.

» Time for GAMs!



