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Smooths for semi-parametric GLMs

I To build adequate semi-parametric GLMs requires that we
use functions with appropriate properties.

I In one dimension there are several alternatives, and not
alot to choose between them.

I In 2 or more dimensions there is a major choice to make.
I If the arguments of the smooth function are variables which

all have the same units (e.g. spatial location variables) then
an isotropic smooth may be appropriate. This will tend to
exhibit the same degree of flexibility in all directions.

I If the relative scaling of the covariates of the smooth is
essentially arbitrary (e.g. they are measured in different
units), then scale invariant smooths should be used, which
do not depend on this relative scaling.



Splines
I All the smooths covered here are based on splines. Here’s

the basic idea . . .
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I Mathematically the red curve is the function minimizing

∑

i

(yi − f (xi))
2 + λ

∫
f ′′(x)2dx .



Splines have variable stiffness

I Varying the flexibility of the strip (i.e. varying λ) changes
the spline function curve.
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I But irrespective of λ the spline functions always have the
same basis.



Why splines are special

I We can produce splines for a variety of penalties, including
for functions of several variables. e.g.
∫

f ′′′(x)2dx or
∫ ∫

fxx(x , z)2+2fxz(x , z)2+fzz(x , z)2dxdz

I Splines always have an n dimensions basis - quadratic
penalty representation.

I If yi = g(xi) and f is the cubic spline interpolating xi , yi then

max |f − g| ≤ 5
384

max(xi+1 − xi)
4 max(g′′′′)

(best possible — end conditions are a bit unusual for this).
I Bases that are optimal for approximating known functions

are a good starting point for approximating unknown
functions.



Penalized regression splines

I Full splines have one basis function per data point.
I This is computationally wasteful, when penalization

ensures that the effective degrees of freedom will be much
smaller than this.

I Penalized regression splines simply use fewer spline basis
functions. There are two alternatives:

1. Choose a representative subset of your data (the ‘knots’),
and create the spline basis as if smoothing only those data.
Once you have the basis, use it to smooth all the data.

2. Choose how many basis functions are to be used and then
solve the problem of finding the set of this many basis
functions that will optimally approximate a full spline.

I’ll refer to 1 as knot based and 2 as eigen based.



Knot based example: "cr"

I In mgcv the "cr" basis is a knot based approximation to
the minimizer of

∑
i(yi − f (xi))

2 + λ
∫

f ′′(x)2dx — a cubic
spline. "cc" is a cyclic version.
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Eigen based example: "tp"
I The "tp", thin plate regression spline basis is an eigen

approximation to a thin plate spline (including cubic spline
in 1 dimension).
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P-splines: "ps" & "cp"

I There are many equivalent spline bases.
I With bases for which all the basis functions are translations

of each other, it is sometimes possible to penalize the
coefficients of the spline directly, rather than penalizing
something like

∫
f ′′(x)2dx .

I Eilers and Marx coined the term ‘P-splines’ for this
combination of spline bases with direct discrete penalties
on the basis coefficients.

I P-splines allow a good deal of flexibility in the way that
bases and penalties are combined.

I However splines with derivative based penalties have good
approximation theoretic properties bound up with the use
of derivative based penalties, and as a result tend to
slightly out perform P-splines for routine use.



P-spline illustration
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An adaptive smoother

I Can let the p-spline penalty vary with the predictor. e.g.

Pa =
K−1∑

k=2

ωk (βk−1 − 2βk + βk+1)
2 = βTDTdiag(ω)Dβ

where D =




1 −2 1 0 ·
0 1 −2 1 ·
. . . . .


.

I Now let ωk vary smoothly with k , using a B-spline basis, so
that ω = Bλ, where λ is the vector of basis coefficients.

I So, writing B·k for the k th column of B we have

βTDTdiag(ω)Dβ =
∑

k

λkβTDTdiag(B·k )Dβ =
∑

k

λkβTSkβ.



1 dimensional smoothing in mgcv

I Smooth functions are specified by terms like
s(x,bs="ps"), on the rhs of the model formula.

I The bs argument of s specifies the class of basis. . .
"cr" knot based cubic regression spline.
"cc" cyclic version of above.
"ps" Eilers and Marx style p-splines, with flexibility as to
order of penalties and basis functions.
"ad" adaptive smoother in which strength of penalty
varies with covariate.
"tp" thin plate regression spline. Optimal low rank eigen
approx. to a full spline: flexible order penalty derivative.

I Smooth classes can be added (?smooth.construct).



1D smooths compared
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I So cubic regression splines, P-splines and thin plate
regression splines give very similar results.

I A cyclic smoother is a little different, of course.
I An adaptive smoother can look very different.



Isotropic smooths

I One way of generalizing splines from 1D to several D is to
turn the flexible strip into a flexible sheet (hyper sheet).

I This results in a thin plate spline. It is an isotropic smooth.
I Isotropy may be appropriate when different covariates are

naturally on the same scale.
I In mgcv terms like s(x,z) generate such smooths.
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Thin plate spline details

I In 2 dimensions a thin plate spline is the function
minimizing

∑

i

{yi − f (xi , zi)}2 + λ

∫
f 2
xx + 2f 2

xz + f 2
zzdxdz

I This generalizes to any number of dimensions, d , and any
order of differential, m, such that 2m > d + 1.

I Any thin plate spline is computed as

f̂ (x) =
n∑

i=1

δiηi(x) +
M∑

i=1

αiφi(x)

where ηi and φi are basis functions of known form and α, δ
minimize ‖y− Eδ − Tα‖2 + δTEδ s.t. TTδ = 0, where E
and T are computed using the ηi and φi .



Thin plate regression splines

I Full thin plate splines have n parameters and O(n3)
computational cost.

I This drops to O(k3) if we replace E by its rank k eigen
approximation, Ek , at cost O(n2k). Big saving if k ¿ n

I Out of all rank k approximations this one minimizes

max
δ 6=0

‖(E− Ek )δ‖
‖δ‖ and max

δ 6=0

δT(E− Ek )δ

‖δ‖2

i.e. the approximation is somewhat optimal, and avoids
choosing ‘knot locations’.

I For very large datasets, randomly subsample the data the
data and work out the truncated basis from the subsample,
to avoid O(n2k) eigen-decomposition costs being too high.



TPRS illustration

I As the theory suggests, the eigen approximation is quite
effective. The following figure compares reconstructions of
of the true function on the left, using and eigen based thin
plate regression spline (middle), and one based on
choosing knots. Both are rank 16 approximations.
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Scale invariant smoothing: tensor product smooths
I Isotropic smooths assume that a unit change in one

variable is equivalent to a unit change in another variable,
in terms of function variability.

I When this is not the case, isotropic smooths can be poor.
I Tensor product smooths generalize from 1D to several D

using a lattice of bendy strips, with different flexibility in
different directions.

xz
f(x,z)



Tensor product smooths

I Carefully constructed tensor product smooths are scale
invariant.

I Consider constructing a smooth of x , z.
I Start by choosing marginal bases and penalties, as if

constructing 1-D smooths of x and z. e.g.

fx(x) =
∑

αiai(x), fz(z) =
∑

βjbj(z),

Jx(fx) =

∫
f ′′x (x)2dx = αTSxα & Jz(fz) = BTSzB



Marginal reparameterization

I Suppose we start with fz(z) =
∑6

i=1 βjbj(z), on the left.
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I We can always re-parameterize so that its coefficients are

functions heights, at knots (right). Do same for fx .



Making fz depend on x
I Can make fz a function of x by letting its coefficients vary

smoothly with x
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The complete tensor product smooth
I Use fx basis to let fz coefficients vary smoothly (left).
I Construct in symmetric (see right).
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Tensor product penalties - one per dimension
I x-wiggliness: sum marginal x penalties over red curves.
I z-wiggliness: sum marginal z penalties over green curves.

xz

f(x,z)

xz

f(x,z)



Tensor product expressions

I So the tensor product basis construction gives:

f (x , z) =
∑∑

βijbj(z)ai(x)

I With double penalties

J∗z (f ) = βTII ⊗ Szβ and J∗x (f ) = βTSx ⊗ IJβ

I The construction generalizes to any number of marginals
and multi-dimensional marginals.

I Can start from any marginal bases & penalties (including
mixtures of types).

I Note that the penalties maintain the basic meaning
inherited from the marginals.



Isotropic vs. tensor product comparison
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. . . each figure smooths the same data. The only modification is
that x has been divided by 5 in the bottom row.



Tensor product smoothing in mgcv

I Tensor product smooths are constructed automatically
from marginal smooths of lower dimension. The resulting
smooth has a penalty for each marginal basis.

I mgcv can construct tensor product smooths from any
single penalty smooths useable with s terms.

I te terms within the model formula invoke this construction.
For example:

I te(x,z,v,bs="ps",k=5) creates a tensor product
smooth of x, z and v using rank 5 P-spline marginals: the
resulting smooth has 3 penalties and basis dimension 125.

I

te(x,z,t,bs=c("tp","cr"),d=c(2,1),k=c(20,5))
creates a tensor product of an isotropic 2-D TPS with a 1-D
smooth in time. The result is isotropic in x,z, has 2 penalties
and a basis dimension of 100. This sort of smooth would be
appropriate for a location-time interaction.

I te terms are invariant to linear rescaling of covariates.



The basis dimension

I You have to choose the number of basis functions to use
for each smooth, using the k argument of s or te.

I The default is essentially arbitrary.
I Provided k is not too small its exact value is not critical, as

the smoothing parameters control the actual model
complexity. However

1. if k is too small then you will oversmooth.
2. if k is much too large then computation will be very slow.

I Suppose that you want to cheaply check if the s(x,k=15)
term in a model has too small a basis. Here’s a trick . . .
b <- gam(y˜s(x,k=15)+s(v,w),Gamma(log))
rsd <- residuals(b)
b1 <- gam(rsd ˜ s(x,k=30),method="ML")
b1 ## any pattern?

I Or up k and see if fit/GCV/REML changes much.



Miscellanea

I Most smooths will require an identifiability condition to
avoid confounding with the model intercept: gam handles
this by automatic reparameterization.

I gam will also handle the side conditions required for nested
smooths. e.g. gam(y˜s(x)+s(z)+s(x,z)) will work.

I However, nested models make most sense if the bases are
strictly nested. To ensure this, smooth interactions should
be constructed using marginal bases identical to those
used for the main effects.
gam(y˜te(x)+te(z)+te(x,z))
would achieve this, for example.

I te and s(...,bs="tp") can, in principle, handle any
number of covariates.

I The "ad" basis can handle 1 or 2 covariates, but no more.



A diversion: finite area smoothing

I Suppose how want to smooth samples from this function
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I . . . without ‘smoothing across’ the gap in the middle?
I Let’s use a soap film . . .



The domain
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The boundary interpolating film
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Soap film smoothers

I Mathematically this smoother turns out to have a
basis-penalty representation.

I It also turns out to work. . .

−1 0 1 2 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

y

−1 0 1 2 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

y

−1 0 1 2 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

y

−1 0 1 2 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

y

−1 0 1 2 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

y

−1 0 1 2 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

y



Summary

I In 1 dimension, the choice of basis is not critical. The main
decisions are whether it should by cyclic or not and
whether or not it should be adaptive.

I In 2 dimensions and above the key decision is whether an
isotropic smooth, s, or a scale invariant smooth, te, is
appropriate. (te terms may be isotropic in some
marginals.)

I Occasionally in 2D a finite area smooth may be needed.
I The basis dimension is a modelling decision that should be

checked.


