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Smoothness selection approaches

I The smoothing model yi = f (xi ) + εi , εi ∼ N(0, σ2), is
represented via a basis expansion of f , with coefficients β.

I The β estimates are β̂ = arg minβ ‖y − Xβ‖2 + λβTSβ
where X is the model matrix derived from the basis, and S is
the wiggliness penalty matrix.

I λ controls smoothness — how should it be chosen?
I There are 3 main statistical approaches

1. Choose λ to minimize error in predicting new data.
2. Treat smooths as random effects, following the Bayesian

smoothing model, and estimate λ as a variance parameter
using a marginal likelihood approach.

3. Go fully Bayesian by completing the Bayesian model with a
prior on λ (requires simulation and not pursued here).



Prediction error: Cp/UBRE

I Suppose σ2 is known, and let A = X(XTX + λS)−1XT.

I µ̂ = Ay where E(y) = µ, so consider

‖µ− µ̂‖2 = ‖µ− Ay‖2 = ‖y − Ay − ε‖2

= ‖y − Ay‖2 + εTε− 2εT(y − Ay)

= ‖y − Ay‖2 + εTε− 2εT(µ + ε) + 2εTA(µ + ε)

= ‖y − Ay‖2 − εTε− 2εTµ + 2εTAµ + 2εTAε

I Hence E‖µ− µ̂‖2 = E‖y − Ay‖2 − nσ2 + 2σ2tr(A)

I Estimating E‖y − Ay‖2 yields . . .

Cp = ‖y − Ay‖2 − nσ2 + 2σ2tr(A)

I Can choose λ to minimize Cp.



σ2 unknown: cross validation
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1. Choose λ to try to minimize the error predicting new data.

2. Minimize the average error in predicting single datapoints
omitted from the fit. Each datum left out once in average.

3. It turns out that

Vo(λ) =
1

n

∑

i

(yi − µ̂
[−i ]
i )2 =

1

n

∑

i

(yi − µ̂i )
2

(1− Aii )2



OCV not invariant
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I OCV is not invariant in an odd way. If Q is orthogonal then
fitting objective

‖Qy −QXβ‖2 + λβTSβ

yields identical inferences about β as the original objective,
but it gives a different Vo .



GCV: generalized cross validation

I If we find the Q that causes the leading diagonal elements of
A to be constant, and then perform OCV, the result is the
invariant alternative GCV:

Vg =
n‖y − µ̂‖2

{n − tr(A)}2

I It is easy to show that tr(A) = tr(F), where F is the degrees
of freedom matrix.

I In addition to invariance, GCV is much easier to optimize
efficiently in the multiple smoothing parameter case.



REML/ML λ estimation

I The Bayesian smooth model is

y = Xβ + ε, β ∼ N(0,S−σ2/λ), ε ∼ N(0, Iσ2)

I This can be viewed as a mixed model for computational
purposes, but the impropiety of f (β) is awkward.

I To fix this, find the eigen-decomposition S = UΛUT

I Reparameterize β′ = UTβ and let Λ+ denote the diagonal
matrix of +ve eigenvalues.

I Now βTSβ = β′TΛβ′ = bTΛ+b where β′ = (bT, γT)T.

I Now partition X′ = XU = (Z : X̃), so that the model becomes

y = X̃γ + Zb + ε, b ∼ N(0,Λ−1
+ σ2/λ), ε ∼ N(0, Iσ2)



REML/ML λ estimation

I Now that the model is in standard mixed model form, mixed
model methods can estimate λ as a variance parameter.

I MLE or REML can be used.

I From a Bayesian perspective we are being empirical Bayesians
and using marginal likelihood.

I Notice that the restricted/marginal likelihood has the form

∫
f (y|β)f (β)dβ

I That is, we are taking the expectation of the likelihood over
the prior on β.

I From this perspective it is possible to plot why the approach
is intuitively sensible.



Basic principle of ML smoothness selection
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1. Choose λ to maximize the average likelihood of random draws
from the prior implied by λ.

2. If λ too low, then almost all draws are too variable to have
high likelihood. If λ too high, then draws all underfit and have
low likelihood. The right λ maximizes the proportion of draws
close enough to data to give high likelihood.

3. Formally, maximize e.g. Vr (λ) = log
∫

f (y|β)fλ(β)dβ.



Prediction error vs. likelihood λ estimation
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1. Pictures show GCV and REML scores for different replicates
from same truth.

2. Compared to REML, GCV penalizes overfit only weakly, and
so tends to undersmooth.



Are smoothers really random effects?

I Most times that smooth functions are used in models, the
modeller believes that the function is a fixed state of nature.

I i.e. the assumption is that the true function is something that
would stay fixed on replication of the dataset.

I So we are really being Bayesian in treating the function as
random.

I If the function was a true frequentist random effect then we
would expect to get a different random draw from its prior at
each dataset replication. This almost never makes sense.

I Does this mean that using mixed modelling methods is wrong?

I No. It just happens that the mixed model methods can
conveniently compute the Bayesian answers for us.


