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Statistical models

» Statistical model

A mathematical cartoon of how some data, y,
might have been generated

» The model depends on some unknowns, 6, usually
parameters.
» Key features of a statistical model. Given 6

1. the model can be used to simulate data that are like y.
2. in principle the model determines f,(y), the pdf of y.



Statistical Inference

» Learn about unknown 8 from observed data y.
» 4 main questions.
1. What value of 8 is most consistent with y?
2. What range of values of 8 are consistent with y?
3. Is some specified value of 8, or restriction on 6, consistent
with y?
4. Are any values of the 6 consistent with y?
» Answers to these questions are provided by
1. Point estimation.
2. Interval estimation.

3. Hypothesis testing (more generally model selection).
4. Model checking.



2 approaches to inference

» There are two main approaches to inference. We will need
both.
» Maximum likelihood estimation.
» 0 are treated as fixed states of nature, about which we want
to learn.
» Use the notion that 8 values are ‘likely’ if they make y
appear ‘probable’.
» Bayesian inference.
» The unknowns, 0, are treated as random variables.
» Our knowledge of 0, described by a pdf, is updated using y.



Likelihood

» The log pdf of y evaluated at the observed y, considered
as a function of 8, is the log likelihood function 1(6).

» i.e. /(8) = log fy(y) where y is the actual observed data.

» Values of 8 have relatively high log likelihood if they make
the observed data appear relatively probable.

» Parameter values that are plausible given the data should
have relatively high log likelihood.

» Notice that /(0) is defined using the marginal distribution of
the observed data y, only.



Maximum Likelihood Estimation

» The maximum likelihood estimate (MLE) of @ is

A

0 = arg max 1(0)

» @ is the value of @ ‘most consistent’ with the data.
» In general 6 is found by numerical optimization.



Interval estimation

» How would 6 vary under repeated sampling of the data, y?

» Treating y as random and considering the estimator 6, then
as n=dim(y) — o
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» Mild regularity conditions apply! The expected information
can be substituted.

» Confidence intervals for the elements of 8 can be obtained
directly from this result.



Hypothesis testing

» Consider testing Hp : r(@) = 0 for p dimensional function r.
» Define

6y = arg max /(9) subject to r(6) =0

v

Under repeated re-sampling of y, then in the limit n — co
2{1(9) — 1(60)} ~ X}

if Ho is true. Otherwise 2{/(8) — I(Bo)} > X2

A test based on this result is known as a generalized
likelihood ratio test (GLRT).

The test can be used to compare nested models.

Note that the GLRT result breaks down if Hy restricts 0 to
an edge of the feasible parameter space.
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Model comparison by AIC

» The log likelihood ratio used in the GLRT measures the
discrepancy between two models.

» Ideally we would like to select the model which has the
minimum discrepancy from the truth.

» Let fy(y) be the true pdf of y. The Kullback-Leibler distance
is the expected log likelihood ratio of model and truth

K(fy. 7) = / {log #(y) — log £,(y) }(y)dy

» Selecting the model that minimizes an estimate of K,
amounts to selecting the model that minimizes

AIC = —2/(8) + 2dim(#).



Random effects

» In many models y’s distribution depends on unobserved
random variables, z, and only fy(y, z) is straightforward.

» Variables like z are known as random effects (unless they
are simply ‘missing data’ from the observation of y).

» To obtain a likelihood we need

b(y) = [ iy, 2)atz

...which is often intractable.

» Common solutions. ..
1. If E,, log fy(z,y) is tractable, then the EM algorithm allows
1(0) = log f»(y) to be maximized without evaluating log fy(y).
2. Alternatively, the integral can be approximated.



Laplace approximation

» Let Z denote the maximizer of f;(y, z) for a given y.

> Let
9% log fy(y, z)
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Valogfy =
» Then by Taylor’s theorem

log fy(y,2) = logf(y,2)+ (z - 2)"VZlog fy(z — 2)/2
= hi(y.2) = fy,2)e 2= 2 Vikab)z2)

= fo(y) ~ fh(y,2

since a MVN pdf integrates to 1.



Model checking

Does the model fit at all?
If it does not, then all the preceding theory is useless.

All model checking amounts to looking for evidence that
the observed data do not come from the pdf specified by
the model.

i.e. we look for evidence that
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y = f5(y).

v

Formal goodness of fit testing is sometimes useful, but
won'’t indicate how a model fails.

» Graphical checks are often helpful, as they can help to
pin-point the way in which a model fails.



Bayesian inference

v

If your target of inference is a random variable, then you
are being Bayesian.

We must specify a prior distribution 8 ~ f(0) as part of
modelling process.

The prior is updated using the observed y via Bayes rule.
Bayes rule is a re-arrangement of f(0,y) = f(y, 0)

f6ly)f(y) = £(y|0)f(6)
= f(0ly) = f(y|6)1(0)/f(y)

f(y) is usually intractable, but it is a constant, so . ..
1. Sometimes the form of f(6|y) can be recognised from

F(y|6)1(6)-
2. ltis possible to simulate from f(8]y) without knowing f(y).
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The MLE Bayesian connection
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Suppose we use improper uniform priors f(8) = constant.
Then f(8]y) x f(y|0). i.e. the posterior distribution, f(01y)

is directly proportional to the likelihood, f(y|0).

So the most probgble value of 8 according to the posterior
will be the MLE, 6.

Actually, as the sample size n — oo the likelihood
dominates any prior that is non-zero over all the parameter
space. Hence the posterior modes — 6.

Furthermore f(0y) — kexp{—(6 — 6)TZ(0 — §)/2} as

n — oo for any regular posterior about which y is
informative, by Taylor’s theorem.

i.e. in the large sample limit 8y ~ N(6,Z ).



Linear predictor regression models

» In this course we will consider only statistical models in
which we want to model observations of a response
variable, y, using some predictor variables that accompany
each observation.

» We will consider only the case in which E(y;) is completely
determined by a single variable 7;, which depends flexibly
on the predictor variables, but only linearly on the model
parameters and any random effects.

» 7; is known as a linear predictor.
» We will further assume that given 7; the y; are independent.

» Inference with these models uses the preceding theory, but
numerical estimation, model specification and checking are
greatly facilitated by the special structure.



