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Summary

An example of an attempt to use simple models to predict the outcome of releasing a fun-
gal pathogen as a bio-control agent against grasshoppers is used to illustrate the possibility
of extreme sensitivity of model predictions to the details of model specification. A partial
solution to this problem is to formulate models in a more general way than is conven-
tional in population dynamic modelling, but is similar in spirit to the method of general-
ized additive modelling. Component functions of a model, whose exact form is unknown

a priori can be represented as non-parametric smooth functions, thereby avoiding some
of the incidental assumptions associated with assuming arbitrary parameter sparse func-
tional forms. After a brief description of this approach to modelling it is applied to the
grasshopper control example.
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Introduction

Population dynamic models are useful as cartoons of biological systems since they are a
good bit more tractable than the real thing, and therefore easier to understand. In this role mod-
els have a long history of providing insight into how biological systems might work, as well as
giving much unwholesome amusement to their creators. Before the advent of cheap computing
it was seldom sensible to work with anything but the simplest models, since the heroic efforts re-
quired to reach an analytic understanding of more complex models seldom repapseaidth
of understanding. This is because the inclusion of sufficient model complexity to describe one
system in detail tends to preclude the use of the model for other systems, so that generality
seems to decline with effort expended. More recently, however, cheap computer power has
opened the way to the use and understanding of more realistic models, and this in turn opens up
the possibility of statistically validating such models against data, and of using models to make
quantitative predictions as well as gain general insights.

In this paper | present a case study based on prediction of the success or failure of bio-
logical control of grasshoppers, showing how prediction using non-linear population dynamic
models can show alarming and counterintuitive sensitivity to apparently insignificant details of



model specification (Wood & Thomas, 1999). Consideration of the mechanism of this sensi-
tivity suggests an alternative and hopefully safer approach to model building bapadiaily
specifiednodels, in which model elements that are poorly kn@priori are represented in a
fairly general way as unknown functions, thereby avoiding some of the spurious assumptions
associated with more conventional model formulation. Having outlined the key ingredients of
this approach, | then apply it to the grasshopper control example.

Grasshoppers, pathogens and extreme sensitivity to model formulation

Insect pests are estimated to consume between 20 and 30 percent of worldwide crop produc-
tion each year (around US$300 billion annually, Hill 1997), so that the prediction of success
or failure of control programmes is of some applied importance, while even small increases in
the efficiency of control have the potential to provide substantial benefits. Grasshoppers and lo-
custs have been significant agricultural pests for some time (Exodus chapter 10, Steedman 1990)
and this section concerns a simple model designed to investigate the scope for successful con-
trol of the rice- grasshoppetieroglyphus dagenensksy introduction of the entomopathogen
Metarhizium flavoviride

H. dagenensig active during a rainy seasons of some 3 to 4 months duration, spending the
rest of its life cycle as resting eggs, during the dry season. In the active part of the life cycle it is
suceptible to infection by the fungal pathogdnflavoviride which typically kills the host after
an incubation period of some 12 days. The dead host is not immediately infectious but becomes
so as the fungus builds up in and on the cadaver. Typically it reaches maximum infectivity a
week or so after death, with a slow decline thereafter: there is substantial infectivity 6 weeks
after death (see figure 1 Thomas, Wood & Lomer 1995), and ground that contained infectious
cadavers during the previous wet season still shows residual infectivity after an intervening dry
season (Thomas, Gbongboui & Lomer 1996). Grasshoppers that survive the rainy season lay
eggs before dying, and these eggs lie dormant until the next years rains. Early attempts to model
this system (Thomaset al. 1995; Wood & Thomas 1996) employed the simple assumption
that the probability of an individual becoming infected is directly proportional to the density
of infectious material in its environment. However, this ‘proportional mixing’ assumption is
untenable in the face of experimental data in which density of infective material is manipulated
directly (see Wood & Thomas 1999). Unsurprisingly it seems that infection risk is a saturating
function of the density of infectious agent.

Given this sketch of the biology, a reasonable model for the grasshopper- pathogen dynamics
within a rainy season can be formulated in terms of 3 state variallles the healthy host
density (n~2) while Ay and A, are two dummy variables used to obtain the desired build up
and decline of individual cadaver infectivityd, can be thought of as an index of the total
density (permn?) of resources within infected cadavers that has yet to be turned into pathogen,
while A; is an index of the total density of pathogen. The rate at whiakteclines per unit time
is given by the product of a saturating functionAf, f(A;), and host density itself, so that:

dH
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The rate of change of pathogen density is governed by the rate at which cadaver resources are
converted to pathogen, less the rate at which pathogen becomes inactive. This leads to:

d(ﬁl =c(Ag — A1)
(a full justification of the equations fot; and A, is given in Wood & Thomas 1996 or Thomas
et al. 1995). The rate of change of the ‘cadaver resource’ tégns given by the rate at which
healthy hosts die less the rate at which resources are converted to pathogen. The rate at which
hosts die is just the rate at which they got infectedays earlier, where is the incubation
period. Hence:

dt
Between seasong] is multiplied by a finite rate of increasé, and supplemented by a small
amount of immigrationn, while A, and A; are multiplied by the between season pathogen
survival rate;y. In the work reported her€ = 4, 7 = 12d, m = 0.1m~2? andy = 0.02.

Without a detailed mechanistic model of the infection process it is difficult to know what
form to give the functionf(-), so in Wood and Thomas (1999) three alternative saturation
functions were tried: the well known Michaelis-Menton equatiffy) = ax/[b + x]; a form
used by Briggs & Godfray (1995f,(x) = klog[1+«ax/k|; and a form due to Hochberg (1991),

f(z) = B+,

To estimate the parameterand the parameters of eagly) the within season population
dynamic model given above was fitted directly to experimental data. In these experiments (per-
formed in Northern Benin in 1994) cohorts of healthy grasshoppers were exposed to infectious
cadavers in field cages for three days before being incubated in the lab, where the proportion
surviving was noted. Different cohorts were exposed to four cadaver densities at 6 times after
cadaver death, so that the experiment provided information on both the time course of infectivity
and the shape of the relationship between pathogen density and infectivity. Details are given in
Wood & Thomas (1999). The model can be used to predict survival for each of the 24 cohorts,
and its parameters can be optimized to maximise the accuracy of this prediction. Uncertainty
in model parameters was estimated by using parametric bootstrapping (see Davison & Hinkley,
1997) to generate 99 replicate parameter sets for each of the three fofifas of

Figure 1la shows the best fit functions for the three alternative formulations, and figure 1b
superimposes the corresponding 98% confidence bands. From these plots the alternative repre-
sentations of saturating infectivity appear practically indistinguishable, and it might reasonably
be supposed that it would not much matter which is chosen. Figure 2 shows that this is in fact
not the case. The Hochberg model predicts sustained control after a single pathogen application,
while the other two models predict that repeated pathogen re-introduction is needed to main-
tain control. Furthermore the predictions of each model are consistent across all 99 bootstrap
replicate parameter sets - the Hochberg model always predicts sustained control, the other two
models always predict the necessity of repeated spraying.

What this example shows is the potential for predictions to go badly wrong as a result of
apparently innocuous modelling assumptions. Looking more carefully at the models it appears
that the Hochberg model gives a rather big boost to the pathogen population at very low den-
sities: but if the Hochberg model had been the only one used there would have been nothing

= c[f(A(t = 7)) H(t — 7) = Ag]
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Figure 1:(a) Shows each of the 3 alternative functional forms describing infectivity with the parameters
that achieved the best fit to experimental data. (b) Shows overlapping 98% confidence bands for each
of these three functions, obtained by parametric bootstrapping from the experimental data. Direction
of shading distinguishes the different bands. Notice both the closeness of the best fit functions and the
almost complete overlap of the confidence bands.
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Figure 2: Typical population dynamics predicted by grasshopper- pathogen models fitted to data and
incorporating & Hochberg’s function, lf) the Michealis-Menton equation and) the Briggs-Godfray
equation as descriptions of the relationship between pathogen density and infectivity. The predicted
dynamics were qualitatively similar across all 99 bootstrap generated parameter sets tried for each model.
The range of4; is chosen for consistency with what occurs in the models discussed as well as consistency
with experimental data.

to caste suspicion on its validity. Indeed the bootstrapping exercise quantifying the uncertainty
in the parameters of the model would tend to suggest rather robust predictions. Clearly in this
example the difficulties arise because the population dynamic model is much more sensitive
to tiny changes in the functional form ¢f-), than to variability inf(-)’'s parametergivena
functional form. In order to understand this phenomenon it helps to describe it in quite general
terms.

Each particular functional form fof(.) can be thought of as defining a space of functions,
with different parameter values yielding different elements of the space. Clearly the model pre-
dictions do not seem terribly sensitive to variation within any one of the three spaces defined in
this way (at least provided variation is on a scale consistent with the experimental data to which



the model has been fitted). Now suppose that we could define the true space of possible forms
of f(-). The population dynamic model is quite likely to be highly sensitive to variation in some
directions within this space, and quite insensitive to variation in other directions, in the same
way that non-linear models usually show sensitivity to some parameters and robustness to oth-
ers. All that is required to get the phenomenon observed here is that the chosen functional forms
restrict variation in this space to directions to which model predictions are insensitive while the
differencesbetweerfunctional forms defines a direction in the space to which predictions are
highly sensitive. Figure 3 attempts to illustrate these ideas, which are developed more fully in
Wood & Thomas (1999). What this general discussion suggests is that the phenomenon has the
potential to occur in other models and is unlikely to be a pathological quirk of this particular
host pathogen model.
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Figure 3: Schematic diagram of the origins of extreme sensitivity to specification. The population
dynamic model can be thought of as having mechanistic elements that transform model inputs in the
form of component functions and parameters into model outputs in the form of predictions. The diagram
illustrates how movement within the space of plausiple’s can cause radically different changes in
prediction according to the direction of movement: it's quite possible for movement along the manifold
of a particular functional form to cause little change in predictions, while movement off that manifold can
cause big changes. (The type of dashing on arrows identifies which function produces which prediction.)

Semi-parametric population dynamic models

The previous section illustrated a problem in modelling for predictive purposes: when de-
scribing elements of the modelled system that must be characterised without a great deal of



mechanistic understanding, it is possible to introduce apparently minor incidental assumptions
that can have a surprisingly serious impact on predictions. Part of the difficulty is that although
itisn’t always clear exactly how to write down a model, the act of writing deamethingends

to suggest that more is known about the system than is actually the case - and it's this addition
of ‘extra’ information in the form of unsubstantiated model structure that has the potential to
cause difficulties.

One way to reduce these problems is suggested by the explanation of the extreme sensitivity
problem given at the end of the previous section. Why not construct our model not as a ‘fully
specified’ model in which everything is assumed known but for a few unknown parameters,
but as a ‘partially specified’ model in which unknown functions are left as just that? In the
context of the grasshopper- pathogen model, this means that the specificafientcomes
something like f(-) is a smooth monotonically increasing function, for whjtl)) = 0’. The
space of possiblé¢(-)’s can be chosen to be large enough to avoid too much artificial restriction
on the form off(-). The population dynamic model can then be thought of as a mapping from
the unknown parameter and function to predictions corresponding to the data that the model is
intended to fit:

p=M(f,c)

whereu; = E(y;) andy; is the ith observation to be fitted by the modgl denotes ‘expected
value’). So in principle model fitting can proceed by attempting to minimise:

n

> (yi — )’

=1

(or some other measure of fit). However, there are two problems to be overcome to make this
practical. Firstly it is necessary to represg({) in some tractable manner. The way to do this

is to set up a basis foff(-) so that it can be represented in terms of a finite number of unknown
parameters and some ‘basis functionsj;(z), which have no unknown parameters. i.e. let

fa) = f,:cmc)

A familiar example of a set of basis functions{ig(z) = 2" : i = 0...p} = {1, 2, 2%, ... 27}
which is used to represent polynomial functiofiga) = co + c12 + caz® + . .. ¢,2P). Althugh
easy to understand, the polynomial basis is a rather poor choice as it tends to lead to unstable
estimates, and it is better to use the cubic spline basis, which has much better approximation
theoretic properties (see Wahba 1990; deBoor 1978). Use of this basis function representation
means that the problem of finding the unknown function has been reduced to the problem of
finding the vector of its coefficients relative to the basisand this is a fairly ordinary non-
linear optimization problem (Gill, Murray & Wright 1981). Provideds big enough the space
of functions that can be represented is quite large.

The second problem is the measure of fit. A sufficiently complicgtedwill be liable to
cause the model to overfit thg's. That is, the model will fit both the signal and the random
error in the data. One way around this problem is to penalise model complexity as part of the
lack of fit measure, so that simple smogth are favoured relative to more wiggly and complex



f's. A suitably modified fitting objective is:

minimise Y (yi — i) + )\/[f”(x)]Qdm
=1

where the first term measures infidelity of the model to the data and term measures wiggliness
of f(-) (formally, the integrated square curvaturefdf)). A controls the trade off between the
competing objectives of close fit to data, and smoothneg$-af High A gives poor predictions
of data but a simple model, while low tends to promote close matching of the data with a
complicated form forf. Given A and the basis function representationfdf) this modified
objective can be minimised numerically (see @tllal. 1981).

Clearly some means of choosings now required, and a plausible method is cross valida-
tion. This works by leaving out ong at a time and fitting the model to the remaining data. The
squared difference between the model prediction of the miggiagdy; itself is then calcu-
lated. The average of these squared differences across all missed out data provides a measure of
how badly the model is doing that can be used to selektigh A tends to mean that the model
doesn’t match the data to which it has been fitted very closely and it does no better with missing
data; low)\ means that every random fluctuation in the data is fitted, which leads to a very poor
match to missing data. Middling values afwhich correctly partition signal and noise, will
tend to give the best cross validation scores. The version of cross validation just described has
some technical problems (see Wahba, 1990), but a modification ‘generalized cross validation’
(GCV) solves these, and results in the score:

S (yi — pi)?
[>2(1 = Oui/9y;)]?

which is minimised to choosg. The term in the denominator is the square of the estimated
error degrees of freedom for the model.

A general framework for this sort of approach is given in Wosubfmitted & it is possible
to work with multiple unknown functions in a model although GCV is quite challenging in this
case (Woodsubmitted Iy it is also possible to impose linear inequality constraints on functions
and coefficients, and to use general exponential family likelihoods in place of the least squares
term in the fitting objective. There are some numerical difficulties waiting to trap the unwary in
attempting to use these methods, but these are also documented (along with solutions) in Wood
(submitted &

In short a population dynamic model to be fitted to data can be written down in terms
of unknown functions and unknown parameters rather than just unknown parameters, leading
to increased flexibility in model structure, and a reduced chance of arbitrary errors of mis-
specification. The unknown functions can then be represented using spline functions, and the
model fitted to data with complexity of the unknown functions penalized - the degree of penal-
ization is chosen by minimising a GCV criterion.

V(A =

A semi-parametric approach to the grasshopper pathogen system



As an illustration of the use of the partially specified models introduced in the last section,
| reformulated the population dynamic model fdrdagenensigsind M. flavovirideas a par-
tially specified model, representing-) as a monotonically increasing smooth function, pass-
ing through the origin and having at most 20 degrees of freedom. The idea is that by allowing
the model so much potential flexibility mis-specification errors resulting from more restrictive
choices off (-) will be avoided. Hence the form gf(-) that results from fitting should be dom-
inated by what the experimental data suggests is appropriate, rather than by prior assumptions.

Model parameter and the unknown function were estimated by fitting directly to the ex-
perimental data described earlier (and in Wood & Thomas, 1999) using a constrained Quasi-
Newton approach (Gilet al. 1981). The complexity of (-) was chosen by GCV. Figure 4a
shows (pointwise) 98% bootstrap confidence limitsffoy given the GCV choice of smoothing
parameter. Figure 4d shows corresponding typical predicted population dynamics over multiple
rainy seasons. All bootstrap replicates gave similar dynamics. Hence the partially specified
model is in qualitative agreement with the Michaelis Menton and Godfray Briggs formulations.
However the partially specified model also allows further investigation of other uncertainties
in f(-). Figures 4b and 4c show the confidence bands corresponding to smoothing parameters
of 10% and 1% of the GCV optimum. These more flexible functional forms, exhibit greater
variability, but again all produced dynamics similar to figure 4d, somewhat reinforcing the con-
clusion that sustained control is very unlikely in this system.
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Figure 4:a- cshow bootstrap 98% confidence bands for the unknown fun¢tigrwhen the smoothing
parameter\ was set to 1, 0.1 and 0.0 the optimum\ chosen by GCVd shows the form of the
dynamics that resulted for all 99 bootstrap replicates of each smoothing parameter choise - there were
small quantitative differences between replicates, but no qualitative difference.

Discussion

The example presented at the beginning of this paper shows that prediction with population
dynamic models can be dangerous, in that predictions can display great sensitivity to apparently
trivial variation in model specification. Consideration of the origins of this sensitivity suggest

an alternative approach to modelling that may go some way to reducing the chances of such



problems, namely the formulation of partially specified models in which some poorly known
model elements are specified only in rather general terms as being ‘smooth functions’. This
approach is in tune with model statistical modelling using GAMs (see Hastie & Tibshirani,
1990) and has previously been applied in some special cases where the models have convenient
forms (e.g. Wood & Nisbet 1991, Wood 1994, Ellretral. 1997,1998). Recently a much more
general framework for such models has been worked out (VWadmhitted awith software also
available (Wood 1999). The application to the problem with which this paper started illustrates
the utility of the approach: we still cannot be sure of making the right prediction, but at least
the chances of being badly wrong should be reduced as a result of removing some of the scope
for model mis-specification.
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