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Abstract. Models are useful when they are compared with data. Whether this com-
parison should be qualitative or quantitative depends on circumstances, but in many cases
some statistical comparison of model and data is useful and enhances objectivity. Unfor-
tunately, ecological dynamic models tend to contain assumptions and simplifications which
enhance tractability, promote insight, but spoil model fit and this can cause difficulties when
adopting a statistical approach. Furthermore, the arcane numerical analysis required to fit
dynamic models reliably presents an impediment to objective model testing by fitting. This
paper presents methods for formulating and fitting partially specified models, which aim to
achieve a measure of generality by avoiding some of the irrelevant incidental assumptions
that are inevitable in more traditional approaches. This is done by allowing delay differ-
ential equation models, difference equation models and differential equation models to be
constructed with part of their structure represented by unknown functions, while part of the
structure may contain conventional model elements that contain only unknown parameters.
An integrated practical methodology for using such models is presented along with several
examples, which include use of models formulated using delay differential equations, discrete
difference equations/matrix models, ordinary differential equations and partial differential
equations. The methods also allow better estimation from ecological data by model fitting,
since models can be formulated to include fewer unjustified assumptions than is usually the
case if more traditional models are used, while still including as much structure as the mod-
eller believes can be justified by biological knowledge: model structure improves precision,

while fewer extraneous assumptions reduce unquantifiable bias.

Key words: population dynamic model fitting; partially specified model; semi-parametric
model; semi-mechanistic model; multiple smoothing parameter; non-linear spline model; de-
lay differential equation; ecological dynamic model fitting.

INTRODUCTION

“The population went up and down, and so did
the model” is not totally unjustified as a carica-
ture of the way in which ecological models are often
compared to data. There are good reasons for this.
Most formal theory for statistical data modelling is
based on linear and close to linear models. There is
not an equivalent body of theory for statistical anal-
ysis using the kind of non-linear models on which
the theory of ecological dynamics is based. Further-
more, many models contain assumptions that have
been introduced for reasons of tractability, rather
than biology. These can be expected to result in
mismatches between model and data, even when
the biology underpinning a model is correct, and

this undermines the utility of formal comparison of
models with data. This paper aims to reduce these
problems for an extensive family of non-stochastic
models.

Why fit models? The most obvious and practi-
cal motivation is to infer something about the sys-
tem to which the model is being fitted. For ex-
ample, mortality rates are very difficult to measure
directly in the field, but population densities are
easier: by fitting an appropriate model to the latter
it may be possible to infer the former. Falsification
and validation of models is another reason. Formal
fitting can show whether a model is really capable of
producing observed dynamics or not, as well as pin-
pointing the features of data that are not explained



by the theory embodied in a badly fitting model.
Of course many models produce such ridiculous dy-
namics that they have fulfilled their purpose and
can be discarded long before fitting is necessary, but
for many others fitting is helpful. Some models are
produced for prediction and here it is particularly
important to calibrate models by fitting to data. Fi-
nally there is the comparison of models (hypothesis
testing): one way of distinguishing between com-
peting hypotheses about how a system works is to
formulate these hypotheses as models and compare
their ability to fit data from the system.

Although it may be desirable to fit models to
data, it also turns out to be difficult. Most dy-
namic ecological models are non-linear, so even if a
sensible measure of fit can be defined, methods that
are guaranteed to find the best fit do not generally
exist. There are therefore a large number of alter-
native non-linear optimization methods to choose
from. Treating these methods as black boxes tends
to give variable results: for some models fitting
seems straightforward, while for others the fitting
method makes very slow or no progress, terminates
for no apparent reason or ‘converges’ to parameter
values that depend strongly on the initial parameter
values used. Such practical difficulties substantially
undermine the usefulness of model fitting as a sci-
entific tool.

There are at least three reasons for these diffi-
culties. Firstly, it is necessary to choose some mea-
sure of goodness of fit in order to fit models, and
it is very easy to come up with choices that are
very difficult to minimise. Secondly, even for well
behaved measures of model fit, the numerical anal-
ysis involved in solving models and calculating the
quantities required by fitting methods must be per-
formed carefully: otherwise methods will be slow
and convergence unreliable. Thirdly, efficiency and
reliability are undermined if methods fail to make
good use of the structure of the model fitting prob-
lem. One goal of this paper is to overcome the tech-
nical obstacles for one class of models and fitting
objectives.

A further obstacle to useful model fitting is more
fundamental. Most models contain elements that
are not derived entirely from mechanistic first prin-
ciples. Instead, some parts of the model are phe-
nomenological characterisations of a process or rela-
tionship. These terms introduce incidental assump-
tions into a model that have nothing to do with
the biological mechanisms on which the model is
based. It is usually assumed that these incidental
assumptions will have little effect on the qualita-
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tive nature of the model’s dynamics, but this is by
no means guaranteed (see Wood and Thomas 1999,
for an extreme example). In any case, incidental
assumptions will produce quantitative effects and
these may have implications when it comes to inter-
preting lack of model fit. Ideally, lack of fit should
indicate that something is wrong with the biological
assumptions of the model, rather than the inciden-
tal assumptions, but disentangling these two is very
difficult. The issue is clearest when comparing the
fit of two alternative models of a system. In this
case interest focuses on distinguishing between the
alternative mechanisms that the models embody,
but model fit is contingent on incidental modelling
assumptions as well as assumptions about biologi-
cal mechanism. If the incidental assumptions differ
between models it is hard to know whether a differ-
ence in fit is attributable to the differing biological
assumptions made or merely to differences in the
incidental modelling assumptions.

Further examples of the difficulty with inciden-
tal assumptions arise in pure estimation problems.
For example, when estimating mortality rates from
observed (structured) population time series it is
usually the case that the form of the mortality rate
term in the fitted model is not known a priori. Sim-
ply assuming a form means that estimates are con-
ditional on an untestable assumption: a problem
that compromises estimates and confidence inter-
vals (see e.g. Wood and Nisbet 1991).

The problems introduced by model mis-
specification are well known in other contexts. Fig-
ure 1 shows an example in the context of lin-
ear regression: over-specification leads to appar-
ently small confidence intervals but substantial
bias (which can not be estimated - bias correc-
tion procedures assume a correct model and sta-
tistical consistency of the estimators of the model
unknowns); too much flexibility in the specifica-
tion leads to inflated confidence intervals. Simi-
larly, non-parametric statistics is aimed at exactly
the problem of not knowing the correct parametric
model for the random component of data. In this
statistical context the benefits of non-parametric
methods are well known and usually accrue de-
spite the relative robustness with which the central
limit theorem endows equivalent parametric meth-
ods. When constructing models for the systematic
component of data, rather than for the noise compo-
nent, there is no equivalent of the central limit the-
orem: hence the benefits of avoiding baseless para-
metric representations of model components should
be even more obvious. This has been recognized
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in conventional statistical modelling with the ad-
vent of non-parametric approaches such as Gener-
alized Additive Models, splines and other formal
smoothing methods (e.g. Hastie and Tibshirani
1990; Wahba 1990). In these methods models are
specified in terms of linear combinations of fairly
general smooth functions of the statistical covari-
ates, hence avoiding the problems associated with
the model mis-specification that must follow from
assuming more arbitrary, fully parametric, model
forms.

It seems sensible to take a similar approach
when trying to reduce the problems of mis-
specification in ecological dynamic models. One
of the most obvious ways in which unwanted as-
sumptions may be introduced into a model is via
the specification of the functional forms relating
model variables: if a relationship is poorly under-
stood then the use of a parameter sparse functional
form to represent it is likely to introduce spurious
assumptions into the model. This can be avoided
by employing rather general function specifications
in such cases, so that problems are not introduced

Figure 1: Model mis-specification problems. In all pan-
els the dashed curve is the true underlying model (a
quadratic). The circles are data generated from the true
curve, by adding normal random deviates: they are the
same in all panels. The solid curves are the 95% confi-
dence intervals for the model fits illustrated in the dif-
ferent panels. All fits are by least squares. (a) shows
an overspecified model (a straight line): the confidence
interval is misleadingly narrow. (b) shows an optimally
specified model: the confidence interval has good cover-
age, but is relatively narrow. (c) shows an underspecified
model (a quartic): the interval is unnecessarily wide.

by the specification itself. In special cases this ap-
proach has been applied previously. Wood and Nis-
bet (1991) and Wood (1994) used the fitting of flex-
ible and very general models of structured popula-
tions to extract death rate information from struc-
tured population data. Both studies used extensive
Monte Carlo experiments to demonstrate the su-
periority of this approach to (published) methods
employing more tightly specified models based on
less biologically defensible assumptions. The key
feature of the models used was that only quite well
understood elements of the biology of the modelled
systems were described in a prescriptive manner,
while less well known parts of the biology were rep-
resented in a flexible non-parametric way. The hope
is that, by taking some care to avoid producing a
model that implicitly overstates how much is known
about a system, it should be possible to produce
a model structure that is capable of being a rea-
sonable approximation to the truth. This improved
model fidelity ought in turn lead to more reliable es-
timates when the model is fit to data. The practical
utility of the approach has been further confirmed



since (e.g. Ohman and Wood 1996), and Wood
(1994) also suggested how these methods could be
generalized. In the context of measles epidemics
Ellner et al. (1998) clearly and elegantly demon-
strate the additional insight to be gained from what
they term ‘semi-mechanistic’ models. Similarly,
Bjgrnstad et al. have use simple population dy-
namic models formulated as generalized additive
models to analyse cod (1999) and Indian meal moth
(1998) populations. But while the approach has
been tried and proven in special cases, more gen-
eral methods facilitating wider use are lacking: a
deficit that this paper attempts to address.

To summarise: the ideal solution to the model
mis-specification problem is to write down models
which contain only what is actually known about
the workings of a biological system. This ideal is
impractical to achieve, but it is possible to move
some way towards it by only specifying model re-
lationships in general terms when concrete knowl-
edge does not justify imposing extra structure in the
form of detailed parametric specification. Such an
approach has produced rich rewards when applied
to more conventional statistical modelling (Wahba,
1990; Hastie & Tibshirani, 1990), and has shown
considerable promise in the context of modelling
ecological dynamics (Wood and Nisbet, 1991; Wood
1994, 1997; Ohman and Wood, 1996; Ellner et al.,
1997; Ellner, 1998, Bjgrnstad et al. 1998, 1999).
What is missing in the ecological context is general
methodology to allow this approach to be employed
in more than a few special cases. The partially spec-
ified modelling framework introduced in the next
few sections of this paper is an attempt to fill this
gap. In order to produce something that works I
will consider a limited class of models and will only
consider some fairly straightforward measures of fit:
the latter restriction in particular is pragmatic and
is not intended to imply that the measure of fit used
is the only sensible measure.

PARTIALLY SPECIFIED MODELS

The idea is best introduced by example, so con-
sider a simple predator prey model. Let P and N
denote predators and prey respectively and « , 3
, v and & be parameters with obvious interpreta-
tions. The dynamics of predators and prey might
be described by:

dpP dN

— =aPN-gP — =~N —-PN

a @ P =7
I will refer to this as a fully specified model, since the
interaction between predators and prey is spelled
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out quite clearly with some simple parametric
model terms. Fitting such a model to time series of
predator and prey abundances would involve find-
ing values for «, 0, v, d and (usually) the initial
populations that best matched the data according
to some criterion determined by the modeller.

Most ecologists do not believe that the propor-
tional mixing assumption incorporated in the above
model is actually correct and conceptually it would
be preferable to work with a model that comes
closer to embodying what can be stated with confi-
dence. For example the partially specified model:

dpP dN

retains considerable structure, but involves a much
less specific assumption about the nature of the pre-
dation process. In reality a little more structure
should probably be imposed in this case: for exam-
ple, f should be smooth (meaning that its first few
derivatives should be nowhere too large) and

of _
an =Y

of
6‘7P>0

6’ ﬁ? 77 f > O;
Fitting this model involves somehow finding the pa-
rameter values and function f that result in the best
fit of the model to data. Of course there are many
alternative partially specified models for this situa-
tion, some more tightly specified and some less so.

This simple example is intended to introduce
the concept of partial model specification: models
are written with some components represented by
unknown functions, rather than specific functional
forms, and qualitative information is introduced as
bound constraints on the functions and parameters
of the model. The hope is that models specified in
this fairly general way will be capable of closer ap-
proximation to reality than more tightly specified
models. The approach gives the modeller increased
control over the assumptions made in modelling by
removing the need for the most common source of
unwanted assumptions: namely the need to write
down something expedient in place of the general
‘f(-)” which may be all that is justified by biologi-
cal knowledge.

The rest of this section will attempt to lay out
a practical framework for partially specified mod-
elling in more detail. There are many ways in which
the framework could be extended, but I will only
present what can currently be achieved technically.
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Models

A wide range of population models can be writ-
ten as a system of delay differential equations, with
a finite number of discontinuities, including all ordi-
nary differential equation models and discrete time
models. In these models the state of a system
at some time ¢ can be encapsulated in the values
of some state variables at ¢ and at some previous
times. Most of the time the rates of change of
these state variables are smooth functions of the
state variables and lagged state variables, but at
some time points the state variables may change
discontinuously. Let n; be the value of the i state
variable and n be the vector of all state variables
at time ¢. Similarly let n,_,, be the values of the
state variables at ¢t — 7; (7; may change with time
and may be a state variable itself.) Then:

dni
dt

= gi(nn_r,n_r,....1)

forallt > 0,t # {T1,Tz,...} (1)

where {T7,T5 ...} is the set of points at which the
state of the system changes discontinuously (the el-
ements of this set may be state variable dependent).
I will assume that g; does not actually depend on
the system state prior to ¢t = 0, so that initial states,
n;(0), rather than initial histories, are required to
integrate the model: i.e. g; is subject to the restric-
tion that its partial differential with respect to any
element of n;_,, is zero if ¢ < 7;,. The model may
be supplemented by discontinuities:

ni(T}") = di(n(T}), ) (2)
where TjJr is the instant after T; and T the instant
before. The particular models given above and in
the examples sections provide illustrations from the
class of models.

Clearly most discrete time models and all ordi-
nary differential equation models are special cases
of this class of models. For example, by setting
gi(+) = 0 for all i, we get the general class of models
that can be written as systems of difference equa-
tions:

ni(Tj1) = di(n(T;), T})
This class includes matrix models and discrete dif-
ference equation models.

Similarly by having no discontinuities and no
lags the general model becomes a model written as
a system of ordinary differential equations:

dﬂi
dt

= g;(n,1).

Therefore everything done in this paper for models
formulated as delay differential equations will apply
without modification to difference equation models
and differential equation models, except for some
material on solving delay equations. In what follows
the reader interested solely in the more restricted
model classes can safely ignore the technical details
associated only with delays.

Limitation to this class of models is largely
pragmatic since fitting general partial differen-
tial equation models would usually require a pro-
hibitive amount of computing with current tech-
nology. However, it is possible to solve many par-
tial differential equations by discretisation into a
series of ordinary (or even delay) differential equa-
tions (see Al-Rabeh, 1992 and the section Ezample:
marine copepods), so the restriction is not overly
onerous. Stochastic dynamics have been neglected
because they introduce enough extra technical dif-
ficulty to double the length of this paper.

The class of models chosen covers a high propor-
tion of the models actually used in ecology. Models
written as systems of discrete equations or systems
of differential equations are widely known and used.
Delay differential equations (other than ordinary
differential equations) are less widely used, but do
allow a very wide range of situations to be modelled.
In particular, a substantial amount of theory has
been produced on how to employ delay differential
equations to produce demographically sound, but
computationally efficient, representations of (non-
stochastic) population dynamics for organisms with
moderately complex life cycles. Accessible intro-
ductions to the use of systems of d.d.e.’s to model
age-structured populations and more general phys-
iologically structured populations are given in Gur-
ney and Nisbet (1998) and Nisbet (1997) and their
application is amply illustrated by Gurney et al.
(1983, 1986) Gurney and Nisbet (1985) or Nisbet
and Gurney (1983), for example. It is worth noting
that delay differential equation modelling is by no
means retricted to the kind of heroic phenomeno-
logical characterisation that typifies some classic ex-
amples of their use (e.g. May 1974). For example,
by employing mixtures of delay and ordinary differ-
ential equations it is straightforward to produce de-
mographically rigorous models of populations of or-
ganisms in which individual development is hetero-
geneous in time and between individuals (see Blythe
et al., 1984; Macdonald, 1978, 1989).

The g;’s and d;’s in (1) and (2)will usually de-
pend on unknown coefficients ¢; and also some un-
known functions f;. Given particular f;’s and ¢;’s



the model can be solved to give estimates of the
state variables at any time (or, more generally, es-
timates of functions of the states variables). Hence,
given observations of some of the state variables (or
functions of state variables) at some times, it should
be possible to find the functions and coefficients
that cause the model to best fit these data. Suppose
that observations of state variables (or transforma-
tions of state variables) can be written as a vector
y. This vector will generally contain observations
of several state variables at a number of times ar-
ranged in some order, the details of which are unim-
portant. What matters is that given ¢;’s and f;’s
the population dynamic model can be solved (usu-
ally numerically) to produce a vector of model es-
timates p corresponding to the observations in y.
So the model can be thought of as a function(al) M
mapping the unknown functions and coefficients of
the model to the model predictions of the data.

p=M(f1, fa, ..

Given a correct model structure and the true values
of the unknown functions and coefficients, and also
neglecting all stochasticity except sampling error,
the model states that g = E(y). Even with more
realistic assumptions about stochasticity g will usu-
ally tend towards E(y) as population size increases.

A complete model may contain some additional
elements. The sampling distribution of the ob-
served data, y, may be specified and there is other
information that might be included. For example,
bound constraints may be available on some or all
of the model parameters. Similarly, constraints may
be imposed on the unknown functions in a model:
the easiest to deal with are constraints that can be
expressed in terms of linear functionals of the un-
known functions (a functional is just a function of a
function). For example, it may be important to in-
sist that the function be monotonic, convex or pos-
itive, or some combination of these (i.e. f is such
that f/ > 0or f/<0or f/ <0or f >0 or some
combination of these). The inclusion of this sort of
qualitative information about model structure is an-
other way of restricting the range of dynamics that
the model can demonstrate, by as much as the mod-
eller believes is justified by biological knowledge (for
example: we may not know how mortality rate is
related to population size, but we surely know that
it is non-negative). A final conceptual element of a
partially specified model is the belief that the un-
known functions contained in the model should be
smooth: how smooth will be discussed later, but it
is usually implicit in the construction of the model

.701702...)

SIMON N. WOOD

at all, that its component functions should not be
infinitely complex.

Fitting

Fitting partially specified models involves the
conceptual difficulty that the unknown functions in
a model must be represented somehow and that the
complexity (or flexibility) of those functions must
be chosen. Allowing too much flexibility can allow
over-fitting (and over wide confidence intervals),
while too little flexibility in the functions will lead to
under-fitting and the unquantifiable bias that par-
tially specified models are intended to reduce. (See
Figure 1.)

The problem of balancing goodness of fit and
smoothness of the unknown functions can be made
quantitative by writing down an objective function
that contains a term measuring badness of fit and
a term measuring wiggliness of the unknown func-
tions. An example of such an objective is:

minimise % wi(pi — y:)? + Z A / [f{l(x)]z dx
i—1 i=1
(3)

bij {i:1...mf,j:1...k}
be (4)

The first term in (3) is model badness of fit mea-
sured as a weighted least squares term (mg is the
number of data), in simple cases the weights w;
might all be set to unity, or proportional to the re-
ciprocal of the variance of y;; the next term is a sum
of ‘wiggliness’ measures for the model’s unknown
functions (of which there are my). Each wiggliness
measure term in this summation is multiplied by a
‘smoothness parameter’ A\;. \; controls the weight
given to the goal of making f; smooth relative to the
goal of fitting the data closely (see Green and Sil-
verman, 1994, for an accessible account of the use of
penalized fitting objectives; Wahba, 1990, for more
advanced examples or Villalobos & Wahba, 1987,
for discussion of constrained penalized problems).
Use of a weighted least squares term to measure
badness of fit facilitates smoothing parameter se-
lection, but other choices are possible. For example
a (negative log) likelihood term might be used in
place of the least squares term, although for likeli-
hoods based on exponential family distributions the
resulting objective would still be minimised by it-
erative solution of approximating problems of the

my

subject to Lyjf; >
and Acc >
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same form as (3) (the weights w; would be adjusted
at each iteration according to the model mean- vari-
ance relationship: again see Green and Silverman,
1994, chapter 5). Note that the objective is fairly
general since the y;’s can be any transformations
and/or combinations of the raw data so long as it
can be predicted by the model: never the less, in
some circumstances, it may be appropriate to use
very different measures of fit tailored to the particu-
lar qualitative features of the biological system that
the model is designed to investigate. Note also that
the assumption that the f;’s are one dimensional
is made for simplicity of presentation: equivalent
multidimensional wiggliness measures are available
if the f;’s are functions of more than one variable
(see, e.g. Green and Silverman, 1994, chapter 7 or
Wahba 1990).

The constraints (4), are the linear constraints
applying to the f;’s and ¢;’s. The L;;’s are lin-
ear functionals, and b;;’s coefficients. For exam-
ple, if one wanted to specify that the second con-
straint of f; is that its gradient is to be greater
than one at the origin, then L5 would be the lin-
ear functional that differentiates f; at the origin and
bi2 = 1. Similarly A. and b, are the matrix and
vector containing coefficients relating to the linear
constraints on the coefficients. Note that it is also
possible to impose general linear constraints involv-
ing several functions and coefficients (for example
fi(x) + fa(x) < ¢1). Discussion of constrained op-
timization can be found in Gill at ol (1981) and
appendix B.

Before examining the crucial question of how
to choose A (and thereby the wiggliness of the un-
known functions), consider how to represent the un-
known functions in practice. The functions can be
approximated using a suitable basis. This means
constructing each f; from the sum of some sim-
ple ‘basis functions’ (;;(x), say) multiplied by un-
known parameters (o, say) :

fi(x) = Z @i (2) (5)

(rir(x) = 1, yi2(z) = @, 13 = 22 ...is an exam-

ple of a (bad) basis, a better basis is outlined in
Appendix A). So the original population model will
have an expression like the right hand side of (5)
substituted where ever there is an unknown f; in
the original specification (in practice this can be
done entirely automatically). The basis functions
themselves have no unknown parameters, so find-
ing the best fit f; is reduced to finding the best
fit parameters o;;. Notice also that for any ba-

sis function representation like (5) the values and
derivatives of the function at any point can be ex-
pressed as linear transformations of the parameters
(for example, f/(z) = > ai;vi;(x)): this is use-
ful for turning inequality constraints on functions
into general inequality constraints on parameters.
The methods described here could be used with a
variety of bases. A good choice is to use the ba-
sis that arises naturally in linear spline smooth-
ing problems, as this yields an easily calculated
form for the penalties, [[f”]?, and is known to
have good approximation theoretic properties. De-
tails can be found in Wahba (1990), Green & Sil-
verman (1994) and Hastie & Tibshirani (1990),
and Appendix A. Again, multidimensional func-
tions can be used: the basis that arises from ‘thin
plate splines’ is an obvious candidate, see Wahba
(1990) or Green & Silverman (1994). If the un-
known coefficients and the parameters for all the
unknown functions are now collected into one vec-
tor, pT = [0411,0412, e, 021,022,...,C1,C2,C3 .. .L
( T denotes transposition) then the fitting problem
(3, 4) can be written:

min. q(p) = Zwi(yi—ui(p))2+z Aip"Cip (6)

subject to Acp > b

(7)

C, is a matrix of coefficients that depend on the
choice of basis, but not the parameters; A, and b
are a matrix and vector of coefficients defining the
linear constraints (note that any basis function rep-
resentation, which, like (5), is linear in its parame-
ters, will allow the fitting problem to be written in
this general form). Given particular values for the
smoothing parameters, \;, this fitting problem is
a constrained non-linear optimization problem for
which solution methods will be given in the meth-
ods section.

The second conceptual issue is the choice of
smoothing parameters. This is the key to using
partially specified models. Without an objective
means for choosing the amount of flexibility to al-
low unknown functions within a model one has done
nothing but replace arbitrary or ad hoc choices of
functional forms by arbitrary or ad hoc choice of
smoothing parameters. Fortunately there has been
a great deal of statistical work on this kind of model
selection problem and some methods with good the-
oretical and practical properties exist. Generalized
cross validation (GCV, Craven & Wahba, 1979) is
the one that will be employed in this paper (see
Green & Silverman 1994 for a clear introduction).



Cross validation can be motivated as follows: imag-
ine fitting a model to all your data but one, and then
measuring the square of the error in your model
prediction of the missing datum; now calculate the
average of such squared deviations across all data
points: this gives a cross validation score. This ordi-
nary cross validation score measures how bad your
model is at predicting missing data: how bad it is
at generalising. In the current context the cross val-
idation score will depend on the choice of smooth-
ing parameter. Low smoothing parameters will lead
to complicated (i.e. flexible and/or wiggly) models
that fit the noise in the data and consequently pre-
dict missing data badly. High smoothing parame-
ters lead to simple models that don’t match the data
to which they are fitted very well and do no better
on the missing data. Somewhere in the middle will
be better choices.

Cross validation as described has some prob-
lems. Most worryingly, it is possible to perform
simple transformations on some model fitting prob-
lems in such a way that the solution and struc-
ture of the fitting problem are unchanged, but the
cross validation score ceases to contain any informa-
tion about the optimum smoothing parameters (see
Wahba 1990; p. 53 section 4.3). Furthermore, the
cross validation score can be numerically expensive
except in certain special cases that don’t apply in
the current context. Fortunately the problems with
ordinary cross validation can be fixed with general-
ized cross validation. The ordinary cross validation
score can be shown to be equivalent to a weighted
sum of squares of the deviations of the fitted model
from the data. Generalized cross validation aver-
ages the weights in this summation, so that each
deviation gets the same weight. Writing fi; for the
estimate of u; obtained by model fitting, the result-
ing score is:

S wi(yi — fi)?
D1 — 0fi;/0yi))?

Another way of viewing this quantity is as the es-
timated error variance per error degree of freedom,
since Y (1 — 0fi;/Jy;) is an estimate of the degrees
of freedom associated with the error (this can be
seen by analogy with general linear regression, if
pu = Xp, then the least squares estimate of p is
o= X(XTX)"'Xy, df1;/0y; is just element 7,4 of
A = X(XTX)"1X. So Y 0j1;/Op; is the trace of A,
which is well known to be the number of identifiable
parameters in the original linear model).

The appealing theoretical property of GCV is
that, for linear problems in the large sample limit,

V(A) =

(8)
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it has been proven to select the smoothing param-
eters that minimise E[> (i — E(y;))?] (again see
Wahba 1990, chapter 4). That is, the criterion is
attempting to find the model that best matches the
true underlying values of the observed data. No-
tice that this will not be the model that fits the
data most closely, since this would involve fitting
the noise as well as the signal, implying that the
signal would not be optimally fit. Note also that
this property is contingent on the y;’s being statis-
tically independent (i.e. observations on indepen-
dent random variables). Extensive numerical ex-
perimentation seems to confirm that the theoreti-
cal promise of GCV is realised at realistic sample
sizes (again see Wahba 1990, Green and Silverman
1994 and references therein). The principal diffi-
culty with its use is computational: searching for
the optimal A has the potential to be very costly
if there is more than one smoothing parameter (see
Gu and Wahba 1991). Additionally there is no liter-
ature on non-linear multiple smoothing parameter
estimation. An alternative to GCV for smoothing
parameter selection is Akaike’s Information Crite-
rion (AIC, Akaike, 1973): Burnham and Ander-
son (1998) is a good reference. AIC behaves in
a way that is quite similar to GCV and is based
on the same basic principle of trying to pick out
the smoothing parameters that yield a model that
gets as close as possible to some underlying ‘truth’.
In the current context AIC is just as difficult as
GCV to work with computationally. A philosophi-
cally different route would use a hypothesis testing
approach to model selection in order to find the
smoothing parameters: for example, by using like-
lihood ratio testing to find the simplest model not
falsifiable by the data at the modellers favourite sig-
nificance level: 1 do not pursue this approach fur-
ther.

In summary, partially specified models are eco-
logical models constructed so that part of the in-
formation that they embody is in the form of un-
known smooth functions, unknown coefficients, and
constraints on both of these: the idea is that this
extra flexibility in the structure of the models being
used allows models to be produced that are an hon-
est reflection of what is known, or what you wish
to assume, about a system, but no more. Fitting
such models requires that the concept of ‘goodness
of fit’ is extended to include more than simply ‘fits
the data as closely as possible’: one needs instead
to consider how the model can be made to approxi-
mate the underlying ‘true’ model as closely as pos-
sible. Table 1 provides a conceptual breakdown of
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Step Model

Objective

Formulate the model and the fitting objec- dn

-5 = B(nt—r)nt—‘r —on

D (ne =)’

tive mathematically d i

o [18" @
Use basis functions, «;(-), to represent §.
. k 1 1
Le. Blz) =3, bjv;(z)
Given the b;’s, §, 7 and initial conditions dn N2
the model can be solved numerically and gz — ij%' (nt—7)ni—7 — 60 Z(ntl vs)

the objective evaluated along with deriva-
tives w.r.t. the parameters.

%

+AbTCb

Now iterate the following 2 steps to convergence:

1. Given an estimate of A adjust b;’s, § and 7 to reduce the objective > (ny; —:)* + AbTCb.

2. Adjust A to reduce the GCV score.

Table 1: Example of construction and fitting of a simple partially specified model similar to the adult competition
model in the section Blowflies II. Tt is assumed that an adult population n suffers per capita death rate § while
net per capita fecundity is an unknown function of n: 3(n). Individuals take time 7 to mature. The example does

not consider inference or constraints.

the construction and fitting process for a very sim-
ple example.

A useful discussion of inference from these mod-
els benefits from some technical background, so it
is postponed until the end of the methods section.

METHODS

This section covers the technical issues involved
in fitting and using partially (and fully) specified
models in practice and presents the arguments for
using the methods employed here rather than al-
ternatives (particularly when these are more famil-
iar and/or simpler). I have not documented ev-
ery detail, but have covered those areas which re-
quire a non-standard or novel approach (Numerical
model solution, Calculating J, Smoothing parameter
selection, Model fitting methods), as well as mate-
rial required for understanding of the novel material
which would otherwise involve a tedious amount of
supplementary reading (model fitting methods, cal-
culating J). The material in this section can be ig-
nored if the goal is to fit one particular model to one
set of data and it is therefore acceptable to employ
a considerable degree of trial and error in the fit-
ting process. But more ambitious goals, such as the

comparison of competing models, require methods
that are efficient (i.e. quick), reliable (meaning that
you can tell when a best fit has been achieved) and
accurate (that is, with estimation uncertainty dom-
inated by the statistical structure of the problem
rather than by propagation of numerical errors).

Model fitting

In this section it will be assumed that A esti-
mates are provided and the aim is to find best fit
parameters p, given some set of smoothing param-
eters. The basic fitting strategy will be as follows:

1. Given some estimate (guess) of model param-
eter vector p, numerically solve the model
equations (delay or ordinary differential equa-
tions or difference equations), to obtain an es-
timate of pu.

2. By repeatedly solving the model with slight
changes in parameters obtain an estimate of
the matrix J where J;; = Ou;/0p;.

3. Use the current g and J estimates to con-
struct (or update) a quadratic model of the
fitting objective.



10

4. Finding the parameter vector that minimises
the quadratic model, suggests a direction in
which to change p in order to minimise the
real fitting objective.

The estimate of p can be improved by iterating
steps 1. to 4. to convergence, although extra steps
are required to deal with constraints and in some
circumstances A selection steps will also be included
in each iteration (see later).

Numerical model solution: There are 3 require-
ments for the numerical solution of the model:
speed, accuracy and stability. Speed and accuracy
suggest using an explicit integration scheme with
adaptive time-stepping (Press et al. 1992, Hairer
et al. 1987) Adaptive stepping also ensures that
the explicit scheme maintains numerical stability,
so that the model integration will not ‘explode’ and
halt the fitting process if an unfortunate set of pa-
rameters is tried by the optimization algorithm.
Sensible use of inequality constraints on parame-
ters and functions during model formulation also
helps to avoid really bad parameter choices during
fitting. (Readers uninterested in d.d.e. models can
now proceed to Calculating J).

Speed and accuracy of an integration scheme for
delay differential equations are surprisingly sensi-
tive to some of the details of numerical analysis
(Highman 1993b). When numerically solving de-
lay differential equations it is necessary to store
the past values of state variables (the n;’s of (1)).
Any integration scheme only calculates values and
derivatives at discrete times. Never the less, it will
usually be the case that the scheme will require es-
timates of lagged state variables between the times
that they were stored. So interpolation is required.

The order of accuracy of the interpolation
scheme should be higher than that of the integrator:
if it isn’t then one of two things will happen. For
some non-embedded time-stepping schemes the in-
tegrator will be forced to take very small steps, due
to what it perceives as frequent discontinuities in
(higher) derivatives of the lagged variables: this is
inefficient because it will generally take more steps
than the integrator of the correct order and each
one of those steps involves more calculation than a
single step of the lower order integrator. For embed-
ded time-stepping schemes the continuity assump-
tions on which step-length selection is based will be
violated, leading to the situation in which the accu-
racy of the numerical solution is no longer related
to the integration tolerance used (Higham 1993a,b).
These factors tend to be ignored in ecological ap-
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plications with most workers using integrator/ in-
terpolators of inconsistent order: in many cases this
does no more than lose a little accuracy (that no-one
will miss) and waste a little computer time (which,
you can be sure, the machine would not have put
to better use); for the current application it leads
to serious problems when anywhere close to best fit
parameters.

In the work reported here I used adaptive time-
stepping with an embedded Runge Kutta 2(3)
scheme due to Fehlberg (Hairer et al. 1987, p.170)
and interpolated lagged state variables using cu-
bic Hermite interpolation (Higham 1993a, Paul,
1992). The latter necessitates the storage of lagged
variables and their gradients, but, since the gra-
dients of state variables must be calculated any-
way, this presents no difficulty. Note that an ad-
ditional advantage of the use of this consistent in-
tegrator/interpolator pair is that the true accuracy
of the numerical solution can be estimated by mak-
ing use of the ‘tolerance proportionality’ of the es-
timated solution: since accuracy is linearly propor-
tional to integration tolerance (Higham, 1993b) ac-
curacy can be estimated by integration the model
with 2 different tolerances. This is useful for setting
convergence criteria when model fitting.

Calculating J: For reasons that will hopefully
become clear, it is necessary to calculate a ‘Jaco-
bian’ matrix, J, where

_ Opi
8pj

J can be approximated by finite differencing using:

T i (P + Ajij) — pi(p)
1) A
J

(9)

where i; is a vector having zeroes everywhere except
in entry j where it has a 1, and A; is a small num-
ber. Through diligent study of the opening chap-
ters of any number of numerical analysis textbooks
the reader will be aware that a poor choice of A;
can cause problems. Obviously the finite difference
approximation will be poor if A; is too large (trun-
cation error). Less obviously, if A; is too small then
the two estimates of u; will be so close that almost
all the bits used to store them will be identical,
leaving few or no bits storing the difference (can-
cellation error). In the current context getting A;
wrong leads to serious problems, but what counts as
right can be sensitive to the local shape of the objec-
tive function. Hence the usual folklore for interval
estimation is best ignored in favour of adaptively
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adjusting the intervals in order to keep estimates of
the average truncation error roughly equal to the
average cancellation error (averages are over all es-
timated derivatives). Appropriate error estimation
formulae can be found in Gill et al. (1981). Given
the evaluations required for A; control, a more ac-
curate finite difference formula can be used at no
extra cost:

7o n MiP A1) — (P — Ajl))
! 24,

J

There is a second issue relating to the calcula-
tion of J that is specific to the fitting of (delay)
differential equation models and requires a novel
approach. The model integration scheme will in-
troduce some error into the calculation of p and in
the interests of computational efficiency this error
may be allowed to be large relative to the machine
precision (after all, the data will not be measured
to a great number of significant figures). Unfortu-
nately, moderate errors in g can entail serious errors
in derivative estimates if the errors are independent
between p;(p) and p;(p £ Ajij). If step size con-
trol is done separately for calculation of u;(p) and
wi(p £ Ajij) then their error terms can become al-
most independent. The solution is to adopt exactly
the same set of time steps for integrating to find
wi(p £ Ajij) as was used for p,;(p): in this circum-
stance most of the error in the two approximations
will cancel when they are differenced.

Model fitting methods: Given p and J, calcu-
lated as described in the previous two sections,
model fitting is quite straightforward and will be
based on the well tested approach of iteratively ap-
proximating the fitting objective by a (multidimen-
sional) quadratic:

1
q(p) ~a+h"p+-p’Gp

; (10)

where a is a constant, h is the vector of deriva-
tives of the objective with respect to the parame-
ters (h; = 0q/0p;), and G is the Hessian of the ob-
jective (Gi; = 9%q/Op;Op;). Minimising the right
hand side of (10) with respect to p suggests an up-
dated parameter estimate of G™'h (although it is
often better to use this estimate to define the direc-
tion along which to search for a reduction in ¢(p),
rather than using the estimate directly). There are
several reasons for favouring methods based on a
quadratic model of the objective function. Firstly,
the least squares part of the objective can be ex-
pected to be close to quadratic (for linear models,
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least squares objectives are exactly quadratic) and
the penalty terms are exactly quadratic. It would
be rather inefficient to make no use of this informa-
tion by using gradient descent or function evalua-
tion methods, especially given the superior conver-
gence rates of quadratic methods (Gill et al. 1981).
However it is probably not sensible to attempt to
approximate G directly by finite differencing: such
an approach would be numerically costly and the
difficulty of obtaining accurate estimates of second
derivatives would be even greater than the difficul-
ties encountered in estimating J. The substantial
extra numerical burden would certainly not yield
benefits far from the optimum parameters where the
quadratic approximation itself is not good. When
close to the optimum the approximations that will
be employed here should be at their best and the
extra benefit of directly estimating G is likely to be
slight. In contrast, the effort of evaluating J can
always be justified by the fact that it guarantees
that a descent direction can be found (or otherwise
indicates a turning point).

A final important reason for favouring the
quadratic model of the objective is the existence
of well known and robust methods for minimising a
quadratic model subject to linear constraints of the
type used here. Appendix B outlines the basic prin-
ciples underpinning such constrained optimization
while Gill et al. (1981) provide much more detailed
information on the topic.

Given the basic methods for constrained opti-
mization outlined in Appendix B, two approaches
to the minimisation problem seem to work effec-
tively. The first is to use a Quasi-Newton method
that builds up an approximation to G using the
information contained in J evaluated at successive
parameter vector estimates during the minimisation
process. This method is good for badly behaved
objective functions, and in the case in which the
best fit model actually fits very badly. There are a
number of less than optimally stable implementa-
tions described in the literature (e.g. Press et al.,
1992) and it is important to use as stable an algo-
rithm as possible in the current context: a suitable
method is described in Gill at al. (1981), with the
necessary matrix factorisations given in Gill et al.
(1974). Maximum stability of the method is impor-
tant here because J is being approximated relatively
crudely and excessive propagation of the resulting
errors should be avoided (alternatively - stable op-
timization methods may allow use of less accurate
J estimates with consequent saving of numerical ef-
fort).
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An alternative, that can be very fast on suffi-
ciently well behaved problems, is to approximate
the non-linear model with an approximating linear
model. The following steps are iterated:

1. Using the current parameter estimate p*) solve
the population model to obtain p(®) and J*).

2. Form ‘pseudodata’ y*) =y — p®) 4 JE)pk),
3. Minimise:
(y® —3®p)TW(y® —3*p)+> " \p"Cip
Subject to A.p > b,

to find p**1) (the problem being solved here is ex-
actly quadratic).

(W is a diagonal matrix with W;; = w;). In
principle these steps are repeated to convergence,
although in practice the algorithm is improved by
including step length selection so that the routine
does not always step to the minimum implied by the
approximating model. Converged estimates will be
denoted p, ft, etc. This method is essentially a con-
strained version of the Gauss Jordan method (see,
for example Press et al. 1992), but the presenta-
tion in terms of an approximating linear model fa-
cilitates the smoothing parameter selection method
presented in the next section.

The fitting methods have been presented as if
the weights w; were fixed in advance and this will
often be the case. However, if some mean- variance
relation is known for the data then the fitting meth-
ods presented can be used iteratively as follows.
The model is first fitted with uniform (or other spec-
ified) weights given to each data point. New weights
are then produced which are inversely proportional
to the variance predicted from the mean variance
relationship given the p; estimates from the best
fit so far. The model is then re-fitted, weights
are estimated again and the process repeated to
convergence of u®) (to f1). This approach is ap-
propriate for exponential family error distributions
(for example Poisson, gamma, binomial) and the
algorithm described is simply the one used for gen-
eralised linear model fitting (e.g. McCullagh and
Nelder, 1989), although, since no simple transfor-
mation of the p;’s will generally linearize the mod-
els used here, there is no link function in the current
case.

Finally, note that I have restricted attention to
methods appropriate to the case in which the objec-
tive function is fairly smooth, and where minimisa-
tion is not made difficult by multiple local minima.
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There are circumstances where these assumptions
do not hold, and other approaches are needed. Ap-
pendix C describes an appealingly simple approach
for dealing with difficult objective functions, that
enables the methods described here to be used un-
modified: the objective function itself is repeatedly
perturbed by bootstrapping in a way that allows
local minima to be escaped. For really difficult
problems other approaches such as simulated an-
nealing may have to be used, see Brooks and Mor-
gan (1994), for example.

Smoothing parameter selection

The first step in smoothing parameter selection
is to replace the GCV score function (8) with an
approximation that is practical to work with. Using
the linearisation of the fitting problem employed in
the model fitting section:

(y® —3Wp)"W(y* — JWp)
[tr(I—A)]?

V(A) = (11)
where A is the so called ‘influence matrix’, or ‘hat
matrix’, of the fitting problem: that is the ma-
trix that has the partial derivative of the it" ele-
ment of J®p w.r.t. yj(-k) in its i*" row and ;"
column. Explicitly A = J®Z[ZTIOTWIHE 4
STANCH)Z] 1 ZIMTW, where Z (see Appendix B)
is any matrix whose columns form the basis of a
parameter space within which unlimited movement
is possible without violating the model constraints
that are exactly satisfied at the estimated best fit.
Close to the optimum p and A vectors, (11) should
closely approximate (8).

The principal difficulty in using GCV is the fact
that evaluation of the denominator of V() is po-
tentially very expensive. Forming A explicitly will
take O(m3) operations where m, is the number
of data, and since A depends on A, direct search
for the minimizing A would take O(m_ ™) opera-
tions, where my is the dimension of A. In the sin-
gle smoothing parameter case a number of methods
have been developed that are much more efficient
than direct evaluation of A, but methods for mul-
tiple smoothing parameters have proved more diffi-
cult. Fortunately, Gu & Wahba (1991) produced a
way of minimising a GCV score with respect to mul-
tiple smoothing parameters for certain spline mod-
els, and it is possible to generalise their method
to the much wider class of problems giving rise to
scores like the one used here (Wood, 2000). Once
again a quadratic model of V is used to facilitate



PARTIALLY SPECIFIED MODELS

minimisation. The challenging problem is to find
an efficient way of evaluating the gradients and sec-
ond derivatives of V' with respect to the smooth-
ing parameters: the painful details are in Wood
(2000), but the essence of the method is to find
a sequence of orthogonal transformations of A that
enable cheap evaluation of the GCV score with re-
spect to one ‘overall’ smoothing parameter, while
allowing A to be decomposed into components that
facilitate relatively cheap evaluation of the gradi-
ents and second derivatives of the GCV score with
respect to the (logs of the) A;’s. (In many cases, the
same basic computational strategy can also be used
to perform smoothing parameter selection by AIC,
where difficulty is caused by the need to calculate
the effective number of parameters in the model,
which is tr(A).)

Use of (11) to find the smoothing parameters
must proceed iteratively. When used with the it-
erative least squares scheme of the model fitting
section, it is most efficient to re-estimate smooth-
ing parameters after each step of the iterative
scheme. In the case in which (11) is being used
with the Quasi-Newton method it is better to al-
ternate smoothing parameter estimation with full
minimisation by Quasi-Newton, allowing the model
parameters p to converge at each step. This is be-
cause the Quasi- Newton method is attempting to
build up a quadratic model of the objective ¢(p),
so it is best not to change ¢(p) during the minimi-
sation.

Inference

Hypothesis testing (model comparison) and con-
fidence interval estimation can be approached in
two ways: by bootstrapping (Efron and Tibshirani
1993, Davison and Hinkley 1997) or by using the
asymptotic distributions implied by the quadratic
fitting objective.

There are several flavours of bootstrap that can
be employed. The simplest is the non-parametric
bootstrap. Replicate data sets are produced by
sampling with replacement from the collection of
y;'s with each selected ¥; being accompanied by
all the auxiliary information that goes with it: e.g.
which stage of the population it refers to, the time
at which it was sampled, and so on. In practice this
means that each replicate dataset contains some
of the original observations more than once, while
some do not appear at all. The model is refitted
to each replicate dataset and in this way an ap-
proximate distribution for the p estimates can be
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developed. Note that it is not sensible to perform
cross validation on these replicates: consideration
of the ‘leave-one-out’ idea underlying GCV sug-
gests that smoothing parameters would be system-
atically under-estimated using the bootstrap repli-
cate dataset. Hence the original smoothing param-
eter estimates must be used for each model fit. An
advantage of the non-parametric approach is the au-
tomatic preservation of correlation structure in the
residuals.

The second bootstrapping possibility is to boot-
strap the residuals. In its simplest from this means
that the residuals from the original model fit are
collected, and treated as observations from a sin-
gle distribution. Replicate data sets are produced
by sampling with replacement from the residuals
and adding the resampled residuals back on to the
best fit model estimates, fi;. Again the model is
refitted to each replicate dataset, and after enough
replicates an approximate distribution for the p es-
timates will be produced.

An approach that has advantages for small sam-
ple sizes is to bootstrap parametrically. This in-
volves specifying a probability model for the residu-
als and estimating its parameters from the observed
residuals. Replicate datasets are then produced by
simulating residuals from the parametric residual
model and adding these to the [;’s.

The second strategy for inference is to use
asymptotic results based on the quadratic model
employed in minimisation. To do this requires es-
timation of the covariance matrix for the parame-
ter estimators. Assuming that the weights w; have
been chosen to be inversely proportional to the sam-
ple variances it is clear that the covariance matrix
for the data is V, = W152. 02 can be estimated
in the usual way by:

2 )Wy —p)
tr(I—A)

(i.e. the residual sum of squares divided by the
residual degrees of freedom). There are then two
possibilities for an estimate of the covariance matrix
for the parameters V. The conventional approach
uses the fact that at convergence of the fitting al-
gorithm it is possible to write:

P ~k+ By
where k and B are a vector and matrix whose exact
form depends on the fitting algorithm used. Stan-

dard results (e.g. Meyer, 1975, p417) then yield the
covariance matrix estimate:

V, ~ BBs?
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An alternative is to use the co-variance matrix de-
rived for spline smoothing by Wahba (1983) using
a Bayesian argument. The analogue in the current
case is simply:

V, ~Z(ZTGZ) 2T s?

in terms of the general quadratic model used for
minimisation (again the columns of Z form the null
space of any constraints satisfied exactly by the best
fit model: see Appendix B). Note however that this
approximation can perform badly if G is estimated
as part of a Quasi-Newton optimization, since cur-
vature in some directions in the model parameter
space can be poorly explored. Hence it may be more
useful to use:

V, = ZIZT(ITWI + ) \C)Z) 2" s

implied by the iterative least squares scheme. The
‘Bayesian’ results tend to give higher variance es-
timates than the conventional results, by virtue of
attempting to account for mis-specification in the
final model. However in simulation studies using
linear spline models the coverage properties of in-
terval estimates based on these results have proved
very good (Wahba 1990). At least in the large sam-
ple limit one expects p ~ N(p,V,), and inference
can be based on this result.

Identifiability

Optimization methods work best if model pa-
rameters are identifiable from the outset. Thus it
is best to remove parameter co-linearity from the
model before attempting to fit it. However, there
are automatic methods for dealing with the prob-
lem. The most direct method is to attempt to
identify parameter dependence from the Jacobian
J. This can be done by linearly regressing each
column of J on all the other columns - a high r?2
indicates problems and suggests that the parame-
ter relating to that column should be constrained
at a fixed value (which is easily done, as seen in the
model fitting part of the methods section). The dif-
ficulty comes in deciding at exactly what 72 value
one should treat a parameter as non-identifiable,
since the columns of J are only estimated to rela-
tively low precision. It is possible, but non-trivial,
to base the criterion on the calculated accuracy of
the integration scheme and finite difference approx-
imation. On the other hand, the very facts that J
is only approximate and co-linearity is hard to de-
tect usually mean that the optimization scheme will
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not fail because of singularity problems: parameters
will almost always appear ‘nearly’ co-linear, rather
than exactly so. In this case inequality constraints
can alleviate potential problems. For example, if
a non-identifiable parameter has upper and lower
bounds supplied then it will usually become fixed
at one of these bounds quite rapidly, thus reduc-
ing potential numerical problems. However, models
with unidentifiable parameters will present difficul-
ties when it comes to the calculation of confidence
intervals for parameters and may also reduce the
reliability of smoothing parameter estimates.

Visualisation

Non-linear fitting methods tend to be as good
as their starting values, and in many cases may dis-
play multiple local minima (for a good example of
this see the Nicholson’s blowfly example, below).
For this reason it is a bad idea to fit models blind.
It is vital to be able to see a fit progressing, in
order to check that starting values are reasonable
and that an obviously false local minimum has not
been found. It is therefore important that fitting
should be done in an environment where it is easy
to modify and test starting values for parameters.
In the case of unknown functions, this may mean
relatively sophisticated programming to allow the
user to manipulate starting functions, but within
one of the many windowed environments now avail-
able, this is not overly difficult to achieve.

EXAMPLES

This section contains examples of the applica-
tion of the methods described thus far, chosen to
illustrate different aspects of the PSM approach. 1
start with a section that uses simulated data to ex-
amine the efficacy of the framework when fitting
partially specified models, with multiple unknown
functions, using a variety of modelling formalisms.
A real example is then given, applying the method
to modelling of laboratory Daphnia cultures before
examining model comparison by statistical hypoth-
esis testing using fully and partially specified mod-
els of Nicolson’s blowfly data. The simplest model
examples are in the blowfly section. Discrete ma-
trix models, partial, ordinary and delay differen-
tial equation models are covered in the first exam-
ple section. The models presented in all sections
are relatively simple. Obviously this simplicity is
somewhat at odds with the stated aim of reducing
biologically spurious assumption in the modelling
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process, but the hope is to be able to illustrate the
approach without becoming swamped in a mass of
modelling detail.

Marine Copepods: a comparative example with
simulated data

Consider the problem of inferring underlying
mortality and birth rates in a structured copepod
population. This problem has produced more meth-
ods than there are data to fit (Asknes et al., 1997);
a fact for which the current author is as responsible
as anyone. Copepods develop through a number of
sequential life history stages that can be identified
in population samples. If a model can be devel-
oped to predict the population dynamics of each
stage from knowledge of the birth rate to the pop-
ulation and the death rates afflicting each stage,
then in theory it should be possible to infer these
rates by fitting the model to data. This problem
allows demonstration of the efficacy of the smooth-
ing parameter estimation methodology and the use
of these methods with models formulated as dif-
ference equations, ordinary differential equations,
delay differential equations and even partial differ-
ential equations. It also permits exploration of the
sensitivity of inferred functions to changes in mod-
elling formalism.

Consider an 11 stage population. Suppose that
the population of stage ¢ at time ¢ is n;(t), that d;(t)
is the per capita death rate in the stage, R1(t) is the
recruitment (birth) rate into the first stage and 7; is
the mean duration of the i*" stage. Also define the
subsidiary variables v; = 1/7; and the survival rate
from time a to time b: S;(a,b) = exp(— ff d;(z)dx).
There are several competing structured population
models that might be used for the stage popula-
tions, for example:

1. A matrix population model of the type advo-
cated by Caswell (1989):

where n is the vector of stage populations, r =
(R1(),0,0,...,0)T and all elements of D(t)
are zero except Dj;(t) = S;(¢t,t+1)(1—~;) for
1= 1, ey 11 and Di,i—l = Si_l(t,t—F 1)(’%_1)
for ¢ = 2,...11. The interested reader should
consult Caswell (1989) for justification of this
model structure. Clearly this model is a sys-
tem of difference equations and hence one of
the general class covered by this paper.
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Figure 2: Typical replicate copepod data set simulated
from the delay differential equation based structured
population model given in the section Marine Copepods:
a comparative example with simulated data. Stage du-
rations used were: 0.75, 1.4, 4.55, 2.8, 2.5, 1.7, 3.5, 3.1,
3.2, 3.7 and 4.7. The functions used to simulate were
a Gaussian plus a constant for recruitment, a decaying
exponential for 4; and a constant for d (see figure 3).

2. A system of ordinary differential equations:

dni
dt

where 71(t) = Ry(t) and 7;(t) = vi—1ni—1(?)
for 4 = 2,...,11. This model describes a
rather extreme form of distributed stage dura-
tions in which individual stage durations are
random variables following a negative expo-
nential distribution.

3. A system of delay differential equations:

dni
dt

=7ri(t) —ri(t = 7)Si(t — 7, t) — di(t)ny
i=1,...,11
where r1(t) = Ri(t) and rip1(t) = ri(t —

7:)S;(t — 7;,t). This system of equations de-
scribes the other extreme of stage duration
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distribution, in which all individuals take ex-
actly 7; days to pass through a stage. See
Gurney and Nisbet (1998) for a clear exposi-
tion of this sort of model, or see Gurney et al.
(1983).

4. The McKendrick equation for an age struc-

tured population:

of  of

ot + 90 +d(a,t)f =0
where f(a,t) is the population (or expected
population) per unit age interval at age a and
time ¢ and n;(t) is given by the integral of f
over the age range covered by stage i at time
t. For this model f(0,t) = Ry (t). Strictly this
model is not in the class covered in this paper,
but its numerical solution by the ‘method of
lines’ (see e.g. Al-Rabeh, 1992) yields a set of
ordinary differential equations which is in the
class of models considered here. Discretizing
in the age direction yields a system of equa-
tions (in an obvious notation) of the form:

afi — fii—fim

i=1,2,...

where fo(t) = Ri(t) and the equation at
the upper age boundary employs a backwards
difference rather than a centred difference.
n;(t)’s are obtained by appropriate summa-

tions over the f;(¢)’s. For the results given
here Aa = 0.05.

In all cases I set up the model initial conditions
to be consistent with the initial recruitment and
mortality rates, assuming that the population was
at equilibrium (subject to those rates) prior to the
initial time. I have kept these models very sim-
ple: clearly a realistic model would involve a more
sensible distribution of stage durations - something
which is easy to achieve within the d.d.e. framework
(see Blythe et al. 1984). Note that all the models
have been defined to be as similar as possible given
their different structures. None the less models 1
and 2 are fairly closely related as are models 3 and
4, but 3 and 4 differ quite markedly from 1 and 2.

In some circumstances it may be reasonable to
treat the stage durations as known, the birthrate
to the first stage as an unknown function, the
death rate in the first 6 stages (nauplii) as an un-
known function of time (41(t), say) and the death
rate in the remaining 5 stages as a different un-
known function of time(d2(t), say). This is because
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Figure 3: Reconstructed functions from 11 stage sim-
ulated copepod population data as described in figure
2 and Marine Copepods: a comparative example with
simulated data. The column headings relate to the func-
tions being reconstructed, while the row letters refer to
the model used to fit the data: d - delay differential
equations; p - partial differential equations; o - ordinary
differential equations; m - discrete time matrix model.
The heavy line in each panel is the true function used
in simulation. The 10 fine lines in each panel are the
replicate reconstructions (same true functions for each,
but different sampling errors).

of substantial physiological and behavioural differ-
ences between the naupliar and copepodite stages.
To demonstrate the smoothing parameter selection
method I simulated an 11 stage population from a
fully specified version of model 3 above. The simu-
lated population was sampled (without error) and
the samples were then perturbed with additive nor-
mal random errors (standard deviation 8). A typi-
cal resulting data set is shown in figure 2. I gener-
ated 10 replicates in total.

I then fitted partially specified models with 3
u.f.s to the resulting data treating stage durations
as known. In this case the objective function con-
sists of the sum of a weighted least squares term
and three wiggliness penalties, each with its own
smoothing parameter. The objective was subject to
linear constraints imposing the condition that the
three unknown functions must be positive. Each
simulated data set was fitted with the 4 different
partially specified models obtained by using the 4
different modelling approaches given above. Figure
3 shows the reconstructed rates superimposed on
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the true rates used in simulation, for each model
for each of the 10 replicates. All the models were
fitted using iterative least squares with A selection
by GCV. A maximum of 10 degrees of freedom was
allowed for each unknown function (this restriction
is purely pragmatic - the number is higher than the
effective degrees of freedom selected by GCV, but
low enough that the computations are still reason-
ably quick, since there are only 10 parameters per
unknown function).

Figure 3 illustrates several points. The recruit-
ment function is well reconstructed in all cases, and
the first mortality function is also reasonable. The
final mortality function fares less well, particularly
using the two models which have quite different as-
sumptions to the model used for simulations. How-
ever, it is worth noting that the confidence inter-
vals for this last function will be correspondingly
wide: since the penalized likelihood approach ap-
plies a zero penalty to a straight line the model
fitting will fit a line with a slope no matter how lit-
tle statistical significance can be attached to that
slope: this problem is not fundamental, one could
examine the GCV score of a model with and with-
out a slope, and select between them on this basis
but I have not done so in this example. The ten-
dency to raised mortality rates in the first half of
the time range for d2 under models 1 (0) and 2 (m)
is directly attributable to the fact that both these
models allow some individuals very rapid transfer
through the stages, in a way that the model used
for simulation does not (indeed the hint of this ef-
fect in the partial differential equation model (4) is
probably the result of numerical diffusion allowing
a similar phenomenon). The general comparabil-
ity of the reconstructed functions under substan-
tially different models is encouraging: although the
quantitative results depend on the formalism used
for demographic book-keeping, the qualitative re-
sults do not seem greatly sensitive in this case and
reconstructions are all quite close to the truth.

This example also demonstrates the effective-
ness of the smoothing parameter selection method,
and one of the important advantages of partially
specified models. All the fitted functions have far
fewer effective degrees of freedom than the max-
imum allowed in the fitting (10 in this example)
and the fitted functions are mostly reasonable re-
constructions of the truth. The importance of effi-
ciency in the smoothing parameter selection is em-
phasized by the partial differential equation model -
solution of this involved in excess of 600 coupled or-
dinary differential equations, yet fitting and model
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selection was completed in 10-20 minutes of com-
puter time on a low specification Pentium II 400
Mhz PC. Notice as well that reconstructions are
poorer where the most directly influential popula-
tion data is low so that the signal to noise ratio is
poor: the late parts of §; and the early parts of Js.
Confidence intervals estimated for these rates will
reflect this: indicating clearly where the inferred
knowledge of rates is poor. This contrasts with the
situation that pertains for a fully specified model,
where the convenient fiction that a good parame-
ter sparse model is known tends to lead to much
narrower confidence limits than can really be jus-
tified by data or knowledge - this confidence being
based almost entirely on extrapolation of the fitted
model from data rich periods and stages, to data
poor portions of the data set.

Daphnia

The examples presented in the previous section
used simulated data to compare structurally sim-
ple partially specified models constructed using a
number of alternative formalisms. I now turn to an
example using a more complicated partially speci-
fied structured model of some Daphnia population
data kindly supplied by E. McCauley. The data
consist of time series of adult and juvenile popu-
lations from a laboratory culture. The data were
modelled using the moderately detailed structured
population model given in table 2, which was sup-
plied by R.M. Nisbet and is a modified version of
the model of McCauley et al. (1996), which should
be referred to for a detailed explanation and justifi-
cation. Whilst most of the parameters of this model
had been independently obtained (see McCauley et
al. 1996), o and 74, were left as free parameters. To
simplify presentation, the model used here assumes
that the rate of food supply to the experimental sys-
tem was kept constant (although in reality it was
introduced in frequent pulses). There was some evi-
dence that food quality had been changing through-
out the experiment, although no detailed informa-
tion was available about how it had changed. The
aim was to produce a model in which food quality
was described by an unknown, non-negative, func-
tion of time. In this way it could be ascertained how
much of the model mismatch could be explained by
food quality variation and the nature of any food
quality variation could be examined. Food was pro-
vided to the population 3 times a week, usually on
the basis of 2,2 and 3 day intervals. This has the po-
tential to drive perceived food quality on a weekly
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State variables
Meaning Equation
Juveniles dJ/dt = R(t) — Ms(t) — d(t)J(t)
Adults dA/dt = Ms(t) — Ms(t —Ta)Pa — 0a(t)A(2)
. . —Pjd; t< Ty
Juvenile Survival dP;/dt = { Pr(0s(t — 7o) h(t) Rt — 77) — 65(8) > 1y
. —Pada t<Ta
Adult Survival dPa/dt = { Pa(Oa(t —7a) — 6a(8)) ¢ > 4
. . - 1—h/hm t< T
Juvenile duration % = { 1— h(t)/f{(t )t ; 7_;
Auxiliary functions
Meaning Equation
Juvenile ration ps(J, A L) = %
Adult ration pa(J, A t) = %
Initial inoculum i(t) = roe” "
Juvenile recruitment Ry =i(t) + pA;VTA
Juvenile development h(J, A,t) = max Chﬁ’” ,hmin)
JTPJO
Adult death rate 0a = 6Am67”A/p‘“
Juvenile death rate 87 = SymePI/P1
. . 0 t<rT1y
Juvenile maturation M;(t) = { RJ(t;‘;J,)-,]-:;Jh(t) t> 1)
Other definitions
Food quality F(t) Mazximum adult death rate dAm
Microcosm volume Vv Maximum Juvenile death rate OgmV
Transfer interval TI Ration for 1/e adult mortality cut pPA1
Initial tnoculum To Ration for 1/e juvenile mortality cut pj1
Minimum development rate  Rpmin Juvenile ration halving development pJo
Mazximum development rate  hp, Adult food to egg ratio PAO
Adult Longevity TA Adult to juvenile food ratio Q@

Table 2: Daphnia model definitions.

basis - so the unknown function in the model was
given a maximum number of degrees of freedom of
60, in order to be able to accommodate a weekly
cycle if necessary.

w;’s for the adults were set to 9 times those for
the juveniles (this weighting was selected to give
the least bad residual plots) and the model was fit-
ted by constrained minimisation of a weighted least
squares objective penalized by a smoothness con-
straint on the food quality function. This was done
by iterative least squares. The smoothing parame-
ter controlling the trade-off between fidelity to the
population data and smoothness of the food qual-
ity function was chosen by GCV, as outlined in the
methods section.

Figures 4a and 4b show the best fitting model
and the original data plotted together. Figure 4c
shows the best fitting F'(¢) with asymptotic con-
fidence bands (which should be treated with cau-
tion, given the residuals). Notice that the model

is incapable of reproducing the initial transient in
the data, and that later fluctuations seem to be
matched by allowing F'(¢) to exhibit considerable
temporal variability.

This example illustrates several points. Firstly,
it demonstrates that the fitting framework de-
scribed can be used to fit real data with multiple
time series and irregular sampling and that the fact
that the model is moderately structurally complex
does not cause difficulty. Secondly, it demonstrates
an important point about partially specified mod-
els: the model was allowed a maximum of 63 free
parameters and still failed to fit the data overly well.
The well worn adage that ‘if you give me four free
parameters I will draw you an elephant, and given
5 I can make it wiggle its tail’, only contains any
truth if you have freedom to choose the model which
will incorporate these 5 parameters. In this case
the model structure imposes very strong constraints
on what the model population can do, irrespective
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Figure 4: Partially specified model fit to Daphnia pop-
ulation data. In (a) and (b) the dashed line joins the
population data and the solid line is the model fit. (a)
shows the fit to the juvenile population. (b) shows the
fit to the adult population. (c) is the fitted food function
(a function of time), the solid line is the best estimate
and the dashed line an asymptotic 95% confidence in-
terval, calculated from the quadratic approximation to
the model fitting objective.
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of the values taken by its parameters. The third
related point concerns smoothing parameter selec-
tion: the fitted model in fact suggests a relatively
slow rate of change for food quality, so that the final
food quality function has far fewer effective degrees
of freedom than the maximum possible number of
60: the GCV criterion has in effect decided that no
real improvement would be achieved by allowing the
food quality to vary more rapidly. This illustrates
that GCV itself avoids over-fitting. Indeed, if food
quality is allowed a full 60 degrees of freedom (by
setting the smoothing parameter to zero), then it
varies widely and rapidly, but the ‘improvement’ in
fit is marginal.

Nicholson’s Blowflies I: a fully specified example
In order to introduce simple statistical hypoth-

esis testing with population models, consider com-
paring two alternative hypotheses about the mech-
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anisms driving the dynamics of Nicholson’s fa-
mous blowflies (1954a,b) using fully specified mod-
els (Kendall et al. 1999 discuss this problem in some
detail). The data to be fitted are numbers of adult
blowflies Lucila cuprina in laboratory cultures. In
the cultures examined here the adults were supplied
with protein at a fixed and limiting rate, but all
other resources were supplied in abundance. As can
be seen from figure 5, the population cycled.

The first hypothesis is that the regulatory
process driving the blowfly cycles is competition
amongst adults affecting adult fecundity, so that
(given suitable starting conditions) the adult pop-
ulation can be described by the delay differential
equation:

dA

_ GA(t — 7)e-Al=T)/4o
i” SA(t—T1)e

—0A(t)

where S is a compound variable made up of adult
fecundity multiplied by juvenile survival, 7 is the
delay from egg laying to adulthood, Ag is the re-
ciprocal of the exponential decay rate of fecundity
with adult population, and § is the adult death
rate. This model was first proposed by Gurney et
al. (1980) at the same time as a structurally equiv-
alent model was produced by Readshaw and Cuff
(1980)

The second hypothesis is that regulation is
through the effect of juvenile competition on adult
size and hence fecundity: this mechanism can give
rise to the following formulation (after Gurney and
Nisbet, 1985):

%tj = B(t) - AB(t—1)e ™7 —§;J
dA
— = AB(t—71)e T —§4A
ir (t—7)e 04
B
% = AB(t—7)e W — 4B
AW
—_— = —A —
% g(t) — Ag(t —7)

gm
) = —I
9(t) 1+ J/Jo

where A(t) is zero for ¢ < 7 and one otherwise.
J and A are adult and juvenile populations, B is
birth rate, W is weight at maturation to adulthood.
7 is development time, d4 is adult death rate, g,
is a parameter made up from maximum juvenile
growth rate and adult fecundity per unit weight,
Jo controls the rate of decrease growth rate with
juvenile population, p is maintenance cost and ¢
juvenile death rate. Given the experimental set up,
this second hypothesis is almost certainly incorrect,
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but in the current context this is useful, since we can
be fairly sure what the correct answer should be.

Both models were fitted to Nicholson’s data by
using constrained quasi-Newton to minimise the
sum of squares of differences between model tra-
jectories and adult population counts; parameters
were constrained to be positive, but of course there
are no wiggliness penalties in the fitting objective.
The best fits obtained for the two models are shown
in figure 5. The r? values are 0.69 and 0.60 for the
adult competition model and juvenile competition
models respectively. It might be useful to access
the statistical significance of these results, but sta-
tistical comparison of the models is a non-standard
problem.

To motivate the approach taken here it is worth
considering what statistical hypothesis testing does,
in quite general terms. Statistical hypothesis test-
ing amounts to comparing two models of how a set
of data has been generated. The model constitut-
ing the null hypothesis is a restricted version of the
model constituting the alternative hypothesis: we
are comparing a simple model and a more com-
plicated model of data. Because the complicated
model is an extended version of the simple model
it will always be able to fit any set of data at least
as well as the simple model. Hypothesis testing
asks the question: if the simple model is true, what
distribution should I expect for the improvement in
fit of the complicated model relative to the simple
model? All that then remains is to decide whether
the observed difference in fit is consistent with this
distribution, and hence with the null hypothesis.

The general method of hypothesis testing is well
covered in Silvey (1975). Hypothesis testing using
this approach in combination with standard distri-
butional results is familiar in the context of analy-
sis of variance or likelihood ratio tests (in general-
ized linear modelling for example, McCullagh and
Nelder, 1989). If the assumptions required to use
standard distributional results are not met then an
obvious computer intensive approach can be taken:
generate replicate data from the best fit of the sim-
pler model, and build up an empirical distribution
for the difference in fit between the two models, by
fitting both to each of these replicates. Paramet-
ric or semi-parametric bootstrapping is the obvious
way to achieve this. A detailed discussion of this
approach in the context of linear regression can be
found in Davison and Hinkley (1997 section 6.3.2).

The current example does not quite fit into the
general hypothesis testing framework because the
worse fitting model is not obviously a restricted ver-
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sion of the better fitting model. Hence we don’t
know that the better fitting model would fit more
closely even if the worse fitting model were true
and this precludes the use of general methods such
as the likelihood ratio test for comparing these
models (again Silvey, 1975, provides the necessary
background for a mathematical appreciation of this
point). Never the less, the general question of what
sort of improvement in fit of the better fitting model
over the worse fitting model is expected if the worse
fitting model is true retains exactly the same mean-
ing in the current non-nested case that it holds in
the case of nested models. By the same token the
answer holds the same scientific implications in this
case as it holds in the case of nested models. Appre-
ciation of this latter point suggests that it is worth
using a computer intensive approach to obtain an
approximate p-value to attach to the improvement
in fit of the adult competition model.

I therefore simulated data by assuming the best
fit juvenile growth limitation model to be true.
Replicate data sets were generated by sampling
with replacement from the residuals of the best fit
juvenile growth model and adding these resampled
residuals to the model predictions of the population
at each sampling time. Both models were fitted to
each replicate and their difference in goodness of
fit was assessed. By generating a large number of
replicate datasets under the null hypothesis (that
the juvenile growth model generated the data), it
is possible to obtain an approximate distribution of
the difference in fit between the two models assum-
ing that the null hypothesis is true. The propor-
tion of differences in fit that are at least as large
as the difference observed when fitting the original
data, provides a p-value to associate with testing
the null hypothesis that the juvenile growth model
generated the data, against the alternative that the
adult competition model did so. Figure 5c gives a
histogram of the simulated distribution of badness
of fit under the null (measured by residual sum of
squares), and the true difference.

The adult competition model clearly fits bet-
ter than the juvenile growth model, and this would
tend to lend support to the adult competition hy-
pothesis as opposed to the juvenile competition hy-
pothesis. Of course this support is equivocal: given
the simple structure of the models used and the
fairly arbitrary specification of the key functional
relationships within both models it is not clear to
what extent the test results are related to the abil-
ity of the models’ incidental assumptions to match
reality, rather than relating to the core ecological
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Figure 5: Comparison of fully specified model fits to
Nicholson’s Blowfly data. (a) The best fit of the adult
fecundity model (solid line) to the experimental data
(joined by dashed line). (b) The best fit of the juvenile
competition model (solid line) to the same data (again
joined by a dashed line). (c) A histogram of the dif-
ference in mean square deviations of models from data,
for each of 99 replicate non-parametrically bootstrapped
datasets under the null hypothesis that the adult fecun-
dity model is as good a description of the underlying
dynamics as the juvenile competition model. The tri-
angle shows the difference in mean square errors for the
original data.

assumptions underpinning the two models. This
deficiency will be partially rectified in the next sec-
tion. Note also that, as in most statistical hypoth-
esis testing, the question posed is quite limited -
attention has been restricted to just two alterna-
tive mechanisms as embodied in two simple models
- hence it is only the relative merits of the two al-
ternatives that are assessed. Furthermore the boot-
strap analysis just described must be treated with
caution, since the replicates under the null do not
preserve the covariance structure in the residuals,
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and it is not clear under what circumstances this
structure should be preserved (also note that the
differences in goodness of fit is unlikely to be a piv-
otal quantity in the statistical sense). Hence a com-
plementary model comparison should also be per-
formed, by non-parametrically bootstrapping from
the data, to obtain a bootstrap estimate of the dis-
tribution of goodness of fit difference between the
two models. An example of this approach will be
given in the next section, when partially specified
models for the blowfly population are considered.

Of course, none of this hypothesis testing ma-
chinery is necessary if we merely seek to find which
model is“best” with respect to criteria like AIC or
GCV, and do not seek to attach a p-value to the
choice. AIC in particular is quite often used for
selecting between non-nested models, but the va-
lidity of the approach does not seem to be settled
in the literature. Chapter 6 of Burnham and An-
derson (1998) should probably be read critically be-
fore deciding to compare non-nested models in this
way. Murata et al. (1994) give a clear statement
of the concerns about the practice raised by a care-
ful examination of the derivation of AIC. However,
if an AIC model selection approach is taken then
Burnham and Anderson (1998) suggest some inter-
esting approaches for assigning confidence levels to
the model choice.

This example demonstrates the utility of the fit-
ting approach for fully specified models, which are,
after all, only special cases of partially specified
models. On the other hand the example can also
be used to illustrates some of the difficulties with
model fitting by trajectory matching. The fact that
a number of cycles are to be matched, means that
the objective function is almost certain to have sev-
eral local minima. To see this, imagine doubling
the frequency of the model cycles - every other cy-
cle would still line up with a cycle in the real data
- to move away from this situation is bound to in-
volve increasing the objective function. One way
around this difficulty, that works well in practice,
is to supplement the fitting objective with some
squared terms that penalise deviation of the model
ACF from the data ACF at a number of lags. Giv-
ing sufficient weight to this part of the objective of-
ten results in rapid attainment of approximately the
right cycle period, after which the extra terms can
be removed. Kendall et al. (1999) present several
interesting approaches to both model fitting and in-
ference with respect to this example, including the
use of stochastic population dynamic models.
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Blowflies 1I: partially specified model comparison

Finally, consider the blowfly example again, but
this time let the analysis proceed with partially,
rather than fully, specified models. Consider the
adult fecundity model. An appropriate partially
specified statement of this model is:

CSTZL = B(ni—r)nt—r — 0(ng)n¢
where (3 is a monotonically decreasing non-negative
function of density and § is a non-negative mono-
tonically increasing function of density.
The partially specified version of the juvenile
growth limitation model is a little more compli-
cated:

dJ

E = Bt - ABt—T

dA

a = ABt—T - f(Bt)At
dB

E = ABt_TWt - f(Bt)Wf
dw
ﬁ = g(Jf) 7Ag(<]t—7')

Now g, the juvenile growth rate, can be expected to
decline monotonically with juvenile density (while
remaining non-negative), and f the adult per capita
death rate will be a monotonically increasing func-
tion of B (which is proportional to adult biomass).
A again takes the value 1 when ¢t > 7 and 0 other-
wise. For practical fitting the unknown functions in
each of these models were each allowed at most 10
degrees of freedom (again, this is well above the de-
grees of freedom selected by GCV, while 10 param-
eters per unknown function still allows relatively
quick computation). The function domains were
selected with some experimentation to make sure
that the they were matched to (but were a bit larger
than) the domains suggested by the best fit models.

When fit to Nicholson’s data these partially
specified models fit slightly better than their fully
specified counterparts. 72 values show only slight
improvement to 0.71 and 0.61, for the adult fecun-
dity and juvenile competition versions, respectively,
but the juvenile competition model now has a best
fit trajectory that is not obviously worse than the
adult fecundity model.

Note that although the models are both capable
of producing the double humped peak evident in
parts of Nicholson’s data, the best fitting models,
do not display such dynamics. Figures 6a and 6b
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show the best fits of the 2 models and the best fit
forms for f and g in both models. 7 and the initial
adult population were also fitted as a free parame-
ters for both models, and the juvenile growth limi-
tation model had an additional free parameter: the
initial adult fecundity.

The significance of the goodness of fit improve-
ment of one model over the other was assessed by
non-parameteric bootstrapping, in order to obtain
a 98% confidence interval for the difference in model
gooduness of fit (as measured by difference in resid-
ual sum of squares divided by 1 million). In all
99 replicates the adult fecundity model fitted bet-
ter than the juvenile growth limitation model: so
if bootstrap percentile confidence intervals (Efron
and Tibshirani, 1993) are used the 98% C.I. for the
differences in model fits does not include zero. If
basic bootstrap confidence intervals (Davison and
Hinkley, 1997) are used then the 98% confidence
interval includes zero, but the 95% C.I. does not. It
is reasonable to conclude that the adult fecundity
model is better at the 5% level.

Note that interpretation of statistical model
comparison is complicated by the fact that it is not
obvious to what extent the models can be treated as
‘nested’. To see the problem, consider nested mod-
els in linear regression. Using percentile confidence
intervals, the bootstrap analysis just performed
would never reject the model E(y) = a + bx + ca?
in favour of E(y) = a + bz, no matter how spurious
the quadratic term. Using basic bootstrap intervals
the quadratic model could be rejected, but there
is no reason to suppose that the p-value would re-
late to the probability of rejecting a correct null hy-
pothesis! These considerations would tend to favour
use of the bootstrap analysis employed for the fully
specified blowfly models: but the error structure
clearly violates the assumptions underlying that ap-
proach suggesting that it should not be used alone.
Despite the problems the combination of the ‘boot-
strap under the null” and non-parametric bootstrap
provides a useful tool.

As well as illustrating another method of model
comparison, this example demonstrates the utility
of partially specified models, even when a fully spec-
ified model is available. In this case it was possible
to check whether the functions chosen for use in the
fully specified models produced spurious constraints
on the population dynamics that restricted one or
both of the models in a manner that had nothing to
do with the biology that the models were attempt-
ing to describe. For the juvenile competition model
there is some evidence for this being the case, since
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Figure 6: Partially specified blowfly models. (a) shows
the best fitting population trajectory for the adult fe-
cundity model (r> = 0.71), in the large panel: the
dashed line joins the actual data, the solid line is model
fit. The two small panels are the best fit adult fecundity
as a function of adult density (left) and the best fit adult
death rate as a function of adult density. (b) is similar
to (a), but shows the best fit growth limitation model
(r? = 0.61). The left small panel shows juvenile growth
rate as a function of juvenile abundance, while the right
small panel is adult per capita death rate as a function of
total adult fecundity (a surrogate for biomass). (c) is a
histogram of the difference in badness of fit between the
two models in 99 non-parametric bootstrap re-samples.
Badness of fit is measured by error sum of squares over
10%: the range of bootstrapped values went from 15 to
197, the original value was 98.
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the partially specified model yields dynamics which
appear to be a more reasonable match than the fully
specified equivalent. However, it still appears that
the adult fecundity model is significantly better, so
that confidence in this conclusion is strengthened.
In short, within the limitations of the rather sim-
plistic models employed for this example, the analy-
sis based on partially specified models comes closer
to testing for differences between competing mech-
anisms, rather than testing for differences between
alternative sets of incidental assumptions.

DiscussioN

The approach described in this paper provides
a way of formulating ecological models that pre-
cisely reflect the information about a system that
the modeller wants to include, while avoiding as-
sumptions that the modeller doesn’t wish to include
in the hope of reducing reliance on biologically spu-
rious assumptions. More importantly it provides
a practical way of using such models by providing
fitting methods, as well as model selection and in-
ference techniques. In the context of statistical es-
timation the benefits of an approach that avoids
arbitrary parametric models are well known from
work on GAMs and Spline models (Hastie and Tib-
shirani 1990, Wahba 1990) and the methods can be
viewed as an extension of these techniques which
introduces mechanism and non-linearity into the
models employed. In ecological contexts the ben-
efits of partial specification have been recognized
and clearly demonstrated in a number of special
cases (Bjernstad et al. 1999, 1998, Ellner et al.
1998, 1997, Wood 1997, 1994, Ohman and Wood,
1996 and Wood and Nisbet 1991): what this pa-
per does is to move from special cases to a general
framework, as well as solving the crucial problem
of choosing the optimal model complexity, without
which the exercise would merely have replaced one
set of arbitrary model assumptions with another (by
complexity I mean the complexity of the component
functions of the model, as controlled by their asso-
ciated smoothing parameters A).

The methods described have several practical
benefits for fully and partially specified model fit-
ting and comparison: when used for ‘trajectory
matching’ the objective function makes good use of
information over all available timescales, which has
distinct advantages for short noisy datasets; missing
values, uneven sampling and unobserved state vari-
ables present no technical difficulties; the efficient,
reliable and robust fitting methods make it possi-
ble to employ modern computer intensive inference
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methods with many models, and to have some con-
fidence in the notion that differences in model fit re-
flect real differences in model performances, rather
than differences in how much help was given to the
fitting routine.

Of course the approach is far from perfect. Pro-
duction of a method that allows formal inference
and model selection by a means other than arm-
waving has necessitated some restrictive choices. 1
have considered a class of models that is quite spe-
cific to ecology, and have not considered stochastic
dynamics. The latter omission can lead to difficulty
when analysing long time-series for cyclic systems
with considerable process noise. In this circum-
stance the process noise may produce phase drift
in the dynamics, which a deterministic model can
not match. This implies that some care will be re-
quired in selecting the ‘data’ to be matched in the
objective function employed here: if the model is
not designed to exactly mimic phase characteristics
of the modelled system dynamics, then the ‘data’
to be fitted needs to be relatively phase insensitive.
The obvious way to approach this problem is to
transform cyclic timeseries data to obtain, for ex-
ample, a data vector to be matched which consists
of the mean, sample variance, and ACF or PACF of
the original data. The difficulty with this approach
is lack of independence of the resulting data, which
will strip A selection methods of theoretical justifi-
cation.

Chaotic systems are also problematic: it’s fairly
obvious that they should never be fit by trajectory
matching - the possibility of entirely spurious fit to
signal and noise is ever present, and yet any chaotic
fit is contingent on the ecologically nonsensical no-
tion that the system’s parameters really did not
change at all over the course of the data, and that
there was absolutely no process noise. Happily the
very fragility of a chaotic trajectory match means
that it’s very difficult to find one - in the chaotic
regime the objective function becomes far too night-
marish a landscape for the methods employed here,
designed as they are for relatively gentle slopes and
rolling valleys. Pragmatically, this means that a
trial step into the chaotic region of parameter space
almost never leads to decrease in the objective func-
tion, and if the minimisation routine does get stuck
there the problem is easily diagnosed. Even with
non-chaotic systems the fitting objective will some-
times be too irregular for the methods used here:
Appendix C describes an effective approach when
local minima are relatively small scale nuisance fea-
tures of the objective, but in more severe cases other
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techniques, such as simulated annealing (e.g. Press
et al. 1992, Brooks and Morgan, 1994) may be the
only way to make progress.

Discrete time cyclic systems can also display
problems of their own: such systems do not nec-
essarily yield smooth changes in frequency as pa-
rameters change... a feature which has the advan-
tage of acting against phase drift in the data itself,
but the disadvantage of promoting local minima in
the fitting objective. Discrete models also display
‘aliasing’ effects when the cycle period is not an in-
teger multiple of the model time-step: the resulting
small scale irregularities can also cause local min-
ima. Fortunately, both of these difficulties can often
be overcome by the use of “bootstrap restarting”
during model fitting as described in Appendix C.

In the light of figures 5 and 6 it is important not
to overstate the difficulty of fitting cyclic data by
the methods suggested here, and in any case most
data to be fitted will not be long cyclic series. Never
the less there are alternative model fitting methods
that avoid what problems there are. One approach
is to use auto-regressive methods (e.g. Caswell and
Twombly 1989, Wood 1997). At its most general
this simply means using the model to predict the
next data point or two on the basis of current (and
perhaps past) data points. The model parameters
that do the best job at this are considered to fit the
data best. Continuous models can be dealt with
by the simple expedient of smoothing the data and
seeing how well the model predicts the smoothed
gradients when fed the smoothed data (see Ellner
et al. 1997). A disadvantage of simple regres-
sion approaches is the need to observe all the state
variables, although more sophisticated approaches
avoid this by iterating the original model in order
to statistically build up a dynamically equivalent
model which predicts observed data solely from pre-
viously observed data (e.g. Ellner et al. 1998).
A more fundamental problem with using regression
type approaches with partially specified models is
the difficulty in selecting the flexibility of model
functions: it is not hard to think up ad hoc tech-
niques, but an efficient objective method with a firm
theoretical basis is not yet available. Also, although
regression methods are a sensible way of dealing
with process error, they fare badly in the face of
sampling error by focusing on a feature of the data
that is likely to have the lowest signal to sampling
error ratio. To see this, imagine a population whose
dynamics are a sine wave corrupted by sampling
error of comparable magnitude to the wave ampli-
tude. A regression method would clearly yield very
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poor results in this case, while trajectory matching
would give quite reasonable estimates. Inference
is also complicated in the regression case, partly
because both predictor and response variables are
subject to measurement error.

An appealing extension of the partially specified
modelling framework would be the direct inclusion
of stochasticity into the modelled dynamics. Over
short timescales one approach would be to include
process errors directly. Many noise models can be
characterised by a single scale parameter, so that it
is possible to generate a set of zero mean pseudo-
random variates from the noise model assuming
one value for the variance, and simply scale these
variates in order to obtain a set of variates consis-
tent with the same model with a different variance.
Interpolating these variates with a smooth curve,
yields a realisation of a noise process that can be
incorporated into a continuous model (S.P. Ellner,
pers. comm.), and the variance of which can be
controlled by a single scale parameter. By averag-
ing over a fairly large number of replicates of such
a process the expected population and other useful
moments of the population’s statistical distribution
can be obtained, given any set of model parameters.
Smoothness of the fitting objective is maintained by
only changing the scale of the variates, rather than
generating new variates for each new set of param-
eters in the fitting process. This smoothness should
allow all the methods reported here to operate cor-
rectly.

A further option for modelling stochasticity in
dynamics is simply to add a perturbation function
of time to the model structure as an unknown to
be estimated, and to treat this as a ‘random ef-
fect” within the fitting framework. In some cases
this results in a straightforward penalized regres-
sion problem in which the smoothing parameter to
be estimated is proportional to the reciprocal of
the variance of associated with the random function
(further details of this approach will be published
elsewhere).

One non-obvious use of the current framework is
to simultaneously fit dynamics and separate param-
eterization data. This is usually easy to achieve:
for example it is always possible to define a state
variable that simply takes the value of a parameter
of interest, and the deviation of this state variable
from independent measurements of the state vari-
able is then easily included in the fitting objective.
More sophisticated generalisations of this approach
would be useful. Raftery et al. (1995) have at-
tempted just such a synthesis of multiple sources
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of parameterisation data and population dynamic
data using simple deterministic demographic mod-
els for Bowhead whales and it provides clear bene-
fits in the context of prediction.

But is model fitting really a good thing at all?
A model that gets it right without fitting, purely
on the basis of independent parameter estimates,
is always impressive. By contrast fitting is often
frowned upon, as if the validity of a model is un-
dermined by it. Why is this? Partly it is because
a good ecological model needs to be relatively ro-
bust to parameter variation to be taken seriously:
if a model can only match reality for parameters ly-
ing within some very narrow band then it is prob-
ably wrong - the real quantities that the model pa-
rameters represent will have varied quite substan-
tially over the time period of data collection. At
the same time the parameter values required to
make the model fit ought to agree with indepen-
dent measurement. A model that fits data on the
basis of independently measured parameter values
obviously meets this last criterion, but must almost
always have met the robustness criterion as well -
otherwise it would be most unlikely that a good fit
would have been obtained by simply using the in-
dependent point estimates for the parameters. So
models that fit well without parameter adjustment
are likely to be good, but this should not be taken
to imply that a model is likely to be wrong if it
does have to be fitted. Dynamics can alter substan-
tially within the region of parameter space that is
consistent with independent parameterisation data
and to reject a model because it did the wrong
thing at a single point somewhere in the middle
of that region is a nonsense. To really test models,
they should be fitted to data, while checking for
agreement with independent parameter estimates
and separately checking robustness. The methods
presented here make this feasible, while markedly
increasing the scope and quality of model fitting
based inference in those applications which provoke
no controversy, such as hypothesis testing and es-
timation. A Windows package implementing the
methods is available free of charge from the author.
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APPENDIX A:
SPLINE FUNCTIONS

A cubic spline, f(x), say, is the smoothest curve
(in the sense of minimum integrated square of sec-
ond derivative) through a set of n points (z;,p;),
say (so p; = f(z;)). There are many alternative
ways of representing splines using different sets of
basis functions, for example, defining parameters a,
b and ¢;’s:

n
fx)=a+bx+ ch|x —a]?
i=1
is one representation (see, e.g. Wahba 1990), al-
though extra conditions are required to ensure its
uniqueness. The representation actually used in the
examples in this paper treats the p;’s as parameters
of the spline. Specifically I used:

f(x) = miCoi(z) + miy1C1i(x) + pivboi()
+pit1¥i(z) z <z < mip
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where m; is the second derivative of f at x; (i.e.
m; = f"”(x;)) and the functions are: (p;(xz) =
[(@ir1 = 2)*/hi — hi(zipr — 2)]/6 , Cu(z) = [(z -
;)% /hi — hi(x — 23)]/6, Yoi(x) = (ziy1 — 2)/hs
and 91;(x) = (x — x;)/h;, where h; = 2,11 — ;.
my and m, are set equal to zero to yield the
so called “natural” spline. The remaining m;’s
([m2,m3...,mu_1]T = m) are completely deter-
mined by the p;’s via the linear equation:

Bm = Hp (that is m = B~'Hp)

where the (n — 2) x (n — 2) matrix B and the
(n — 2) x n matrix H have zeroes everywhere ex-
cept as follows: H;; = 1/h; H; ;11 = —(1/h; +
1/hiv1) Hiipo =1/hiz1 Bi; = (hi+hit1)/3 1<
i <n—2and Bjiy1 = Biy1; = hit1/6 1 <0 <
n — 3 ... this representation is quite convenient for
computational purposes, but it is straightforward,
if tedious, to demonstrate that it can be re-written
in the form:

flz) = _me(:c)

under a suitable (but rather long winded) definition
of the basis functions 7;(x). Another convenient
fact is that:

[ 157 do = p"HTB Hp

APPENDIX B:
CONSTRAINED OPTIMIZATION

This appendix sketches the principles under-
pinning constrained optimization with a quadratic
model. Suppose that we wish to minimise the r.h.s.
of (10) subject to the linear equality constraints
Asp =0, where Ay is an (mxr) matrix. To do this
we need to find a form for p that will ensure that
it never violates the constraints. Suppose that it is
possible to find a matrix Q such that A;Q = T,
where T is a matrix whose first » — m columns are
zero. This means that if we write the first » —m
columns of Q in a matrix Z, then A;Z = 0. Hence
for any r — m dimensional vector p,: A;Zp, = 0.
So writing p = Zp,, ensures that p will never vi-
olate the constraints. It turns out that Q is quite
easy to construct using ‘Householder’ rotations ap-
plied to Ay (see Watkins, 1991). Substituting for
p in (10) yields:

1
q(p:) = a+ hTZpZ + ipZTZTGsz
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Differentiating with respect to each element of p,
and setting the results to zero yields the minimum:

p. =(Z"GZ)"'Z"h

Inequality constraints are dealt with iteratively.
Start with a parameter vector that violates none
of the constraints and then find the direction in
which to alter the parameter vector to minimise the
model. If proceeding to this minimum would vio-
late an inequality constraint then a step is taken
to the constraint and it is subsequently treated as
an equality constraint with minimisation proceed-
ing as indicated above. This process is repeated
iteratively, until a minimum can be reached that
violates no constraints. By this stage several con-
straints may be treated as equality constraints and
tests have to be made to ensure that they all need
to be retained before a minimum can be accepted.

It is always tempting to try and perform con-
strained optimization by using penalty function
methods, which add a penalty to the objective func-
tion for violating constraints - such methods are
simple to implement, but tend to spoil the quadratic
model, particularly in the vicinity of constraint
boundaries and also tend to require ad hoc adjust-
ment of the strength of the penalties. The methods
used here avoid making problems more non-linear
than they already are.

The practical details of how constrained opti-
mization is done efficiently and robustly are quite
involved, and the interested reader should consult
Gill et al. (1981) and references therein.

APPENDIX C:
BOOTSTRAP RESTARTING

An often effective approach to dealing with ir-
regular objective functions that may have multiple
local minima is to use bootstrap restarting in con-
junction with a minimisation method designed for
smooth objective functions. Given the relationship
between bootstrapping and statistical inference, a
fitting objective based on a bootstrap resample from
the original data is likely to share the statistically
important features of the original objective func-
tion, while differing in details, such as the location
of small scale local minima. Having applied a min-
imisation method to the original fitting objective
¢(p) in order to obtain best fit parameter estimates
P, it is sometimes possible to improve these esti-
mates by iterating the following simple steps:

1. Sample with replacement from the original
data y, and use this bootstrap resampled
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data, y* in place of the original data to con-
struct a perturbed objective function ¢*(p)
(each resampled y; will be accompanied by all
associated information, such as sample time,
life history stage etc.). Starting from p ap-
ply the minimisation method to ¢* to obtain
parameter estimate vector p*.

2. Starting from p*, apply the minimisation
method to the real objective ¢(p) to obtain
a parameter estimate P, if ¢(p) < ¢(p) then
set p to p.

The basic idea is that while the global minimum of
the true and bootstrap objectives will be in much
the same location, they will have different local min-
ima - hence the bootstrap steps can free the op-
timization method from local minima of the true
objective, by moving the parameters away from
this minimum. The approach is preferable to other
strategies for randomly jumping out of local min-
ima in that the size and direction of the step out
of the minima automatically takes account of the
shape of the objective. Of course for a smooth well
behaved objective function, without local minima,
the method produces no improvement. Note also
that general convergence criteria for this approach
are difficult to formulate.



