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Abstract

Generalized Additive Models (GAMs) have been popularized by the work of Hastie
and Tibshirani (1990) and the availability of user friendly GAM software in Splus.
However, whilst it is flexible and efficient, the GAM framework based on backfitting
with linear smoothers presents some difficulties when it comes to model selection and
inference. On the other hand, the mathematically elegant work of Wahba (1990) and
co-workers on Generalized Spline Smoothing (GSS) provides a rigorous framework
for model selection (Gu and Wahba, 1991) and inference with GAMs constructed
from smoothing splines: but unfortunately these models are computationally very
expensive with operations counts that are of cubic order in the number of data.
A “middle way” between these approaches is to construct GAMs using penalized
regression splines (see e.g. Wahba 1980, 1990; Eilers and Marx 1998, Wood 2000).
In this paper we develop this idea and show how GAMs constructed using penalized
regression splines can be used to get most of the practical benefits of GSS models,
including well founded model selection and multi-dimensional smooth terms, with
the ease of use and low computational cost of backfit GAMs. Inference with the
resulting methods also requires slightly fewer approximations than are employed
in the GAM modelling software provided in Splus. This paper presents the basic
mathematical and numerical approach to GAMs implemented in the R package
mgcv, and includes two environmental examples using the methods as implemented
in the package.
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1 Introduction

Consider a univariate response y; from some exponential family distribution
where p; = E(y;) is determined by some explanatory variables xy;, y; etc.
Replacing the strictly parametric GLM model structure:

g(pi) = Bo + Prxri + Bowai + . .. (1)

with the “less-parametric” GAM structure:

g(pi) = Bo + s1(w1;) + sa(w2) + ... (2)

adds a great deal of flexibility to the family of possible models, but adds quite
substantially to the problem of model selection, and to a lesser extent infer-
ence (the s; are unknown smooth functions, while g is a known monotonic
differentiable “link function” and the f3; are parameters to be estimated). In
particular if the s; are estimated using linear smoothers and backfitting then
the effective degrees of freedom of the smooths have to be selected, and this is
not straightforward. The reason for the difficulty stems from the very feature
that makes back-fitting so appealing - that is that it provides a way of estimat-
ing all the smooth terms in the model, making use only of algorithms suitable
for estimating single smooth terms individually. The problem arises because
the criteria (e.g. AIC, GCV) that one would like to apply in order to select
the effective degrees of freedom of the model, measure properties of the whole
model, not of single smooth terms. Hence while back-fitting makes estimation
of smooth terms straightforward given the bandwidth of the smoothers, esti-
mation of that bandwidth is hard to integrate into a back-fitting approach. Of
course it is always possible to do model selection by searching through a large
space of models using some stepwise procedure, but when each smooth term
could have one of a fairly large number of alternative degrees of freedom, this
can become very tedious.

These problems have been recognised for some time, are discussed e.g. in
Hastie and Tibshirani (1990) and are the motivation for techniques like the
approximate GCV method BRUTO. However, in the context of GSS models
the model selection problem has actually been solved by Gu and Wahba (1991)
who developed an algorithm for estimating multiple smoothing parameters
using the GCV score for whole GSS models, including GAMs constructed
from smoothing splines. Unfortunately the calculations involved in the GSS
approach are cubic in n, the number of data being modelled, and this presents
a practical barrier to the use of these methods in many applied contexts. (Of
course spline based GAMs can be fitted much more efficiently using back-
fitting - but then the model selection using the full GCV score becomes very



inefficient).

The O(n?®) operations count of Gu and Wahba’s method results from the fact
that GSS models necessarily have as many parameters as there are data to be
modelled, although generally fewer effective degrees of freedom, of course. If
the models had fewer parameters then the calculations would be faster. This
suggests using penalized regression splines (e.g. Eilers & Marx, 1996, Marx
& Eilers, 1988, Wahba 1980, 1990) in place of full splines to represent the
GAM, thereby reducing the parameter count, but unfortunately this changes
the problem structure sufficiently that Gu and Wahba’s method is no longer
usable (since it relies on the rather special structure of the full spline smooth-
ing problem). However, with some effort it is possible to generalize Gu and
Wahba’s method to cover a much larger class of generalized ridge regression
problems than just those resulting from full spline smoothing. The generaliza-
tion is reported in Wood (2000) and permits smoothing parameter selection
for GAMs formulated using penalized regression splines.

The purpose of this paper is to document exactly how GAMs can be con-
structed using penalized regression splines in a way that allows (i) integrated
model selection via GCV and related criteria, (ii) straightforward incorpora-
tion of multi-dimensional smooths in GAMs and (iii) relatively well founded
inference using the resulting models. The paper is structured as follows. The
next section reviews basic material on modelling with basis functions, and
is intended to give the reader a feeling for the ideas which lead naturally to
penalized regression splines. Then the construction of GAMs using penalized
regression splines is discussed, including material on how model selection can
be performed using GCV, and how to obtain confidence intervals. The final
theoretical section discusses issues to do with multi-dimensional smoothing.
We take the approach of introducing most of the material in the context of
linear models (and hence additive models) and only subsequently covering
generalized linear modelling and hence generalized additive models. The pa-
per finishes by applying GCV selected penalized regression spline GAMs to
European Mackerel Egg Survey data and beech canker data.

2 Modelling with basis functions

In this paper GAMs are constructed using basis functions, so this section is
intended to provide an introduction to modelling with basis functions. Readers
familiar with this material may want to skim or skip it.

It is often desirable to include a smooth function of a covariate or covariates
into a model without being very specific about the exact form of the function.
That is, it may be appropriate to include terms like f(x) or g(z,z) in the



specification of a model. To do this in practice so that f or g can be esti-
mated, requires a practical means of representing functions like f and g: basis
functions can provide this.

Consider representing a function of one variable, f(z), say. Let {b;(z) : i =
j...m} be a set of functions that are chosen to have convenient properties,
and to have no unknown parameters. f(x) can be represented as:

fx) = f:lajw 3)

where the «; are m unknown coefficients. So f(x) is made up of a linear
combination of the basis functions b;(x), and estimating f is now equivalent
to finding the «;.

To see how a function might be estimated in practice, consider the following
simple model:

Yi ~ N(f(xi)70-2)
and suppose that there are n observations (y;, ;). The model can be estimated
by minimising:

where a is the vector of coefficients «;, and b(z;) is the vector containing each
basis function evaluated at z; (i.e. b(z;) = [by(x;), ba(wi), ..., bn(xy)]T ). Tt is
straightforward to see that this is a standard linear model fitting problem.
First define:

bi(z1) ba(xy) - . bp(z1) b(z1)T
bl(l'g) bQ(ZEQ) - bm(ZL'Q) b(ZEQ)T
X — bl(ZL'g) bg(ﬂ?g) . bm(ﬁg) _ b($3)T
| b1(2p) ba(n) - b () | _b(xn)T_
and now recall that: .
223 =z'z = |z



(i.e. || - ||* is the usual Euclidian norm). We have:
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and minimisation of this last expression yields the least squares estimates of
Q.

2.1 Example: polynomial regression

Basis functions are usually chosen for their theoretical properties, or for prac-
tical reasons, or for a mixture of both. The familiar polynomial basis is an
example of a basis that is very easy to use, but has poor approximation theo-
retic and numerical stability properties. For example, suppose that we want to
use a b dimensional polynomial basis to represent f(z). Suitable basis func-
tions are: by(z) = 1, by(z) = z, b3(z) = 2°, by(x) = 2 and bs(z) = =z
Then:

5
flz) = abi(z)
j=1
is just an elaborate way of writing:

f(z) = oy + ar + asr? + aur® + asa?

Fitting this model by least squares is a matter of minimising:
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The polynomial basis is often a poor choice: as the dimension of the basis
increases the basis functions become increasingly co-linear. This tends to lead
to highly correlated parameter estimators, which in turn lead to high estimator
variance and numerical problems. Furthermore, high order polynomials have
a tendency to oscillate wildly if there are wide gaps in the z;’s.



2.2  Example: the cubic spline basis

The spline bases have good theoretical and practical properties (see e.g. Wahba,
1990; de Boor 1978). For functions of one variable the cubic spline basis is
popular. There are a number of alternative sets of basis functions that can
be used as cubic spline basis functions. We give one of the the simplest to
understand, although there are alternatives with better numerical stability
properties. Again, consider representing f(z), but now let {7 : j = 1...m},
be a set of points in the range of x, sometimes known as the “knots” of the
spline. Representing f(x) using cubic splines amounts to representing it using
sections of cubic polynomial joined at the knots so that they are continuous up
to and including second derivative. Mathematically, this is achieved by letting
bj(x) = |z —a}]* for j =1,...,m, bpi1(x) = 1, bpia(x) = 2 and:

m+2

fx) = Zl a;b;(z).

f(z) represented in this way is a “natural” cubic spline provided that the con-
straints -7 ; a; = 0 and 327" a2 = 0 are imposed on the coefficients. The
“natural” spline constraint means that the spline has zero second derivative
outside the interval [z}, x} ], which is a sensible requirement since it reduces
the dangers associated with extrapolation.

There are three spline based approaches to modelling n data points (x;, ;)
with a model of the form:

E<yz) = f(xz)

These are smoothing splines (in the Wahba, 1990, sense), regression splines or
penalized regression splines: they can all be constructed using the same sort
of basis functions, but differ in where the knots are placed and how model
complexity is controlled. For the moment consider only a regression spline,
which is fitted by finding the «; that minimise:

It should be clear by now that this reduces to an ordinary least squares prob-
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Solving least squares problems subject to linear constraints will be covered in
section 2.5.

Regression spline modelling is appealingly simple, but in practice the choice
of knot locations, z7, can have a substantial influence on modelling results.
Hence, the need to choose knot locations can be a serious complicating factor
in regression spline modelling (Hastie and Tibshirani 1990, chapter 9, provides
a helpful discussion of this problem). One standard method for avoiding knot
placement problems is to use smoothing splines or penalized regression splines
(both options are discussed, for example, in Wahba, 1990 or Green and Sil-
verman, 1994). With both of these alternatives a relatively large number of
knots is used, but excessively wiggly fitted models are avoided by applying a
“wiggliness” penalty to the model fitting objective. Having a large number of
knots means that the fitted model is quite insensitive to the exact choice of
knot locations, but the penalty can be used to avoid the danger of over-fitting
that would otherwise accompany the use of many knots. In the smoothing
spline case the number of knots is actually the number of unique covariate (x)
values, while in the penalized regression spline case a smaller number of knots



is chosen, usually to keep down computational cost. The next two sections
show how to construct appropriate penalties, and how to use those penalties
in fitting.

2.8 Linear operations on f(x) and wiggliness measures

The purpose of this section is to show how measures of function wiggliness
can be constructed that are easy to interpret and straightforward to evaluate
computationally. The presentation is quite general, to emphasise that such
measures can be obtained for a wide variety of bases. Given the measures
presented in this section, penalized regression splines will be described in the
following section.

In order to develop measures of the wiggliness of f(x), it is helpful to first
consider linear operations on f. In particular, consider differentiation and
integration of f (as defined by (3)). Clearly:

f(x) = ilajb;(x) f(z) = f:lajb;'(x) and /f(a:)da: = iaj/bj(:p)dx

i.e. differentials or integrals of f w.r.t. x are linear in «;.

Given this linearity, it is possible to construct a penalty on f which will be
large if f is very wiggly and small if it is nearly flat and that has a convenient
representation in terms of the a;. One popular possibility is:

I = [If @)

To see how this can be calculated for a given f with a given basis, write:
m
f'(x) =Y aybj(z) = b"(2)"
j=1

where b”(x) is the vector of second derivatives of the basis functions evaluated
at z. Since f”(x) is a scalar it is equal to its own transpose, so:

[f"(@))* = a"b"(2)"b"(z)or = a" S(2)ox



where

b (x)? i (x)by(x) b (2)by(x) . b (2)b],(2)
by(x)bf (x) by (x)* by (2)bs(x) . by (2)by, ()
by(z)b](x) by(z)by(x)  bf(x)?

S(x) (2)b](z) b3(x)by(z) (x)
by ()b () by ()05 () : cobn (@)

Hence:
J(f) = aT/S(x)dxa = o’Ha, say.

So, given a basis, we can always evaluate the coefficient matrix H which allows
the penalty J(f) to be written as a quadratic form in the parameter vector
a (where the m x m matrix H does not depend on «). In the case of the
spline bases the elements of H can be found in Green and Silverman (1994)
or Wahba (1990), for example. The utility of the result is that it provides a
practical way of applying wiggliness penalties as part of model fitting, as is
shown in the next section.

Notice that other wiggliness measures can be developed using the same gen-
eral approach. For example [[f'(z)]?dz or [[f"(z)]*dz could be treated in the
same way as J(f). Another possibility, advocated by Eilers and Marx (1996),
is to obtain an approximate H based on a discrete approximate wiggliness
penalty: if the correct version of the spline basis is chosen (the b-spline rep-
resentation, see de Boor 1978) this method has the advantage of being very
casy to program.

2.4 Combining basis and wiggliness penalty

When modelling with basis functions it is possible to control the wiggliness of
the fitted model by controlling the number of basis functions used, but as was
discussed in section 2.2, this can cause difficulties. Specifically, if the number of
basis functions is large enough to be able to closely approximate the unknown
underlying true function, then it is likely that the model will overfit data that
contain any noise. Conversely, if the number of basis functions is chosen to
be low enough to avoid this overfitting, it is likely that the basis will be too
restrictive to closely approximate the underlying truth. These problems can be
alleviated by using a relatively large number of basis functions, but avoiding
overfit by imposing a penalty during model fitting that is designed to ensure
that the fitted model is smooth.



For example, the model:
E(y;) = f(x)
where f is a smooth function, could be estimated my minimising;:

n

S () =i+ A [1 (@) da (4)

i=1

where A is a smoothing parameter that controls the trade-off between closely
matching the data and having a smooth model. Choosing a basis for f allows
a design matrix X and a penalty matrix H to be calculated (as described
previously). So the fitting problem can be written:

minimise | Xa — y||* + \a’ Ha (5)

Given A, this is straightforward to solve: the objective can be re-written as:
(Xa - y)'(Xa—y) + \a’Ha = o’ [X'X + MH]a + 22" Xy +y'y

and this can be minimised by differentiating w.r.t. a and setting the resulting
system of equations to zero to get:

a = [X"X 4+ H] X"y

How to deal with any constraints on the problem will be deferred until section
2.5, while the issue of how to estimate A will be covered in section 3.1.

The treatment given above is quite general, and could be used with a variety
of bases and penalties (including e.g. the P-splines of Eilers and Marx 1996).
However in the rest of this paper we will consider only spline bases. The reason
for this is partly related to a special property of the spline bases. Consider
trying to find the function minimising (4) out of all functions — not just those
that can be represented using a particular set of basis functions. It turns out
that this function exists, and furthermore that it can be represented with a
finite dimensional basis: the function is a natural cubic spline, with a knot at
each x; value. This result can be generalized to penalties of different orders
and smooth functions of any number of variables as is discussed in section 3.4.
It is this optimality property that suggests that the spline bases are a natural
choice for representing smooth functions.

2.5 Constraints

The spline basis used in previous sections involves an m dimensional basis
represented using m + 2 basis functions/ parameters and 2 linear equality

10



constraints on the parameters. We have chosen to present this basis because
it makes the model and the penalties quite simple to write down, and also
because it is a special case of the more general spline bases covered in section
3.4. However, its use does involve fitting subject to constraints, which we
therefore cover in this section. Another reason for discussing constrained fitting
at this stage is that in general constraints are required in order to ensure
identifiability of GAM models.

To motivate the discussion consider the constraints given at the end of section
2.2. These can be written compactly as:

Ca=0

It is necessary to find a way of representing a which ensures that it always
meets this constraint, but imposes no further un-necessary restriction on a.
Suppose that C is a ¢ X m matrix, where ¢ < m. It is always possible to find
an orthogonal matrix Q such that:

CcQ = [Oq,m—tp T]

where T is a ¢ x ¢ matrix and 0y,,—, is a ¢ X (m — ¢) matrix of zeroes (the
factorisation is like a QR factorization — with which it can be replaced —
and is performed using Householder rotations, see Watkins 1991, for example).
Now partition Q into two parts: an m x (m — q) part Z and an m x g part Y,
so that:
Q= [Z7 Y}
This means that:
CZ=0 and CY=T

Which in turn means that if we let @« = Za,, where «, is an m — ¢ vector of
unknown parameters, then Ca = 0, for any ..

Now consider solving (5) subject to Ca = 0. The problem can be re-written
as:

minimise || XZe, — y||* + Aol Z"HZev,
and solved for a, exactly as discussed in section 2.4, but using XZ in place
of X and ZTHZ in place of H. Obviously, & = Za..

3 GADMs built from penalized regression splines

We are now in a position to see how Generalized Additive Models can be
constructed using penalized regression splines. All the essential points are
covered by considering a GAM with two smooth terms to be fitted to Gaussian
data with an identity link (generalization to other exponential family members

11



will be covered at the end of this section). Consider modelling data (y;, x1;, T2;)
using the model:

E(y;)) = i = Bo + filwn) + folwei)  yi ~ N(pi, 0°)

where f; and fy are smooth functions, which could be represented using pe-
nalized cubic regression splines so that:

fi(z) = iﬁjblj(fﬂ) fo(x) = ij:lﬁjJrfﬂsz(w)

where the by;(-) and by;(-) are cubic spline basis functions for f; and fo re-
spectively. The fitting objective for this model will be:

n 2 2 2 2
minimise Z(yi—ﬁo—f1($1i)—f2($2i)>2+/\1/ (8 f;) dw1+)\2/ <8 f22> diy

i=1 Oxq 0x3

subject to any constraints associated with the bases (e.g. the “natural spline”
constraints) plus any constraints needed to ensure that the model is identifi-
able (for example that the functions must have zero mean).

Using the basis given in section 2.2 this GAM fitting problem becomes:

minimise [|X8 —y||> + MG8H:8 + N0 H.3
subject to CG =0

where: X =
1 |z11 —w’l‘1|3 |z11 —J:f2|3 e _xT,q1—2|3 1 z11 |z21 —z§1|3 .zt —wz’q2_2|3 1 zo1
1 |x12—x“1*1|3 |z12 —:c’l‘2|3 AP —x{’q172|3 1 z12 |x22—x;1|3 .. |122—x§1q272|3 1 zoo
| 1 |:cln—m’1‘1|3 |Z1n —w*{2|3 .z —:0’1‘7(11_2|3 1 z1n |$2n—a:;1|3 .. |$2n—z§,q2_2|3 1 z2p |

[0 0 0 .. 0 0..0]

0 |=7, _ITl‘B B3P _xT1‘3 B |1’#15,q172 _le‘S 0..0

0 |3y *112‘3 x5 fx{2\3 - |IT,q172 *112‘3 0..0

Hl = 0 * * 3 * * 3 * * 3 0 0

|23y =27 4, ol” [270 =21 gy ol” - [2] 4y o =2 4, ol -
0 0 0 .. 0 0..0
Lo 0 0 .. 0 0..0]
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0 0 0 0 0 00
0..0 0 0 .. 0 00
0..0 |3, —a53 |5y — 25,1 .. 25,40 —2 —z5> 00
Hy=1]0..0 |25, — 25,13 |25y — 235,12 . . 25,40 —2 —z3,02 00
0..0 |z3, 7x§,q272\3 208 fx;’q272\3 R P fx;’q272\3 00
0..0 0 0 .. 0 00
0..0 0 0 .. 0 00

and the constraint matrix C is defined as:

0 1 1 0 0 0 0 0 0
0 zt .. T3 4o 0 0 0 . 0 0 0
0 0 .. 0 0 0 1 1 0 0
0 0 o 0 0 0 x5, o T3 0o 0 0
0 ZL’EM*IEP . Z‘xli*x?ql—ﬂzs n qu 0 L. 0 0 0
K 0 . 0 0 0 Dleai—anl® .. Y e —al,, ofP n Y wo |

where 7}, is the j™ “knot” location for the & spline and summations are for
1=1...n.

The first 4 rows of C are the constraints required by the cubic spline bases
being used for each term. The final two rows of C impose side constraints on
the smooths so that for k = 1,2, >, fi(zx;) = 0 — these ensure identifiability
of the model (simply omitting the constant terms from the representation of
the 2 smooths does not work well in practice).

So, given smoothing parameters, A; and A\, which directly control the effective
degrees of freedom per smooth term, this model is straightforward to fit using
the same approach taken in the single penalty case in section 2.4. Furthermore,
given this representation of the GAM as a constrained generalized ridge re-
gression problem the smoothing parameters can also be estimated reasonably
efficiently using GCV, as we will discuss in section 3.1. It is not difficult to
generalize to more than two smooth terms, or to models involving thin plate
spline terms of the sort discussed in section 3.4 (which can include terms with
different orders of penalty).

The above model is really an AM rather than a GAM, but generalization is
straightforward. Consider the model:

g(p) = XB where y; ~ exponential family,

X is the design matrix for an additive model constructed in the manner de-
scribed above, and ¢ is a smooth monotonic “link” function. In the same way

13



as the least squares objective was penalized above, in order to ensure smooth
function estimates, the log likelihood can be penalized in the this more general
setting. Specifically, if [(3) is the log likelihood for the above GAM, then we
would fit the GAM by minimising the negative penalized log-likelihood:

—(B) + ;(M,@/Hlﬁ + X8’ Hy0)

Minimisation of the negative penalized log likelihood for this model can be
achieved by iteratively re-weighted least squares. Letting V' (u;) be the variance
of y; implied by a mean p1; and using the superscript “/¥1” to denote the estimate
of a quantity at the k" iteration, we can define pseudodata:

M — X 4 TH(y — )

where T'™ is a diagonal matrix such that ny] =4 (,uz[-k}). Also define a diagonal
weight matrix, W, where:

(23 3

Wi = {FW V(M[k})

Penalized maximum likelihood estimation is performed by iterative solution
of:

minimise ||W[k] (X8 — Z[k})H2 + MBH B+ X8 Hy3
subject to C3 =0

for B, In other words, given smoothing parameters, GAM fitting amounts
to penalized likelihood maximization by iterative least squares (O’Sullivan
1986; Hastie and Tibshirani, 1990; Wahba, 1990 and Green and Silverman
1994 all provide further information). Smoothing parameter estimation by
GCV can be included in the scheme by applying GCV estimation of A to the
weighted least squares problem produced at each stage of the iterative least
squares method. The method for doing this is covered in the next section.

Notice that the total computational cost of estimating these models, given A
is modest relative to the full spline models of Wahba (1990) and co-workers. If
n is the number of data modelled, and ¢ the total number of parameters used
to represent the model (that is the length of 3) then the solution of the least
squares problem produced at each stage of iteration costs O(ng?) operations.
For a full spline model this cost would be O(n?), but when modelling with
penalized regression splines it is usual for ¢ to be substantially less than n.

14



3.1 Choosing X, the parameter(s) controlling the amount of smoothing

The unresolved question from the previous section, is how to choose A7 In this
section we describe a computationally efficient approach using Generalized
Cross Validation (GCV). We again start by discussing the simple Additive
Model case and add Generalization at the end of the section.

GCV can be motivated by first considering Ordinary Cross Validation (OCV).
OCV works like this: imagine leaving out one of your data points, fitting the
model to the remainder and calculating the squared difference between the
left out datum and the fitted model; now repeat this calculation for each
data point in the data set and hence obtain the average squared difference
between missing data and model fitted to the remaining data. This average
squared difference is the ordinary cross validation score. Low values indicate a
good model, while high values suggest a poor model. In the context of linear
models and penalized linear models of the sort covered here, it is possible to
perform OCV in a relatively efficient manner without having to actually re-fit
the model for each left out datum. This is achieved by writing the OCV score
as a weighted sum of the model residuals, where the weights are calculable
directly from the original fit to all the data (see e.g. Wahba 1990, section
4.2). The GCV score is obtained by replacing all the individual weights in this
summation by the average weight. This yields the score

nlly - AyJ?
V= w@A)P

where A is the “hat matrix” or “influence matrix” for the model being fitted.
That is the matrix such that:

= Ay
In the notation of sections 2.4 and/or 3 (and neglecting weights and con-
straints):

A =X(XTX + Z NH;) I (6)

The term tr(A) is the estimated degrees of freedom of the model. This is by
analogy with ordinary linear regression where the the hat matrix is X(X7X) !XT,
the trace of which is well known to be the number of (identifiable) parameters

in the model. Note then that the GCV score is proportional to the estimated
variance of the data per estimated residual degree of freedom. V' is a function

of the smoothing parameters, so the idea is that the “best” A vector will be
the one minimising V'

There are two reasons for working with the GCV score, rather than with the
OCYV score. One reason is computational: in the multiple smoothing param-
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eter context it is possible to produce very efficient methods based on GCV,
but none are yet known for OCV, and the task of producing one appears
formidable. The second reason is theoretical. The model fitting problems for
GAMSs constructed using penalized regression splines are examples of general-
ized ridge regression problems. However there are generalized ridge regression
problems in which the behaviour of the OCV score is different when the prob-
lem is written down using different, but exactly equivalent, bases (see e.g.
Wahba 1990, section 4.3). Golub, Heath and Wahba (1979) suggest GCV as a
suitably invariant fix for this problem. Some quite good theoretical properties
have been obtained for GCV — in particular GCV estimated smoothing pa-
rameters can be shown to minimise mean square prediction error in the large
sample limit (see Wahba 1990, section 4.4 and references therein).

Although, it is possible to produce efficient GCV methods, actually doing so is
quite taxing. The difficulty arises because V' is expensive to calculate directly:
the cost of direct calculation of V' is of the same order as the cost of model
fitting: i.e. around O(ng?), where n is the number of data and ¢ the total
number of parameters. Hence attempting to find the smoothing parameters
by direct grid search rapidly becomes very costly as the number of smoothing
parameters increases. This is because each new trial set of smoothing param-
eters will require an O(ng?) calculation to obtain the GCV score (although in
the AM setting this can be reduced to O(¢?)).

If there is only one smoothing parameter it is possible to perform some trans-
formations of the problem up front so that subsequent evaluations of V' for
different X values are very efficient (see Wahba, 1990 for some strategies), but
unfortunately this is not possible with more than one smoothing parameter. In
the multiple smoothing parameter context the most efficient strategy known
to date is as follows.

Firstly, the multiple smoothing parameter model fitting problem is re-written
with an extra (and strictly redundant) “overall” smoothing parameter con-
trolling the tradeoff between model fit and overall smoothness, while retaining
smoothing parameters multiplying each individual penalty which now control
only the relative weights given to the different penalties. The following steps
are then iterated:

e Given the current estimates of the relative smoothing parameters, estimate
the overall smoothing parameter using highly efficient single smoothing pa-
rameter methods.

e Given the overall smoothing parameter, update the logarithms of the rela-
tive smoothing parameters simultaneously using Newton’s method (backed
up by steepest descent).

Working with the logs of smoothing parameters in the second step avoids the
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need to use constrained optimization to force the relative smoothing parame-
ters to remain positive. It also allows meaningful step length limits to be set
in the second step. This approach was first proposed by Gu and Wahba (1991)
for full spline smoothing models, in which context it is of O(n?®) computational
cost (n being the number of data). Their method used special structure of the
full spline smoothing problem and can not be used directly with the penalized
regression spline based models described in this paper. Wood (2000) provides
the generalization of the Gu and Wahba method to more general problem
classes, including GAMs built from penalized regression splines, and we refer
the reader to that paper for full details of the method.

The Wood (2000) approach typically converges in 5-15 iterations, with each
iteration being O(ng?) in computational cost. This can be compared, for ex-
ample, to the smoothing parameter selection strategy proposed by Marx and
Eilers (1998) when using P-spline based GAMs — smoothing parameter se-
lection for their 3 term GAM example required 9% model fitting steps each
costing O(ng?) operations. So, even with small numbers of smooth terms in
the model, our suggested approach is likely to offer quite substantial compu-
tational savings relative to direct grid-search based methods. It is also worth
comparing the computational cost of our approach with the cost of using GCV
to estimate smoothing parameters in a backfit GAM context. In this case the
computational cost is higher again, because it is expensive to obtain the tr(A)
term required to evaluate V — using backfitting this term is O(n?) to calcu-
late, and the term has to be re-calculated for each trial set of smoothing pa-
rameters: this is the motivation for approximate GCV methods like BRUTO
(see Hastie and Tibshirani, 1990). Again this comparison suggests that our
approach offers quite substantial computational savings.

3.1.1 Generalization

GCV can be used with weights, and as part of the iteratively re-weighted
least squares methods used to fit GAMs by penalized likelihood maximization.
Suppose that the model fit term in the fitting objective is ||[W (y — u)||?, then
the GCV score is:

_ n[[W(y — Ay)|”

 In—tr(A)P

v

where:

A =X(XTWX + > A\Hy) ' XTW?
k

(note that non diagonal W would cause no technical or practical difficulties
here).

Use with the iteratively re-weighted least squares method used to fit GAMs
is equally straightforward: the same GCV score as above is used, but at each
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step the pseudodata z replaces y and the weights are given by the iterative
weights (see e.g. Gu and Wahba 1993; Wood 2000).

3.2 Confidence intervals on the model, and term-wise effective degrees of
freedom

There are a number of ways of calculating confidence bands for the terms mak-
ing up a GAM. An approach that gives good coverage probabilities (Lonegan
in prep) is to use intervals similar to the Bayesian intervals developed by
Wahba (1983). They can be justified by making a large sample approximation
about the pseudodata at convergence: z|3 ~ N(X3,I0%) and by assuming
a multivariate normal prior on 3 with mean 0 and covariance matrix pro-
portional to an appropriate pseudoinverse of >, \yHj: see Hastie and Tib-
shirani, (1990) section 3.6, based on Silverman (1985) (they assume square
X, but this is not necessary). Neglecting constraints and assuming uniform
weights, the estimated posterior covariance matrix for the parameters is given
by V; = 63(XTX + ¥, \Hyi) ™%, where 6% = ||y — f*/[tr(I— A)] and all
quantities are estimated at convergence. The approximate posterior distribu-
tion of B is multivariate normal, so approximate confidence intervals for the
parameters can be obtained. The generalization to the non-uniform weight
case useful for GAMs (rather than AMs) is straightforward.

Given an estimate of the parameter covariance matrix it is possible to obtain
the variance associated with any smooth term in the model evaluated at any
point, since the smooths are linear in the model parameters. As an example
consider the simple two term GAM given at the beginning of section 3:

q1 q1

var fl Z Z b17, blj ﬁ7 ij

=1 j5=1

Also by linearity of the smooths in the parameters we expect that any smooth
evaluated at any particular covariate value(s) will have an approximately nor-
mal distribution - hence confidence intervals on model terms can be obtained.

Further outputs usually needed for a fitted model are the estimated degrees
of freedom for each model term. These are obtained from the model “hat” or
“Influence” matrix defined in equation (6) (again neglecting constraints and
weights). Tr(A) gives the estimated degrees of freedom for the whole model.
To obtain separate e.d.f.s for each smooth model term we must decompose
the elements on the leading diagonal of A into components relating to the
different terms within the model. To do this note that the matrix:

P = (XX + 3 \H,)IXT
k
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yields the parameter estimates when applied to the (pseudo)data. Hence each
row of P is associated with one parameter, and A = XP. Now let P, be the
matrix P with all rows zeroed except for those associated with the parameters
of the k' smooth. Clearly now, A = >, XP;. This gives a straightforward
way of evaluating the effective degrees of freedom of the k' smooth: it is
simply tr(XPy).

3.3 When to drop terms

We have seen how the smoothness of model terms may be estimated given
that the terms are included in the model, but have not yet considered how
to judge whether a term should be in the model at all. The need to answer
this question separately arises because the automatic smoothing parameter
selection method can not reduce the degrees of freedom of a term all the way
to zero. Once a term has become a straight line or plane (or some other simple
polynomial if higher order penalties are used) it has zero wiggliness, so that it
is not possible to simplify the model beyond this point by further smoothing
parameter changes. As a result the decision to remove a term from the model
altogether has to be made in a different way.

The approach that is most consistent with using GCV for smoothing param-
eter selection is to drop each term from the model in turn, and see if this
reduces the GCV score relative to the full model. This approach could be
used as the basis for a general backwards selection method.

In practical modelling situations an ad hoc approach is sometimes useful. For
this, three questions need to be asked:

(1) Are the estimated degrees of freedom for the term close to their lower limit
(e.g. 1 for a univariate smooth with a second derivative based wiggliness
penalty)?

(2) Does the confidence region for the smooth everywhere include zero?

(3) Does the GCV score for the model go down if the term is removed from
the model?

If the answer to all 3 of these is “yes” then the term should be dropped. If the
answer to 2 is “no” then it probably should not be. Other cases will require
judgement.

As an example here is some output from the R package mgcv, which the first
author has written to implement the approach to GAMs described in this
paper (see http://cran.r-project.org/, and Wood 2001). In this case a 4
term model has been fitted to data simulated from a 3 term truth (normal
errors, identity link) so that the final covariate is spurious. The results of
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estimating the model with smoothing parameters selected by GCV is shown
in the plot.

> gam.model<-gam(y~s(x0)+s(x1)+s(x2)+s(x3))

> gam.model # printing fitted model object
Family: gaussian

Link function: identity

Formula:
y 7 s(x0) + s(x1) + s(x2) + s(x3)

Estimated degrees of freedom:
2.982494 2.096610 7.219753 1.000005
total = 14.29886

GCV score: 4.326104

> plot(gam.model,pages=1)
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In this case the smooth of x3 is a clear candidate to be dropped, and doing so
also reduced the GCV score slightly.

3.4 Multi-dimensional smoothing with thin-plate spline like terms

So far we have only covered one dimensional basis functions. This section will
look at multidimensional basis functions: in particular the thin-plate splines.
Consider the problem of estimating the smooth function f(x) where x is a d
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- vector, from n observations (y;,x;) such that:

yi = f(x) + €

where ¢; is a random error term. f can be represented using a basis based
on the thin plate splines which are the natural generalisation of cubic splines
to any number of dimensions and almost any order of wiggliness penalty. If
we now choose a set of points spread “nicely” over the region covered by the

covariates: {X; :7=1....,m}, say , then f can be represented as:
m M
Jx) =D dmuwalllx = x5 + Y a;d;(x) (7)
j=1 j=1

6 and a are unknown parameters subject to the constraint that T?7d = 0,
w+d—1

d
functions ¢; are linearly independent polynomials spanning the space of poly-
nomials in R?¢ of degree less than w. w is the order of the derivatives in the
measure that will be used to define “wiggliness” of f and must satisfy 2w > d.
The basis functions n are defined as follows:

where the m x M matrix T has elements T;; = ¢;(x}). The M =

(71)w+1+d/2
22w—17d/2(yy—1)(w—d/2)!

r?v=d1og(r) d even
de(r) =
L(d/2—w)  2w—d d odd

22w7rd/2(w—1)!,r

The natural measure of wiggliness to use with this basis is:

_ w! ovf 2
de(ﬁ_/'”%/ Z !y <8x'1’1...8x2d> duy ... drq

d v1+...Frg=w

and the way to estimate f is to find o and § to minimise:

ly = 1% + Aima(f)

where y is the vector of y; data, f = (f(x1), f(X2),..., f(x,))T and ) is a
smoothing parameter. Subject to the constraint T7d = 0 it turns out that:

Juwa = 0" Ed
where Eij = nua(|x; — x}|[). Given the basis, it is also easy to get a design

matrix for the problem of fitting f, which makes it straightforward to write the
fitting problem in the same form as the regression spline problems that we have
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already met. Similarly, it is straightforward to incorporate these thin plate
spline like terms into penalized regression spline based GAMs, and to estimate
their smoothing parameters along side the the other smoothing parameters
as part of model fitting. Note that full thin plate splines in the GSS sense
have x! = x; for 7 = 1,...n, i.e. one n for each data point. More complete
treatments of thin plate splines can be found in Duchon (1977), Wahba (1990)
and Green and Silverman (1994), with the latter being the most accessible.

3.4.1 Thin plate spline for 2 covariates

To make the rather general formulae given above less intimidating, consider
the simple example of 2 covariates x; and x5, so that d = 2, and again let
m = 2. Plugging these constants into the general form for the penalty yields:

0%g 2 0%g 2 0%g 2
J_//<8x%> +2<8$C18$2 * 87.13% dxldx2

There are now M = 3, ¢;: ¢1($1,$2> =1, ¢2($1>Z‘2) = x7 and ¢3($1,$2) = Ty,
So that the constraint matrix becomes:

1 1 1 ... 1
TV = | 2}y afp 2y - .- i,
Ty Tay Tz - - - Loy
and in this case: )
n(r) = g?"? log(r)

3.4.2  Problems with multi-dimensional terms

There are two problems with the approach taken in this section. The first is
the way in which the basis is constructed, by selecting a “nicely” distributed
set of points {x} : j = 1,...,m}. It can be quite difficult to choose points
that adequately cover the region covered by the covariates, particularly as
d increases and if the data are irregularly spread over an irregularly shaped
region. It would be better to use a basis that avoids this knot placement
problem. Wood (2002) suggests an optimal basis that does just that.

The second problem is that the thin plate splines are isotropic smoothers.
In some cases this is sensible, but in others the relative scaling of different
covariates is arbitrary, but will still affect how the wiggliness measure penalizes
wiggliness in different directions. Ideally in these cases one would estimate one
smoothing parameter for each covariate: i.e. one overall smoothing parameter
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Fig. 1. The left hand plot shows the raw percentage infection rates of beech trees.
The right hand plot shows the corresponding residuals for the model fit discussed
in the text. Circle sizes are proportional to magnitude of residuals.

and a set of relative scaling parameters. Wood (2000) shows how this can be
done, but practical implementation is still at an early stage of development.

4 Modelling beech canker

In this section we analyse data from a trial which was part of an international
beech provenance trial of the Federal Research Centre for Forestry and Forest
Products, Grosshansdorf (Muhs, 1991), and from an additional investigation
of shelter wood in its vicinity (Metzler et al, in press). The trial is situated
in the forest district Bad Wildbad in the northern Black Forest on a plateau
with shallow soil on sandstone. In its vicinity are a few old shelter beech
trees infected with Nectria canker. Other tree stands nearby are dominated
by Norway spruce.

Between 1987 and 1988 100 young beech trees were planted on each of 149
plots of size 10 x 10 m. After the first year on average 61% of the trees sur-
vived. In November 2000 each tree of the 149 plots was examined for Nectria
canker. The percentage infection rates per plot are shown in the left panel of
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Fig. 2. Estimated terms describing the dependence of number of infected trees per

plot on distance, x and y. Estimates (solid) and 95% Bayesian confidence intervals
(dashed), with covariate values as a rug plot along the bottom of the plot are shown.

Figure 1. To investigate the spread of the disease from the infected shelter
wood equidistance lines (dist) were drawn around the diseased shelterwood
with radius groups 20, 40, 60 and 80m. In addition wind dispersal zones (wdz)
were calculated according to the pattern of a wind rose of the prevailing wind
direction, as outlined in Metzler et al (2002). There are four wind dispersal
zones of which zone 1 is the nearest to the infected shelterwood. For inves-
tigating the effect of the wind dispersal zones we fit a logistic model to the
probability of infection on plot 7.

log <1 pip ) = [o + wdz; + s1(dist;) + sa(x;) + s3(y;)

— P

where (3, is the intercept and wdz is a factor.
Using the gam() function from the mgcv package to fit this model yields:

> fit<- gam(ratio~as.factor(wdz)+s(distance,4)+s(x)+s(y),
family=binomial, weights=buche$N,data=buche)

> fit

Family: binomial

Link function: logit
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Fig. 3. The left hand plot shows the directional semi-variogram of residuals from the
gam fitted to number of infected trees, while the right hand plot is the equivalent
on the raw percentage of infected trees

Formula:
ratio ~ as.factor(wdz) + s(distance, 4) + s(x) + s(y)

Estimated degrees of freedom:
2.893629 7.99685 7.435384  total = 22.32586

GCV score: 1.177649

Figure 2 shows the fitted smooth functions and Bayesian confidence intervals.
It appears that the x coordinate does not have a “significant” effect as the
confidence interval includes zero at most values of x. Dropping z also yields a
lower GCV score:

Family: binomial
Link function: logit

Formula:
ratio ~ as.factor(wdz) + s(distance, 4) + s(y)

Estimated degrees of freedom:
2.083032 7.75965  total = 13.84268

GCV score: 1.103182
We investigate the model fit using the semi-variogram function provided in

the R package geoR (Ribiero & Diggle, 2000). The right hand panel of Fig-
ure 1 shows the residuals in space. The left panel of figure 3 shows that in all
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Fig. 4. Odds-ratios: odds of infection among trees in wind dispersal zone 1 (wdz1)
divided by odds of infection among trees in wdz2 to wdz4 (o) with 95% confidence
limits.

directions the empirical semi-variogram is very close to a horizontal line up to
a distance of 200m. Thus we have suceeded fairly well in eliminating spatial
autocorrelation compared to the autocorrelation and trend present in the re-
sponse variable (right hand panel of figure 3), where the semi-variograms at
45° and 135° have a steep slope.

Using the estimated coefficients for wind dispersal zones we calculated odds-
ratios as shown with 95% confidence intervals in Figure 4. This shows that for
wdz1 there is a higher chance of infection than in the other zones: The odds
of infection in wdz1 is about 1.7 times higher than in wdz2, 2.9 times higher
than in wdz3 and 3.9 times higher than in wdz4. The difference in odds of the
last is significantly different to the odds of wdz1 vs wdz2.

5 Modelling Fish Eggs

As a second (and more concise) example we consider a Fisheries problem.

The western stock of Atlantic mackerel (Scomer scombrus) is an important
fishery resource in European waters and the actual biomass of the stock is
estimated every three years for management purposes. The Daily Egg Pro-
duction Method (DEPM) is one possible method to estimate the biomass. It
estimates the total fish biomass indirectly from an estimate of the peak daily
egg production using egg plankton survey data from the middle of the spawn-
ing season. For the purpose of this example we concentrate on modelling egg
production, but for further details on the DEPM see Gunderson (1993).
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Fig. 5. Sample locations of mackerel egg density data, with symbol sizes proportional
to the raw density estimate at the sampling location. The piecewise rectangular
boundary is the boundary of the survey area.

When modelling egg production or density the random variable is the observed
egg count, obtained by net hauls taken from below the lower depth limit for
mackerel eggs (or the sea bed if higher) to the sea surface. In areas of high
density only subsamples of eggs are counted. Egg counts are multiplied by a
conversion factor involving a multiplication factor for the subsample, sampled
water volume, egg mortality, the depth of the water column sampled etc.
Although we are interested in egg density, egg count would seem natural to
use as the response variable in the model. Nevertheless we prefer to model the
data at the density level, due to the fact that we are dealing with subsamples
the size of which depend on density.

Hence the response in the fitted model is mackerel egg density per m? of sea
surface per day (see Figure 5). Possible candidate covariates for modelling the
density are longitude, latitude, sea bed depth, sea surface temperature and
the distance from the 200m sea bed contour.

Borchers et al (1997) modelled these data using backfit GAMs constructed
using univariate smoothing splines under the assumption that the effects of the
different explanatory variables are additive. The approach taken by Borchers
et al for model selection was to consider only splines with either 4 degrees of
freedom (df=4) or one degree of freedom (df=1) for covariates and their first
order interactions (defined as a the product of the covariates). The covariates
first entered the model with df=4, and backward stepwise elimination was used
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Fig. 6. Estimated terms describing the dependence of mackerel egg densities on
longitude, latitude, sea bed depth and distance from the 200m sea bed contour.
For both univariate smooths the plot shows estimates (solid) and 95% Bayesian
confidence intervals (dashed), with covariate values as a rug plot along the bottom
of the plot. The bivariate smooth is shown as a contour plot over the survey area with
part of the European coastline superimposed for orientation and sample locations
marked.

to select a set of covariates. Selection between smooths with df=/ and smooths
with df=1 was performed in the next step. Finally, first order interactions of
the previously selected covariates were first entered with df=/, again using
backwards stepwise elimination for model selection, and selection between
smooths with df=/ and df=1 was performed in the next step. Comparisons
between models were made on the basis of approximate F-tests (Hastie and
Tibshirani, 1990).

Besides the fact that the above procedure is ad hoc, the assumption of having
additive latitude and longitude effects may not be very realistic. A priori
it is odd to model the dependence on longitude and latitude by summing
a longitude and a latitude effect: Mackerel are unlikely to know which co-
ordinate system we happen to have chosen. Hence we modelled the dependence
on spatial location as an isotropic bivariate function of longitude and latitude.
We use GCV for controlling the amount of smoothing as describe above. The
model was fitted using the gam() function in R package mgcv, with the call:

> mack.fit<-gam(egg.dens”s(lon,lat,40)+s(b.depth)+s(c.dist)+s(temp.surf))
Inspection of residual plots clearly indicated a mean variance problem, which
can be largely eliminated by raising the egg density data to the power 0.4.
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Fig. 7. Image plot of the GAM egg densities across the survey area for the egg data
presented in figure 1.

Following the term selection procedure given in section 3.3 it was apparent
that sea surface temperature should be removed from the model. Doing this
and refitting:

> mack.fit<-gam(egg.dens~0.4"s(lon,lat,40)+s(b.depth)+s(c.dist))
yielded the model term estimates shown in figure 2 and the fitted model egg
densities shown in figure 3. This model yields a GCV score of 3.6. For com-
parison we also fitted an additive model with the same terms as in Borchers
et al (1997), but allowing mgecv to estimate the smoothing parameters

> mack.fitadd<-gam(egg.dens~0.4"s(lon)+s(lat)+s(b.depth)+s(c.dist))
yields a GCV score of 3.75. Going one step back and fixing the degrees of free-
dom to 4 increases the GCV score to 3.85.

6 Discussion

In this paper we have provided an introduction to the theory required for esti-
mation, model selection and inference with GAMs constructed using penalized
regression splines, and illustrated this theory with two ecological examples.
The given theory provides the necessary background to understand the GAM
modelling software provided with the R language and environment in package
mgcv. But note that mgev actually uses a different (although exactly equiva-
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lent) basis representation to the one given here, and also allows the use of the
more sophisticated bases covered in Wood (2002).

As compared to GAMs as implemented in Splus the approach given here has
advantages, and disadvantages. The advantages are that model selection is
somewhat more convenient and a little less ad hoc, and that inference requires
fewer approximations. If the user is happy to use GCV for model selection than
the ability to select models automatically and rapidly using this criterion is
an advantage, especially in an interactive modelling context, and this might
be viewed as an improvement on the backfit GAMs. On the other hand, the
disadvantage of the approach is that the class of smoothers usable with the
methods is much smaller. For example the approach given here can not be
used with LOESS. On the other hand the methods discussed in this paper
can be employed with any smoothers that can be represented by a set of basis
functions and a wiggliness penalty (e.g. the P-splines of Eilers and Marx),
so that a very rich family of models could be produced by employing these
methods in conjunction with the “pseudosplines” of Hastie (1996).

As compared with the generalised smoothing spline methods of Wahba and
co-workers (as implemented, for example, in the R package gss), the methods
presented here have one major advantage: computational efficiency. On the
other hand they suffer the disadvantage of only offering approximations to
the GSS models. Relative to the approach to GAMs described in Marx and
Eilers (1998) the methods described here have the advantage of increased
model selection efficiency, the ability to incorporate multidimensional smooths
in a straightforward way and the fact that our penalties are perhaps a little
easier to interpret. The relative disadvantages of the approach given here are
that the enhanced computational efficiency is not easily extended to other
model selection criteria and that the methods are more difficult to implement,
although this latter issue is unlikely to be of concern to users.

Perhaps the most interesting open issue for the models discussed here relates
to multi-dimensional smooths. Specifically how should the relative scaling of
covariates be performed? This is the problem of anisotropic smoothing: for ex-
ample if we would like to model some response variable as a smooth function
of distance along a transect, d and time ¢, then we need to decide how to scale
distance against time, in order that the smoothness of the function is appro-
priate in time and space. In principle this is a non-linear multiple smoothing
parameter estimation problem that can be approached using methods dis-
cussed in Wood (2000), but practical implementation of such an approach
within a GAM framework is some way off yet.
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