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Additive smooth models

Consider a univariate response y and corresponding
predictors x1, x2 ,x3 . . . (possibly vectors).

An additive smooth model has a structure like

yi = Xiβ + f1(x1i) + f2(x2i) + · · · + ǫi

— the fj are smooth functions and Xiβ is the linear
predictor for any strictly parametric model components.

The ǫi are 0 mean r.v.s, with variance σ2. Normality is
assumed if CIs or H0 tests are required.

The additive smooth structure offers a nice balance of
flexibility and structure.
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ASM representation

How can the fj be estimated? Use a basis expansion
for each smooth term. The model becomes

yi = Xiβ +

K1∑

k=1

β∗

1kb1k(x1i) +

K2∑

k=1

β∗

2kb2k(x2i) + · · · + ǫi

Ignorance of parametric form of fj OK, if Kj large
enough and basis functions, bjk(x), chosen carefully.

Only unknowns are now parameters. Absorbing
bjk(xji) into Xi and β∗

jk into β, the model becomes

y = Xβ + ǫ (a linear model!)
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Not over-fitting

To avoid model mis-specification bias we made Kjs
fairly large (not too large or computational efficiency is
lost). ⇒ There is a danger of overfitting.

To avoid overfitting penalize lack of smoothness. e.g.
estimate β by minimizing not just RSS, but

S(β) = RSS +
∑

j

λj × [wiggliness of fj]

Smoothing parameters λj, assumed known for
moment, while e.g. [wiggliness of fj] =

∫
f ′′

j (x)2dx.

Additive Smooth Models – p. 4/22



Model estimation

Given basis functions, most wiggliness measures
(including

∫
f ′′

j (x)2dx) can be written as βTSjβ where
Sj contains known coefficients.

fj only identifiable to within an additive constant ⇒
impose sum-to-zero constraints, and absorb into basis.

Fitting objective becomes, minimize

S(β) = ‖y − Xβ‖2 +
∑

λjβ
TSjβ w.r.t. β.

Resulting estimate is β̂ = By where
B = (XTX +

∑
j Sj)

−1XT (not for computational use!)
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Inference based on β̂

Covariance matrix of β̂ easily derived from that of y

Vβ̂ = BBTσ2.

If we also assume normality (i.e. y ∼ N(0, Iσ2)) then

β̂ ∼ N(E(β̂),BBTσ2) (1)

But E(β̂) 6= β unless β = 0 (strictly in null space of
penalty). . . so (1) sometimes useful for hypothesis
testing, but probably not otherwise.
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Bayesian Inference

We penalize wiggliness because we think that a
smooth truth is ‘more probable’ than a wiggly one.

So let ‘model wiggliness’ have a negative exponential
prior distribution (Wahba, ’83; Silverman ’85),

π(β) ∝ e−
1

2

P

λjβTSjβ

The model says y|β ∼ N(Xβ, Iσ2), so Bayes rule

⇒ β|y ∼ N(β̂, (XTX +
∑

j

Sj)
−1σ2)

Credible intervals for any function of β follow.
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Inference based on fit

There’s always an unpenalized model with fitted value
behaviour that is ‘close’ to a penalized model with
given smoothing parameters.

Hence, conditional on smoothing parameters, the
distributions of F-ratio statistics for comparison of
penalized models should be approximately the
distribution of the equivalent un-penalized analogues.

So F-ratio testing can be used for model comparison,
provided we can work out the approximate ‘equivalent
degrees of freedom’ of the penalized models.
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Degrees of freedom

The point of penalizing the fit is to reduce the model’s
freedom to vary. How many degrees of freedom does
the penalized fit have?

Without penalization, β̃ = (XTX)−1XTy.

With penalization, β̂ = (XTX +
∑

j λjSj)
−1XTy.

So β̂ = Fβ̃ where F = (XTX +
∑

j λjSj)
−1XTX.

Fii = ∂β̂i/∂β̃i is a measure of the DoF of the ith

parameter, while tr(F) ≡ the whole model DoF.

σ̂2 = ‖y − Xβ̂‖2/(n − tr(F)).
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Smoothness selection

So far everything is conditional on λ: how should λ
values be chosen?

There are two main choices:
1. Use prediction error criteria, such as cross

validation, GCV, AIC, BIC etc.
2. Use the Bayes smoothing model to decompose

each smooth into fixed effect and random effect
components: the model can then be estimated by
maximum likelihood or REML, with λ treated as
variance parameters.

mgcv::gam does 1, while mgcv::gamm does 2.
Concentrate on 1, here.
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Ordinary cross validation

Leave one out cross validation seeks to minimize
estimated mean square prediction error to select λ.

minimize Vo(λ) =
1

n

n∑

i=1

(yi − µ̂
[−i]
i )2 w.r.t. λ

where µ̂
[−i]
i is predicted yi from fit to all data except yi.

If A = X(XTX +
∑

j λjSj)
−1XT, so µ̂ = Ay, then

Vg(λ) =
1

n

n∑

i=1

(yi − µ̂i)
2

(1 − Aii)2
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OCV not invariant

For any ⊥ matrix Q, fitting objective

SQ(β) = ‖Q(y − Xβ)‖2 +
∑

λjβ
TSjβ

yields identical inferences about β as S(β).

But SQ and S yield different OCV functions!
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Generalized cross validation

If we choose Q so that each rotated observation
counts equally in the OCV function, then we get GCV
(e.g. Craven and Wahba, ’79).

The resulting GCV function,

Vg(λ) =
n‖y − Xβ̂‖2

[n − tr(A)]2

is invariant. Note that tr(A) = tr(F).

Main problem solved by mgcv::gam is to minimize
functions like Vg efficiently w.r.t. λ.
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Other λ selection criteria

Can increase ‘cost’ per DoF in GCV function

Vg(λ) =
n‖y − Xβ̂‖2

[n − γtr(F)]2
γ ≥ 1

If σ2 is known, can estimate E(‖µ − Xβ̂‖2)/σ2 by

Vu(λ) = ‖y − Xβ̂‖2/σ2 + 2tr(F)

which is basically Mallows’ statistic, Craven and
Wahba’s UBRE or AIC. The penalty per DoF can be
increased to give, e.g. BIC.

Additive Smooth Models – p. 14/22



Generalized Additive Models

The model is generalized to

g{E(yi)} = Xiβ + f1(x1i) + f2(x2i) + · · ·

g is a known ‘link function’.

yi are independent and either
1. assume yi follow an exponential family distribution

(use maximum likelihood), or
2. assume only var(yi) = φV (E(yi)), where V is a

known function (use quasi-likelihood).
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GAM representation

As for ASM, basis expansion allows model to be
written as a GLM g{E(yi)} = Xiβ.

Fit is measured by log-likelihood (l(β) or equivalently
l(µ)), or more conventiently Deviance

D(µ) = 2{l(y) − l(µ)}

which takes on the role of the RSS.

Again penalization avoids overfitting. β̂

minimizes D(β) +
∑

λjβ
TSjβ w.r.t. β
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GAM estimation

Penalized MLE is performed by Penalized IRLS.

Let β̂ and µ̂ be current best estimates. Define

zi = g′(µ̂i)(yi − µ̂i) + Xiβ̂ and Wii = {V (µ̂i)g
′(µ̂i)

2}−1

The β minimizing

‖
√

W(z − Xβ)‖2 +
∑

λjβ
TSjβ

is (almost always) an improved β̂ estimate.

Iteratively repeating the steps finds the penalized
likelihood maximizing estimates.
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GAM Inference

The ASM results have large sample equivalents for
GAMs.

If B = (XTWX +
∑

λjSj)
−1XTW then

β̂∼̇N(E(β̂),BBTφ) [frequentist].

β∼̇N(β̂, (XTWX +
∑

λjSj)
−1φ) [Bayesian].

Approximate GLRT and F-ratio tests are possible, as if
using a GLM, provided the effective degrees of
freedom (tr(F)) is used as the model DoF.
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Smoothness selection

There are two approaches.

Performance iteration (Gu ’92). Select λ by
GCV/UBRE applied to the working linear model at
each P-IRLS step.
+ Fast. - Does not always converge.

Outer iteration. Use Deviance, D(β̂), in place of the
RSS, ‖y − Xβ̂‖2, in the GCV or UBRE score
definitions, and optimize directly w.r.t. λ.
+ Good convergence. - Slower.
Note: UBRE becomes generalized AIC here.

Additive Smooth Models – p. 19/22



Prediction

Because model has a parametric representation as a
GLM, prediction from a fitted model is just like
prediction from a GLM.

Given new covariate values a ‘prediction matrix’, Xp, is
created, exactly as if producing a new model matrix,
except that any covariate dependent details of basis
function form depend on the original fit covariates.

The predicted values are then µp
i = X

p
i β̂.

By simulating from the posterior of β, samples from the
posterior of any function of β can be obtained!
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Open problems

All the distributional results are conditional on the
smoothing parameters.

This reduces the reliability of p-values, and causes
problems with the component wise performance of
credible intervals/confidence intervals.

Work on smoothing parameter unconditional
confidence intervals is promising but incomplete (see
Wood 2006 GAMs: An Intro with R).
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Other approaches

There are several R packages providing GAMs or similar
models. See the package docs for full references.

gam provides Trevor Hasties original backfit GAMs.

gss provides full smoothing spline based models
(including computationally efficient versions).

assist is an alternative for full spline smoothing.

gamlss moves beyond smooth models of the mean of
a response to model variance skew and kurtosis as
smooth functions of covariates.

vgam looks at multivariate extensions and much more.
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