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Overview

A major part of additive smooth model specification is
the choice of component smooth functions.

For smooths of one variable there is a range of
basis-penalty smoothers to choose from, but
differences in performance are typically small.

For smooths of several variables there is an important
choice to make:
1. Thin plate spline like smooths are isotropic, and

offer rotational invariance.
2. Tensor product smooths are invariant to

independent linear rescaling of covariates.
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Penalized regression splines

Represent each smooth using a low rank spline like
basis. . .

fj(x) =
∑

k

βjkbjk(x)

where bjk(x) are known basis functions and the βjks
are coefficients to be estimated.

Associate a wiggliness penalty with each smooth. e.g.
∫

f ′′

j (x)2dx = βT

j Sjβj

Sj is a matrix of known coefficients derived from bjk(x).
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Simple regression splines

Get a spline basis and penalty for a ‘representative’
subset of the real data.

Use this basis to model the real data.

This is very cheap, but somewhat ad hoc.

Easily extended to produce ‘cyclic’ smooth functions.
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Simple regression splines
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P-splines (Eilers & Marx)

Use B-spline basis functions.

Apply simple difference penalties directly to the
coefficients multiplying the basis functions.

Flexible and easy to implement.
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Thin plate splines

Thin plate splines are functions minimizing (isotropic)
objectives like

∑
(yi − f(xi))

2 + λ

∫
f 2

xxdx

∑
(yi − f(xi, zi))

2 + λ

∫
f 2

xx + 2f 2

xz + f 2

zzdxdz

Solution is of form f̂(·) =
∑n

i=1
δiηi(·) +

∑M

j=1
αjφj(·)

where α and δ minimize ‖y − Eδ − Tα‖2 + λδTEδ,
TTδ = 0; ηi and φj are known and give E and T.
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Thin plate regression splines

Thin plate splines are computationally expensive
[O(n3)].

By replacing E by its rank k truncated
eigen-decomposition we can get an ‘optimal’ (Wood,
2003, JRSSB) rank k approximation to a thin plate
spline that is much cheaper to work with.

Lanczos iteration gives this truncated decomposition
relatively cheaply.

General method for efficient isotropic smoothing. No
need to choose ‘knots’!
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TPRS 1D example
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TPRS limitations

If covariates are not naturally on the same scale, then
isotropic smoothness may be inappropriate.

Thin plate (regression) splines are sensitive to arbitrary
independent linear rescaling of covariates.
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Tensor product smooths

Idea: combine bases and penalties for representing
smooth functions fx(x) and fz(z) to create a basis and
penalties for f(x, z).

Suppose fx(x) =
∑

i αiai(x) and fz(z) =
∑

j βjbj(z).

Can let fx vary smoothly with z by letting its
parameters, αi, vary smoothly with z, using the basis
for fz. i.e. let αi(z) =

∑
j βjibj(z) so that

f(x, z) =
∑

i

∑
j

βijai(x)bj(z)

Construction generalizes and is symmetric.
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Tensor product penalties

Can achieve scale invariance by measuring wiggliness
w.r.t. each axis separately.

Use wiggliness measure for marginal smooth fx to
measure average wiggliness of a set of curves in the x

direction over f(x, z). Do same for wiggliness in z

using wiggliness measure for fz.

End up with one penalty per dimension: each
quadratic in the parameters of the smooth, and
generated automatically from the marginal penalties.
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Tensor smooth illustration

xz
f(x,z)
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Scale invariance!
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Smooths and gam

Terms like s(x) include 1D and TPRS smooths in a gam.
In full s(x,k=10,fx=FALSE,bs="tp",m=2,by=NA)

The first arguments specify the covariates (just x here).

k is the basis dimension (auto-initializes if left out).

fx should be set to TRUE to leave the smooth unpenalized.

bs specifies the smoothing basis, e.g. "cr" (cubic regression),
"cc" (cyclic) or "tp" (default TPRS). You can add smooth types -
see ?p.spline.

m specifies the penalty order for a TPRS.

by specifies a covariate by which whole smooth should be
multiplied — implements variable coefficient models (geographic
regression) and conditioning on factors.
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Tensor smooths and gam

Tensor product smooths are generated by te terms in
the gam formula.

Tensor products of any smooth available to s terms
can be produced (including user defined smooths).

Some examples are helpful. . .
te(x,z); a tensor product smooth of x and z,
using default "cr" marginal bases each of default
dimension k=5.
te(x,z,v,d=c(2,1),k=c(30,6),bs=c("tp","cc"))

a tensor product of a 2 covariate "tp" spline of
basis dimension k=30 and a cyclic spline with k=6.
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Choosing k

The basis dimension, k, for a term, is not critical
provided (i) it is not so small as to force the model to
over-simplify and (ii) it is not so large that computation
becomes unbearably slow.

It is the smoothing parameters that control the actual
DoF for a term.

k can be checked informally by extracting deviance
residuals from a fit, and then fitting just the suspect
smooth to those residuals, with k increased
substantially (using penalized least squares and GCV).
If the original fit missed substantial pattern, you will
pick it up.
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