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Additive smooth models

Consider a univariate response ; and corresponding
predictors =, r2 ,x3 ... (possibly vectors).

An additive smooth model has a structure like
= XiB + fi(z1) + fowes) + - + &

— the f; are smooth functions and X;/3 is the linear
predictor for any strictly parametric model components.

The ¢; are 0 mean r.v.s, with variance ¢2. Normality is
assumed if Cls or H,, tests are required.

The additive smooth structure offers a nice balance of
flexibility and structure.

Additive Smooth Models — p. 2/22



ASM representation

How can the f,; be estimated? Use a basis expansion
for each smooth term. The model becomes

Kl K2
= X8 + Z G101k (214) + Z 35, 0ok (20;) + - - - + €
k=1 k=1

Ignorance of parametric form of f; OK, if K large
enough and basis functions, b,;(z), chosen carefully.

Only unknowns are now parameters. Absorbing
bir(x;;) Into X; and ﬁ;‘k Into 3, the model becomes

= X3 + € (a linear model!)
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Not over-fitting

To avoid model mis-specification bias we made K;s

fairly large (not too large or computational efficiency is
lost). = There is a danger of overfitting.

To avoid overfitting penalize lack of smoothness. e.g.
estimate 3 by minimizing not just RSS, but

S(B) = RSS + Z Aj X |wiggliness of f;]

J

Smoothing parameters )\;, assumed known for
moment, while e.g. [wiggliness of f;] = [ f/(xz)*dx.
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Model estimation

Given basis functions, most wiggliness measures
(including [ f1(x)?dx) can be written as B'S,3 where
S, contains known coefficients.

/; only identifiable to within an additive constant =
Impose sum-to-zero constraints, and absorb into basis.

Fitting objective becomes, minimize

SB) =y —=XBIP+ > NB'S;8 w.rt. .

Resulting estimate is 3 = By where
B = (X"X+5.5;)"'X" (not for computational use!)
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Inference based on (3

Covariance matrix of 3 easily derived from that of
V;=BB'0”.

If we also assume normality (i.e. y ~ N(0,Ic?)) then

AN

B ~ N(E(3),BBTo?) (1)

A

But E(3) # 3 unless B = 0 (strictly in null space of

penalty)...so (1) sometimes useful for hypothesis
testing, but probably not otherwise.
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Bayesian Inference

We penalize wiggliness because we think that a
smooth truth is ‘more probable’ than a wiggly one.

So let ‘model wiggliness’ have a negative exponential
prior distribution (Wahba, '83; Silverman ’'85),

7(8) o AN
The model says v|3 ~ N(X3,1c%), so Bayes rule

= Bly ~ N(B,(XTX+ ) _S;) 0%

Credible intervals for any function of 3 follow.
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Inference based on fit

There’s always an unpenalized model with fitted value
behaviour that is ‘close’ to a penalized model with
given smoothing parameters.

Hence, conditional on smoothing parameters, the
distributions of F-ratio statistics for comparison of
penalized models should be approximately the
distribution of the equivalent un-penalized analogues.

So F-ratio testing can be used for model comparison,
provided we can work out the approximate ‘equivalent
degrees of freedom’ of the penalized models.
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Degrees of freedom

The point of penalizing the fit is to reduce the model’s
freedom to vary. How many degrees of freedom does
the penalized fit have?

Without penalization, 3 = (X"X)"'XTy.
With penalization, 8 = (XX + 3=, A;S;) !XTy,
So 3 =FBwhere F = (XX + 3. ;S;) ' XX,

Fi = 0@/6@ is a measure of the DoF of the ;"
parameter, while tr(F) = the whole model DoF.

6> = ||y = XB[*/(n — tr(F)).

Additive Smooth Models — p. 9/22



Smoothness selection

So far everything is conditional on A: how should A
values be chosen?

There are two main choices:

1. Use prediction error criteria, such as cross
validation, GCV, AIC, BIC etc.

2. Use the Bayes smoothing model to decompose
each smooth into fixed effect and random effect
components: the model can then be estimated by

maximum likelihood or REML, with A treated as
variance parameters.

ngcv: . gamdoes 1, while ngcv: : ganmdoes 2.
Concentrate on 1, here.
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Ordinary cross validation

Leave one out cross validation seeks to minimize
estimated mean square prediction error to select .

minimize V,(A) = — Z(yz — /AL?[;_i])2 w.r.t. A

1=1

where ﬂ[_i] IS predicted y; from fit to all data except ;.

1

If A = X(XTX —+ Zj )\ij)_le, SO /l — Ay, then
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OCV not Iinvariant

For any 1 matrix Q, fitting objective

So(B) =1Qly —XB)IP+ > X\8'S;8

yields identical inferences about 3 as S(3).

But Sp and S yield different OCV functions!

ocv

5 6 7 8 9 10 11

0.0 0.2 0.4 0.6 0.8 1.0 5 10 15 20

X edf
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Generalized cross validation

If we choose Q) so that each rotated observation
counts equally in the OCV function, then we get GCV

(e.g. Craven and Wahba, '79).
The resulting GCV function,

nlly — X
n —tr(A)]?

Vo(A) =

IS invariant. Note that tr(A) = tr(F).

Main problem solved by ngcv: : gamis to minimize
functions like V, efficiently w.r.t. A.
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Other )\ selection criteria

Can increase ‘cost’ per DoF in GCV function

n|ly — X8|
n—EpE 7

Vo(A) =

If o2 is known, can estimate E(||u — X3||?) /02 by

Va(A) = |ly = XB|?/0® + 2tr(F)

which is basically Mallows’ statistic, Craven and
Wahba’'s UBRE or AIC. The penalty per DoF can be
Increased to give, e.qg. BIC.
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Generalized Additive Models

The model is generalized to

{E)} = XiB + f1(z15) + folwa) + - -

g 1s a known ‘link function’.

y; are independent and either

1. assume y; follow an exponential family distribution
(use maximum likelihood), or

2. assume only var(y;) = ¢V (E(y;)), where V' is a
known function (use quasi-likelihood).
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GAM representation

As for ASM, basis expansion allows model to be
written as a GLM ¢g{E(y,)} = X;[.

Fit is measured by log-likelihood (/(3) or equivalently
[(1)), or more conventiently Deviance

D(p) = 2{l(y) — l(p)}
which takes on the role of the RSS.
Again penalization avoids overfitting. 3

minimizes D(3) + Z \;B3'S;Bw.rt. 3
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GAM estimation

Penalized MLE is performed by Penalized IRLS.

Let 3 and /i be current best estimates. Define
zi = g (1) (ys — fla) + XzB and Wy = {V ()¢ (1)}~
The B8 minimizing

IVW(z - XB)|>+ > NB'S;B

is (almost always) an improved 3 estimate.

lteratively repeating the steps finds the penalized
likelihood maximizing estimates.
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GAM Inference

The ASM results have large sample equivalents for
GAMSs.

If B=(X"WX+ > \;S;)"'X"™W then
B~N(E(83), BB' ) [frequentist].
BN (B, (XTWX + 5 \,S,)~1¢) [Bayesian].

Approximate GLRT and F-ratio tests are possible, as if
using a GLM, provided the effective degrees of
freedom (tr(F)) is used as the model DoF.
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Smoothness selection

There are two approaches.

Performance iteration (Gu '92). Select X\ by
GCV/UBRE applied to the working linear model at
each P-IRLS step.

Fast. - Does not always converge.

A

Outer iteration. Use Deviance, D(3), in place of the

RSS, |ly — X%, in the GCV or UBRE score

definitions, and optimize directly w.r.t. A.
Good convergence. - Slower.

Note: UBRE becomes generalized AIC here.
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Prediction

Because model has a parametric representation as a
GLM, prediction from a fitted model is just like
prediction from a GLM.

Given new covariate values a ‘prediction matrix’, X?, Is
created, exactly as if producing a new model matrix,
except that any covariate dependent details of basis
function form depend on the original fit covariates.

The predicted values are then ;2 = X?3.

By simulating from the posterior of 3, samples from the
posterior of any function of 3 can be obtained!
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Open problems

All the distributional results are conditional on the
smoothing parameters.

This reduces the reliablility of p-values, and causes
problems with the component wise performance of
credible intervals/confidence intervals.

Work on smoothing parameter unconditional
confidence intervals is promising but incomplete (see
Wood 2006 GAMs: An Intro with R).
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Other approaches

There are several R packages providing GAMs or similar
models. See the package docs for full references.

gamprovides Trevor Hasties original backfit GAMs.

gss provides full smoothing spline based models
(including computationally efficient versions).

assi st iIs an alternative for full spline smoothing.

ganl ss moves beyond smooth models of the mean of
a response to model variance skew and kurtosis as
smooth functions of covariates.

vgamlooks at multivariate extensions and much more.
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