Smoothing and basis expansions

Simon Wood



Penalizing a different sort of complexity

>

So far we have considered the case of (generalized) linear
models where we need to penalize the complexity of having too
many predictors of unknown importance.

For the most part we approached this task prioritizing predictive
performance, therefore selecting the penalty parameter for
optimal predictive performance in (cross) validation.

A different sort of model complexity arises when we are unsure
of the form of the relationship between a predictor and a
response. e.g. for the model

Vi :f(xi) + € € %N(O,O’Z)

should the unknown function, f, be smooth or wiggly?

And is prediction error the only way to decide?



A simple example

» Here are some x — y data with a noisy non-linear relationship

» A model along the lines of ‘y is some smooth function of x
observed with noise’ seems appropriate, but how smooth or
complex a function is not clear.



Bases and smoothness

> Let’s look further at the model
Vi :f(x,') +€ € lfl\:iN(O, 0'2)

where f is an unknown ‘smooth’ function.

P A practical way forward is to introduce a basis expansion
)4
fx) =" Bibi(x)
j=1

where the basis functions, bj(x) are chosen to have convenient
properties and the 3; will have to be estimated.

> We also need to define ‘smooth’: e.g. a small value of

[ 7w



Basis penalty smoothing

» To avoid bias from an overly restrictive model, we choose p to be
moderately large.

» But large p risks high uncertainty in our inference about f.

P As in the penalized linear model case, there is a bias-variance
trade-off.

» To control the trade-off we can use penalized estimation:
B = argmin |y - XBIP + X [ 1'%
B

where X;; = bj(x;) and A > 0 is a smoothing (regularization)
parameter.



The penalty is quadratic in 3

> f(x) =220, Bibj(x), so it follows that f(x) = 37 B! (x).
> Defining vector d(x) where d;(x) = b/ (x) then f”(x) = B7d(x).
» In consequence

[riwrac= [ grawacy e - g'sp

where S;; = [ d;(x)d;(x)dx.*
» For some bases, S;; can be computed exactly. e.g. B-splines.

» So our fitting problem is now the L, penalized
8 = argmin [}y — X8> + \3'SB.
B

P> Let’s see the basis-penalty smoother in action ...

“this works for other orders of derivative in the penalty too.



Penalized B-spline basis smoothing as A reduced
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B, \ etc.

> 3= argming ||y — XA3||> + A\3S3 has exactly the same form as
the ridge regression problem covered earlier, except that S
replaces I in the penalty.
> It follows that
1. B=(X"X+AS)"'XTy.
2. The fitted values are 1 = Ay where A = X(X'X + AS) !XT
3. As before, the ordinary cross validation criterion is

n

ocy = Ly -y = Ly b

n
i=1 i=1
P> So we can estimate A by OCV or the weight averaged version

nlly — pl?

Gev = {n — trace(A)}?




Cross validating for A
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The cross validated fit
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The Bayesian perspective

P> As with ridge regression, we can view the smoothing penalty as
induced by a prior 3 ~ N(0,S~02/)\)

» The prior here is an improper Gaussian, as the prior precision
matrix, SA/ o2, is not full rank"

» Notice also that 7(3) x exp{—AB"SB/(20%)} — an exponential
prior on wiggliness of f.

» The posterior follows as before, but with S in place of I
Bly ~ N(B. (XX +18)"'o?)

» Using this with the cross validated )\ is a sort of Empirical Bayes
method. e.g. we can immediately obtain credible intervals for f.

'S is rank deficient by the dimension of the space of functions it does not
penalize. e.g. 2 for the cubic spline penalty.



95% Bayesian Credible Interval

> If f(x;) = X"@ then var{f (x;)} = X" (X'X 4+ AS)'%02, 50 ...
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Estimating A\ from the marginal likelihood

» Formulation in terms of Bayesian smoothing priors raises the
possibility of taking a fully Bayesian approach to inference about
A, or of estimating A to maximise the marginal likelihood.

» Here we will concentrate on maximising the marginal likelihood

r(y1A) = / =(y|8)7(BIN)dB

> At first sight this is not as intuitive as the cross validation
approaches to A choice, but actually it does something quite
intuitive. ..



ML )\ estimation is intuitive

» Look at the marginal likelihood expression again
m(y|A) = [ w(y|B)7(B|\)dB — it is the average likelihood of
random draws from the prior.

> So by maximizing it we choose A to maximise the average
likelihood of draws from the prior.
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» In each panel the curves are randomly drawn from 7(3|\) (but
centred) and the green ones have likelihood above a threshold.



ML computation

» Rather than integrating to find 7w (y|\) we can use the identity
m(yA) = w(y18)(BIN) /7 (Bl V),

ie. logm(y|A) = log w(y|B) + log m(B|A) — log w(Bly, \).
» All the 7(-) are Gaussian, and plugging them in, in turn, yields*

2log m(y|A) = +log |8/

—log |X"X /0% + A\S/0?| — nlog(2mo?)

|y —XB8|*+ 2888
02

— note the additional indirect dependence on A via B

» log 7(y|A) can be (numerically) optimized w.r.t. A and o to
estimate these. It is also sometimes referred to as REML.

#|B| is the product of the positive eigenvalues of B.



ML versus Cross Validation

» The marginal likelihood typically has a more pronounced
optimum than cross validation criteria, and less chance of

developing multiple optima, as these simulations show. ..
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» In consequence it is less prone to occasional severe
undersmoothing.



Effective degrees of Freedom

» To optimize ), differentiate 2 log 7(y|A\) w.r.t. A and set to zero®
—B7SB/c* +tr(STS/N) — tr{ (XX + AS)~!S/0?} = 0

» To optimize o2, differentiate 2 log 7(y|\) w.r.t. 0% and set to
zero. Noting the preceding equality this yields

ly — XB|? /o + r{(X'X + AS) 'X'X} —n =0

> So042 = |ly — XB|?/[n — w{(X"X 4+ AS)'X"X}] suggesting
treating tr{ (X"X + AS)~'X"X} as the Effective Degrees of
Freedom of the smooth model.

» The EDF varies smoothly from p at A = 0 to the rank deficiency
of S as A — oo. This corresponds to the previous example
smooth varying from something very wiggly to a straight line fit.

“note: the derivatives of ||y — X3||*> + A\3"S3 w.r.t. 3 are zero at 3, by definition.



Effective Degrees of Freedom and shrinkage

> Without penalization the coefficient estimates would be
B = (X'X)XTy.

> With penalization they are 8 = (XX + AS)~'XTy.

So B = (X'X + AS)"'X"Xg3.

> Hence the leading diagonal elements of (X"X + AS)~!'X™X are
0p;/03; and can be thought of as shrinkage factors.

\4

» So when we sum them up to get the EDF, the result is px the
average shrinkage factor.

> Note that tr{ (X"X + AS) "'X"X} = tr{X(X"X + AS)~'X"},
from general properties of the trace.

P For the last example smooth plotted the EDF was almost exactly
11 (but generally there is no reason for it to be integer).



Example

> If this is all a bit abstract, here is a penalized spline smoother
with marginal likelihood A estimation and 95% Bayesian
credible interval applied to separating weather from climate in
the global temperature series (from the last IPCC report) ...
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Why spline bases?
» In introducing penalized basis expansions, B-splines were
chosen for their ‘convenient properties’. Why exactly?

» To answer this imagine physically representing f by a flexible
strip (e.g. of wood) attached to the data with vertical springs.

» Now consider what happens if the stiffness of the strip is varied:

4.5

wear
3.0
1

25
I

2.0




Splines

>

>

The strip (known as a spline) adopts the position minimising the
sum of its bending energy and the energy stored in the springs.

Mathematically! that is

f= arg;nin Z{yi — )4 /f"(x)za'x (1)

i=1

Notice that the optimization is over all smooth functions — no
basis is being assumed up front.

In other words: we decide what we mean by ‘fitting the data’ and
what we mean by ‘smooth’ and seek the function optimizing a
weighted sum of lack of fit and lack of smoothness.

It turns out that the solution to (1) can be represented with an n
dimensional basis of known functions (independent of X).

there is some idealisation here: the spline deformation is assumed small, and we
use special vertical extension mathematical springs with zero energy at zero length.



Large deformations

» Obviously once we have defined the spline mathematically we
don’t need to restrict ourselves to the small deformation regime
used in formulating the spline objective. ..
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» The basis of piecewise cubic polynomials between adjacent x;s,
continuous to 2" derivative, is correct for (1) by an integration
by parts argument. But consider a more general construction.



Spline objective to basis: some background

» Consider a Hilbert space of real valued functions, f, on some
domain 7 (e.g. [0, 1]).

» It is a reproducing kernel Hilbert space, H, if evaluation is
bounded. i.e. IM s.t. |[f(¢)| < M||f]|%-

» Then the Riesz representation thm says that there is a function
R; € H st f(t) = (R, f).

» Now consider R,(u) as a function of #: R(z, u)
(R, Rs) = R(t,5)

— so R(t,s) is known as reproducing kernel of .

» Actually, to every positive definite function R(¢, s) corresponds a
unique r.k.h.s.



Smoothing and RKHS

| 2

RKHS are quite useful for constructing smooth models, to see
why consider finding f to minimize

Z{Yi —f(t)} + A / F"(1)?dr.

Let H have (f,g) = [ ¢"(t)f

Let 1 denote the RKHS of functlons for which [ f”(t)%dt =
with finite basis ¢y (1), ¢ (1), say.

Spline problem seeks f € Ho ® H to minimize

Z{)’z —f(1) }2 + )‘HPfHH

where P is the projection into .



Smoothing basis and reproducing kernels

> f(6) = iy ciRy (1) + o1 dii(r). Why?
> Suppose minimizer were f = f+ nwheren € Handn L f:

L n(t) = (Ry,n) =0.
2. ||Pfl13, = IIPfII3; + |Im||3, which is minimized when 1 = 0.

P ...obviously this argument is rather general.
» Soif Ejj = (R, R;;) and T;; = ¢;(t;) then we seek ¢ and dto
minimize
ly — Td — Ec||3 + Ac"Ec.

» RKHS approach is elegant and general, but at O(n?) cost.



Other spline basis properties

» Obviously any invertible linear combination of spline basis
functions defines a valid basis, we are free to choose.

» The B-splines used earlier are one such choice: they have good
numerical stability and compact support, meaning that they are
zero, apart from over some finite portion of the real line. This
leads to sparse X matrices, for example.

» Another important property of splines is good approximation
theoretic properties.

» Suppose we use a cubic spline basis to interpolate observations
of a smooth function g(x) spaced at most & apart on the x axis.
Then |g(x) — f(x)| = O(h*).

» Typically 2 o< n~! where n is number of observations. O(n~*) is
a rather high rate!



Reduced rank smoothing bases

» The full spline bases have dimension n. In many applications this
leads to 0(n3) computational cost. Is it really necessary?

> We could use a spline basis constructed for a size p < n set of
nicely spaced data (‘*knots’) to model the whole size n dataset'.

» In the unpenalized cubic spline basis case this entails an
approximation error/bias of O(p~*).

» The standard deviation of such a fit is the O(y/p/n) of
regression.

» So to minimize MSE asymptotically we need p o n'/°.

» In the penalized case p x n'/?

indeed statistically wasteful.

is about right. Clearly p = n is

» In practice we either choose p points to use for basis
construction, or use rank p eigen-approximations.

'which is what was done in the preceding examples!



Sum to zero constraints

>

>

v

v

Often it is useful to include a smooth function f(x) in a larger
model that already includes an intercept, a.

Identifiability problem! We can not estimate v and f(x) without
a constraint.

a = 0 doesn’t help if we want to add in another smooth function.

A better option is to constrain f(x) with a sum-to-zero constraint
S f(xi)=0=1X8=0

An obvious way to meet the right hand version is to subtract its
mean from each column of X (there are alternatives of course).
No change in f’s shape: we just shift basis functions up or down.
But it leaves the centred X rank deficient by one, as its intercept
component has been eliminated. To restore full rank, drop the
least variable column™* of the centred X (+ associated
parameter).

“the ‘least variable’ part enhances numerical stability and ensures we never leave
in a 0 column.



Multi-dimensional smooths

» The obvious way to generalize from one dimensional smoothing

to multidimensional is to base splines on a multidimensional
analogue of 1D spline penalties.

» Thin plate splines do that with an isotropic penalty:

A / f2 +2f% + f2dxdz (2D second order example)
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Different dimensions and orders of derivative are also possible



Other geometries

P ...are possible. A thin plate spline on the sphere for example.




Smooth interactions

P If the arguments of a smooth measure different types of
quantities (e.g. distance and time) then it makes no sense to treat
them isotropically as a thin plate spline does.

» We don’t know what their relative scaling should be'™.
P But scale invariant smooth interactions can be constructed by
combining 1D splines.

» The trick is to apply the usual statistical notion of an interaction
between variables, x and z, say. In particular

1. The effect of z is itself dependent on x.
2. i.e. the parameters for the z effect vary with x.

» Given basis expansions for the smooth effects f;(z) and f;(x) this
idea is easily applied to smooths.

» Simply let the coefficients of f, be smooth functions of x. ..

" doing something arbitrary like scaling to the unit square assumes we do know.



Tensor product basis construction
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Tensor product penalties

» To avoid relative scaling assumptions, we need a separate penalty
with its own smoothing parameter for each covariate direction.

» For example, sum up the spline penalties for the red curves and
the green curves separately.




Mathematical formulation of tensor product smooths

> Let b;j(z) and by;(x) be the basis functions for f; and f, with
penalty matrices S, and S,. The marginal smoothers.

» The tensor product basis construction shown above gives:
f(x> Z) = Zizjﬁijsz(Z)bxi(x)
» With double penalties
B'1®8S.3and 8'S, ® 13

» The construction generalizes to any number of marginals and
multi-dimensional marginals.

» Can start from any marginal bases & penalties (including
mixtures of types).



Smooth ANOVA

» Sometimes people like to separate a multi-dimensional smooth
into main effects and interactions. e.g.

Je(x) +£:(2) + fe(x,2)

» For identifiability we must exclude the basis for functions
fr(x) + f2(z) from the basis for fi(x, z).

» Easily done using exactly the mechanism used in parametric
statistical models: apply sum-to-zero identifiability constraints to
the marginal bases used to construct fi,(x, z).

» The constraint removes the constant function from the basis for

fx. so that its product with the basis for f, does not include a copy
of the f, basis (and vice versa).



Isotropy versus scale invariance

» Smooth fits to data. In the bottom row the x variable has been
divided by 5 before fitting. TPS is drastically affected by the
scaling and the tensor product smooth not at all.

Isotropic Thin Plate Spline Tensor Product Spline
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