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Some data. . .
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I Apparently daily respiratory deaths are ‘significantly’
negatively correlated with ozone and temperature.

I But obviously there is confounding here - we need a model.



A model. . .

I deathi ∼ Poi(µi)

log(µi) = α+ f1(ti) + f2(o3i ,tmpi) + f3(pm10i)

I The fj are smooth functions to estimate.
1. α+ f1 is the (log) background respiratory mortality rate.
2. f2 is modification by ozone and temperature (interacting).
3. f3 is the modification from particulates.

I Actually the predictors are aggregated over the 3 days
preceding death.

I Fit in R (mgcv package)

gam(death˜s(time,k=200)+te(o3,tmp)+s(pm10),
family=poisson)



Air pollution model estimates. . .
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I High ozone and temp associated with increased risk.



Some more data. . .
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I Can we predict octane
rating of fuel from near
infra-red spectrum?

I 60 octane/spectrum pairs
available (from pls
package).

I Try a ‘signal regression’ model. ki is i th spectrum, f is a
smooth function. . .

octanei =

∫
f (ν)ki(ν)dν + εi



Signal regression model fit. . .

I If each row of matrix NIR contains a spectral intensity, and
each row of nm the corresponding wavelengths, then
gam(octane˜s(nm,by=NIR)) estimates the model.

I Plots of estimated f (ν) and fitted vs. data:
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And one more dataset. . .
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I How does probability of diabetic
retinopathy relate to previous disease
duration, body mass index and %
glycosylated hemoglobin?

I Wisconsin study (see gss package).

I Model: reti ∼ Bernouilli,

logit{E(ret)} = f1(dur) + f2(bmi) + f3(gly)
+ f4(dur,bmi) + f5(dur,gly) + f6(gly,bmi)



Retinopathy model estimates

gam(ret ˜ s(dur) + s(gly) + s(bmi) + ti(dur,gly) +
ti(dur,bmi) + ti(gly,bmi), family=binomial)
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Additive smooth models: structured flexibility

I The preceding are examples of generalized additive
models (GAM).

I A GAM is a GLM, in which the linear predictor depends
linearly on unknown smooth functions of covariates. . .

yi ∼ EF (µi , φ), g(µi) = f1(x1i) + f2(x2i) + · · ·

I Hastie and Tibshirani (1990) and Wahba (1990) laid the
foundations for these models as discussed here.

I If we can work with GAMs at all we can easily generalize:

g(µi) = Aiθ +
∑

j

Lij fj(xj) + Zib

— Lij are linear functionals; A & Z are model matrices; θ
and b are parameters and Gaussian random effects.



Additive smooth models & practical computation

I Making GAMs work in practice requires at least 3 things. . .
1. A way of representing the smooth functions fj .
2. A way of estimating the fj .
3. Some means of deciding how smooth the fj should be.

I 3 is the awkward part of the enterprise, and strongly
influences 1 and 2.

I As well as point estimates we also need further inferential
tools, such as interval estimates, model selection methods,
AIC, p-values etc.

I We’d also like to go beyond univariate exponential family.
I This talk will cover these things in order.



Representing smooth functions: splines

I To motivate how to represent several smooth terms in a
model, first consider a simpler smoothing problem.

I Consider estimating the smooth function f in the model
yi = f (xi) + εi from xi , yi data using smoothing splines. . .
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I The red curve is the function minimizing∑
i

(yi − f (xi))
2 + λ

∫
f ′′(x)2dx .



Splines and the smoothing parameter

I Smoothing parameter λ controls the stiffness of the spline.
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I But the spline can be written f̂ (x) =
∑

i βibi(x), where the
basis functions bi(x) do not depend on λ.



General spline theory background

I Consider a Hilbert space of real valued functions, f , on
some domain τ (e.g. [0,1]).

I It is a reproducing kernel Hilbert space, H, if evaluation is
bounded. i.e. ∃M s.t. |f (t)| ≤ M‖f‖.

I Then the Riesz representation thm says that there is a
function Rt ∈ H s.t. f (t) = 〈Rt , f 〉.

I Now consider Rt(u) as a function of t : R(t ,u)

〈Rt ,Rs〉 = R(t , s)

— so R(t , s) is known as reproducing kernel of H.
I Actually, to every positive definite function R(t , s)

corresponds a unique r.k.h.s.



Spline smoothing problem

I RKHS are quite useful for constructing smooth models, to
see why consider finding f̂ to minimize∑

i

{yi − f (ti)}2 + λ

∫
f ′′(t)2dt .

I Let H have 〈f ,g〉 =
∫

g′′(t)f ′′(t)dt .
I Let H0 denote the RKHS of functions for which∫

f ′′(t)2dt = 0, with basis φ1(t) = 1, φ2(t) = t , say.
I Spline problem seeks f̂ ∈ H0 ⊕H to minimize∑

i

{yi − f (ti)}2 + λ‖Pf‖2.



Spline smoothing solution

I f̂ (t) =
∑n

i=1 ciRti (t) +
∑M

i=1 diφi(t) is the basis
representation of f̂ . Why?

I Suppose minimizer were f̃ = f̂ + η where η ∈ H and η ⊥ f̂ :
1. η(ti) = 〈Rti , η〉 = 0.
2. ‖Pf̃‖2 = ‖Pf̂‖2 + ‖η‖2 which is minimized when η = 0.

I . . . obviously this argument is rather general.
I So if Eij = 〈Rti ,Rtj 〉 and Tij = φj(ti) then we seek ĉ and d̂ to

minimize
‖y − Td − Ec‖22 + λcTEc.

. . . straightforward to compute (but at O(n3) cost).



Reduced rank smoothers

I Can obtain efficient reduced rank basis (and penalty) by
1. using spline basis for a ‘representative’ subset of data, or
2. using Lanczos methods to find a low order ‘eigenbasis’.

I In either case we end up representing the smoother as

f (x) =
∑

j

βjbj(x)

— basis functions, bj(x) known; coefficients β not.
I Corresponding smoothing penalty is βTSβ. S is known.
I So yi = f (xi) + εi becomes y = Xβ + ε where Xij = bj(xi)

and β̂ = argminβ‖y− Xβ‖2 + λβTSβ.
I Examples follow asymptotic justification of rank reduction.



What rank?

I Consider, f , a rank k cubic regression spline (i.e. λ = 0),
parameterized in terms of function values at evenly spaced
‘knots’.

I From basic regression theory, average sampling standard
error of f̂ is O(

√
k/n).

I From approximation theory for cubic splines, asymptotic
bias of f̂ is bounded by O(k−4).

I So if we let k = O(n1/9) we minimize the asymptotic MSE
at O(n−8/9).

I Actually in practice we would want to penalize and then
k = O(n1/5) is appropriate.

I Point is that asymptotically k � n is appropriate.



P-splines: B-spline basis & approx penalty
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Example: Thin plate splines
I One way of generalizing splines from 1D to several D is to

turn the flexible strip into a flexible sheet f̂ minimizing e.g.∑
i

{yi − f (xi , zi)}2 + λ

∫
f 2
xx + 2f 2

xz + f 2
zzdxdz

I This results in a thin plate spline. It is an isotropic smooth.
I Isotropy may be appropriate when different covariates are

naturally on the same scale.

x

0.2

0.4

0.6

0.8

z

0.2

0.4

0.6

0.8

lin
e
a
r p

re
d
ic

to
r

0.0

0.2

0.4

0.6

0.8

x

0.2

0.4

0.6

0.8

z

0.2

0.4

0.6

0.8

lin
e
a
r p

re
d
ic

to
r

0.0

0.2

0.4

0.6

0.8

x

0.2

0.4

0.6

0.8

z

0.2

0.4

0.6

0.8

lin
e
a
r p

re
d
ic

to
r

0.0

0.2

0.4

0.6

0.8



Cheaper thin plate splines

I RKHS or similar theory gives explicit basis (for any
dimension), with coefficients (c and d) minimizing

‖y − Td− Ec‖2 + λcTEc s.t . TTc = 0.

I Can reduce O(n3) cost to O(k3) by replacing E by its rank
k truncated eigen-decomposition (computed by Lanczos
methods).

I Cheap and somewhat optimal. . .
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Non-isotropic tensor product smooths
I A different construction is needed if covariates have

different scales.
I Start with marginal spline fz and let its coefficients vary

smoothly with x
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The complete tensor product smooth
I Let each coefficient of fz be a spline of x .
I Construct is symmetric (see right).
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Tensor product penalties - one per dimension
I x-wiggliness: sum marginal x penalties over red curves.
I z-wiggliness: sum marginal z penalties over green curves.
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Tensor product expressions

I Suppose the basis expansions for smoothing w.r.t. x and z
marginally are

∑
j Bjbj(z) and

∑
i αiai(x).

I . . . and the marginal penalties are BTSzB and αTSxα.
I The tensor product basis construction gives:

f (x , z) =
∑∑

βijbj(z)ai(x)

I With two penalties (requiring 2 smoothing parameters)

J∗z (f ) = βTII ⊗ Szβ and J∗x (f ) = βTSx ⊗ IJβ

I The construction generalizes to any number of marginals
and multi-dimensional marginals.



Isotropic vs. tensor product comparison
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Smooth model components

I A rich range of basis-penalty smoothers is possible. . .
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I When combining several smooths in one model, we often
need an identifiability constraint

∑
i f (xi) = 0. Re-write as

1TXβ = 0 and absorb by reparameterization.



Representing a GAM

I Consider the GAM yi ∼ EF(µi , φ), g(µi) = β0 +
∑

j fj(xji).

I Each fj(x) has a basis - penalty representation, say Xjβj ,
βjTSjβj (with constraints absorbed).

I So the GAM becomes

g(µ) = Xβ,

where X = [1 : X1 : X2 : . . .] and βT = [β0,β
1T,β2T, . . .].

I Penalty is now ∑
λjβ

TSjβ,

where Sj is such that βTSjβ ≡ βjTSjβj .
I Can easily include parametric components and linear

functionals of smooths.



β̂ given λ

I Let l be the model log-likelihood and use penalized MLE

L(β) = l(β)− 1
2

∑
j

λjβ
TSjβ, β̂ = argmax

β
L(β)

I Optimize by Newton’s method (penalized IRLS for EF).
I Bayes motivation. Prior: π(β) = N(0, (

∑
λjSj)

−);
likelihood, π(y|β): as is. Then MAP estimate is β̂.

I Further, in large sample limit, if I is information matrix at β̂,

β|y ∼ N(β̂, (I +
∑

λjSj)
−1)

which can be used to construct well calibrated CIs.
I Note link to Gaussian random effects!



AIC, effective degrees of freedom, p-values

I Following through the derivation of AIC in the penalized
case, yields

AIC = −2l(β̂) + 2tr(F)

where F = (I +
∑
λjSj)

−1I.
I Better still F = VβI, where Vβ is an approximate posterior

covariance matrix for β, corrected for λ uncertainty (see
Greven and Kneib, 2010, Biometrika for why).

I tr(F) is the effective degrees of freedom of the model.
I p-values for testing smooth terms or variance components

for equality to zero can also be obtained (see Wood
2013a,b Biometrika).

I But we still need smoothing parameter (λ) estimates.



Smoothing parameter estimates

I Let ρ = logλ and π(ρ) = constant, then the marginal
likelihood is

π(ρ|y) =
∫
π(y|β)π(β|ρ)dβ

I Empirical Bayes: ρ̂ = argmaxλπ(ρ|y).
I . . . same as REML in Gaussian random effects context.
I In practice use a Laplace approximation for the integral.

logπ(ρ|y) ' −L(β̂)− 1
2

log |
∑

λjSj |+ +
1
2

log |H|+ c

H is Hessian of −L. Log | • | require numerical care.



How marginal likelihood works
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I Draw β from prior implied by λ. Find average value of
likelihood for these draws.

I Choose λ to maximize this average likelihood.
I i.e. formally, maximize

∫
π(y|β)π(β|λ)dβ w.r.t. λ.

I Cross validation is an alternative.



Numerical fitting strategy

I Optimize REML w.r.t. ρ = log(λ) by Newton’s method. For
each trial ρ. . .

1. Re-parameterize β so that log |S|+ computation is stable.
2. Find β̂ by an inner Newton optimization of L(β).
3. Use implicit differentiation to find first two derivatives of β̂

w.r.t. ρ.
4. Compute log determinant terms and their derivatives.
5. Hence compute the REML score and its first two

derivatives, as required for the next Newton step.
I For large datasets an alternative is often possible: Find β̂

by iterative fitting of working linear models, and estimate ρ
for the working model at each iteration step.



Where’s the exponential family assumption?

I . . . the single parameter independent EF assumption of
GAMs is barely used.

I It just simplifies some of the numerical computations (and
adds to numerical robustness).

I Actually we can use most of the apparatus just described
with almost any regular likelihood, provided its practical to
compute with, and the first three or four derivatives w.r.t. to
the model coefficients can also be computed . . .



Example: predicting prostate status
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I Model: ordered category (benign/enlarged/cancer)
predicted by logistic latent random variable with mean

µi =

∫
f (D)νi(D)dD, νi(D) is i th spectrum.

gam(ds˜s(D,by=K),family=ocat(R=3))
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Fuel efficiency of cars
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Multivariate additive model
I Correlated bivariate normal response (hw.mpg,
city.mpg).

I Component means given by smooth additive predictors.
Best model very simple (and somewhat unexpected)
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Scale location models

I Can additively model mean and variance (and skew
and. . . )

I Simple example: yi ∼ N(µi , σi)

µi =
∑

j

fj(xji), logσi =
∑

j

gj(zji).

I Here is a simple 1-D smoothing example of this. . .
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R packages

There are many alternative R packages available:
1. gam for original backfitting approach1.
2. vgam for vector GAMs and more1.
3. gamlss GAMs for location scale and shape.2

4. mboost GAMs via boosting.
5. gss Smoothing Spline ANOVA.
6. scam Shaped constrained additive models.
7. gamm4 GAMMs using lme4.
8. bayesx MCMC and likelihood based GAMs3.
9. Methods discussed here are in R recommended package

mgcv. . .

1No smoothing parameter selection
2Limited smoothing parameter selection
3see also mgcv::jagam



mgcv package in R


