
REML estimation of penalized GLMs

Simon Wood
Mathematical Sciences, University of Bath, U.K.

A model for octane rating

1000 1200 1400 1600

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

octane = 85.3

wavelength (nm)

lo
g(

1/
R

)

I Aim to predict octane rating from NIR spectrum, g(ν).
I A possible model is that octanei ∼ Gamma,

E(octanei) =

∫
f (ν)gi(ν)dν

where f is a function to be estimated.

Diabetic retinopathy

0 10 20 30 40 50

0.
0

0.
4

0.
8

10 15 20 20 30 40 50 0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

ret

20
30

40
50

bmi

10
15

20
gly

0 10 20 30 40 50

0
20

40

dur

I Possible model. . .ret ∼ Bernoulli,

logit{E(ret)} = f1(dur) + f2(bmi) + f3(gly)

+ f4(dur,bmi) + f5(dur,gly) + f6(gly,bmi)

Penalized GLMs

I Examples are special cases of the model

g(µi) = Aiθ +
∑

j

Lij fj , yi ∼ EF(µi , φ)

I yi is an exponential family distributed univariate response,
A is a known parametric model matrix, with corresponding
coefficients θ, some of which may be random, fj is a
smooth function of one or more predictor variables, and Lij
is a known linear functional.

I Such models include GAMs, GAMMs, varying coefficient
models and signal regression models.

Practical representation

I To make these models practical, it helps to represent each
fj using a linear basis expansion,

fj(x) =
K∑

k

γkbk (x)

where the coefficients, γk , are unknown, the basis
functions bk (x) are chosen for convenience, and K is set
large enough to avoid underfitting.

I Then the model becomes

g(µi) = Xiβ, yi ∼ EF(µi , φ)

where X is a model matrix containing A and evaluated
versions of Lijbk , and β contains θ and the fj coefs.

Estimation

I To avoid overfit, estimation is by penalized MLE.

minimise D(β) +
∑

λkβTSkβ w.r.t. β

D is model deviance, and the λkβTSkβ penalize overfit.
I Typically βTSkβ measures ‘wiggliness’ of fj , or are random

effect shrinkage factors.
I Smoothing parameters λk control smoothness of the fj , or

random effect variances.
I There is a Bayesian/ mixed model interpretation:

imposition of the penalties is equivalent to using a prior

β ∼ N
{

0,
(∑

λkSk

)−}
.

I Given λ, β̂ is found by penalized IRLS. What about λ. . .

How to estimate λ: cross validation

0.2 0.4 0.6 0.8 1.0

−
2

0
2

4
6

8

λ too high

x

y

0.2 0.4 0.6 0.8 1.0
−

2
0

2
4

6
8

λ about right

x

y

0.2 0.4 0.6 0.8 1.0

−
2

0
2

4
6

8

λ too low

x

y

I Leave out one datum at a time, fit model to rest, and find
squared error in predicting the left out one.

I Average these squared errors over all data. Find λ to
minimize this MSE.

I Invariant version is GCV.

How to estimate λ: marginal likelihood

0.0 0.2 0.4 0.6 0.8 1.0

−
10

−
5

0
5

10
15

20

λ too low, prior variance too high

x

y

0.0 0.2 0.4 0.6 0.8 1.0

−
10

−
5

0
5

10
15

20

λ and prior variance about right

x

y

0.0 0.2 0.4 0.6 0.8 1.0

−
10

−
5

0
5

10
15

20

λ too high, prior variance too low

x

y

I Draw β from prior implied by λ. Find average value of
likelihood for these draws.

I Choose λ to maximize this average likelihood.
I Formally, maximize

∫
f (y,β)dβ w.r.t. λ.

GCV vs. REML comparison

0.0 0.2 0.4 0.6 0.8 1.0

−
4

0
2

4
6

8

x

s(
x,

12
.0

7)

−15 −10 −5 0 5

0.
0

0.
5

1.
0

1.
5

log(λ)

lo
g

G
C

V

−15 −10 −5 0 5

1.
4

1.
6

1.
8

2.
0

2.
2

log(λ)

−
R

E
M

L/
n

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

x

s(
x,

1)

−15 −10 −5 0 5

0.
0

0.
1

0.
2

0.
3

log(λ)

lo
g

G
C

V

−15 −10 −5 0 5

1.
4

1.
6

1.
8

log(λ)

−
R

E
M

L/
n

I Asymptotic MSE better for GCV, but GCV λ̂ converges
much more slowly than REML version.

I GCV has greater tendency to multiple minima and severe
undersmoothing.

The upshot

I REML or ML based smoothness selection is often
preferable to GCV or AIC in practice.

I But the computational methods for REML/ML are
substantially less robust than the GCV/AIC equivalents.

I This requires some explanation. . .

Computing β̂|λ and then λ

I Given λ, iterate a PIRLS scheme to convergence. . .
1. Form zi = Xi β̂ + (yi − µ̂i)g′(µ̂i)/αi and

wi = αi/{V (µ̂i)g′(µ̂i)
2}.

2. Minimize
∑

wi(zi − Xiβ)2 +
∑

k λkβTSkβ w.r.t. β to get new
estimate of β̂.

αi = 1 + (yi − µi)(V ′/Vi + g′′i /g′i) for Newton or αi = 1 for
Fisher scoring.

I Denote the resulting penalized MLE byβ̂λ.
I Two options for λ estimate computation. . .

1. Single iteration: insert a GCV or REML based λ estimation
step into the PIRLS.

2. Nested iteration: let REML or GCV score depend on β only
through β̂λ, so each iteratively proposed λ value requires a
full PIRLS to find β̂λ.

λ computations compared

I Single iteration (which includes PQL) need not converge to
a fixed β̂λ̂.

I Nested iteration is much more tedious to implement, but
converges to a fixed β̂λ̂.

I Nested iteration was only available for GCV etc, not REML
etc.

I Aim is to rectify this, to make REML based penalized GLM
estimation as routine and reliable as parametric GLM
estimation.

Laplace approximate REML

I Let f (y, β) be the joint density of the data y and β.
I To get restricted likelihood, integrate out β

approximately. . .
I Replace f (y,β) by exponential of truncated Taylor

expansion of log f , about β̂λ.
I Approximation is close enough to a Normal density to be

integratable. Hooray!
I Twice log approximate restricted likelihood is

2lr = 2l(β̂)+log |S/φ|+−β̂TSβ̂/φ−log |H+S/φ|+Mp log(2π).

H is Hessian of − log f , and subscript dropped on β̂λ.

Computing λ̂

I lr maximised w.r.t. log λ by Newton’s method.
I Each trial log λ will require a full PIRLS to get β̂λ.
I Some computational considerations. . .

1. log |S/φ|+, where S =
∑

λk Sk , is very awkward.
2. H = XTWX/φ if Newton PIRLS is used (W = diag(wi)).
3. Need derivatives of β̂λ w.r.t. log λ, to get derivatives of lr for

Newton steps. Implicit differentiation gives these easily, if
Newton based PIRLS is used.

4. But negative weights can occur for Newton PIRLS, making
stable computation difficult.

The problem with log |S|+

I Naive |S|+ evaluation can go badly wrong.
I Consider log |S1 + λS2|+ when λ → 0

> S <- S1 + S2*1e-18; S
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 -1 0 0e+00 0e+00 0e+00
[2,] -1 2 -1 0e+00 0e+00 0e+00
[3,] 0 -1 1 0e+00 0e+00 0e+00
[4,] 0 0 0 1e-18 -1e-18 0e+00
[5,] 0 0 0 -1e-18 2e-18 -1e-18
[6,] 0 0 0 0e+00 -1e-18 1e-18
> sum(log(eigen(S)$values[1:4])) ## naive
[1] -73.39584
> sum(log(eigen(S1)$values[1:2])) + ## true
> sum(log(eigen(S2)$values[1:2]*1e-18))
[1] -80.69584
> eigen(S)$values ## why?
[1] 3.000000e+00 1.000000e+00 2.220446e-15 2.000000e-18
[5] 1.000000e-18 1.000000e-18

Further problems with log |S|
I Suppose that the non-zero sub matrices of Si need not be

full rank, but overlap. . .

> S1;S2
[,1] [,2] [,3] [,4] [,5] [,1] [,2] [,3] [,4] [,5]

[1,] 1 -1 0 0 0 [1,] 0 0 0 0 0
[2,] -1 2 -1 0 0 [2,] 0 0 0 0 0
[3,] 0 -1 1 0 0 [3,] 0 0 1 0 0
[4,] 0 0 0 0 0 [4,] 0 0 0 1 0
[5,] 0 0 0 0 0 [5,] 0 0 0 0 1
> S <- S1 + S2*1e-18
> sum(log(eigen(S)$values))
[1] -115.5355
> sum(log(abs(diag(qr.R(qr(S))))))
[1] -118.3859

I Are either of these right? No. S1 is only rank 2, but its
‘numerical footprint’ extends beyond the first 2 columns of
S, obliterating part of the rank 3 matrix, S2.

Solution for log |S|

I Similarity transform to confine S1 to a block of size
corresponding to its rank.

I Consider eigen-decomposition UDUT = S1. Then
|S1 + λS2| = |D + λUTS2U|. If zero eigenvalues in D are
set to exactly 0, then r.h.s. evaluates correctly.
> S

[,1] [,2] [,3] [,4] [,5]
[1,] 1 -1 0 0e+00 0e+00
[2,] -1 2 -1 0e+00 0e+00
[3,] 0 -1 1 0e+00 0e+00
[4,] 0 0 0 1e-18 0e+00
[5,] 0 0 0 0e+00 1e-18
> es <- eigen(S1); U <- es$vectors
> D <- es$values; D[3:5] <- 0
> Sp <- diag(D) + t(U)%*%S2%*%U * lambda
> sum(log(abs(diag(qr.R(qr(Sp))))))
[1] -124.3396

. . . why did that work, and does it generalize?

I The large elements for S1 got confined to a 2× 2 block, in
the similarity transformed version of S
> Sp

[,1] [,2] [,3] [,4] [,5]
[1,] 3.000000e+00 -2.886751e-19 -2.357023e-19 0e+00 0e+00
[2,] -2.886751e-19 1.000000e+00 4.082483e-19 0e+00 0e+00
[3,] -2.357023e-19 4.082483e-19 3.333333e-19 0e+00 0e+00
[4,] 0.000000e+00 0.000000e+00 0.000000e+00 1e-18 0e+00
[5,] 0.000000e+00 0.000000e+00 0.000000e+00 0e+00 1e-18

I QR decomposition to get the determinant doesn’t mix
columns, so the determinant calculation is now stable.

I This approach can be generalized to more than two Sj
matrices (and to rank deficient S).

I The reparameterization used here also yields the most
stable computation of β̂ and |XTWX + S|, so is always
used (recomputed for each trial λ).

Newton penalized iteratively reweighted least squares

I Newton PIRLS involves minimising

S =
∑

wi(zi − Xiβ)2 + βTSβ

where some wi can be negative.
I Formal solution (XTWX + S)β̂ = XTWz, where

W = diag(wi), is far too badly-conditioned to use here.
I For positive wi , use QR decomposition method on

minimise S =

∥∥∥∥
√

W
([

z
0

]
−

[
X√
S

]
β

)∥∥∥∥
2

w.r.t. β

I If some wi < 0 use QR on

minimise S =

∥∥∥∥
√

absW
([

z
0

]
−

[
X√
S

]
β

)∥∥∥∥
2

+ correction

Derivatives of β̂ w.r.t. ρ = log λ

I Consider single λ. β̂λ is the solution to

dD
dβ

∣∣∣∣
β̂λ

+ 2λSβ̂ = 0

I Differentiating w.r.t. ρ = log λ gives

d2D
dβdβT

∣∣∣∣
β̂λ

dβ̂λ

dρ
+ 2λSβ̂ + 2λS

dβ̂

dρ
= 0

I Re-arranging yields. . .

dβ̂

dρ
= −2λ

(
d2D

dβdβT + 2λS
)−1

Sβ̂

. . . which is computable from left-overs!

Key points in summary

I Find ρ = log(λ) by Newton’s method optimization of the log
restricted likelihood, lr .

I For each trial ρ vector . . .
1. Re-parameterize so that log |S|+ is computable.
2. Solve for β̂λ by stable Newton PIRLS.
3. Get the derivatives of β̂λ by implicit differentiation.
4. Slog out the derivatives of lr itself, from which an update for

ρ̂ can be computed.
I Full details are exceptionally tedious, but these are the

main points.

Implementation: mgcv

I R package mgcv implements this REML based estimation
method.

I Consider example GAMM. yi ∼ Poi,

logE(yi) = f1(xi)ti + f2(vi , wi) + γk , γk ∼ N(0, σ2
g)

if observation i from level k of factor variable, group.
I mgcv::gam can fit this
gam(y˜s(x,by=t)+s(v,w)+s(group,bs="re"),

family=poisson,method="REML")

Example: adaptive smoothing

10 20 30 40 50

−
10

0
−

50
0

50

times

s(
tim

es
,1

2.
92

)

10 20 30 40 50

−
10

0
−

50
0

50

times

s(
tim

es
,9

.3
8)

I Top is normal spline smooth.
I Lower is an adaptive spline smooth, where penalty is split

up, so that degree of smoothness can vary with time.

Example: A model for octane rating

1000 1200 1400 1600

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

octane = 85.3

wavelength (nm)

lo
g(

1/
R

)

I Aim to predict octane rating from NIR spectrum, g(ν).
I A possible model is that octanei ∼ Gamma,

logE(octanei) =

∫
f (ν)gi(ν)dν

where f is a function to be estimated.

Octane model estimates

1000 1200 1400 1600

−
8

−
4

0
2

4
6

Estimated function

nm

s(
nm

,7
.9

):
N

IR

84 85 86 87 88 89

84
86

88

octane

fitted

m
ea

su
re

d
I If nm is a matrix each row of which contains the spectral

wavelengths and NIR is a corresponding matrix of spectral
measurements, then model is fit by
gam(octane˜s(nm,by=NIR,bs="ad"),

family=Gamma(log))

Example: Diabetic retinopathy

0 10 20 30 40 50

0.
0

0.
4

0.
8

10 15 20 20 30 40 50 0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

ret

20
30

40
50

bmi

10
15

20
gly

0 10 20 30 40 50

0
20

40

dur

I Possible model. . .ret ∼ Bernoulli,

logit{E(ret)} = f1(dur) + f2(bmi) + f3(gly)

+ f4(dur,bmi) + f5(dur,gly) + f6(gly,bmi)

Retinopathy estimates

0 10 20 30 40 50

−
4

−
2

0
2

4
6

dur

s(
du

r,
3.

26
)

10 15 20

−
4

−
2

0
2

4
6

gly
s(

gl
y,

1)

20 30 40 50

−
4

−
2

0
2

4
6

bmi

s(
bm

i,2
.6

7)

dur

gl
y

te(dur,gly,0)

dur
bm

i
te(dur,bm

i,0)
gly

bm
i

te(gly,bm
i,2.5)

Retinopathy estimates: interaction

bmi

gl
y

linear predictor

15 20 25 30 35 40 45 50

10
15

20

linear predictor

bmi

gl
y

bmi

gl
y

linear predictor

red/green are +/− TRUE s.e.

bmi

gl
y

linear predictor

red/green are +/− TRUE s.e.

bmi

gl
y

linear predictor

red/green are +/− TRUE s.e.

Advert

I Wood, S.N. (2011) Fast stable REML and ML estimation of
semiparametric GLMs. JRSSB 73(1):1-34

