
GAMs, GAMMs and other penalized GLMs
using mgcv in R

Simon Wood
Mathematical Sciences, University of Bath, U.K.

Simple example

I Consider a very simple dataset relating the timber volume
of cherry trees to their height and trunk girth.

Girth

65 70 75 80 85

8
12

16
20

65
75

85

Height

8 10 12 14 16 18 20 10 20 30 40 50 60 70

10
30

50
70

Volume

trees initial gam fit

I A possible model is

log(µi) = f1(Heighti)+f2(Girthi), Volumei ∼ Gamma(µi , φ)

I Which can be estimated using. . .
library(mgcv)
ct1 <- gam(Volume ~ s(Height) + s(Girth),

family=Gamma(link=log),data=trees)

I gam produces a representation for the smooth functions,
and estimates them along with their degree of smoothness.

Cherry tree results

I par(mfrow=c(1,2))
plot(ct1,various options) ## calls plot.gam

65 70 75 80 85

−
0.

3
−

0.
1

0.
1

Height

s(
H

ei
gh

t,1
)

8 10 12 14 16 18 20

−
0.

5
0.

0
0.

5
1.

0

Girth

s(
G

ir
th

,2
.5

1)
I This is a simple example of a Generalized Additive Model.
I Given the machinery for fitting GAMs a wide variety of

other models can also be estimated.

The general model

I Let y be a response variable, fj a smooth function of
predictors xj and Lij a linear functional. A general model. . .

g(µi) = Aiα +
∑

j

Lij fj + Zib, b ∼ N(0,Σθ), yi ∼ EF(µi , φ)

A and Z are model matrices, g is a known link function.
I Popular examples are . . .

I g(µi) = Aiα +
∑

j fj(xji) (Generalized additive model)
I g(µi) = Aiα +

∑
j fj(xji) + Zib, b ∼ N(0,Σθ) (GAMM)

I g(µi) =
∫

hi(x)f (x)dx (Signal regression model)
I g(µi) =

∑
j fj(tji)xji (Varying coefficient model)

I The list goes on. . .

Representing the fj

I A convenient model representation arises by
approximating each function with a basis expansion

f (x) =
K∑

k=1

γkbk (x) (bk known, e.g. spline)

I K is set to something ‘generous’ to avoid bias.
I Some way of measuring the ‘wiggliness’ of each f is also

useful, for example
∫

f ′′(x)2dx = γTSγ. (S known)

I For many models we will need an identifiability constraint,∑
i f (xi) = 0. Automatic re-parameterization handles this.

Basis & penalty example

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

basis functions

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4
6

8
10

x

y

⌠
⌡

f"(x)2dx = 377000

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4
6

8
10

x

y

⌠
⌡

f"(x)2dx = 63000

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4
6

8
10

x

y

⌠
⌡

f"(x)2dx = 200

Representing the model

I The general model is

g(µi) = Aiα +
∑

j

Lij fj + Zib, b ∼ N(0,Σθ), yi ∼ EF(µi , φ)

I Given a basis for each fj , we can write
∑

j Lij fj = Biγ,
where B is determined by the basis functions and Lij , while
γ is a vector containing all the basis coefficients.

I Then the model becomes . . .

g(µi) = Aiα + Biγ + Zib, b ∼ N(0,Σθ), yi ∼ EF(µi , φ)

I Problem: if the bases were rich enough to give negligible
bias, then MLE will overfit.

Estimation strategies

1. Control prediction error
I Penalize the model likelihood, using the fj wiggliness

measures,
∑

j λjγ
TSjγ, to control model prediction error.

I Given λ, θ, φ, this yields the maximum penalized likelihood
estimates (MPLE), α̂, γ̂, b̂.

I GCV or similar gives λ̂, θ̂, φ̂.
2. Empirical Bayes

I Put exponential priors on function wiggliness so that
γ ∼ N

(
0, (

∑
j λjSj)

−/φ
)

.

I Given λ, θ, φ the MAP estimates α̂, γ̂, b̂, are found by
MPLE as under 1.

I Maximize the marginal likelihood (REML) to obtain λ̂, θ̂, φ̂.

Maximum Penalized Likelihood Estimation

I Define coefficient vector βT = (αT, γT, bT)

I Deviance is D(β) = 2{lmax − l(β)}
I β is estimated by

β̂ = arg min
β

D(β) +
∑

j

λjβ
TSjβ + βTΣ−

θ βφ

I Σ−
θ is a zero padded version of Σ−1

θ so that
βTΣ−

θ β = bTΣ−1
θ b.

I Similarly the Sj here are zero padded versions of the
originals.

I In practice this optimization is by Penalized IRLS.

Estimating λ etc

I We treat β̂ as a function of λ, θ, φ for GCV/REML
optimization.

I GCV or REML are optimized numerically, with each step
requiring evaluation of the corresponding β̂.

I Note that computationally the empirical Bayes approach
is equivalent to generalized linear mixed modelling.

I However in most applications it is not appropriate to treat
the smooth functions as random quantities to be re-
sampled from the prior at each replication of the data set.
So the models are not frequentist random effects models.

More inference and degrees of freedom

I The Bayesian approach yields the large sample result

β ∼ N(β̂, Vβ)

where Vβ is a penalized version of the information matrix
at β̂.

I Via an approach pioneered in Nychka (1988, JASA) it is
possible to show that CI’s based on this result have good
frequentist properties.

I Effective degrees of freedom can also be computed. Let β̃
denote the unpenalized MLE of β,

EDF =
∑

j

∂β̂j

∂β̃j

Smooths for semi-parametric GLMs

I To build adequate semi-parametric GLMs requires that we
use functions with appropriate properties.

I In one dimension there are several alternatives, and not
alot to choose between them.

I In 2 or more dimensions there is a major choice to make.
I If the arguments of the smooth function are variables which

all have the same units (e.g. spatial location variables) then
an isotropic smooth may be appropriate. This will tend to
exhibit the same degree of flexibility in all directions.

I If the relative scaling of the covariates of the smooth is
essentially arbitrary (e.g. they are measured in different
units), then scale invariant smooths should be used, which
do not depend on this relative scaling.

Splines
I Many smooths covered here are based on splines. Here’s

the original underlying idea . . .

1.5 2.0 2.5 3.0

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

size

w
ea

r

I Mathematically the red curve is the function minimizing

∑

i

(yi − f (xi))
2 + λ

∫
f ′′(x)2dx .

Splines have variable stiffness

I Varying the flexibility of the strip (i.e. varying λ) changes
the spline function curve.

1.5 2.0 2.5 3.0

2.
0

3.
0

4.
0

size

w
ea

r

1.5 2.0 2.5 3.0

2.
0

3.
0

4.
0

size

w
ea

r
1.5 2.0 2.5 3.0

2.
0

3.
0

4.
0

size

w
ea

r

1.5 2.0 2.5 3.0
2.

0
3.

0
4.

0
size

w
ea

r

I But irrespective of λ the spline functions always have the
same basis.

Penalized regression splines

I Full splines have one basis function per data point.
I This is computationally wasteful, when penalization

ensures that the effective degrees of freedom will be much
smaller than this.

I Penalized regression splines simply use fewer spline basis
functions. There are two alternatives:

1. Choose a representative subset of your data (the ‘knots’),
and create the spline basis as if smoothing only those data.
Once you have the basis, use it to smooth all the data.

2. Choose how many basis functions are to be used and then
solve the problem of finding the set of this many basis
functions that will optimally approximate a full spline.

I’ll refer to 1 as knot based and 2 as eigen based.

Knot based example: "cr"

I In mgcv the "cr" basis is a knot based approximation to
the minimizer of

∑
i(yi − f (xi))

2 + λ
∫

f ′′(x)2dx — a cubic
spline. "cc" is a cyclic version.

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

full spline basis

x

b i
(x

)

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

data to smooth

x

y

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

function estimate: full black, regression red

x

s(
x)

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

simple regression spline basis

x

b i
(x

)

Eigen based example: "tp"
I The "tp", thin plate regression spline basis is an eigen

approximation to a thin plate spline (including cubic spline
in 1 dimension).

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

full spline basis

x

b i
(x

)

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

data to smooth

x

y

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

function estimate: full black, regression red

x

s(
x)

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2

thin plate regression spline basis

x

b i
(x

)

1 dimensional smoothing in mgcv

I Various 1D smoothers are available in mgcv. . .
"cr" knot based cubic regression spline.
"cc" cyclic version of above.
"ps" Eilers and Marx style p-splines: Evenly spaced
B-spline basis, with discrete penalty on coefficients.
"ad" adaptive smoother in which strength of penalty
varies with covariate.
"tp" thin plate regression spline. Optimal low rank eigen
approx. to a full spline: flexible order penalty derivative.

I Smooth classes can be added (?smooth.construct).

1D smooths compared

10 20 30 40 50

−
10

0
−

50
0

50

times

ac
ce

l

tp

cr

ps

cc

ad

Isotropic smooths

I One way of generalizing splines from 1D to several D is to
turn the flexible strip into a flexible sheet (hyper sheet).

I This results in a thin plate spline. It is an isotropic smooth.
I Isotropy may be appropriate when different covariates are

naturally on the same scale.
I In mgcv terms like s(x,z) generate such smooths.

x

0.2

0.4

0.6

0.8

z

0.2

0.4

0.6

0.8

linear predictor

0.0

0.2

0.4

0.6

0.8

x

0.2

0.4

0.6

0.8

z

0.2

0.4

0.6

0.8

linear predictor
0.0

0.2

0.4

0.6

0.8

x

0.2

0.4

0.6

0.8

z

0.2

0.4

0.6

0.8

linear predictor

0.0

0.2

0.4

0.6

0.8

Thin plate spline details

I In 2 dimensions a thin plate spline is the function
minimizing

∑

i

{yi − f (xi , zi)}2 + λ

∫
f 2
xx + 2f 2

xz + f 2
zzdxdz

I This generalizes to any number of dimensions, d , and any
order of differential, m, such that 2m > d + 1.

I Full thin plate spline has n unknown coefficients.
I An optimal low rank eigen approximation is a thin plate

regression spline.
I A t.p.r.s uses far fewer coefficients than a full spline, and is

therefore computationally efficient, while losing little
statistical performance.

Scale invariant smoothing: tensor product smooths
I Isotropic smooths assume that a unit change in one

variable is equivalent to a unit change in another variable,
in terms of function variability.

I When this is not the case, isotropic smooths can be poor.
I Tensor product smooths generalize from 1D to several D

using a lattice of bendy strips, with different flexibility in
different directions.

xz
f(x,z)

Tensor product smooths

I Carefully constructed tensor product smooths are scale
invariant.

I Consider constructing a smooth of x , z.
I Start by choosing marginal bases and penalties, as if

constructing 1-D smooths of x and z. e.g.

fx(x) =
∑

αiai(x), fz(z) =
∑

βjbj(z),

Jx(fx) =

∫
f ′′x (x)2dx = αTSxα & Jz(fz) = BTSzB

Marginal reparameterization

I Suppose we start with fz(z) =
∑6

i=1 βjbj(z), on the left.

0.0 0.2 0.4 0.6 0.8 1.0

0.
1

0.
3

0.
5

z

f z
(z

)

0.0 0.2 0.4 0.6 0.8 1.0

0.
1

0.
3

0.
5

z

f z
(z

)
I We can always re-parameterize so that its coefficients are

functions heights, at knots (right). Do same for fx .

Making fz depend on x
I Can make fz a function of x by letting its coefficients vary

smoothly with x

xz

f(z)

xz

f(x,z)

The complete tensor product smooth
I Use fx basis to let fz coefficients vary smoothly (left).
I Construct in symmetric (see right).

xz

f(x,z)

xz

f(x,z)

Tensor product penalties - one per dimension
I x-wiggliness: sum marginal x penalties over red curves.
I z-wiggliness: sum marginal z penalties over green curves.

xz

f(x,z)

xz

f(x,z)

Isotropic vs. tensor product comparison

x

2
4

6

8

z

2

4

6

8

z

0.0

0.2

0.4

Isotropic Thin Plate Spline

x

2
4

6

8

z

2

4

6

8

z

0.0

0.2

0.4

Tensor Product Spline

x

0.5

1.0

1.5

z

2

4

6

8

z

0.0

0.2

0.4

0.6

x

0.5

1.0

1.5

z

2

4

6

8

z

0.0

0.2

0.4

. . . each figure smooths the same data. The only modification is
that x has been divided by 5 in the bottom row.

Soap film smoothing

I Sometimes we require a smoother defined over a bounded
region, where it is important not to smooth across
boundary features.

I A useful smoother can be constructed by considering a
distorted soap film suspended from a flexible boundary
wire.

−1 0 1 2 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

y

−1 0 1 2 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

y

−1 0 1 2 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

y

−1 0 1 2 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

y

−1 0 1 2 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

y
−1 0 1 2 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

y

Markov Random fields

I Sometimes data are associated with discrete geographic
regions.

I A neighbourhood structure on these regions can be used
to define a Markov random field, which induces a simple
penalty structure on region specific coefficients.

−
4

−
2

0
2

4
6

8
10

s(
di

st
ric

t,2
.7

1)

0 Dimensional smooths

I Having considered smoothing with respect to 1, 2 and
several covariates, or a neighbourhood structure, consider
the case where we want to smooth without reference to a
covariate (or graph).

I This amounts to simply shrinking some model coefficients
towards zero, as in ridge regression.

I In the context of penalized GLMs such zero dimensional
smooths are equivalent to simple Gaussian random effects.

Specifying GAMs in R with mgcv

I library(mgcv) loads a semi-parametric GLM package.
I gam(formula,family) is quite like glm.
I The family argument specifies the distribution and link

function. e.g. Gamma(log).
I The response variable and linear predictor structure are

specified in the model formula.
I Response and parametric terms exactly as for lm or glm.
I Smooth functions are specified by s or te terms. e.g.

log{E(yi)} = α + βxi + f (zi), yi ∼ Gamma,

is specified by. . .
gam(y ~ x + s(z),family=Gamma(link=log))

More specification: by variables

I Smooth terms can accept a by variable argument, which
allows Lij fj terms other than just fj(xi).

I e.g. E(yi) = f1(zi)wi + f2(vi), yi ∼ Gaussian, becomes
gam(y ~ s(z,by=w) + f(v))

i.e. f1(zi) is multiplied by wi in the linear predictor.
I e.g. E(yi) = fj(xi , zi) if factor gi is of level j , becomes

gam(y ~ s(x,z,by=g) + g)

i.e. there is one smooth function for each level of factor
variable g, with each yi depending on just one of these
functions.

Yet more specification: a summation convention

I s and te smooth terms accept matrix arguments and by
variables to implement general Lij fj terms.

I If X and L are n × p matrices then
s(X,by=L)

evaluates Lij fj =
∑

k f (Xik)Lik for all i .
I For example, consider data yi ∼ Poi where

log{E(yi)} =

∫
ki(x)f (x)dx ' 1

h

p∑

k=1

ki(xk)f (xk)

(the xk are evenly spaced points).
I Let Xik = xk ∀ i and Lik = ki(xk)/h. The model is fit by

gam(y ~ s(X,by=L),poisson)

