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Two ecological timeseries
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Two modelling issues

It is appealing to make statistical inferences about mechanism
based models of ecological timeseries, but. . .

◮ Many scientifically useful ecological dynamic models do not
try to get every feature of the data right.

◮ The population dynamics of small animals (insects,
rodents, etc.) can be highly non-linear.



Simulated Ricker Model Data (toy)
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Nt+1 = erNte
−Nt+et , et ∼ N(0, σ2

e), Yt ∼ Poi(φNt) [observed]

. . . a simple toy model, but like many ecological dynamic
systems, it is very non-linear. . .



Varying r in the Ricker
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Varying e1 in the Ricker
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Naive Bayes or Likelihood inference for Ricker

◮ Suppose we want inferences about θT = (r, φ, σ2
e ), from an

observed population data series, y.

◮ Simple Bayesian or Likelihood approaches both require the
joint density fθ(e,y).

◮ MLE requires (approximate) evaluation of
∫
fθ(e,y)de (or

an EM approach).
◮ Bayesian inference requires samples of θ, e from something

∝ fθ(e,y).

◮ We should look at fθ(e,y). . .



log{fθ(e,y)} versus e1 and r
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. . . trying to integrate out the random effects, e, or sample from
this density is hopeless.



Solution 1: change what we be try to model

◮ We should not try to make the model reproduce features of
data that the system would not reproduce itself.

◮ The exact phase of the series is just a noise feature, which
it is not interesting to model.

◮ We should concentrate on phase insensitive statistics of the
series, and on statistics summarizing short term dynamic
structure.

◮ e.g. the ACF, the coefficients of short term autoregressive
models, and summaries of the marginal distribution of the
observations, or their increments.

◮ This should be done in a way that is flexible enough to deal
with missing data, multiple series and unobserved states.



But hang on a minute. . .

◮ 1D sections, like that shown through fθ(e,y) are only a
partial view.

◮ For example, here is a section through a function f(x, z). . .

−3 −2 −1 0 1 2 3

−
0
.1

2
−

0
.1

0
−

0
.0

8
−

0
.0

6
−

0
.0

4
−

0
.0

2
0
.0

0

x

f(
x
,y

)

◮ Lots of local minimum right?



f(x, y). . .

◮ Wrong!
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◮ . . . it has one global minimum.



Solution 2: Work with the state

◮ Recast Ricker problem in terms of state, nt, rather than
noise, et.

◮ Then plots of fθ(n,y) against any nt are benignly
uni-modal.

◮ Suggests that problem ought to be tractable using state
space methods.

◮ But 1D views are still partial: these transects look lovely
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◮ but are transects through this. . .
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◮ . . . need to proceed with caution.



State space methods

1. Use direct MCMC on states nt, and parameter, θ. Appears
to work for Ricker, but

◮ Need good starting values for state, which is difficult for a
non-linear model with hidden states.

◮ Mixing often slow.
◮ Hard to prove that it is sampling the target properly.

2. Use filtering, within MCMC or for MC estimation of
likelihood.

◮ Seems to work, without the initialization and mixing issues.
◮ Still hard to prove that the target is being explored

properly.



Filtering in brief

◮ Idea is to work forward in time, iterating the steps

1. Prediction:

p(nt|y0:t−1) =

∫
p(nt|nt−1)p(nt−1|y0:t−1)dnt−1

2. Update:

p(nt|y0:t) = p(yt|nt)p(nt|y0:t−1)/p(yt|y0:t−1)

◮ In practice replace p(n∗|y·) by discrete set of {n
(i)
t } values

(particles) with ‘importance weights’ {w
(i)
t }.

1. Prediction step then moves the particles, and updates their
weights, perhaps by importance sampling.

2. Update just updates the importance weights.

◮ The model ought to provide a basis for moving particles.

◮ In practice periodically resample particles in proportion to
their weights to avoid particle depletion problems.



More particle Filtering

◮ Likelihood is p(y0:T ) = p(y0)
∏

t p(yt|y0:t−1), where

p(yt|y0:t−1) =

∫
p(yt|nt)p(nt|y0:t−1)dnt ≃

1

N

∑
i

p(yt|n
(i)
t )w

(i)
t

◮ Particle filtering should work, provided the model
likelihood is not irregular.

◮ On toy problems, like the Ricker, it appears to work well,
provided there is enough process noise.

◮ Intuitively it seems that process noise could smooth out the
irregularities seen earlier, but generally it’s hard to prove
anything. . .

◮ Let’s look at a toy toy model: If we discretise the state
space of the Ricker model then the likelihood is exactly and
efficiently computable (discrete HMM).



Exact likelihood for Discrete Ricker as noise declines
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How the particle filter tracks p(nt|y0:t, θ)
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◮ . . . Density of the state, with attempts to sample by
particle filtering. Mixed success.



Statistical dimension reduction. ABC

◮ The alternative is to try to match carefully chosen phase

insensitive statistics, s, of the data, in a principled manner.

◮ Approximate Bayesian Computation, is one approach for
stochastic simulation.

1. For each trial θ∗, data, y∗, are simulated and transformed
to statistics, s∗.

2. The accept/reject decision about θ∗ is then based on
replacing the likelihood with I(‖s∗ − s‖k < ǫ).

◮ As ǫ → 0 we simulate from f(θ|s).

◮ Snags: need to choose ‖ · ‖k; as ǫ → 0, the acceptance rate
also → 0; works best with few statistics. Tuning needed.



Less tuning, more assumptions: synthetic likelihood

◮ Convert the observed data y into a vector of phase
insensitive summary statistics that can be modelled as
approx. normal. i.e. s ∼ N(µθ,Vθ), where θ are the model
parameters.

◮ A ‘synthetic’ likelihood can be evaluated as follows.
◮ Given θ, simulate Nr (=500, here) replicates, y∗

1
,y∗

2
. . ., and

process these exactly as y was processed to obtain replicate
statistics, s∗1, s

∗

2, . . ..
◮ Define µ̂θ =

∑
i
s∗
i
/Nr, S = [s∗

1
− µ̂θ, s

∗

2
− µ̂θ, . . .] and hence

V̂θ = STS/(Nr − 1).
◮ ls(θ) = −(s− µ̂θ)

TV̂−1

θ
(s − µ̂θ)/2− log |V̂θ|/2 is the log

synthetic likelihood.



Synthetic likelihood - picture
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Ricker example: what statistics?
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Ricker example: statistics ∼ N?
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Ricker example: transects through synthetic likelihood
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◮ . . . variability is random and small scale.

◮ Easy to explore ls by MCMC, or stochastic optimization
methods.

◮ Can estimate ls in vicinity of maximum by quadratic
regression of ls on parameters.



Ricker example: MCMC results (25% acceptance)
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Ricker example: parameter estimates
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◮ Truth in red, 10000 burn in discarded.



Ricker direct MCMC on state and parameters

r

D
en

si
ty

3.2 3.4 3.6 3.8 4.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

σe

D
en

si
ty

0.0 0.2 0.4 0.6 0.8

0
1

2
3

4
5

6

φ

D
en

si
ty

9.5 10.5 11.5

0.
0

0.
2

0.
4

0.
6

0.
8

◮ Truth in red, based on second half of every 100th of
1000000 single term update steps.



Taking stock

◮ Nothing is perfect (and in practice nothing is fast)!
◮ Direct MCMC is difficult to start and difficult to get to mix.
◮ Filtering is problematic at low process noise, and when the

parameters are not close to correct.
◮ ABC seems to need quite a bit of tuning.
◮ Synthetic likelihood has the dodgy normality assumption.

◮ In simulations with toy models, the direct methods
(MCMC and Filtering) have better statistical efficiency, for
the correct model, when the process noise is not too low.

◮ When the model is not aiming to capture everything then
only ABC and Synthetic likelihood seem reasonable.

◮ Let’s look at a less toy example. . .



Nicholson’s Blowflies



Nicholson’s Blowfly Data
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◮ Lab population of adult flies known exactly every 2 days,
from counts of dead flies and freshly discarded pupal cases.

◮ Time from egg to adult is around 2 weeks.

◮ Fecundity is likely to be density dependent.



Blowfly model

◮ DDE model (Nisbet and Gurney, 1981) is

dN

dt
= PN(t− τ)e−N(t−τ)/N0 − δN(t).

◮ Daily discretisation is

Nt+1 = PNt−τ exp(−Nt−τ/N0)et +Nt exp(−δǫt)

where et and ǫt are independent Gamma random deviates
with mean 1 and variance σ2

p and σ2
d.

◮ Statistics are ACF coefficients to lag 11, coefficients of the
increments regression as for Ricker example, the mean
population and coefficients of the auto-regression
yi = β0yi−6 + β1y

2
i−6 + β2y

3
i−6 + β3yi−1 + β4y

2
i−1 + ǫi.

◮ Parameter group Pτ and δτ controls stability.



4 Experimental replicates
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Blowfly MCMC chain (31% acceptance)
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Blowfly checking plots
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◮ Left is QQ-plot for simulated (s− µ̂θ)
TΣ̂−1

θ (s− µ̂θ)
(observed is dashed).

◮ Middle gives scaled normal QQ plots for each element of
simulated s.

◮ Normal QQ plot for observed Σ̂
−1/2
θ (s− µ̂θ).



Blowflies: data left, model reps right
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Blowfly stability
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◮ The dynamics are all limit cycles. The fluctuations are not
noise driven.

◮ This is not obvious a priori: e.g. noise has to be much
larger than demographic stochasticity would give, to
generate observed variability.



Blowflies by Filtering

◮ We tried a similar analysis via filtering.

◮ Have to add observation noise to model to make this work.
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Which is right?

◮ The filtering approach puts much more weight on the
region of greater dynamic stability.

◮ For the experimental conditions in E2 there is separate
experimental data which is inconsistent with this.

◮ Further investigation suggests that the filter is suffering
severe particle depletion at a couple of times.

◮ Switching to a heavier tailed error distribution improves
matters somewhat.

◮ But there are at least some clear diagnostic indicators. . .



Typical simulations from the fitted models
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Conclusions?

◮ For a correct enough non-linear dynamic models with
enough process noise, filtering is probably best.

◮ The problem is knowing what’s enough in the above.

◮ If you are unsure that the model is right, or it’s not
supposed to be correct, then information reduction
methods such as ABC or Synthetic Likelihood (SL) may be
less misleading, and don’t seem to be massively worse than
filtering in any case.

◮ SL requires a bit less tuning than ABC, but at the cost of a
normality assumption. The latter may be removable via a
saddlepoint approximation.
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