
Extended smooth Modelling and R

Simon Wood
Mathematical Sciences, University of Bath, U.K.

Generalized Additive Models

I A generalized additive models relates a response variable
yi to some predictors xji via something like:

g{E(yi)} = ηi = X∗i β
∗ + f1(x1i) + f2(x2i , x3i) + f3(x4i) + · · ·

I g is a known link function.
I yi independent with some exponential family distribution.
I fj are smooth unknown functions (subject to centering

conditions).
I X∗β∗ is parametric bit.

I In practice the fj can be represented using basis
expansions, with over-fit avoided by quadratic penalties on
the basis coefficients.

I So a GAM is simply a quadratically penalized GLM.

In more detail

I We write fj(x) =
∑

k βjkbjk (x) where the basis functions
bjk (x) are known, but the βjk must be estimated.

I Function wiggliness is measured by βT
j Sjβj , where the

elements of Sj are known and derive from the bjk (x).
I So the GAM is g(E(yi)) = Xiβ where X contains X∗ + the

basis functions evaluated at the predictor variable values.
I β is estimated as the minimizer of the penalized deviance

D(β) +
∑

j

eρj βTSjβ

where the ρj are log smoothing parameters and the Sj
have been padded with zeroes.

Actual GAM estimation

I Given ρ, the penalized deviance

D(β) +
∑

j

eρj βTSjβ

is minimized by Penalized IRLS (Fisher scoring or Newton).
I In general ρ = Lρu where L known, and ρu is estimated by

GCV or AIC type criteria.
I Alternatively the smooth terms can be viewed as random

effects, the ρj as inverse variance components, and ρu
estimated by (Laplace approximate) REML.

I Notice that the GAM estimation problem applies to a rather
wider class of models than GAMs. . .

What is a smoother?

I In this GAM estimation framework, a smoother is simply a
basis and associated quadratic penalty.

I To estimate the GAM all that we need from a smoother is a
model matrix of evaluated basis functions, Xj , say, and one
or more penalty coefficient matrix, Sj , say.

I All the details of how the basis is constructed are irrelevant
for estimation.

I For prediction from the GAM, we will need to be able to
produce further matrices of basis functions evaluated at
new predictor values, but nothing else.

I So GAM modelling routines need exactly the same, rather
limited, evaluated quantities from any smoother, and no
smoother specific details.

Smooth classes in R

I The R/S language makes it very easy to exploit the
inherent modularity of the GAM representation.

I . . .mgcv is an R package for generalized additive
modelling that tries to use this fact.

I Smooths can be set up as objects with particular classes,
which have associated methods.

I mgcv’s GAM modelling routines then need know nothing
about the internal details of how a smoother is constructed,
but merely that it is a smooth.

I Equally, adding a new smooth class is easy: nothing in the
modelling functions need change in order to do so.

e.g. penalized cubic regression spline

I Consider gam(y ∼ s(z,bs="cr")).
I s(z,bs="cr") in the model formula generates a smooth

specification object, ss, say, of class cr.smooth.spec.
I gam needs no details about ss, it simply passes it to

function smooth.construct.
I smooth.construct looks at the class of ss and passes

it to smooth.construct.cr.smooth.spec.
I smooth.construct.cr.smooth.spec does basis set

up, returning an object, sm say, of class cr.smooth.
I sm contains the matrices X and S that gam needs for fitting

+ basis specific details needed for prediction.

Prediction example

I Prediction is equally modular.
I predict.gam simply calls the Predict.matrix method

function with each smooth in turn as argument.
I E.g. predict.matrix(sm,NewData) would cause
Predict.matrix.cr.smooth to be called based on the
class of sm.

I Predict.matrix.cr.smooth returns a prediction
matrix of basis functions evaluated at the prediction data
values. It takes care of all the basis specific detail, so that
predict.gam is completely generic.

I So, adding a new type of smoother requires no more than
the writing of new smooth.construct and
Predict.matrix method functions.

Adding smoother example

I Perhaps I don’t like this cubic spline smooth of the mcycle
data . . .

10 20 30 40 50

−
10

0
−

50
0

50
10

0

gam(accel~s(times,bs="cr",k=40))

times

s(
tim

es
,1

1.
17

)

Adding smoothers example
I P-splines are a popular alternative, maybe they will

improve matters. . . it’s easy to add a "ps" class.

10 20 30 40 50

−
10

0
−

50
0

50
10

0

gam(accel~s(times,bs="ps",k=40))

times

s(
tim

es
,1

0.
29

)

I It’s worse, but should I really use adaptive smoothing?

Adding smoothers
I It’s straightforward to allow the strength of the P-spline

penalty to vary smoothly and freely with the smoothing
covariate, controlled by multiple smoothing parameters.

I So an adaptive smoothing class can be written, and does
give some improvement . . .

10 20 30 40 50

−
10

0
−

50
0

50
10

0

gam(accel~s(times,bs="ad",k=40))

times

s(
tim

es
,8

.5
6)

Building smooths from smooths

I Tensor product smoothing builds smooths of several
variables from marginal smooths of single variables.

I Given any marginal bases and penalties, the construction
is completely automatic. All that is needed from the
marginal smooths is the ability to evaluate model matrices,
penalty coefficient matrices and prediction matrices.

I So it is easy to write a smooth class which produces a new
tensor product smooth class, by combining existing smooth
classes.

I te terms in an mgcv::gam formulae does just that. As far
as gam is concerned the te.smooth.spec object
produced is just like any other smooth specification object,
as is the tensor smooth object itself.

Extending the model

I Since smooths can be treated as random effects, some
random effects can be treated as smooths. . .

I Suppose the GAM linear predictor should also include a
random effect term Zb where b ∼ N(0, Iσ2

b).
I This random effect is equivalent to a smooth with penalty

matrix I, and can be treated as such.
I It is straightforward to write constructor and prediction

matrix method functions to implement such a random
effect as a smoother.

I Nothing about model estimation need change in order to
do this.

Random effect class example

I This code implements a simple i.i.d. random effect class. . .

smooth.construct.re.smooth.spec ← function(object,data,knots) {
object$form ← as.formula(paste(” ˜ ”,object$term,”-1”))
object$X ← model.matrix(object$form,data)
object$rank ← ncol(object$X)
object$S[[1]] ← diag(object$rank)
object$C ← matrix(0,0,object$rank)
object$levels ← levels(data[[object$term]])
class(object) ← ”ranef”
object

}

Predict.matrix.ranef ← function(object,data) {
model.matrix(object$form,data,xlev=object$levels)

}
I Something like gam(y∼s(g,bs="re")) invokes it.

Simple random effect continued

I Consider Rail data from nlme package, on travel time
of ≤ 3 replicate sound pulses along 6 Rails. (Dropped
some reps to unbalance).

I Obvious model has an independent random effect for each
rail, with variance σ2

b.
I lme(travel∼1,data=Rail[-ind,],∼1|Rail) fits the

model (ind is (4,5,17)).
I σ̂b = 24.5 and σ̂ = 3.73 (REML).

I The same model can be fit by
gam(travel∼s(Rail,bs="re"),data=Rail[-ind,])

I σ̂b = 27.7 and σ̂ = 3.73 (GCV).
I Interesting models can be estimated in the same way!

Other model extensions

I The modularity allowed by the R/S class mechanism
allows generic extension of the GAM class of models,
without any need to modify our toolbox of smooths.

I For example, varying coefficient models are parametric
GLMs where some coefficients vary smoothly with
covariates such as space or time. e.g. something like

g{E(yi)} = · · · f (xi)zi · · ·

where f is smooth and zi and xi are covariates.
I So, the i th row of f ’s model matrix get’s multiplied by zi but

nothing else changes from a ‘normal’ smooth term.
I In mgcv, s(x,by=z) implements this extension in a

smooth class independent way.

More general extensions

I Consider the functional GLM

g{E(yi)} =

∫
f (t)xi(t)dt

where predictor xi is a known function and f (t) is an
unknown smooth regression coefficient function.

I Typically f and xi are discretized so that g{E(yi)} = fTxi
where fT = [f (t1), f (t2) . . .] and xT

i = [xi(t1), xi(t2) . . .].
I Generically this is an example of dependence on a linear

functional of a smooth. i.e

g{E(yi)} = · · · Li f · · ·

I Again this would be discretized as g{E(yi)} = · · ·Lif · · ·

Linear functional terms

I Such linear functional terms require only that the
smoothing basis can be evaluated at some particular
values of the smooth argument, so no modification of
smooth classes is needed for this.

I mgcv handles such terms by allowing s to accept matrix
arguments and matrix by variables.

I So if X and L are matrices, then s(X,by=L) generates

g{E(yi)} = · · ·
∑

j

f (Xij)Lij · · ·

allowing dependence on any linear functional of any
existing smooth.

FGLM example

I 150 functions, xi(t), (each observed at tT = (t1, . . . , t200)),
with corresponding noisy univariate response, yi .

I First 9 (xi(t), yi) pairs are . . .

0
4

8
12

x

208.8 47 121.8

0
4

8
12

x

125.4 43.4 15.3

0.0 0.2 0.4 0.6 0.8 1.0

0
4

8
12

t

x

123

0.0 0.2 0.4 0.6 0.8 1.0

t

7.7

0.0 0.2 0.4 0.6 0.8 1.0

t

109.4

FGLM fitting
I Want to estimate smooth function f in model

yi =
∫

f (t)xi(t)dt + εi .
I gam(y∼s(T,by=X)) will do this, if T and X are matrices.
I i th row of X is the observed (discretized) function xi(t).

Each row of T is a replicate of the observation time vector t.

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

4
0.

0
0.

2
0.

4
0.

6
0.

8

t

s(
T

,6
.5

4)
:X

Conclusions

I In the mgcv package, the object orientation built into R
allows the range of smooths, and the way that they are
employed as model components, to be extended almost
entirely independently of each other.

I So new types of smooth are easy to put into practical use,
while any smooth implemented can be used very flexibly in
model components.

I The modular setup also enhances software reliability.
I In future it should be possible to re-use the smoother class

methods as building blocks for models well outside the
GLM class, where a more general penalized likelihood
approach would be appropriate.

