


Soap film smoothing

Simon Wood, Mark Bravington & Sharon Hedley

with example by Nicole Augustin & Verena Trenkel



A problem for smoothers. . .
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Ramsay’s horshoe

Tim Ramsay (2002) proposed a test function like this.
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It’s very difficult to reconstruct by smoothing samples from the
function.



Stone’s method

I Stone (1988) developed finite window smoothers by
modifying a thin plate spline.

I Idea is to integrate thin plate spline penalty
∫

f 2
xx + 2f 2

xy + f 2
yydxdy

only over the domain of interest.
I Problem is that the penalty still shrinks the smooth function

towards a plane. This is innappropriate for the examples
just given.



Ramsay’s method

I Tim Ramsay (JRSSB, 2002), proposed a solution he called
FELSPLINE.

I It is a big improvement on thin plate spline and other
conventional smoothers.

I But it requires a computationally complex finite element
approach to estimate the smoother, so that e.g.
smoothness selection and variance estimation are
expensive.

I It also requires the very strong boundary condition that
contours of the smooth meet the boundary at right angles.



Our aims

1. To produce a computationally straightforward and efficient
finite window smoother, representable using a penalized
basis.

2. To produce a finite window smoother that can meet any
smooth known boundary condition with zero wiggliness.

I Such a smoother can be easily incorporated as a
component of other models (GAMs, GAMMs or something
more interesting), and estimated via penalized likelihood,
as a mixed model etc.

I Smoothness selection is also easy (by GCV, AIC, REML
etc).



Known boundary smoothing

I Consider a region Ω of the x − y plane within closed
boundary B.

I Suppose that some function g(x , y) is known on B, and we
wish to find a smooth function over Ω which meets this
boundary condition.

I Imagine the boundary condition as a loop of wire, with x , y
co-ordinates given by B, and ‘z ’ co-ordinate g(x , y).

I Nature’s solution to smoothly interpolating the boundary is
a soap film suspended from the boundary wire.



Soap film smoother idea

x

y

z



Soap film smoother idea

x

y

z



Soap film smoother idea

x

y

z

x

y

z



Soap film smoothness

I Making a ‘small displacement’ (and zero gravity)
assumption, the boundary interpolating soap film f obeys
the Laplace equation

fxx + fyy = 0

I This suggests that if f were to be allowed to distort (e.g. to
represent some function over Ω), then

∫

Ω
(fxx + fyy )2dxdy

might be a reasonable measure of departure from
smoothness.
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Soap film smoothing

I Consider noisy observations, zk of some function g(xk , yk ),
where xk , yk ∈ Ω, and g is known on Ω’s boundary, B.

I To estimate g we seek to find the function, f , minimizing

∑

i

{zi − f (xi , yi)}2 + λ

∫

Ω
(fxx + fyy )2dxdy

where λ is a smoothing parameter.
I How can this be computed?



Soap film interpolation theorem

I Let f ∗ be a function known on the boundary, B of Ω, and
zk , xk , yk be data such that xk , yk ∈ Ω.

I The function f (x , y) which interpolates f ∗ on B, satisfies
zk = f (xk , yk ) and minimizes

∫

Ω
(fxx + fyy )2dxdy

must satisfy

fxx + fyy = ρ(x , y), where ρxx + ρyy = 0

except at xk , yk (also need assumption that ρ = 0 on B).



Soap film smoothing lemma

I Setup is the same as for the SFIT.
I The function f (x , y) which interpolates f ∗ on B and

minimizes
∑

i

{zi − f (xi , yi)}2 + λ

∫

Ω
(fxx + fyy )2dxdy

must satisfy

fxx + fyy = ρ(x , y), where ρxx + ρyy = 0

except at xk , yk .
I This is the key to computational practicality.



Computational preliminaries

I Numerical solution of the defining PDEs is a very well
studied problem! (They are the Laplace and Poisson
equations.)

I For actual computation, define ρi(x , y) as the solution of
the PDE

ρxx + ρyy = 0,

except at a singularity point xi , yi , subject to ρ = 0 on B
and

∫
Ω ρ(x , y) = 1.

I Successive Over Relaxation (SOR) is a simple solution
method for obtaining the ρi , but multigrid is faster. Currently
we are also investigating sparse matrix direct methods.



Computation of the penalty

I Define parameters γk such that ρ(x , y) =
∑

k γkρk (x , y).
I It is easy to show that

∫

Ω
(fxx + fyy )2dxdy = γTSγ

where
Sij =

∫

Ω
ρi(x , y)ρj(x , y)dxdy

I Given gridded numerical evaluations of the ρi(x , y),
numerical evaluation of the integrals is easy.



A computable basis for f

I Let a(x , y) be the solution of fxx + fyy = 0 subject to known
boundaries conditions on B.

I Let gi(x , y) be the solution of

fxx + fyy = ρi(x , y)

with f = 0 on B
I The soap film smoother can be written as

f (x , y) = a(x , y) +
∑

k

γkgk (x , y).



The basis components
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Estimation

I Given a basis and quadratic penalty, it’s easy to
incorporate soap film smooths as components of e.g.
GAM(M)s, (G)LMMs, non-linear mixed models, etc.

I e.g. the original simple smoothing problem of finding f to
minimize

∑

i

{zi − f (xi , yi)}2 + λ

∫

Ω
(fxx + fyy )2dxdy .

becomes the standard generalized ridge regression
problem of finding γ to minimize

‖z− a− Xγ‖2 + λγTSγ.



Alternative estimation

I Alternatively, the simple smoothing problem can be viewed
from a mixed modelling or Bayesian perspective . . .

I The model becomes

E(z|γ) = a + Xγ

where
γ ∼ N(0, αS−1).

α is a variance component to be estimated (∝ λ−1).
I As a linear mixed model this can be estimated by likelihood

based methods, or stochastic simulation can be used.



Penalized regression bases

I There is one γk per datum zk .
I Usually this is computationally wasteful.
I It is better to choose a ‘nicely distributed’, but relatively

small set of xi , yi points in Ω, and to set up a basis and
penalty as if these were the data locations.

I This ‘penalized regression basis’ is then used to model the
actual data.

I Usually leads to large computational savings at little cost in
‘statistical performance’.



Unknown boundaries

I Unknown boundaries can be dealt with by defining a cyclic
penalized regression spline on the loop B.

I Suppose that the boundary spline has parameters β.
I Let ai(x , y) be the solution of

fxx + fyy = 0

subject to the boundary condition given by setting
βk = 0 ∀ k 6= i and βi = 1.

I Then a(x , y) =
∑

i βiai(x , y), and we acquire an extra
quadratic penalty forcing boundary smoothness.



Better than TPS
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I Reconstructions of test function from scattered noisy data
(noisier left to right).

I Free B soap upper. TPS lower. λ selection by GCV.



Better than FELSPLINE
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I Truth top left; FB soap top right; FELSPLINE lower left.



Better than modified FELSPLINE
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I Example from Ramsay (2002). Truth top left; FB soap top
right; modified FELSPLINE lower left.



Benign comparison?
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Benign MSE comparison
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Simulation conclusions

I Soap films offer a substantial advantage over the
alternatives for smoothing over complicated domains.

I The price paid is in performance on uncomplicated
domains, but seems to be fairly modest.

I Is all this of any use for anything real?



How many Soles are there?
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Aral Sea Chlorophyll
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Space time modelling of Blue Ling
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Blue Ling model (Augustin & Trenkel)

I Ling per trawl data, y , are available from commercial boats
off north west Scotland.

I Interest is in understanding spatial distribution, and
temporal trends in abundance.

I Basic model is

log(µit) = f1(durationit) + f2(depthi) + f3(monthit)+

f4(lati , loni , yeart) + f5(depthi , monthit)

+ f6(depthi , yearit)

where E(yit) = µit and yit ∼ Tweedie(µit , φµ1.5
it )

I Space time term should be soap film like in space, but vary
in time . . .



Tensor product smooths

I A time varying spatial soap film can be constructed as a
(pair of) tensor product smooth(s).

I Tensor product smooths are best explained using a 2D
example.

I Consider constructing a smooth of x , z.
I Start by choosing marginal bases and penalties, as if

constructing 1-D smooths of x and z. e.g.

fx(x) =
∑

αiai(x), fz(z) =
∑

βjbj(z),

Jx(fx) =

∫
f ′′x (x)2dx = αTSxα & Jz(fz) = BTSzB



Marginal reparameterization

I Suppose we start with fz(z) =
∑6

i=1 βjbj(z), on the left.
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I We can always re-parameterize so that its coefficients are

functions heights, at knots (right). Do same for fx .



Making fz depend on x
I Can make fz a function of x by letting its coefficients vary

smoothly with x

xz

f(z)

xz

f(x,z)



The complete tensor product smooth
I Use fx basis to let fz coefficients vary smoothly (left).
I Construct in symmetric (see right).
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Tensor product penalties - one per margin
I x-wiggliness: sum marginal x penalties over red curves.
I z-wiggliness: sum marginal z penalties over green curves.
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Tensor product expressions
I So the tensor product basis construction gives:

f (x , z) =
∑∑

βijbj(z)ai(x)

I With double penalties

J∗z (f ) = βTII ⊗ Szβ and J∗x (f ) = βTSx ⊗ IJβ

I The construction generalizes to any number of marginals
and multi-dimensional marginals.

I In particular a tensor product of a soap film and a 1D
smooth of time is possible.

I The soap film smoother is separated into the
boundary-interpolating-film and the deviation-from-film
parts, and tensor products with time are formed for each.



Blue Ling space time distribution
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Area trends over time
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Concluding waffle

I Soap film smoothing works nicely, and the smooths are
easy to incorporate as components of other models.

I R package soap is at
www.maths.bath.ac.uk/∼sw283/.

I Higher dimensional versions of soap are possible, but less
easy to compute with.

I Theoretically the boundary smooth seems inelegant, but in
practice its tendency to suppress edge effects, even for
simple boundaries, seems to be one of the soap film
smoothers main advantages.


