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Summary. We introduce a very general method for high dimensional classification, based on
careful combination of the results of applying an arbitrary base classifier to random projections
of the feature vectors into a lower dimensional space. In one special case that we study in
detail, the random projections are divided into disjoint groups, and within each group we select
the projection yielding the smallest estimate of the test error. Our random-projection ensemble
classifier then aggregates the results of applying the base classifier on the selected projections,
with a data-driven voting threshold to determine the final assignment. Our theoretical results
elucidate the effect on performance of increasing the number of projections. Moreover, under a
boundary condition that is implied by the sufficient dimension reduction assumption, we show
that the test excess risk of the random-projection ensemble classifier can be controlled by
terms that do not depend on the original data dimension and a term that becomes negligible
as the number of projections increases.The classifier is also compared empirically with several
other popular high dimensional classifiers via an extensive simulation study, which reveals its
excellent finite sample performance.
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1. Introduction

Supervised classification concerns the task of assigning an object (or a number of objects) to
one of two or more groups, on the basis of a sample of labelled training data. The problem
was first studied in generality in the famous work of Fisher (1936), where he introduced some
of the ideas of linear discriminant analysis (LDA) and applied them to his iris data set. Nowa-
days, classification problems arise in a plethora of applications, including spam filtering, fraud
detection, medical diagnoses, market research, natural language processing and many others.

In fact, LDA is still widely used today and underpins many other modern classifiers; see,
for example, Friedman (1989) and Tibshirani et al. (2002). Alternative techniques include sup-
port vector machines (SVMs) (Cortes and Vapnik, 1995), tree classifiers and random forests
(RFs) (Breiman et al., 1984; Breiman, 2001), kernel methods (Hall and Kang, 2005) and nearest
neighbour classifiers (Fix and Hodges, 1951). More substantial overviews and detailed discus-
sion of these techniques, and others, can be found in Devroye et al. (1996) and Hastie et al.
(2009).

An increasing number of modern classification problems are high dimensional, in the sense
that the dimension p of the feature vectors may be comparable with or even greater than the
number of training data points, n. In such settings, classical methods such as those mentioned
in the previous paragraph tend to perform poorly (Bickel and Levina, 2004) and may even be
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intractable; for example, this is so for LDA, where the problems are caused by the fact that the
sample covariance matrix is not invertible when p�n.

Many methods proposed to overcome such problems assume that the optimal decision bound-
ary between the classes is linear, e.g. Friedman (1989) and Hastie et al. (1995). Another common
approach assumes that only a small subset of features are relevant for classification. Examples
of works that impose such a sparsity condition include Fan and Fan (2008), where it was also
assumed that the features are independent, as well as Tibshirani et al. (2003), where soft thresh-
olding was used to obtain a sparse boundary. More recently, Witten and Tibshirani (2011) and
Fan et al. (2012) both solved an optimization problem similar to Fisher’s linear discriminant,
with the addition of an l1 penalty term to encourage sparsity.

In this paper we attempt to avoid the curse of dimensionality by projecting the feature vectors
at random into a lower dimensional space. The use of random projections in high dimensional
statistical problems is motivated by the celebrated Johnson–Lindenstrauss lemma (e.g. Dasgupta
and Gupta (2002)). This lemma states that, given x1, : : : , xn ∈Rp, ε∈ .0, 1/ and d > 8 log.n/=ε2,
there is a linear map f : Rp→Rd such that

.1− ε/‖xi−xj‖2 �‖f.xi/−f.xj/‖2 � .1+ ε/‖xi−xj‖2,

for all i, j=1, : : : , n. In fact, the function f that nearly preserves the pairwise distances can be
found in randomized polynomial time by using random projections distributed according to
Haar measure, as described in Section 3 below. It is interesting to note that the lower bound
on d in the Johnson–Lindenstrauss lemma does not depend on p; this lower bound is optimal
up to constant factors (Larsen and Nelson, 2016). As a result, random projections have been
used successfully as a computational time saver: when p is large compared with log.n/, we may
project the data at random into a lower dimensional space and run the statistical procedure on
the projected data, potentially making great computational savings, while achieving comparable
or even improved statistical performance. As one example of the above strategy, Durrant and
Kabán (2013) obtained Vapnik–Chervonenkis-type bounds on the generalization error of a
linear classifier trained on a single random projection of the data. See also Dasgupta (1999),
Ailon and Chazelle (2006) and McWilliams et al. (2014) for other instances.

Other works have sought to reap the benefits of aggregating over many random projections.
For instance, Marzetta et al. (2011) considered estimating a p×p population inverse covariance
(precision) matrix by using B−1ΣB

b=1AT
b .AbΣ̂AT

b /−1Ab, where Σ̂ denotes the sample covariance
matrix and A1, : : : , AB are random projections from Rp to Rd . Lopes et al. (2011) used this esti-
mate when testing for a difference between two Gaussian population means in high dimensions,
whereas Durrant and Kabán (2015) applied the same technique in Fisher’s linear discriminant
for a high dimensional classification problem.

Our proposed methodology for high dimensional classification has some similarities to the
techniques described above, in the sense that we consider many random projections of the
data, but is also closely related to bagging (Breiman, 1996), since the ultimate assignment of
each test point is made by aggregation and a vote. Bagging has proved to be an effective tool
for improving unstable classifiers. Indeed, a bagged version of the (generally inconsistent) 1-
nearest-neighbour classifier is universally consistent as long as the resample size is carefully
chosen: see Hall and Samworth (2005); for a general theoretical analysis of majority voting
approaches, see also Lopes (2016). Bagging has also been shown to be particularly effective in
high dimensional problems such as variable selection (Meinshausen and Bühlmann, 2010; Shah
and Samworth, 2013). Another related approach to ours is Blaser and Fryzlewicz (2015), who
considered ensembles of random rotations, as opposed to projections.
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Fig. 1. Different two-dimensional projections of 200 observations in p D 50 dimensions: (a)–(c) three pro-
jections drawn from Haar measure; (d)–(f) the projected data after applying the projections with smallest
estimate of test error out of 100 Haar projections with (d) LDA, (e) quadratic discriminant analysis and (f)
k-nearest neighbours

One of the basic but fundamental observations that underpins our proposal is the fact that
aggregating the classifications of all random projections is not always sensible, since many of
these projections will typically destroy the class structure in the data; see Figs 1(a)–1(c). For this
reason, we advocate partitioning the projections into disjoint groups, and within each group
we retain only the projection yielding the smallest estimate of the test error. The attraction
of this strategy is illustrated in Figs 1(d)–1(f), where we see a much clearer partition of the
classes. Another key feature of our proposal is the realization that a simple majority vote of the
classifications based on the retained projections can be highly suboptimal; instead, we argue
that the voting threshold should be chosen in a data-driven fashion in an attempt to minimize
the test error of the infinite simulation version of our random-projection ensemble classifier. In
fact, this estimate of the optimal threshold turns out to be remarkably effective in practice; see
Section 5.2 for further details. We emphasize that our methodology can be used in conjunction
with any base classifier, though we particularly have in mind classifiers designed for use in
low dimensional settings. The random-projection ensemble classifier can therefore be regarded
as a general technique for either extending the applicability of an existing classifier to high
dimensions, or improving its performance. The methodology is implemented in an R package
RPEnsemble (Cannings and Samworth, 2016).

Our theoretical results are divided into three parts. In the first, we consider a generic base
classifier and a generic method for generating the random projections into Rd and quantify
the difference between the test error of the random-projection ensemble classifier and its infin-
ite simulation counterpart as the number of projections increases. We then consider selecting
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random projections from non-overlapping groups by initially drawing them according to Haar
measure, and then within each group retaining the projection that minimizes an estimate of the
test error. Under a condition that is implied by the widely used sufficient dimension reduction
assumption (Li, 1991; Cook, 1998; Lee et al., 2013), we can then control the difference between
the test error of the random-projection classifier and the Bayes risk as a function of terms that
depend on the performance of the base classifier based on projected data and our method for
estimating the test error, as well as a term that becomes negligible as the number of projections
increases. The final part of our theory gives risk bounds for the first two of these terms for spe-
cific choices of base classifier, namely Fisher’s linear discriminant and the k-nearest-neighbour
classifier. The key point here is that these bounds depend on d only, the sample size n and the
number of projections, and not on the original data dimension p.

The remainder of the paper is organized as follows. Our methodology and general theory
are developed in Sections 2 and 3. Specific choices of base classifier as well as a general sample
splitting strategy are discussed in Section 4, whereas Section 5 is devoted to a consideration
of the practical issues of computational complexity, choice of voting threshold, projected di-
mension and the number of projections used. In Section 6 we present results from an extensive
empirical analysis on both simulated and real data where we compare the performance of the
random-projection ensemble classifier with several popular techniques for high dimensional
classification. The outcomes are very encouraging, and suggest that the random-projection
ensemble classifier has excellent finite sample performance in a variety of high dimensional
classification settings. We conclude with a discussion of various extensions and open problems.
Proofs are given in Appendix A and the on-line supplementary material.

The program code that was used to perform the simulations can be obtained from

http://wileyonlinelibrary.com/journal/rss-datasets

Finally in this section, we introduce the following general notation that is used throughout
the paper. For a sufficiently smooth real-valued function g defined on a neighbourhood of t∈R,
let ġ.t/ and g̈.t/ denote its first and second derivatives at t, and let �t� and [[t]] := t−�t� denote
the integer and fractional part of t respectively.

2. A generic random-projection ensemble classifier

We start by describing our setting and defining the relevant notation. Suppose that the pair .X, Y/

takes values in Rp×{0, 1}, with joint distribution P , characterized byπ1 :=P.Y=1/, and Pr, the
conditional distribution of X|Y = r, for r=0, 1. For convenience, we let π0 :=P.Y =0/=1−π1.
In the alternative characterization of P , we let PX denote the marginal distribution of X and
write η.x/ :=P.Y =1|X=x/ for the regression function. Recall that a classifier on Rp is a Borel
measurable function C : Rp→ {0, 1}, with the interpretation that we assign a point x∈Rp to
class C.x/. We let Cp denote the set of all such classifiers.

The test error of a classifier C is

R.C/ :=
∫

Rp×{0,1}
1{C.x/ �=y} dP.x, y/

and is minimized by the Bayes classifier

CBayes.x/ :=
{

1 if η.x/� 1
2 ,

0 otherwise

(e.g. Devroye et al. (1996), page 10). (We define R.C/ through an integral rather than R.C/ :=
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P{C.X/ �=Y} to make it clear that, when C is random (depending on training data or random
projections), it should be conditioned on when computing R.C/.) The Bayes risk is R.CBayes/=
E[min{η.X/, 1−η.X/}].

Of course, we cannot use the Bayes classifier in practice, since η is unknown. Nevertheless,
we often have access to a sample of training data that we can use to construct an approximation
to the Bayes classifier. Throughout this section and Section 3, it is convenient to consider the
training sample Tn :={.x1, y1/, : : : , .xn, yn/} to be fixed points in Rp×{0, 1}. Our methodology
will be applied to a base classifier Cn=Cn,Tn,d , which we assume can be constructed from an
arbitrary training sample Tn,d of size n in Rd × {0, 1}; thus Cn is a measurable function from
.Rd×{0, 1}/n to Cd .

Now assume that d � p. We say that a matrix A∈Rd×p is a projection if AAT= Id×d , the
d-dimensional identity matrix. Let A=Ad×p :={A∈Rd×p : AAT= Id×d} be the set of all such
matrices. Given a projection A∈A, define projected data zA

i :=Axi and yA
i :=yi for i=1, : : : , n,

and let T A
n :={.zA

1 , yA
1 /, : : : , .zA

n , yA
n /}. The projected data base classifier corresponding to Cn is

CA
n : .Rd×{0, 1}/n→Cp, given by

CA
n .x/=CA

n,T A
n

.x/ :=Cn,T A
n

.Ax/:

Note that although CA
n is a classifier on Rp, the value of CA

n .x/ only depends on x through its
d-dimensional projection Ax.

We now define a generic ensemble classifier based on random projections. For B1 ∈N, let
A1, : : : , AB1 denote independent and identically distributed projections in Ad×p, independent
of .X, Y/. The distribution on A is left unspecified at this stage, and in fact our proposed method
ultimately involves choosing this distribution depending on Tn.

Now set

νn.x/=ν.B1/
n .x/ := 1

B1

B1∑
b1=1

1
{C

Ab1
n .x/=1}

: .1/

For α∈ .0, 1/, the random-projection ensemble classifier is defined to be

CRP
n .x/ :=

{
1 if νn.x/�α,
0 otherwise.

.2/

We emphasize again here the additional flexibility that is afforded by not prespecifying the voting
threshold α to be 1

2 . Our analysis of the random-projection ensemble classifier will require some
further definitions. Let

μn.x/ :=E{νn.x/}=P{CA1
n .x/=1}:

(To distinguish between different sources of randomness, we shall write P and E for the proba-
bility and expectation respectively, taken over the randomness from the projections A1, : : : , AB1 .
If the training data are random, then we condition on Tn when computing P and E.) For r=0, 1,
define distribution functions Gn,r : [0, 1]→ [0, 1] by Gn,r.t/ :=Pr[{x∈Rp :μn.x/� t}]. Since Gn,r
is non-decreasing it is differentiable almost everywhere; in fact, however, the following assump-
tion will be convenient.

Assumption 1. Gn,0 and Gn,1 are twice differentiable at α.

The first derivatives of Gn,0 and Gn,1, when they exist, are denoted as gn,0 and gn,1 respectively;
under assumption 1, these derivatives are well defined in a neighbourhood of α. Our first main
result below gives an asymptotic expansion for the expected test error E{R.CRP

n /} of our generic
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random-projection ensemble classifier as the number of projections increases. In particular, we
show that this expected test error can be well approximated by the test error of the infinite
simulation random-projection classifier

CRPÆ

n .x/ :=
{

1 if μn.x/�α,
0 otherwise.

Provided that Gn,0 and Gn,1 are continuous at α, we have

R.CRPÆ

n /=π1 Gn,1.α/+π0{1−Gn,0.α/}: .3/

Theorem 1. Assume assumption 1. Then

E{R.CRP
n /}−R.CRPÆ

n /= γn.α/

B1
+o

(
1

B1

)
as B1→∞, where

γn.α/ := .1−α− [[B1α]]/{π1gn,1.α/−π0 gn,0.α/}+ α.1−α/

2
{π1 ġn,1.α/−π0 ġn,0.α/}:

The proof of theorem 1 in Appendix A is lengthy and involves a one-term Edgeworth ap-
proximation to the distribution function of a standardized binomial random variable. One of the
technical challenges is to show that the error in this approximation holds uniformly in the bino-
mial proportion. Related techniques can also be used to show that var{R.CRP

n /}=O.B−1
1 / un-

der assumption 1; see proposition 1 in the on-line supplementary material. Very recently, Lopes
(2016) has obtained similar results to this and to theorem 1 in the context of majority vote clas-
sification, with stronger assumptions on the relevant distributions and on the form of the voting
scheme. In Fig. 2, we plot the average error (±2 standard deviations) of the random-projection
ensemble classifier in one numerical example, as we vary B1 ∈ {2, : : : , 500}; this reveals that
the Monte Carlo error stabilizes rapidly, in agreement with what Lopes (2016) observed for a
random-forest classifier.

Our next result controls the test excess risk, i.e. the difference between the expected test error
and the Bayes risk, of the random-projection classifier in terms of the expected test excess
risk of the classifier based on a single random projection. An attractive feature of this result
is its generality: no assumptions are placed on the configuration of the training data Tn, the
distribution P of the test point .X, Y/ or on the distribution of the individual projections.

Theorem 2. For each B1 ∈N∪{∞}, we have

E{R.CRP
n /}−R.CBayes/� 1

min.α, 1−α/
[E{R.CA1

n /}−R.CBayes/]: .4/

When B1=∞, we interpret R.CRP
n / in theorem 2 as R.CRPÆ

n /. In fact, when B1=∞ and Gn,0
and Gn,1 are continuous, the bound in theorem 2 can be improved if we are using an ‘oracle’
choice of the voting threshold α, namely

αÅ ∈arg min
α′∈[0,1]

R.CRPÆ

n,α′ /=arg min
α′∈[0,1]

[π1 Gn,1.α′/+π0{1−Gn,0.α′/}], .5/

where we write CRPÆ

n,α to emphasize the dependence on the voting threshold α. In this case, by
definition of αÅ and then applying theorem 2,

R.CRPÆ

n,αÆ /−R.CBayes/�R.CRPÆ

n,1=2/−R.CBayes/�2[E{R.CA1
n /}−R.CBayes/], .6/
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Fig. 2. Average error ( ) ˙2 standard deviations ( ) over 20 sets of B1B2 projections for
B1 2{2,. . . , 500}: we use (a) the LDA, (b) quadratic discriminant analysis and (c) k-nearest-neighbour base
classifiers (the plots show the test error for one training data set from model 2; the other parameters are
nD50, pD100, d D5 and B2 D50)

which improves the bound in expression (4) since 2 � 1=min{αÅ, .1−αÅ/}. It is also worth
mentioning that if assumption 1 holds at αÅ ∈ .0, 1/, and Gn,0 and Gn,1 are continuous, then
π1 gn,1.αÅ/=π0 gn,0.αÅ/ and the constant in theorem 1 simplifies to

γn.αÅ/= α
Å.1−αÅ/

2
{π1 ġn,1.αÅ/−π0 ġn,0.αÅ/}�0:

3. Choosing good random projections

In this section, we study a special case of the generic random-projection ensemble classifier that
was introduced in Section 2, where we propose a screening method for choosing the random
projections. Let RA

n be an estimator of R.CA
n /, based on {.zA

1 , yA
1 /, : : : , .zA

n , yA
n /}, that takes
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values in the set {0, 1=n, : : : , 1}. Examples of such estimators include the training error and
leave-one-out estimator; we discuss these choices in greater detail in Section 4. For B1, B2 ∈N,
let {Ab1,b2 :b1=1, : : : , B1, b2=1, : : : , B2} denote independent projections, independent of .X, Y/,
distributed according to Haar measure on A. One way to simulate from Haar measure on the
set A is first to generate a matrix Q∈Rd×p, where each entry is drawn independently from a
standard normal distribution, and then to take AT to be the matrix of left singular vectors in
the singular value decomposition of QT (see, for example, Chikuse (2003), theorem 1.5.4). For
b1=1, : : : , B1, let

bÅ
2 .b1/ := sarg min

b2∈{1,:::,B2}
R

Ab1,b2
n , .7/

where sargmin denotes the smallest index where the minimum is attained in the case of a tie. We
now set Ab1 :=Ab1,bÆ

2.b1/, and consider the random-projection ensemble classifier from Section
2 constructed by using the independent projections A1, : : : , AB1 .

Let

RÅ
n :=min

A∈A
RA

n

denote the optimal test error estimate over all projections. The minimum is attained here, since
RA

n takes only finitely many values. We make the following assumption.

Assumption 2. There exists β ∈ .0, 1] such that

P.R
A1,1
n �RÅ

n +|εn|/�β,

where εn= ε.B2/
n :=E{R.C

A1
n /−R

A1
n }.

The quantity εn, which depends on B2 because A1 is selected from B2 independent random
projections, can be interpreted as a measure of overfitting. Assumption 2 asks that there is
a positive probability that R

A1,1
n is within |εn| of its minimum value RÅ

n . The intuition here is
that spending more computational time choosing a projection by increasing B2 is potentially
futile: one may find a projection with a lower error estimate, but the chosen projection will not
necessarily result in a classifier with a lower test error. Under this condition, the following result
controls the test excess risk of our random-projection ensemble classifier in terms of the test
excess risk of a classifier based on d-dimensional data, as well as a term that reflects our ability
to estimate the test error of classifiers on the basis of projected data and a term that depends on
the number of projections.

Theorem 3. Assume assumption 2. Then, for each B1, B2 ∈N, and every A∈A,

E{R.CRP
n /}−R.CBayes/� R.CA

n /−R.CBayes/

min.α, 1−α/
+ 2|εn|− εAn

min.α, 1−α/
+ .1−β/B2

min.α, 1−α/
, .8/

where εAn :=R.CA
n /−RA

n .

Regarding the bound in theorem 3 as a sum of three terms, we see that the final term can be
seen as the price that we must pay for the fact that we do not have access to an infinite sample of
random projections. This term can be made negligible by choosing B2 to be sufficiently large,
though the value of B2 that is required to ensure that it is below a prescribed level may depend
on the training data. It should also be noted that εn in the second term may increase with B2,
which reflects the fact mentioned previously that this quantity is a measure of overfitting. The
behaviour of the first two terms depends on the choice of base classifier, and our aim is to show
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that, under certain conditions, these terms can be bounded (in expectation over the training
data) by expressions that do not depend on p.

For this, define the regression function on Rd induced by the projection A∈A to be ηA.z/ :=
P.Y = 1|AX= z/. The corresponding induced Bayes classifier, which is the optimal classifier
knowing only the distribution of .AX, Y/, is given by

CA−Bayes.z/ :=
{

1 if ηA.z/� 1
2 ,

0 otherwise.

To give a condition under which there is a projection A∈A for which R.CA
n / is close to the Bayes

risk, we shall invoke an additional assumption on the form of the Bayes classifier.

Assumption 3. There is a projection AÅ ∈A such that

PX.{x∈Rp :η.x/� 1
2}�{x∈Rp :ηAÆ

.AÅx/� 1
2}/=0,

where B�C := .B∩Cc/∪ .Bc ∩C/ denotes the symmetric difference of two sets B and C.

Assumption 3 requires that the set of points x∈Rp that are assigned by the Bayes classifier to
class 1 can be expressed as a function of a d-dimensional projection of x. If the Bayes decision
boundary is a hyperplane, then assumption 3 holds with d=1. Moreover, proposition 1 below
shows that, in fact, assumption 3 holds under the sufficient dimension reduction condition,
which states that Y is conditionally independent of X given AÅX; see Cook (1998) for many
statistical settings where such an assumption is natural.

Proposition 1. If Y is conditionally independent of X given AÅX, then assumption 3 holds.

The following result confirms that under assumption 3, and for a sensible choice of base
classifier, we can hope for R.CAÆ

n / to be close to the Bayes risk.

Proposition 2. Assume assumption 3. Then R.CAÆ−Bayes/=R.CBayes/.

We are therefore now ready to study the first two terms in the bound in theorem 3 in more
detail for specific choices of base classifier.

4. Possible choices of the base classifier

In this section, we change our previous perspective and regard the training data as inde-
pendent random pairs with distribution P , so our earlier statements are interpreted condi-
tionally on Tn := {.X1, Y1/, : : : , .Xn, Yn/}. For A ∈A, we write our projected data as T A

n :=
{.ZA

1 , YA
1 /, : : : , .ZA

n , YA
n /}, where ZA

i :=AXi and YA
i := Yi. We also write P and E to refer to

probabilities and expectations over all random quantities. We consider particular choices of
base classifier and study the first two terms in the bound in theorem 3.

4.1. Linear discriminant analysis
LDA, which was introduced by Fisher (1936), is arguably the simplest classification technique.
Recall that, in the special case where X|Y = r∼Np.μr, Σ/, we have

sgn
{
η.x/− 1

2

}
= sgn

{
log

(
π1

π0

)
+

(
x− μ1+μ0

2

)T

Σ−1.μ1−μ0/

}
,

so assumption 3 holds with d= 1 and AÅ= .μ1−μ0/TΣ−1=‖Σ−1.μ1−μ0/‖, which is a 1×p

matrix. In LDA, πr, μr and Σ are estimated by their sample versions, using a pooled estimate
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of Σ. Although LDA cannot be applied directly when p�n since the sample covariance matrix
is singular, we can still use it as the base classifier for a random-projection ensemble, provided
that d<n. Indeed, noting that, for any A∈A, we have AX|Y = r∼Nd.μA

r , ΣA/, where μA
r :=Aμr

and ΣA :=AΣAT, we can define

CA
n .x/=CA−LDA

n .x/ :=
{

1 if log.π̂1=π̂0/+ .Ax− .μ̂A
1 + μ̂A

0 /=2/TΩ̂
A

.μ̂A
1 − μ̂A

0 /�0;
0 otherwise.

.9/

Here, π̂r :=nr=n, where nr :=Σn
i=11{Yi=r}, μ̂A

r :=n−1
r Σn

i=1AXi1{Yi=r},

Σ̂
A

:= 1
n−2

n∑
i=1

1∑
r=0

.AXi− μ̂A
r /.AXi− μ̂A

r /T1{Yi=r}

and Ω̂
A

:= .Σ̂
A

/−1.
Write Φ for the standard normal distribution function. Under the normal model specified

above, the test error of the LDA classifier can be written as

R.CA
n /=π0 Φ

[
log.π̂1=π̂0/+ .δ̂

A
/
T
Ω̂

A
. ¯̂μA−μA

0 /
√{.δ̂

A
/
TΩ̂

A
Σ

A
Ω̂

A
δ̂

A}

]
+π1 Φ

[
log.π̂0=π̂1/− .δ̂

A
/
T
Ω̂

A
. ¯̂μA−μA

1 /
√{.δ̂

A
/
TΩ̂

A
Σ

A
Ω̂

A
δ̂

A}

]
,

where δ̂
A

:= μ̂A
0 − μ̂A

1 and ¯̂μA
:= .μ̂A

0 + μ̂A
1 /=2.

Efron (1975) studied the excess risk of the LDA classifier in an asymptotic regime in which d

is fixed as n diverges. Specializing his results for simplicity to the case where π0=π1, he showed
that using the LDA classifier (9) with A=AÅ yields

E{R.CAÆ

n /}−R.CBayes/= d

n
φ

(
−Δ

2

)(
Δ
4
+ 1

Δ

)
{1+o.1/} .10/

as n→∞, where Δ :=‖Σ−1=2.μ0−μ1/‖=‖.ΣAÆ
/−1=2.μAÆ

0 −μAÆ

1 /‖.
It remains to control the errors εn and εA

Æ

n in theorem 3. For the LDA classifier, we consider
the training error estimator

RA
n := 1

n

n∑
i=1

1{CA−LDA
n .Xi/�=Yi}: .11/

Devroye and Wagner (1976) provided a Vapnik–Chervonenkis bound for RA
n under no assump-

tions on the underlying data-generating mechanism: for every n∈N and ε> 0,

sup
A∈A

P{|R.CA
n /−RA

n |> ε}�8.n+1/d+1 exp.−nε2=32/; .12/

see also Devroye et al. (1996), theorem 23.1. We can then conclude that

E|εAÆ

n |�E|R.CAÆ

n /−RAÆ

n |� inf
ε0∈.0,1/

ε0+8.n+1/d+1
∫ 1

ε0

exp
(
− ns2

32

)
ds

�8
√{

.d+1/ log.n+1/+3 log.2/+1
2n

}
: .13/

The more difficult term to deal with is

E|εn|=E|E{R.CA1
n /−RA1

n }|�E|R.CA1
n /−RA1

n |:
In this case, the bound (12) cannot be applied directly, because .X1, Y1/, : : : , .Xn, Yn/ are no
longer independent conditional on A1; indeed A1=A1,bÆ

2.1/ is selected from A1,1, : : : , A1,B2 to
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minimize an estimate of test error, which depends on the training data. Nevertheless, since
A1,1, : : : , A1,B2 are independent of Tn, we still have that

P
{

max
b2=1,:::,B2

|R.C
A1,b2
n /−R

A1,b2
n |> ε|A1,1, : : : , A1,B2

}
�

B2∑
b2=1

P{|R.C
A1,b2
n /−R

A1,b2
n |> ε|A1,b2}

�8.n+1/d+1B2 exp.−nε2=32/:

We can therefore conclude by almost the same argument as that leading to bound (13) that

E|εn|�E
{

max
b2=1,:::,B2

|R.C
A1,b2
n /−R

A1,b2
n |

}
�8

√{
.d+1/ log.n+1/+3 log.2/+ log.B2/+1

2n

}
:

(14)

Note that none of the bounds (10), (13) and (14) depend on the original data dimension p.
Moreover, bound (14), together with theorem 3, reveals a trade-off in the choice of B2 when
using LDA as the base classifier. Choosing B2 to be large gives us a good chance of finding a
projection with a small estimate of test error, but we may incur a small overfitting penalty as
reflected by bound (14).

Finally, we remark that an alternative method of fitting linear classifiers is via empirical risk
minimization. In this context, Durrant and Kabán (2013), theorem 3.1, gave high probability
bounds on the test error of a linear empirical risk minimization classifier based on a single
random projection, where the bounds depend on what they refered to as the ‘flipping probability’,
namely the probability that the class assignment of a point based on the projected data differs
from the assignment in the ambient space. In principle, these bounds could be combined with our
theorem 2, though the resulting expressions would depend on probabilistic bounds on flipping
probabilities.

4.2. Quadratic discriminant analysis
Quadratic discriminant analysis (QDA) is designed to handle situations where the class condi-
tional covariance matrices are unequal. Recall that when X|Y = r∼Np.μr, Σr/, and πr=P.Y =
r/, for r= 0, 1, the Bayes decision boundary is given by {x∈Rp : Δ.x;π0,μ0,μ1, Σ0, Σ1/= 0},
where

Δ.x;π0,μ0,μ1, Σ0, Σ1/ := log
(
π1

π0

)
− 1

2
log

{
det.Σ1/

det.Σ0/

}
− 1

2
xT.Σ−1

1 −Σ−1
0 /x

+xT.Σ−1
1 μ1−Σ−1

0 μ0/− 1
2
μT

1 Σ−1
1 μ1+ 1

2
μT

0 Σ−1
0 μ0:

In QDA, πr, μr and Σr are estimated by their sample versions. If p�min.n0, n1/, where we recall
that nr :=Σn

i=11{Yi=r}, then at least one of the sample covariance matrix estimates is singular,
and QDA cannot be used directly. Nevertheless, we can still choose d < min.n0, n1/ and use
QDA as the base classifier in a random-projection ensemble. Specifically, we can set

CA
n .x/=CA−QDA

n .x/ :=
{

1 if Δ.x; π̂0, μ̂A
0 , μ̂A

1 , Σ̂
A

0 , Σ̂
A

1 /�0,
0 otherwise,

where π̂r and μ̂A
r were defined in Section 4.1, and where

Σ̂
A

r := 1
nr−1

∑
{i:YA

i =r}
.AXi− μ̂A

r /.AXi− μ̂A
r /T
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for r= 0, 1. Unfortunately, analogous theory to that presented in Section 4.1 does not appear
to exist for the QDA classifier; unlike for LDA, the risk does not have a closed form (note
that Σ1−Σ0 is non-definite in general). Nevertheless, we found in our simulations presented in
Section 6 that the QDA random-projection ensemble classifier can perform very well in practice.
In this case, we estimate the test errors by using the leave-one-out method given by

RA
n := 1

n

n∑
i=1

1{CA
n,i.Xi/�=Yi}, .15/

where CA
n,i denotes the classifier CA

n , trained without the ith pair, i.e. based on T A
n \{ZA

i , YA
i }.

For a method like QDA that involves estimating more parameters than LDA, we found that the
leave-one-out estimator was less susceptible to overfitting than the training error estimator.

4.3. The k-nearest-neighbour classifier
The k-nearest-neighbour classifier knn, which was first proposed by Fix and Hodges (1951),
is a non-parametric method that classifies the test point x∈Rp according to a majority vote
over the classes of the k nearest training data points to x. The enormous popularity of knn
can be attributed partly to its simplicity and intuitive appeal; however, it also has the attractive
property of being universally consistent: for every fixed distribution P , as long as k→∞ and
k=n→0, the risk of knn converges to the Bayes risk (Devroye et al. (1996), theorem 6.4).

Hall et al. (2008) studied the rate of convergence of the excess risk of the k-nearest-neighbour
classifier under regularity conditions that require, inter alia, that p is fixed and that the class
conditional densities have two continuous derivatives in a neighbourhood of the .p− 1/-
dimensional manifold on which they cross. In such settings, the optimal choice of k, in terms
of minimizing the excess risk, is O.n4=.p+4//, and the rate of convergence of the excess risk
with this choice is O.n−4=.p+4//. Thus, in common with other non-parametric methods, there
is a ‘curse-of-dimensionality’ effect that means that the classifier typically performs poorly in
high dimensions. Samworth (2012) found the optimal way of assigning decreasing weights to
increasingly distant neighbours and quantified the asymptotic improvement in risk over the
unweighted version, but the rate of convergence remains the same.

We can use knn as the base classifier for a random-projection ensemble as follows: given
z∈Rd , let .ZA

.1/, YA
.1//, : : : , .ZA

.n/, YA
.n// be a reordering of the training data such that ‖ZA

.1/− z‖�
: : :�‖ZA

.n/− z‖, with ties split at random. Now define

CA
n .x/=CA−knn

n .x/ :=
{

1 if SA
n .Ax/� 1

2 ,
0 otherwise,

where SA
n .z/ := k−1Σk

i=11{YA
.i/=1}. The theory that was described in the previous paragraph can

be applied to show that, under regularity conditions, E{R.CAÆ

n /}−R.CBayes/=O.n−4=.d+4//.
Once again, a natural estimate of the test error in this case is the leave-one-out estimator

that is defined in expression (15), where we use the same value of k on the leave-one-out data
sets as for the base classifier, and where distance ties are split in the same way as for the base
classifier. For this estimator, Devroye and Wagner (1979), theorem 4, showed that, for every
n∈N,

sup
A∈A

E[{R.CA
n /−RA

n }2]� 1
n
+ 24k1=2

n
√

.2π/
;

see also Devroye et al. (1996), chapter 24. It follows that
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E|εAÆ

n |�
{

1
n
+ 24k1=2

n
√

.2π/

}1=2

� 1
n1=2 +

25=4k1=4√3
n1=2π1=4 :

In fact, Devroye and Wagner (1979), theorem 1, also provided a tail bound analogous to bound
(12) for the leave-one-out estimator: for every n∈N and ε> 0,

sup
A∈A

P{|R.CA
n /−RA

n |>ε}�2 exp
(
− nε2

18

)
+6 exp

{
− nε3

108k.3d+1/

}
�8 exp

{
− nε3

108k.3d+1/

}
:

Arguing very similarly to Section 4.1, we can deduce that under no conditions on the data-
generating mechanism, and, choosing

ε0 :=
{

108k.3d+1/

n
log.8B2/

}1=3

,

we have

E|εn|=
∫ 1

0
P

{
max

b2=1, :::, B2
|R.C

A1,b2
n /−R

A1,b2
n |> ε

}
dε

� ε0+8B2

∫ ∞
ε0

exp
{
− nε3

108k.3d+1/

}
dε�3{4.3d+1/}1=3

[
k{1+ log.B2/+3 log.2/}

n

]1=3

:

We have therefore again bounded the expectations of the first two terms on the right-hand side
of inequality (8) by quantities that do not depend on p.

4.4. A general strategy using sample splitting
In Sections 4.1, 4.2 and 4.3, we focused on specific choices of the base classifier to derive bounds
on the expected values of the first two terms in the bound in theorem 3. The aim of this section,
in contrast, is to provide similar guarantees that can be applied for any choice of base classifier
in conjunction with a sample splitting strategy. The idea is to split the sample Tn into Tn,1 and
Tn,2, say, where |Tn,1|=: n.1/ and |Tn,2|=: n.2/. To estimate the test error of CA

n.1/ , the projected
data base classifier trained on T A

n,1 :={.ZA
i , YA

i / : .Xi, Yi/∈Tn,1}, we use

RA
n.1/,n.2/ := 1

n.2/

∑
.Xi, Yi/∈Tn,2

1{CA

n.1/
.Xi/�=Yi};

in other words, we construct the classifier based on the projected data from Tn,1 and count the
proportion of points in Tn,2 that are misclassified. Similarly to our previous approach, for the
b1th group of projections, we then select a projection Ab1 that minimizes this estimate of test
error and construct the random-projection ensemble classifier CRP

n.1/,n.2/ from

νn.1/ .x/ := 1
B1

B1∑
b1=1

1
{C

Ab1
n.1/

.x/=1}
:

Writing RÅ
n.1/,n.2/ :=minA∈A RA

n.1/,n.2/ , we introduce the following assumption which is analogous
to assumption 2.

Assumption 2′. There exists β ∈ .0, 1] such that

P.R
A1,1

n.1/,n.2/ �RÅ
n.1/,n.2/ +|εn.1/,n.2/ |/�β,

where εn.1/,n.2/ :=E{R.C
A1
n.1/ /−R

A1
n.1/,n.2/}.
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The following bound for the random-projection ensemble classifier with sample splitting is
then immediate from theorem 3 and proposition 2.

Corollary 1. Assume assumptions 2′ and 3. Then, for each B1, B2 ∈N,

E{R.CRP
n.1/,n.2/ /}−R.CBayes/�

R.CAÆ

n.1/ /−R.CAÆ−Bayes/

min.α, 1−α/
+

2|εn.1/,n.2/ |− εAÆ

n.1/,n.2/

min.α, 1−α/
+ .1−β/B2

min.α, 1−α/
,

where εA
Æ

n.1/,n.2/ :=R.CAÆ

n.1/ /−RAÆ

n.1/,n.2/ .

The main advantage of this approach is that, since Tn,1 and Tn,2 are independent, we can
apply Hoeffding’s inequality to deduce that

sup
A∈A

P{|R.CA
n.1/ /−RA

n.1/,n.2/ |� ε|Tn,1}�2 exp.−2n.2/ε2/:

It then follows by very similar arguments to those given in Section 4.1 that

E.|εAÆ

n.1/,n.2/ ||Tn,1/=E{|R.CAÆ

n.1/ /−RAÆ

n.1/,n.2/ ||Tn,1}�
{

1+ log.2/

2n.2/

}1=2

,

E.|εn.1/,n.2/ ||Tn,1/=E{|R.C
A1
n.1/ /−R

A1
n.1/,n.2/ ||Tn,1}�

{
1+ log.2/+ log.B2/

2n.2/

}1=2

:

.16/

These bounds hold for any choice of base classifier (and still without any assumptions on the
data-generating mechanism); moreover, since the bounds on the terms in expression (16) merely
rely on Hoeffding’s inequality as opposed to Vapnik–Chervonenkis theory, they are typically
sharper. The disadvantage is that the first term in the bound in corollary 1 will typically be larger
than the corresponding term in theorem 3 because of the reduced effective sample size.

5. Practical considerations

5.1. Computational complexity
The random-projection ensemble classifier aggregates the results of applying a base classifier to
many random projections of the data. Thus we need to compute the training error (or leave-
one-out error) of the base classifier after applying each of the B1B2 projections. The test point
is then classified by using the B1 projections that yield the minimum error estimate within each
block of size B2.

Generating a random projection from Haar measure involves computing the left singular vec-
tors of a p×d matrix, which requires O.pd2/ operations (Trefethen and Bau (1997), lecture 31).
However, if computational cost is a concern, one may simply generate a matrix with pd indepen-
dent N.0, 1=p/ entries. If p is large, such a matrix will be approximately orthonormal with high
probability. In fact, when the base classifier is affine invariant (as for LDA and QDA), this will
give the same results as using Haar projections, in which case one can forgo the orthonormal-
ization step altogether when generating the random projections. Even in very high dimensional
settings, multiplication by a random Gaussian matrix can be approximated in a computationally
efficient manner (e.g. Le et al. (2013)). Once a projection has been generated, we need to map
the training data to the lower dimensional space, which requires O.npd/ operations. We then
classify the training data by using the base classifier. The cost of this step, which is denoted
Ttrain, depends on the choice of the base classifier; for LDA and QDA it is O.nd2/, whereas for
knn it is O.n2d/. Finally the test points are classified by using the chosen projections; this cost,
which is denoted Ttest, also depends on the choice of base classifier. For LDA, QDA and knn it is
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O.ntestd/, O{ntestd
2} and O{.n+ntest/

2d} respectively, where ntest is the number of test points.
Overall we therefore have a cost of O[B1{B2.npd+Ttrain/+ntestpd+Ttest}] operations.

An appealing aspect of the proposal that is studied here is the scope to incorporate parallel
computing. We can simultaneously compute the projected data base classifier for each of the
B1B2 projections. In the on-line supplementary material we present the running times of the
random-projection ensemble classifier and the other methods that are considered in the empirical
comparison in Section 6.

5.2. Choice of α
We now discuss the choice of the voting threshold α. In equation (5), at the end of Section 2, we
defined the oracle choice αÅ, which minimizes the test error of the infinite simulation random-
projection classifier. Of course, αÅ cannot be used directly, because we do not know Gn,0 and
Gn,1 (and we may not know π0 and π1 either). Nevertheless, for the LDA base classifier we can
estimate Gn,r by using

Ĝn,r.t/ := 1
nr

∑
{i:Yi=r}

1{νn.Xi/<t}

for r= 0, 1. For the QDA and k-nearest-neighbour base classifiers, we use the leave-one-out
based estimate

ν̃n.Xi/ :=B−1
1

B1∑
b1=1

1
{C

Ab1
n,i .Xi/=1}

in place of νn.Xi/. We also estimate πr by π̂r := n−1Σn
i=11{Yi=r}, and then set the cut-off in

definition (2) as

α̂∈arg min
α′ ∈[0,1]

[π̂1Ĝn,1.α′/+ π̂0{1− Ĝn,0.α′/}]: .17/

Since empirical distribution functions are piecewise constant, the objective function in expres-
sion (17) does not have a unique minimum, so we choose α̂ to be the average of the smallest
and largest minimizers. An attractive feature of the method is that {νn.Xi/ : i= 1, : : : , n} (or
{ν̃n.Xi/ : i=1, : : : , n} in the case of QDA and knn) are already calculated in order to choose the
projections, so calculating Ĝn,0 and Ĝn,1 carries negligible extra computational cost.

Fig. 3 illustrates π̂1 Ĝn,1.α′/+ π̂0{1− Ĝn,0.α′/} as an estimator of π1 Gn,1.α′/+ π0{1−
Gn,0.α′/}, for the QDA base classifier and for various values of n and π1. Here, a very good
approximation to the estimand was obtained by using an independent data set of size 5000.
Unsurprisingly, the performance of the estimator improves as n increases, but the most notable
feature of these plots is the fact that, for all classifiers and even for small sample sizes, α̂ is an
excellent estimator of αÅ and may be a substantial improvement on the naive choice α̂= 1

2 (or
the appropriate prior weighted choice), which may result in a classifier that assigns every point
to a single class.

5.3. Choice of B1 and B2
To minimize the Monte Carlo error as described in theorem 1 and proposition 1, we should
choose B1 to be as large as possible. The constraint, of course, is that the computational cost of
the random-projection classifier scales linearly with B1. The choice of B2 is more subtle; whereas
the third term in the bound in theorem 3 decreases as B2 increases, we saw in Section 4 that
upper bounds on E|εn| may increase with B2. In principle, we could try to use the expressions
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that are given in theorem 3 and Section 4 to choose B2 to minimize the overall upper bound
on E{R.CRP

n /}−R.CBayes/. In practice, however, we found that an involved approach such as
this was unnecessary, and that the ensemble method was robust to the choice of B1 and B2; see
Section 3 of the on-line supplementary material for numerical evidence and further discussion.
On the basis of this numerical work, we recommend B1= 500 and B2= 50 as sensible default
choices, and indeed these values were used in all of our experiments in Section 6 as well as
section 4 in the supplementary material.

5.4. Choice of d
We want to choose d as small as possible to obtain the best possible performance bounds as
described in Section 4. This also reduces the computational cost. However, the performance
bounds rely on assumption 3, whose strength decreases as d increases, so we want to choose d

sufficiently large that this condition holds (at least approximately).
In Section 6 we see that the random-projection ensemble method is quite robust to the choice

of d. Nevertheless, in some circumstances it may be desirable to have an automatic choice, and
cross-validation provides one possible approach when computational cost at training time is not
too constrained. Thus, if we wish to choose d from a set D⊆{1, : : : , p}, then for each d ∈D we
train the random-projection ensemble classifier and set

d̂ := sarg min
d∈D

[π̂1 Ĝn,1.α̂/+ π̂0{1− Ĝn,0.α̂/}],

where α̂= α̂d is given in expression (17). Such a procedure does not add to the computational
cost at test time. This strategy is most appropriate when max{d : d ∈D} is not too large (which
is the setting that we have in mind); otherwise a penalized risk approach may be more suitable.

6. Empirical analysis

In this section, we assess the empirical performance of the random-projection ensemble classifier
in simulated and real data experiments. We shall write RP-LDAd , RP-QDAd and RP-knnd to
denote the random-projection classifier with LDA, QDA and knn respectively; the subscript d

refers to the dimension of the image space of the projections.
For comparison we present the corresponding results of applying, where possible, the three

base classifiers (LDA, QDA, knn) in the original p-dimensional space alongside 11 other clas-
sification methods chosen to represent the state of the art. These include RFs (Breiman, 2001);
SVMs (Cortes and Vapnik, 1995), Gaussian process (GP) classifiers (Williams and Barber, 1998)
and three methods designed for high dimensional classification problems, namely penalized
LDA, PenLDA (Witten and Tibshirani, 2011), nearest shrunken centroids (NSCs) (Tibshirani
et al., 2003) and l1-penalized logistic regression, PenLog (Goeman et al., 2015).

A further comparison is with LDA and knn applied after a single projection chosen on the
basis of the sufficient dimension reduction assumption, SDR5. For this method, we project
the data into five dimensions by using the proposal of Shin et al. (2014). This method requires
n>p. Finally, we compare with two related ensemble methods: optimal tree ensembles (OTEs)
(Khan et al., 2015a) and ensemble of subset of k-nearest-neighbour classifiers, ESknn (Gul et al.,
2016).

Many of these methods require tuning parameter selection, and the parameters were chosen as
follows: for the knn standard classifier, we chose k via leave-one-out cross-validation from the set
{3, 5, 7, 9, 11}. RF was implemented by using the randomForest package (Liaw and Wiener,
2014); we used an ensemble of 1000 trees, with �√p� (the default setting in the randomForest



976 T. I. Cannings and R. J. Samworth

package) components randomly selected when training each tree. For the radial SVM, we used
the reproducing basis kernel K.u, v/ :=exp{−.1=p/‖u−v‖2}. Both SVM classifiers were imple-
mented by using the svm function in the e1071 package (Meyer et al., 2015). The GP classifier
uses a radial basis function, with the hyperparameter chosen via the automatic method in the
gausspr function in the kernlab package (Karatzoglou et al., 2015). The tuning parameters
for the other methods were chosen using the default settings in the corresponding R packages
PenLDA (Witten, 2011), NSC (Hastie et al., 2015) and penalized (Goeman et al., 2015) namely
sixfold, tenfold and fivefold cross-validation respectively. For the OTE and ESknn methods we
used the default settings in the R packages OTE (Khan et al., 2015b) and ESKNN (Gul et al.,
2015).

6.1. Simulated examples
We present four simulation settings which were chosen to investigate the performance of the
random-projection ensemble classifier in a wide variety of scenarios. In each of the examples
below, we take n∈ {50, 200, 1000} and p∈ {100, 1000} and investigate two different values of
the prior probability. We use Gaussian projections (see Section 5.1) and set B1=500 and B2=50
(see Section 5.3).

The risk estimates and standard errors for the p=100 and π1=0:5 case are shown in Tables
1 and 2 (the remaining results are given in the on-line supplementary material). These were
calculated as follows: we set ntest= 1000 and Nreps= 100, and for l= 1, : : : , Nreps we generate
a training set of size n and a test set of size ntest from the same distribution. Let R̂l be the
proportion of the test set that is classified incorrectly in the lth repeat of the experiment. The
overall risk estimate presented is r̂isk := .1=Nreps/Σ

Nreps
l=1 R̂l. Note that

Table 1. Misclassification rates for models 1 and 2, with pD100 and π1 D0.5

Method Results for model 1, Bayes risk 4.45 Results for model 2, Bayes risk 4.09

n=50 n=200 n=1000 n=50 n=200 n=1000

RP-LDA2 49:340:26 48:100:31 44:140:46 8:340:28 5.560:12 5.170:10
RP-LDA5 49:810:24 48:860:30 46:910:40 8.170:27 5.640:13 5.140:10
RP-QDA2 44:180:29 29:380:49 10:570:22 8:400:29 5.570:12 5.160:10
RP-QDA5 39:320:33 22.320:32 8.750:15 8.060:25 5.580:12 5.090:10
RP-knn2 46:100:30 36:180:32 19:420:20 8:940:36 5.600:12 5:200:10
RP-knn5 43:650:30 25:340:35 10:210:16 9:000:33 5.680:12 5.130:10
LDA —† 49:600:23 49:910:22 —† 14:320:22 6:340:11
QDA —† —† 27:360:23 —† —† 17:100:20
knn 34.660:35 23:710:31 15:310:17 12:810:28 8:800:15 7:280:13
RF 49:720:23 48:330:25 43:280:43 11:110:31 6:800:12 6:070:11
Radial SVM 49:830:22 50:160:22 48:670:22 24:041:47 6:370:14 5:460:10
Linear SVM 50:020:23 49:550:21 50:040:22 9:410:21 8:960:17 7:760:13
Radial GP 48:180:30 42:760:29 26:600:24 14:090:63 5:840:13 5.090:10
PenLDA 49:950:23 49:790:23 50:050:22 11:110:55 6:720:20 5:790:12
NSC 49:740:23 49:690:26 49:550:24 12:610:61 7:270:28 5:820:13
PenLog 49:660:35 49:880:24 50:120:21 11:370:22 7:670:14 6:000:11
SDR5-LDA —† 37:800:48 35:310:30 —† 15:070:22 6:470:11
SDR5-knn —† 32:220:71 21:831:08 —† 18:810:29 7:750:12
OTE 48:510:33 34:731:23 9:570:66 18:260:47 12:440:26 9:240:15
ESknn 50:130:23 49:870:22 49:770:21 40:300:71 37:060:63 32:980:58

†Not applicable.



Random-projection Ensemble Classification 977

Table 2. Misclassification rates for models 3 and 4, with pD100 and π1 D0.5

Method Results for model 3, Bayes risk 1.01 Results for model 4, Bayes risk 12.68

n=50 n=200 n=1000 n=50 n=200 n=1000

RP-LDA2 45:111:03 44:050:98 39:220:89 38:060:71 38:450:92 40:480:84
RP-LDA5 45:580:60 44:460:58 41:080:56 34:840:63 32:430:75 35:090:89
RP-QDA2 11:410:62 4:830:15 3:850:09 42:120:47 41:990:28 42:370:21
RP-QDA5 9.710:52 4.230:14 3.290:08 42:130:35 42:040:27 42:590:21
RP-knn2 20:690:84 6:860:27 4:730:11 30:850:49 24:070:31 20:760:19
RP-knn5 21:300:54 6:910:18 3:780:10 29.850:46 24:020:30 20:810:21
LDA —† 46:220:25 41:740:24 —† 37:340:29 31:040:26
QDA —† —† 15:300:21 —† —† 40:900:21
knn 49:920:24 49:810:22 49:670:22 37:490:63 30:140:34 27:580:25
RF 44:790:34 23:380:30 7:720:16 30:970:60 20.460:21 18.690:17
Radial SVM 39:341:47 4:650:13 3:430:09 47:720:40 45:460:51 43:700:72
Linear SVM 46:570:26 46:170:24 41:670:26 36:790:57 34:210:56 31:870:71
Radial GP 48:870:31 45:470:37 36:180:27 38:390:84 26:630:44 22:770:20
PenLDA 46:040:26 44:480:26 41:710:23 45:640:44 45:220:53 45:390:47
NSC 47:470:33 45:990:34 42:310:30 46:340:58 44:690:69 45:720:65
PenLog 48:810:29 46:360:28 42:150:24 —† —† —†
SDR5-LDA —† 46:270:24 42:090:25 —† 37:960:29 31:040:27
SDR5-knn —† 46:140:27 36:280:24 —† 39:700:32 29:310:26
OTE 46:740:28 30:620:33 11:430:19 32:240:51 23:370:28 19:590:19
ESknn 48:660:26 46:590:26 45:170:22 46:150:51 44:030:54 43:770:46

†Not applicable.

E.r̂isk/=E{R.CRP
n /}

and

var.r̂isk/= 1
Nreps

var.R̂1/

= 1
Nreps

{
E

(
E{R.CRP

n /}[1−E{R.CRP
n /}]

ntest

)
+var[E{R.CRP

n /}]
}

:

We therefore estimate the standard error in the tables below by

σ̂ := 1

N
1=2
reps

{
r̂isk.1− r̂isk/

ntest
+ ntest−1

ntestNreps

Nreps∑
l=1

.R̂l− r̂isk/2
}1=2

:

The method with the smallest risk estimate in each column of the tables below is highlighted in
italics; where applicable, we also highlight any method with a risk estimate within 1 standard
error of the minimum.

6.1.1. Sparse class boundaries: model 1
Here, X|{Y = 0}∼ 1

2 Np.μ0, Σ/+ 1
2 Np.−μ0, Σ/, and X|{Y = 1}∼ 1

2 Np.μ1, Σ/+ 1
2 Np.−μ1, Σ/,

where, for p=100, we set Σ= I100×100, μ0= .2, −2, 0, : : : , 0/T and μ1= .2, 2, 0, : : : , 0/T.
In model 1, assumption 3 holds with d= 2; for example, we could take the rows of AÅ to

be the first two Euclidean basis vectors. We see that the random-projection ensemble classifier
with the QDA base classifier performs very well here, as does the OTE method. Despite the fact
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that the regression function η depends on only the first two components in this example, the
comparators that were designed for sparse problems do not perform well; in some cases they
are no better than a random guess.

6.1.2. Rotated sparse normal: model 2
Here, X|{Y = 0}∼Np.Ωpμ0, ΩpΣ0ΩT

p/, and X|{Y = 1}∼Np.Ωpμ1, ΩpΣ1ΩT
p/, where Ωp is a

p×p rotation matrix that was sampled once according to Haar measure, and remained fixed
thereafter, and we set μ0= .3, 3, 3, 0, : : : , 0/T and μ1= .0, : : : , 0/T. Moreover, Σ0 and Σ1 are
block diagonal, with blocks Σ.1/

r , and Σ.2/
r , for r=0, 1, where Σ.1/

0 is a 3×3 matrix with diagonal
entries equal to 2 and off-diagonal entries equal to 1

2 , and Σ.1/
1 =Σ.1/

0 −I3×3. In both classes Σ.2/
r

is a .p−3/× .p−3/ matrix, with diagonal entries equal to 1 and off-diagonal entries equal to 1
2 .

In model 2, assumption 3 holds with d=3; for instance, AÅ can be taken to be the first three
rows of ΩT

p . Perhaps surprisingly, whether we use too small a value of d (namely d= 2), or a
value that is too large (d=5), the random-projection ensemble methods still classify very well.

6.1.3. Independent features: model 3
Here, P0=Np.μ, Ip×p/, with μ= .1=

√
p/.1, : : : , 1, 0, : : : , 0/T, where μ has p=2 non-zero com-

ponents, whereas P1 is the distribution of p independent components, each with a standard
Laplace distribution.

In model 3, the class boundaries are non-linear and, in fact, assumption 3 is not satisfied for
any d < p. Nevertheless, in Table 2 we see that, where the LDA, QDA and knn classifiers are
tractable, they are outperformed by their random-projection ensemble counterparts and in fact
the RP-QDA5 classifier has the smallest misclassification rate among all methods implemented.
Unsurprisingly, the methods that are designed for a linear Bayes decision boundary are not
effective. The RP-QDA classifiers are especially accurate here; in particular, they can cope
better with the non-linearity of the class boundaries than the RP-LDA classifiers.

6.1.4. t-distributed features: model 4
Here, X|{Y = r}=μr +Zr=

√
.Ur=νr/, where Zr ∼Np.0, Σr/ independent of Ur ∼χ2

νr
, for r=

0, 1, i.e. Pr is the multivariate t-distribution centred at μr, with νr degrees of freedom and
shape parameter Σr. We set μ0= .1, : : : , 1, 0, : : : , 0/T, where μ0 has 10 non-zero components,
μ1=0, ν0=2, ν1=1, Σ0= .Σj,k/, where Σj,j=1, Σj,k=0:5 if max.j, k/�10 and j �=k, Σj,k=0
otherwise, and Σ1= Ip×p.

Model 4 explores the effect of heavy tails and the presence of correlation between the features.
Again, assumption 3 is not satisfied for any d<p. The RF, OTE and RP-knn methods all perform
very well here. The RP-LDA and RP-QDA classifiers are less good. This is partly because the
class conditional distributions do not have finite second and first moments respectively and, as
a result, the class mean and covariance matrix estimates are poor.

6.2. Real data examples
In this section, we compare the classifiers above on eight real data sets that are available from
the University of California Irvine Machine Learning Repository. In each example, we first
subsample the data to form a training set of size n and then use the remaining data (or, where
available, take a subsample of size 1000 from it) to form the test set. As with the simulated
examples, we set B1= 500 and B2= 50 and used Gaussian-distributed projections, and each
experiment was repeated 100 times. Where appropriate, the tuning parameters were chosen via



Random-projection Ensemble Classification 979

Table 3. Misclassification rates for the eye state and ionosphere data sets

Method Results for eye state data Results for ionosphere data

n=50 n=200 n=1000 n=50 n=100 n=200

RP-LDA5 42:060:38 38:610:29 36:300:21 13:050:38 10:750:25 9:780:26
RP-QDA5 38.970:39 32:440:42 30:910:87 8.140:37 6.150:22 5.210:20
RP-knn5 39.370:39 26.910:27 13.540:19 13:050:46 7:430:25 5:430:19
LDA 42:380:40 39:150:30 36:910:23 23:720:40 18:270:28 15:580:31
QDA 39:910:35 29:240:40 29:761:07 —† —† 14:070:34
knn 41:700:40 29:180:27 14:450:16 21:810:73 18:050:46 16:400:35
RF 39.270:37 29:040:25 17:630:20 10:520:30 7:540:19 6:480:18
Radial SVM 46:330:49 38:710:46 31:030:68 27:671:15 12:850:91 6:670:22
Linear SVM 42:380:42 39:550:36 38:580:38 19:410:35 17:050:27 15:480:29
Radial GP 40:730:38 32:220:25 21:660:21 22:290:72 17:810:46 14:520:31
PenLDA 44:370:43 42:500:28 41:860:23 21:200:57 19:830:56 19:810:54
NSC 44:730:48 42:370:29 42:270:28 22:620:53 19:110:42 17:520:34
SDR5-LDA 42:820:40 39:250:29 36:920:23 25:780:52 18:980:30 15:630:30
SDR5-knn 42:430:38 34:130:32 25:310:25 30:610:74 17:530:45 10:120:30
OTE 40:100:38 29:920:28 18:730:20 14:380:41 9:800:27 7:330:23
ESknn 45:620:41 43:060:35 39:370:34 27:810:58 23:230:48 20:050:51

†Not applicable.

the methods that were described at the beginning of Section 6 for each of the 100 repeats of the
experiment.

6.2.1. Eye state detection
The electroencephalogram eye state data set (http://archive.ics.uci.edu/ml/
datasets/EEG+Eye+State) consists of p= 14 electroencephalogram measurements on
14980 observations. The task is to use the electroencephalogram reading to determine the state
of the eye. There are 8256 observations for which the eye is open (class 0), and 6723 for which
the eye is closed (class 1). Results are given in Table 3.

6.2.2. Ionosphere data set
The ionosphere data set (http://archive.ics.uci.edu/ml/datasets/Ionosph
ere) consists of p= 32 high frequency antenna measurements on 351 observations. Obser-
vations are classified as good (class 0) or bad (class 1), depending on whether there is evidence
for free electrons in the ionosphere or not. The class sizes are 225 (good) and 126 (bad). Results
are given in Table 3.

6.2.3. Down’s syndrome diagnoses in mice
The mice data set (http://archive.ics.uci.edu/ml/datasets/Mice+Protein+
Expression) consists of 570 healthy mice (class 0) and 507 mice with Down’s syndrome
(class 1). The task is to diagnose Down’s syndrome on the basis of p= 77 protein expression
measurements. Results are given in Table 4.

6.2.4. Hill–valley identification
The hill–valley data set (http://archive.ics.uci.edu/ml/datasets/Hill-Valley)
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Table 4. Misclassification rates for the mice and hill–valley data sets

Method Results for mice data Results for hill–valley data

n=200 n=500 n=1000 n=100 n=200 n=500

RP-LDA5 25:170:30 23:560:26 23:350:49 36.840:84 36.450:85 32.571:06
RP-QDA5 18:240:29 16:050:24 15:450:45 44:430:34 43:560:31 41:100:33
RP-knn5 11:240:29 2.240:10 0.550:09 49:080:24 47:270:26 36:390:29
LDA 6.460:14 3:380:10 2:170:17 —† 37:290:48 34:370:36
knn 19:650:26 7:020:17 0:940:13 49:350:24 48:820:21 47:490:24
RF 7:940:22 2:410:11 0.510:08 48:320:23 47:230:21 44:110:25
Radial SVM 11:250:29 3:890:13 1:690:16 50:240:19 50:240:19 50:420:21
Linear SVM 6.360:14 3:640:10 2:510:17 48:560:22 47:030:23 44:840:28
Radial GP 21:220:30 13:780:24 8:660:34 48:330:22 47:240:21 45:110:22
PenLDA 26:100:36 24:070:26 23:910:46 49:590:22 49:730:21 49:550:22
NSC 30:300:36 28:060:29 28:470:51 49:870:21 49:910:20 49:920:22
OTE 11:830:32 6:260:18 3:260:23 48:330:23 47:180:22 44:200:24
ESknn 39:030:59 34:330:66 31:650:78 49:310:23 48:900:23 48:030:25

†Not applicable.

Table 5. Misclassification rates for the musk and cardiac arrhythmia data sets

Method Results for musk data Results for arrhythmia data

n=100 n=200 n=500 n=50 n=100 n=200

RP-LDA5 14:630:31 12:180:23 10:150:15 33:240:42 30:190:35 27:490:30
RP-QDA5 12:080:27 9:920:18 8:640:13 30.470:33 28:280:26 26:310:28
RP-knn5 11.810:27 9.650:21 8:040:15 33:490:40 30:180:33 27:090:31
LDA —† 24:880:42 9:090:15 —† —† —†
knn 14:680:28 11:750:22 8:200:15 40:640:33 38:940:33 35:760:36
RF 13:200:20 10:690:18 7:550:13 31:650:39 26.720:29 22.400:31
Radial SVM 15:250:15 15:210:15 15:000:17 48:390:49 47:240:46 46:850:43
Linear SVM 13:910:25 10:390:18 7.410:12 36:160:47 35:610:39 35:200:35
Radial GP 14:910:16 14:070:20 11:140:19 37:280:42 33:800:40 29:310:35
PenLDA 27:740:58 27:140:54 26:980:31 —† —† —†
NSC 15:320:18 15:220:15 15:200:16 34:980:46 33:000:40 31:080:41
PenLog 14:480:28 11:850:21 —† 34:920:42 30:480:34 26:120:27
SDR5-LDA —† 25:120:43 9:080:15 —† —† —†
SDR5-knn —† 24:090:62 9:810:16 —† —† —†
OTE 13:900:23 11:040:18 8:050:14 33:900:47 27:830:29 23:750:32
ESknn 19:550:42 18:090:30 16:070:24 45:860:43 45:620:48 43:410:43

†Not applicable.

consists of 1212 observations of a terrain, each when plotted in sequence represents either a hill
(class 0; size 600) or a valley (class 1; size 612). The task is to classify the terrain on the basis of
a vector of dimension p=100. Results are given in Table 4.

6.2.5. Musk identification
The musk data set (http://archive.ics.uci.edu/ml/datasets/Musk+\%28Ver
sion+2\%29) consists of 1016 musk (class 0) and 5581 non-musk (class 1) molecules. The task is
to classify a molecule on the basis of p=166 shape measurements. Results are given in Table 5.
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Table 6. Misclassification rates for the activity recognition and Gisette data sets

Method Results for activity recognition data Results for Gisette data

n=50 n=200 n=1000 n=50 n=200 n=1000

RP-LDA5 0:180:02 0:100:01 0:010:00 15:750:41 10:580:17 9:390:15
RP-QDA5 0:150:02 0:090:01 0.000:00 15:530:40 10:530:19 9:370:16
RP-knn5 0:210:02 0:110:01 0:010:00 15:950:46 11:090:17 9:570:16
knn 0:260:02 0:130:02 0:020:01 18:410:42 10:440:18 5:640:13
RF 0:250:02 0:170:02 0:080:01 14:330:47 9:370:15 5:790:12
Radial SVM 1:580:11 0:890:06 0:180:02 50:030:19 50:410:19 50:790:25
Linear SVM 0:190:02 0:120:01 0:050:01 11.920:27 6.820:11 4.450:11
Radial GP 0:250:02 0:200:02 0:130:01 27:091:32 10:740:21 6:700:13
PenLDA 0.110:02 0.040:01 0.000:00 —† —† —†
NSC 0:290:02 0:240:03 0:060:01 15:720:29 13:630:22 12:830:21
OTE 0:610:07 0:380:05 0:090:02 14:180:25 9:690:17 6:240:13
ESknn 1:740:18 0:880:09 0:410:05 45:760:76 44:810:74 44:450:73

†Not applicable.

6.2.6. Cardiac arrhythmia diagnoses
The cardiac arrhythmia data set (https://archive.ics.uci.edu/ml/datasets/Arr
hythmia) has one normal class of size 245 and 13 abnormal classes, which we combined to
form a second class of size 206. We removed the nominal features and those with missing values,
leaving p=194 electrocardiogram measurements. In this example, the PenLDA classifier is not
applicable because some features have within-class standard deviation equal to 0. Results are
given in Table 5.

6.2.7. Human activity recognition
The human activity recognition data set (http://archive.ics.uci.edu/ml/datasets
/Human+Activity+Recognition+Using+Smartphones) consists of p=561 accelerom-
eter measurements, recorded from a smartphone while a subject is performing an activity. We
subsampled the data to include only the walking and laying activities. In the resulting data set,
there are 1226 ‘walking’ observations (class 0), and 1407 ‘laying’ observations (class 1). Results
are given in Table 6.

6.2.8. Handwritten digits
The Gisette data set (https://archive.ics.uci.edu/ml/datasets/Gisette) con-
sists of 6000 observations of handwritten digits, namely 3000 ‘4’s and 3000 ‘9’s. Each obser-
vation represents the original 28× 28 pixel image, with added noise variables resulting in a
5000-dimensional vector. We first subsampled 1500 of the 6000 observations, giving 760 ‘4’s and
740 ‘9’s—this data set was then kept fixed through the subsequent 100 repeats of the experiment.
The observations are sparse with a large number of 0-entries. Results are given in Table 6.

6.3. Conclusion of numerical study
The numerical study above reveals the extremely encouraging finite sample performance that is
achieved by the random-projection ensemble classifier. A random-projection ensemble method
attains the lowest misclassification error in 23 of the 36 simulated and real data settings investi-
gated, and in eight of the 13 remaining cases a random-projection ensemble method is in the top
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three of the classifiers considered. The flexibility that is offered by the random-projection ensem-
ble classifier—in particular, the fact that any base classifier may be used—allows the practitioner
to adapt the method to work well in a wide variety of problems.

Another key observation is that our assumption 3 is not necessary for the random-projection
method to work well: in model 2, we achieve good results by using d=2, whereas assumption 3
holds only with a three- (or higher) dimensional projection. Moreover, even in situations where
assumption 3 does not hold for any d < p, the random-projection method is still competitive;
see in particular the results for model 3.

One example where the random-projection ensemble framework is not effective is for the
Gisette data set. Here the data are very sparse; for each observation a large proportion of the fea-
tures are exactly 0. Of course, applying a Gaussian or Haar random projection to an observation
will remove the sparse structure. In this case, the practitioner may benefit by using an alternative
distribution for the projections, such as axis-aligned projections (see the discussion in Section 7).

7. Discussion and extensions

We have introduced a general framework for high dimensional classification via the combina-
tion of the results of applying a base classifier on carefully selected low dimensional random
projections of the data. One of its attractive features is its generality: the approach can be used
in conjunction with any base classifier. Moreover, although we explored in detail one method
for combining the random projections (partly because it facilitates rigorous statistical analysis),
many other options are available here. For instance, instead of retaining only the projection
within each block yielding the smallest estimate of test error, one might give weights to the
different projections, where the weights decrease as the estimate of test error increases.

Many practical classification problems involve K>2 classes. The main issue in extending our
methodology to such settings is the definition of CRP

n analogous to expression (2). To outline
one approach, let

νn,r.x/ := 1
B1

B1∑
b1=1

1
{C

Ab1
n .x/=r}

for r=0, 1, : : : , K−1. Given α0, : : : ,αK−1 > 0 with ΣK−1
r=0 αr=1, we can then define

CRP
n .x/ := sarg max

r=0,:::,K−1
{αr νn,r.x/},

where sarg max denotes the smallest element of the arg max in the case of a tie. The choice of
α0, : : : ,αK−1 is analogous to the choice of α in the case K=2. It is therefore natural to seek to
minimize the test error of the corresponding infinite simulation random-projection classifier as
before.

In other situations, it may be advantageous to consider alternative types of projection, per-
haps because of additional structure in the problem. One particularly interesting issue concerns
ultrahigh dimensional settings, say p in the thousands. Here, it may be too time consuming to
generate enough random projections to explore adequately the space Ad×p. As a mathemati-
cal quantification of this, the cardinality of an ε-net in the Euclidean norm of the surface of
the Euclidean ball in Rp increases exponentially in p (e.g. Vershynin (2012)). In such challeng-
ing problems, one might restrict the projections A to be axis aligned, so that each row of A
consists of a single non-zero component, equal to 1, and p− 1 components equal to 0. There
are then only .

p

d /�pd=d! choices for the projections and, if d is small, it may be feasible even
to carry out an exhaustive search. Of course, this approach loses one of the attractive features
of our original proposal, namely the fact that it is equivariant to orthogonal transformations.
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Nevertheless, corresponding theory can be obtained provided that the projection AÅ in assump-
tion 3 is axis aligned. This is a much stronger requirement, but it seems that imposing greater
structure is inevitable to obtain good classification in such settings.

Our main focus in this work has been on the classification performance of the random-
projection ensemble classifier, and not on the interpretability of the class assignments. However,
the projections selected provide weights that give an indication of the relative importance of the
different variables in the model. Another interesting direction, therefore, would be to under-
stand the properties of the variable ranking that is induced by the random-projection ensemble
classifier.

In conclusion, we believe that random projections offer many exciting possibilities for high
dimensional data analysis. In a similar spirit to subsampling and bootstrap sampling, we can
think of each random projection as a perturbation of our original data, and effects that are
observed over many different perturbations are often the ‘stable’ effects that are sought by
statisticians; see Meinshausen and Bühlmann (2010), and Shah and Samworth (2013) in the
context of variable selection. Two of the key features that make them so attractive for classifica-
tion problems are the ability to identify ‘good’ random projections from the data, and the fact
that we can aggregate results from selected projections. We expect that these two properties will
be important in identifying future application areas for related methodologies.
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Appendix A

A.1. Proof of theorem 1
Recall that the training data Tn= {.x1, y1/, : : : , .xn, yn/} are fixed and the projections A1, A2, : : :, are in-
dependent and identically distributed in A, independent of the pair .X, Y/. The test error of the random-
projection ensemble classifier has the representation

E{R.CRP
n /}=E

{
π0

∫
Rp

1{CRP
n .x/=1}dP0.x/+π1

∫
Rp

1{CRP
n .x/=0}dP1.x/

}

=E
{
π0

∫
Rp

1{νn.x/�α}dP0.x/+π1

∫
Rp

1{νn.x/<α}dP1.x/

}

=π0

∫
Rp

P{νn.x/�α}dP0.x/+π1

∫
Rp

P{νn.x/<α}dP1.x/,

where νn.x/ is defined in equation (1), and where the final equality follows by Fubini’s theorem.
Let Ub1 :=1

{C
Ab1
n .X/=1}

, for b1=1, : : : , B1. Then, conditionally on μn.X/=θ∈ [0, 1], the random variables
U1, : : : , UB1 are independent, each having a Bernoulli(θ) distribution. Recall that Gn,0 and Gn,1 are the
distribution functions of μn.X/|{Y =0} and μn.X/|{Y =1} respectively. We can therefore write∫

Rp
P{νn.x/<α}dP1.x/=

∫
[0,1]

P

{
1

B1

B1∑
b1=1

Ub1 <α|μ̂n.X/=θ
}

dGn,1.θ/

=
∫

[0,1]
P.T<B1α/dGn,1.θ/,

where here and throughout the proof T denotes a Bin.B1, θ/ random variable. Similarly,∫
Rp

P{νn.x/�α}dP0.x/=1−
∫

[0,1]
P.T<B1α/dGn,0.θ/:
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It follows that

E{R.CRP
n /}=π0+

∫
[0,1]

P.T<B1α/dG◦n.θ/,

where G◦n :=π1Gn,1−π0Gn,0. Writing g◦n :=π1gn,1−π0gn,0, we now show that∫
[0,1]

{P.T<B1α/−1{θ<α}}dG◦n.θ/= 1−α− [[B1α]]
B1

g◦n.α/+ α.1−α/

2B1
ġ◦n.α/+o

(
1

B1

)
.18/

as B1→∞. Our proof involves a one-term Edgeworth expansion to the binomial distribution function in
equation (18), where the error term is controlled uniformly in the parameter. The expansion relies on the
following version of Esseen’s smoothing lemma.

Theorem 4 (Esseen (1945), chapter 2, theorem 2b). Let c1, C1, S > 0, let F : R→ [0,∞/ be a non-
decreasing function and let G : R→R be a function of bounded variation. Let FÅ.s/ :=∫∞

−∞ exp.ist/dF.t/
and GÅ.s/ :=∫∞

−∞ exp.ist/dG.t/ be the Fourier–Stieltjes transforms of F and G respectively. Suppose that

(a) limt→−∞ F.t/= limt→−∞G.t/=0 and limt→∞ F.t/= limt→∞G.t/,
(b)

∫∞
−∞ |F.t/−G.t/|dt<∞,

(c) the set of discontinuities of F and G is contained in {ti : i∈Z}, where .ti/ is a strictly increasing
sequence with inf i{ti+1− ti}� c1 (moreover F is constant on the intervals [ti, ti+1/ for all i∈Z) and

(d) |Ġ.t/|�C1 for all t �∈{ti : i∈Z}.

Then there are constants c2, C2 > 0 such that

sup
t∈R
|F.t/−G.t/|� 1

π

∫ S

−S

∣∣∣∣FÅ.s/−GÅ.s/

s

∣∣∣∣ds+ C1C2

S
,

provided that Sc1 � c2.

Let σ2 := θ.1− θ/, and let Φ and φ denote the standard normal distribution and density functions
respectively. Moreover, for t∈R, let

p.t/=p.t, θ/ := .1− t2/.1−2θ/
6σ

and

q.t/=q.t, B1, θ/ :=
1
2 − [[B1θ+B

1=2
1 σt]]

σ
:

In proposition 3 below we apply theorem 4 to the functions

FB1 .t/=FB1 .t, θ/ :=P

(
T −B1θ

B
1=2
1 σ

<t

)
.19/

and

GB1 .t/=GB1 .t, θ/ :=Φ.t/+φ.t/
p.t, θ/+q.t, B1, θ/

B
1=2
1

: .20/

Proposition 3. Let FB1 and GB1 be as in expressions (19) and (20). There is a constant C> 0 such that,
for all B1 ∈N,

sup
θ∈.0, 1/

sup
t∈R

σ3|FB1 .t, θ/−GB1 .t, θ/|� C

B1
:

Proposition 3, whose proof is given after the proof of proposition 2, bounds uniformly in θ the error
in the one-term Edgeworth expansion GB1 of the distribution function FB1 . Returning to the proof of
theorem 1, we shall argue that the dominant contribution to the integral in equation (18) arises from the
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interval .max{0,α− ε1}, min{α+ ε1, 1}/, where ε1 :=B
−1=2
1 log.B1/. For the remainder of the proof we

assume that B1 is sufficiently large that [α− ε1,α+ ε1]⊆ .0, 1/.

For the region |θ−α|� ε1, by Hoeffding’s inequality, we have that

sup
|θ−α|�ε1

|P.T<B1α/−1{θ<α}|� sup
|θ−α|�ε1

exp{−2B1.θ−α/2}� exp{−2 log2.B1/}=O.B−M
1 /,

for each M> 0, as B1→∞. Writing I := [α− ε1,α+ ε1], it follows that∫
[0,1]

{P.T<B1α/−1{θ<α}}dG◦n.θ/=
∫

I

{P.T<B1α/−1{θ<α}}dG◦n.θ/+O.B−M
1 /, .21/

for each M> 0, as B1→∞.
For the region |θ−α|< ε1, by proposition 3, there exists C′> 0 such that, for all B1 sufficiently large,

sup
|θ−α|<ε1

∣∣∣∣P.T<B1α/−Φ

{
B

1=2
1 .α−θ/

σ

}
− 1

B
1=2
1

φ

{
B

1=2
1 .α−θ/

σ

}
r

{
B

1=2
1 .α−θ/

σ

}∣∣∣∣� C′

B1
,

where r.t/ :=p.t/+q.t/. Hence, using the fact that, for large B1, sup|θ−α|<ε1 |g◦n.θ/|� |g◦n.α/|+1<∞ under
assumption 1, we have∫

I

{P.T<B1α/−1{θ<α}}dG◦n.θ/=
∫

I

[
Φ

{
B

1=2
1 .α−θ/

σ

}
−1{θ<α}

]
dG◦n.θ/

+ 1

B
1=2
1

∫
I

φ

{
B

1=2
1 .α−θ/

σ

}
r

{
B

1=2
1 .α−θ/

σ

}
dG◦n.θ/+o

(
1

B1

)
, .22/

as B1→∞. To aid exposition, we shall henceforth concentrate on the dominant terms in our expan-
sions, denoting the remainder terms as R1, R2, : : :. These remainders are then controlled at the end of the
argument. For the first term in equation (22), we write∫

I

[
Φ

{
B

1=2
1 .α−θ/

σ

}
−1{θ<α}

]
dG◦n.θ/=

∫
I

(
Φ

[
B

1=2
1 .α−θ/√{α.1−α/}

]
−1{θ<α}

)
dG◦n.θ/

+ .1−2α/B
1=2
1

2{α.1−α/}3=2

∫
I

.α−θ/2φ

[
B

1=2
1 .α−θ/√{α.1−α/}

]
dG◦n.θ/+R1:

.23/

Now, for the first term in equation (23),∫
I

(
Φ

[
B

1=2
1 .α−θ/√{α.1−α/}

]
−1{θ<α}

)
dG◦n.θ/=

∫ α+ε1

α−ε1

(
Φ
[

B
1=2
1 .α−θ/√{α.1−α/}

]
−1{θ<α}

)
{g◦n.α/+ .θ−α/ ġ◦n.α/}dθ+R2

=
√{α.1−α/}

B
1=2
1

∫ ∞

−∞
{Φ.−u/−1{u<0}}

[
g◦n.α/+

√{α.1−α/}
B

1=2
1

u ġ◦n.α/

]
du

+R2+R3

= α.1−α/

2B1
ġ◦n.α/+R2+R3: (24)

For the second term in equation (23), write

.1−2α/B
1=2
1

2{α.1−α/}3=2

∫
I

.α−θ/2φ

[
B

1=2
1 .α−θ/√{α.1−α/}

]
dG◦n.θ/

= .1−2α/B
1=2
1

2{α.1−α/}3=2
g◦n.α/

∫ α+ε1

α−ε1
.α−θ/2φ

[
B

1=2
1 .α−θ/√{α.1−α/}

]
dθ+R4

=
1
2 −α
B1

g◦n.α/

∫ ∞

−∞
u2φ.−u/du+R4+R5=

1
2 −α
B1

g◦n.α/+R4+R5: .25/



986 T. I. Cannings and R. J. Samworth

Returning to the second term in equation (22), observe that

1

B
1=2
1

∫
I

φ

{
B

1=2
1 .α−θ/

σ

}
r

{
B

1=2
1 .α−θ/

σ

}
dG◦n.θ/

=
1
2 − [[B1α]]

B
1=2
1

∫
I

1
σ
φ

{
B

1=2
1 .α−θ/

σ

}
dG◦n.θ/

+ 1

6B
1=2
1

∫
I

1−2θ
σ

{
1− B1.α−θ/2

σ2

}
φ

{
B

1=2
1 .α−θ/

σ

}
dG◦n.θ/

=
1
2 − [[B1α]]

B
1=2
1

∫
I

1
σ
φ

{
B

1=2
1 .α−θ/

σ

}
dG◦n.θ/+R6

=
1
2 − [[B1α]]

B
1=2
1

√{α.1−α/}
g◦n.α/

∫ α+ε1

α−ε1
φ

[
B

1=2
1 .α−θ/√{α.1−α/}

]
dθ+R6+R7

=
1
2 − [[B1α]]

B1
g◦n.α/+R6+R7+R8: .26/

The claim (18) will now follow from equations (21)–(26), once we have shown that

8∑
j=1
|Rj|=o.B−1

1 / .27/

as B1→∞.

(a) To bound R1, for ζ ∈ .0, 1/, let

hθ.ζ/ :=Φ
[

B
1=2
1 .α−θ/√{ζ.1− ζ/}

]
:

Observe that, by a Taylor series expansion about ζ=α, there exists B0∈N, such that, for all B1 >B0
and all θ, ζ ∈ .α− ε1,α+ ε1/,

∣∣∣∣Φ
[

B
1=2
1 .α−θ/√{ζ.1− ζ/}

]
−Φ

[
B

1=2
1 .α−θ/√{α.1−α/}

]
+ .ζ−α/

.1−2α/B
1=2
1 .α−θ/

2{α.1−α/}3=2
φ

[
B

1=2
1 .α−θ/√{α.1−α/}

]∣∣∣∣
=|hθ.ζ/−hθ.α/− .ζ−α/ḣθ.α/|

� .ζ−α/2

2
sup

ζ ′∈[α−ζ,α+ζ]
|ḧθ.ζ ′/|

� .ζ−α/2 log3.B1/

2
√

.2π/{α.1−α/}7=2
:

Using this bound with ζ=θ, we deduce that, for all B1 sufficiently large,

|R1|=
∣∣∣∣∣
∫

I

(
Φ

{
B

1=2
1 .α−θ/

σ

}
−Φ

[
B

1=2
1 .α−θ/√{α.1−α/}

]
− .1−2α/B

1=2
1 .α−θ/2

2{α.1−α/}3=2
φ

[
B

1=2
1 .α−θ/√{α.1−α/}

])
dG◦n.θ/

∣∣∣∣∣
� log3.B1/

2
√

.2π/{α.1−α/}7=2

∫ α+ε1

α−ε1
.θ−α/2|g◦n.θ/|dθ

� log6.B1/

3
√

.2π/B
3=2
1 {α.1−α/}7=2

sup
|θ−α|�ε1

|g◦n.θ/|=o

(
1

B1

)

as B1→∞.
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(b) To boundR2, since g◦n is differentiable at α, given ε> 0, there exists δε > 0 such that

|g◦n.θ/−g◦n.α/− .θ−α/ġ◦n.α/|< ε|θ−α|,
for all |θ−α|< δε. It follows that, for all B1 sufficiently large,

|R2|=
∣∣∣∣
∫

I

(
Φ

[
B

1=2
1 .α−θ/√{α.1−α/}

]
−1{θ<α}

)
dG◦n.θ/

−
∫ α+ε1

α−ε1

(
Φ

[
B

1=2
1 .α−θ/√{α.1−α/}

]
−1{θ<α}

)
{g◦n.α/+ .θ−α/ġ◦n.α/}dθ

∣∣∣∣
� ε

∫ α+ε1

α−ε1

∣∣∣∣Φ
[

B
1=2
1 .α−θ/√{α.1−α/}

]
−1{θ<α}

∣∣∣∣|θ−α|dθ
� εα.1−α/

B1

log .B1/=
√{α.1−α/}∫

− log .B1/=
√{α.1−α/}

|Φ.−u/−1{u<0}||u|du

� 2εα.1−α/

B1

∫ ∞

0
uΦ.−u/du= εα.1−α/

2B1
:

We deduce that |R2|=o.B−1
1 / as B1→∞.

(c) To bound R3, for large B1, we have

|R3|=
∣∣∣∣
∫ α+ε1

α−ε1

(
Φ

[
B

1=2
1 .α−θ/√{α.1−α/}

]
−1{θ<α}

)
{g◦n.α/+ .θ−α/ġ◦n.α/}dθ

−
√{α.1−α/}

B
1=2
1

∫ ∞

−∞
{Φ.−u/−1{u<0}}

[
g◦n.α/+

√{α.1−α/}
B

1=2
1

u ġ◦n.α/

]
du

∣∣∣∣
= 2α.1−α/

B1
|ġ◦n.α/|

∞∫
ε1B

1=2
1 ={α.1−α/}1=2

uΦ.−u/du

� 2{α.1−α/}3=2

B1 log.B1/
|ġ◦n.α/|

∫ ∞

0
u2Φ.−u/du= 2

√
2{α.1−α/}3=2

3
√
πB1 log.B1/

|ġ◦n.α/|=o.B−1
1 /

as B1→∞.
(d) To bound R4, since g◦n is continuous at α, given ε> 0, there exists B′0 ∈N such that, for all B1 >B′0,

sup
|θ−α|�ε1

|g◦n.θ/−g◦n.α/|< ε: .28/

Hence, given ε> 0, for all B1 >B′0

|R4|=
∣∣∣∣ .1−2α/B

1=2
1

2{α.1−α/}3=2

∫ α+ε1

α−ε1
.α−θ/2φ

[
B

1=2
1 .α−θ/√{α.1−α/}

]
{g◦n.θ/−g◦n.α/}dθ

∣∣∣∣
� ε|1−2α|

2B1

∫ ∞

−∞
u2φ.−u/du= ε|1−2α|

2B1
:

(e) To boundR5, for all B1 sufficiently large,

|R5|= |1−2α|
B1

|g◦n.α/|
∞∫

log.B1/=
√{α.1−α/}

u2φ.−u/du

�
√{α.1−α/}
B1 log.B1/

|g◦n.α/|
∫ ∞

0
u3φ.−u/du=

√{2α.1−α/}√
πB1 log.B1/

|g◦n.α/|=o

(
1

B1

)

as B1→∞.
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(f) To boundR6, we write R6=R61+R62, where

R61 := 1−2α

6B
1=2
1

√{α.1−α/}

∫
I

{
1− B1.α−θ/2

α.1−α/

}
φ

[
B

1=2
1 .α−θ/√{α.1−α/}

]
dG◦n.θ/

and

R62 := 1

6B
1=2
1

∫
I

1−2θ
σ

{
1− B1.α−θ/2

σ2

}
φ

{
B

1=2
1 .α−θ/

σ

}
dG◦n.θ/

− .1−2α/

6B
1=2
1

√{α.1−α/}

∫
I

{
1− B1.α−θ/2

α.1−α/

}
φ

[
B

1=2
1 .α−θ/√{α.1−α/}

]
dG◦n.θ/:

By the bound (28), it follows that, for B1 >B′0 sufficiently large,

|R61|� |1−2α|
6B

1=2
1

√{α.1−α/}
|g◦n.α/|

∣∣∣∣
∫ α+ε1

α−ε1

{
1− B1.α−θ/2

α.1−α/

}
φ

[
B

1=2
1 .α−θ/√{α.1−α/}

]
dθ

∣∣∣∣
+ ε |1−2α|

6B
1=2
1

√{α.1−α/}

∫ α+ε1

α−ε1

∣∣∣∣1− B1.α−θ/2

α.1−α/

∣∣∣∣φ
[

B
1=2
1 .α−θ/√{α.1−α/}

]
dθ:

� |1−2α|
6B1

|g◦n.α/|
∣∣∣∣

log .B1/=
√{α.1−α/}∫

− log .B1/=
√{α.1−α/}

.1−u2/φ.−u/du

∣∣∣∣
+ ε |1−2α|

6B1

∫ ∞

−∞
.1+u2/φ.−u/du� ε

B1
:

We deduce that R61=o.B−1
1 / as B1→∞.

To control R62, by the mean value theorem, we have that, for all B1 sufficiently large and all
ζ ∈ [α− ε1,α+ ε1],

sup
|θ−α|<ε1

∣∣∣∣ 1−2ζ√{ζ.1− ζ/}
{

1− B1.α−θ/2

ζ.1− ζ/
}
φ

[
B

1=2
1 .α−θ/√{ζ.1− ζ/}

]

− .1−2α/√{α.1−α/}

{
1− B1.α−θ/2

α.1−α/

}
φ

[
B

1=2
1 .α−θ/√{α.1−α/}

]∣∣∣∣
� log4.B1/√

.2π/{α.1−α/}7=2
|ζ−α|:

Thus, for large B1,

|R62|� log4.B1/

6
√

.2π/B
1=2
1 {α.1−α/}7=2

sup
|θ−α|�ε1

|g◦n.θ/|
∫ α+ε1

α−ε1
|θ−α|dθ

� log6[B1{1+|g◦n.α/|}]

6
√

.2π/B
3=2
1 {α.1−α/}7=2

=o

(
1

B1

)
:

We deduce that |R6|=o.B−1
1 / as B1→∞.

(g) To bound R7, write R7=R71+R72, where

R71 :=
1
2 − [[B1α]]

B
1=2
1

√{α.1−α/}

∫ α+ε1

α−ε1
φ

[
B

1=2
1 .α−θ/√{α.1−α/}

]
{g◦n.θ/−g◦n.α/}dθ

and

R72 :=
1
2 − [[B1α]]

B
1=2
1

∫
I

(
1
σ
φ

{
B

1=2
1 .α−θ/

σ

}
− 1√{α.1−α/}φ

[
B

1=2
1 .α−θ/√{α.1−α/}

])
dG◦n.θ/:
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By the bound (28), given ε> 0, for all B1 sufficiently large,

|R71|� ε

2B
1=2
1

√{α.1−α/}

∫ ∞

−∞
φ

[
B

1=2
1 .α−θ/√{α.1−α/}

]
dθ= ε

2B1
:

Moreover, by the mean value theorem, for all B1 sufficiently large and all |ζ−α|� ε1,

sup
|θ−α|<ε1

∣∣∣∣ 1√{ζ.1− ζ/}φ
[

B
1=2
1 .α−θ/√{ζ.1− ζ/}

]
− 1√{α.1−α/}φ

[
B

1=2
1 .α−θ/√{α.1−α/}

]∣∣∣∣
� log2.B1/√

.2π/{α.1−α/}5=2
|ζ−α|:

It follows that, for all B1 sufficiently large,

|R72|� log2.B1/

2
√

.2π/B
1=2
1 {α.1−α/}5=2

sup
|θ−α|�ε1

|g◦n.θ/|
∫ α+ε1

α−ε1
|θ−α|dθ

� log4[B1{1+|g◦n.α/|}]

2
√

.2π/B
3=2
1 {α.1−α/}5=2

:

We deduce that |R7|=o.B−1
1 / as B1→∞.

(h) To bound R8, we have

|R8|=
2. 1

2 − [[B1α]]/

B1
|g◦n.α/|

∞∫
ε1B

1=2
1 ={α.1−α/}1=2

φ.−u/du=o

(
1

B1

)

as B1→∞.

We have now established claim (27), and the result follows.

A.2. Proof of theorem 2
In the case where B1 <∞, we have

R.CRP
n /−R.CBayes/=

∫
Rp

[η.x/.1{CRP
n .x/=0}−1{CBayes.x/=0}/+{1−η.x/}.1{CRP

n .x/=1}−1{CBayes.x/=1}/]dPX.x/

=
∫

Rp
{|2η.x/−1||1{νn.x/<α}−1{η.x/<1=2}|}dPX.x/

=
∫

Rp
{|2η.x/−1|1{νn.x/�α}1{η.x/<1=2}+|2η.x/−1|1{νn.x/<α}1{η.x/�1=2}}dPX.x/

�
∫

Rp

[
1
α
|2η.x/−1|νn.x/1{η.x/<1=2}+ 1

1−α |2η.x/−1|{1−νn.x/}1{η.x/�1=2}

]
dPX.x/:

It follows that

E{R.CRP
n /}−R.CBayes/�E

{∫
Rp

1
α
|2η.x/−1|1{C

A1
n .x/=1}1{η.x/<1=2}

+ 1
1−α |2η.x/−1|1{C

A1
n .x/=0}1{η.x/�1=2}dPX.x/

}

� 1
min.α, 1−α/

E
{∫

Rp
|2η.x/−1||1{C

A1
n .x/=0}−1{η.x/<1=2}|dPX.x/

}

= 1
min.α, 1−α/

[E{R.CA1
n /}−R.CBayes/],

as required. When B1=∞, we replace both occurrences of R.CRP
n / with R.CRPÆ

n / and the argument goes
through in almost identical fashion after changing νn to μn.
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A.3. Proof of theorem 3
First write

E{R.CA1
n /}−R.CBayes/=E.RA1

n /−R.CBayes/+ εn:

Using assumption 2, we have that

E.RA1
n /=E.RA1

n 1{R
A1
n �RÆ

n+|εn|}/+E.RA1
n 1{R

A1
n >RÆ

n+|εn|}/

�RÅ
n +|εn|+P.RA1

n >RÅ
n +|εn|/

=RÅ
n +|εn|+P.R

A1,1
n >RÅ

n +|εn|/B2

�RÅ
n +|εn|+ .1−β/B2 :

But, for any A∈A and by definition of RÅ
n and εA

n , we have RÅ
n �RA

n =R.CA
n /− εA

n . It therefore follows by
theorem 2 that

E{R.CRP
n /}−R.CBayes/� 1

min.α, 1−α/
[E{R.CA1

n /}−R.CBayes/]

� R.CA
n /−R.CBayes/

min.α, 1−α/
+ 2|εn|− εA

n

min.α, 1−α/
+ .1−β/B2

min.α, 1−α/
,

as required.

A.4. Proof of proposition 1
For a Borel set C⊆Rd , let PAÆX.C/ :=∫

{x:AÆx∈C} dPX.x/, so that PAÆX is the marginal distribution of AÆX.
Further, for z∈Rd , write PX|AÆX=z for the conditional distribution of X given AÅX=z. If Y is independent
of X given AÅX, and if B is a Borel subset of Rp, then∫

B

ηAÆ
.AÅx/dPX.x/=

∫
Rd

∫
B∩{w:AÆw=z}

ηAÆ
.AÅw/dPX|AÆX=z.w/dPAÆX.z/

=
∫

Rd
ηAÆ

.z/P.X∈B|AÅX= z/dPAÆX.z/

=
∫

Rd
P.Y =1, X∈B|AÅX= z/dPAÆX.z/

=P.Y =1, X∈B/=
∫

B

η.x/dPX.x/:

We deduce that PX[{x∈Rp :η.x/ �=ηAÆ
.AÅx/}]=0; in particular, assumption 3 holds, as required.

A.5. Proof of proposition 2
We have

R.CAÆ−Bayes/=
∫

Rp×{0,1}
1{CAÆ−Bayes.AÆx/�=y}dP.x, y/

=
∫

Rp
η.x/1{ηAÆ

.AÆx/<1=2}dPX.x/+
∫

Rp
{1−η.x/}1{ηAÆ

.AÆx/�1=2}dPX.x/

=
∫

Rp
η.x/1{η.x/<1=2}dPX.x/+

∫
Rp

{1−η.x/}1{η.x/�1=2}dPX.x/

=R.CBayes/,

where we have used assumption 3 to obtain the penultimate equality.
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A.6. Proof of proposition 3
Recall that σ2 :=θ.1−θ/. Let

FÅ
B1

.s/=FÅ
B1

.s, θ/ :=
∫ ∞

−∞
exp.ist/dFB1 .t/=

[
.1−θ/ exp

(
− isθ

B
1=2
1 σ

)
+θ exp

{
is.1−θ/

B
1=2
1 σ

}]B1

:

Moreover, let P.t/ :=φ.t/p.t/=B
1=2
1 and Q.t/ :=φ.t/q.t/=B

1=2
1 . By, for example, Gnedenko and Kolmogorov

(1954), chapter 8, section 43, we have

ΦÅ.s/ :=
∫

R
exp.ist/dΦ.t/= exp

(
− s2

2

)
,

PÅ.s/ :=
∫

R
exp.ist/dP.t/=− 1−2θ

6B
1=2
1 σ

is3 exp
(
− s2

2

)

and

QÅ.s/ :=
∫

R
exp.ist/dQ.t/=− s

2πB
1=2
1 σ

∑
l∈Z\{0}

exp.2iπB1lθ/

l
exp

{
− 1

2
.s+2πB

1=2
1 σl/2

}
:

Thus

GÅ
B1

.s/=GÅ
B1

.s, θ/ :=
∫

R
exp.ist/dGB1 .t/=ΦÅ.s/+PÅ.s/+QÅ.s/

= exp
(
− s2

2

)
− 1−2θ

6B
1=2
1 σ

is3 exp
(
− s2

2

)

− s

2πB
1=2
1 σ

∑
l∈Z\{0}

exp.2iπB1lθ/

l
exp

{
− 1

2
.s+2πB

1=2
1 σl/2

}
:

Letting c2 > 0 be the constant given in the statement of theorem 4 (in fact we assume without loss of
generality that c2 >π), we show that there is a constant C′> 0 such that, for all B1 ∈N,

sup
θ∈.0,1/

σ3
∫ c2B

1=2
1 σ

−c2B
1=2
1 σ

∣∣∣∣FÅ
B1

.s, θ/−GÅ
B1

.s, θ/

s

∣∣∣∣ds� C′

B1
: .29/

To show inequality (29), write

∫ c2B
1=2
1 σ

−c2B
1=2
1 σ

∣∣∣∣FÅ
B1

.s/−GÅ
B1

.s/

s

∣∣∣∣ds=
∫ S1

−S1

∣∣∣∣FÅ
B1

.s/−GÅ
B1

.s/

s

∣∣∣∣ds+
∫

S1�|s|�S2

∣∣∣∣FÅ
B1

.s/−GÅ
B1

.s/

s

∣∣∣∣ds

+
∫

S2�|s|�c2B
1=2
1 σ

∣∣∣∣FÅ
B1

.s/−GÅ
B1

.s/

s

∣∣∣∣ds, .30/

where S1 :=B
1=2
1 σ3=2={32.3θ2−3θ+1/3=4} and S2 :=πB

1=2
1 σ. Note that S1 �S2=2 for all θ∈ .0, 1/.

We bound each term in equation (30) in turn. By Gnedenko and Kolmogorov (1954), theorem 1, section
4.1, there is a universal constant C3 > 0, such that, for all |s|�S1,

|FÅ
B1

.s, θ/−ΦÅ.s/−PÅ.s/|� C3

B1σ3
.s4+ s6/ exp

(
− s2

4

)
:

Thus ∫ S1

−S1

∣∣∣∣FÅ
B1

.s/−ΦÅ.s/−PÅ.s/

s

∣∣∣∣ds� C3

B1σ3

∫ ∞

−∞
.|s|3+|s|5/ exp

(
− s2

4

)
ds= 144C3

B1σ3
: .31/
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Moreover, observe that .s+2πB
1=2
1 σl/2 � s2+2π2B1σ

2l2 for all |s|�S1. Thus, for |s|�S1,

∣∣∣∣QÅ.s/

s

∣∣∣∣� 1

2πB
1=2
1 σ

∣∣∣∣ ∑
l∈Z\{0}

exp.2iπB1lθ/

l
exp

{
− 1

2
.s+2πB

1=2
1 σl/2

}∣∣∣∣
� φ.s/√

.2π/B
1=2
1 σ

∫ ∞

−∞
exp.−π2B1σ

2u2/du= φ.s/√
2πB1σ2

:

It follows that ∫ S1

−S1

∣∣∣∣QÅ.s/

s

∣∣∣∣ds� 1√
2πB1σ2

: .32/

For |s| ∈ [S1, S2], observe that

|FÅ
B1

.s/|=
[

1−2σ2

{
1− cos

(
s

B
1=2
1 σ

)}]B1=2

� exp
(
− s2

8

)
:

Thus ∫
S1�|s|�S2

∣∣∣∣FÅ
B1

.s/

s

∣∣∣∣ds� 2
S2

1

∫ S2

S1

s exp
(
− s2

8

)
ds� 213

B1σ3
: .33/

Now,

∫
S1�|s|�S2

∣∣∣∣ΦÅ.s/

s

∣∣∣∣ds� 2
S2

1

∫ ∞

0
s exp

(
− s2

2

)
ds� 211

B1σ3
, .34/

and ∫
S1�|s|�S2

∣∣∣∣PÅ.s/

s

∣∣∣∣ds� 1

3S1B
1=2
1 σ

∫ ∞

0
s3 exp

(
− s2

2

)
ds� 26

3
√

2B1σ3
: .35/

To bound the final term, observe that, for all |s|∈ [S1, S2], since .a+b/2 � .a2+b2/=5 for all |a|� |b|=2, we
have∫

S1�|s|�S2

∣∣∣∣QÅ.s/

s

∣∣∣∣ds� 1

2πB
1=2
1 σ

∫
S1�|s|�S2

exp
(
− s2

10

)∫ ∞

−∞
exp

(−2π2B1σ
2u2

5

)
duds� 5

4πB1σ3
: .36/

Finally, for |s| ∈ [S2, c2B
1=2
1 σ], note that

∫
S2�|s|�c2B

1=2
1 σ

∣∣∣∣ΦÅ.s/+PÅ.s/

s

∣∣∣∣ds� 2
S2

2

∫ ∞

0
s exp

(
− s2

2

)
ds+ 1

3S2B
1=2
1 σ

∫ ∞

0
s3 exp

(
− s2

2

)
ds

� 1
π2B1σ3

(
1+ π

3

)
: .37/

To bound the remaining terms, by substituting s=B
1=2
1 σu, we see that

∫ c2B
1=2
1 σ

S2

∣∣∣∣FÅ
B1

.s/−QÅ
B1

.s/

s

∣∣∣∣ds=
∫ c2

π

∣∣∣∣FÅ
B1

.B
1=2
1 σu/−QÅ

B1
.B

1=2
1 σu/

u

∣∣∣∣du
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=
J∑

j=1

∫ π.2j+1/

π.2j−1/

∣∣∣∣FÅ
B1

.B
1=2
1 σu/−QÅ

B1
.B

1=2
1 σu/

u

∣∣∣∣du

+
∫ c2

π.2J+1/

∣∣∣∣FÅ
B1

.B
1=2
1 σu/−QÅ

B1
.B

1=2
1 σu/

u

∣∣∣∣du, .38/

where J :=�.c2−π/=.2π/�. Let

Ij :=
∫ π.2j+1/

π.2j−1/

∣∣∣∣FÅ
B1

.B
1=2
1 σu/−QÅ

B1
.B

1=2
1 σu/

u

∣∣∣∣du

=
∫ π

−π

∣∣∣∣FÅ
B1

{B
1=2
1 σ.v+2πj/}−QÅ

B1
{B

1=2
1 σ.v+2πj/}

v+2πj

∣∣∣∣dv: .39/

Observe that

FÅ
B1

{B
1=2
1 σ.v+2πj/}= [.1−θ/ exp{−i.v+2πj/θ}+θ exp{i.v+2πj/.1−θ/}]B1

= exp.−2iπB1jθ/[.1−θ/ exp.−ivθ/+θ exp{iv.1−θ/}]B1

= exp.−2iπB1jθ/F
Å
B1

.B
1=2
1 σv/:

Similarly,

QÅ
B1

{B
1=2
1 σ.v+2πj/}=− .v+2πj/

2π

∑
l∈Z\{0}

exp.2iπB1lθ/

l
exp

{
− B1σ

2

2
.v+2πj+2πl/2

}

= .v+2πj/ exp.−2iπB1jθ/

2πj
exp

(
− B1σ

2v2

2

)

− .v+2πj/

2π

∑
l∈Z\{0,−j}

exp.2iπB1lθ/

l
exp

{
− B1σ

2

2
.v+2πj+2πl/2

}
:

But, for v∈ [−π,π],∣∣∣∣ 1
2π

∑
l∈Z\{0, −j}

exp.2iπB1lθ/

l
exp

{
− B1σ

2

2
.v+2πj+2πl/2

}∣∣∣∣� 1
2π

∑
m∈Z\{0}

exp
{
− B1σ

2

2
.v+2πm/2

}

� exp.−B1σ
2v2=10/

2π

∑
m∈Z\{0}

exp.−2π2B1σ
2m2=5/

� exp.−B1σ
2v2=10/

π{exp.2π2B1σ2=5/−1} � 5 exp.−B1σ
2v2=10/

2π3B1σ2
:

It follows that

Ij �
∫ π

−π

∣∣∣∣FÅ
B1

.B
1=2
1 σv/−{v=.2πj/+1} exp.−B1σ

2v2=2/

v+2πj

∣∣∣∣dv+ 5
√

5√
2π5=2B

3=2
1 σ3

: .40/

Now

∫ π

−π

∣∣∣∣FÅ
B1

.B
1=2
1 σv/− exp.−B1σ

2v2=2/

v+2πj

∣∣∣∣dv� 1

πjB
1=2
1 σ

∫ πB
1=2
1 σ

−πB
1=2
1 σ

∣∣∣∣FÅ
B1

.u/− exp
(
− u2

2

)∣∣∣∣du

= 1

πjB
1=2
1 σ

∫ S3

−S3

∣∣∣∣FÅ
B1

.u/− exp
(
− u2

2

)∣∣∣∣du

+ 1

πjB
1=2
1 σ

∫
S3�|u|�πB

1=2
1 σ

∣∣∣FÅ
B1

.u/− exp
(
− u2

2

)∣∣∣∣du, .41/
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where S3 :=B
1=2
1 σ={5.2θ2−2θ+1/}� S1. By Gnedenko and Kolmogorov (1954), theorem 2, section 40,

we have that

1

πjB
1=2
1 σ

∫ S3

−S3

∣∣∣∣FÅ
B1

.u/− exp
(
− u2

2

)∣∣∣∣du� 7
6πjB1σ2

∫ S3

−S3

|u|3 exp
(
− u2

4

)
du� 56

3πjB1σ2
: .42/

Moreover,

1

πjB
1=2
1 σ

∫
S3�|u|�πB

1=2
1 σ

∣∣∣∣FÅ
B1

.u/−exp
(
− u2

2

)∣∣∣∣du� 2

πjS3B
1=2
1 σ

∫ ∞

0
u

{
exp

(
− u2

8

)
+exp

(
− u2

2

)}
du� 50

πjB1σ2
:

.43/
Finally,

1
2πj

∫ π

−π

|v|
|v|+2πj

exp
(
− B1σ

2v2

2

)
dv� 1

2π2j2

∫ π

0
v exp

(
− B1σ

2v2

2

)
dv� 1

2π2j2B1σ2
: .44/

By expressions (38)–(44), it follows that∫
S2�|s|�c2B

1=2
1 σ

∣∣∣∣FÅ
B1

.s/−QÅ
B1

.s/

s

∣∣∣∣ds� 10
√

5.J +1/√
2π5=2B

3=2
1 σ3

+ 140
πB1σ2

J+1∑
j=1

1
j

� 10
√

5.J +1/√
2π5=2B

3=2
1 σ3

+ 140
πB1σ2

{1+ log.J +1/}: .45/

By expressions (30)–(37) and (45), we conclude that inequality (29) holds. The result now follows from
theorem 4, by taking c1=1=.B

1=2
1 σ/, C1=1=.3B

1=2
1 σ/ and S= c2B

1=2
1 σ in that result.
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Discussion on the paper by Cannings and Samworth

Christian Hennig (University College London) and Cinzia Viroli (University of Bologna)
Cannings and Samworth’s random-projection (RP) ensemble is a fascinating new classification method for
high dimensional data. One of us supervised a Master’s project in the past in which ensemble classification
was tried out based on plain random projections. This did not work very well. The authors of this paper
provide us with some insight about this failure. Their approach to use ‘competition winning’ RPs addresses
the issue successfully.

We believe that for full understanding of the performance of new methods it is required to find and
understand some situations in which it does not work well. We believe that such situations exist for all
classification methods.

We tried two approaches to find such situations. We present here all simulations that we ran; there is no
selection bias.

Firstly, we were curious about how the RP classifiers would perform in the simulation set-ups in Hennig
and Viroli (2016), which we used to test our quantile-based classifier (QC with versions QCG and QCS; see
Hennig and Viroli (2016) for all details on the study). QC aggregates weighted distances to an optimally
chosen quantile over all dimensions. The competitors were the centroid classfier CC (Tibshirani et al., 2002),
the median classifier MC (Hall et al., 2009), linear discriminant analysis LDA, k-nearest neighbours knn,
the naive Bayes classifier n-Bayes, the support vector machine SVM, non-shrunken centroids NSC, penal-
ized logistic regression stepPlr (Park and Hastie, 2008) and classification trees rpart (Breiman et al., 1984).

Out of the study in Hennig and Viroli (2016) we used only two different combinations of n and p and
two percentages of informative variables (IVs). The base set-ups were run with either dependent (set-ups 2
and 4) or independent (set-ups 1 and 3) variables. Class sizes were balanced except in set-up 4, where class
proportions were 0.75 and 0.25.

QC, CC, MC, knn and n-Bayes aggregate information over all variables. The other competitors including
the RP classifier aim at lower dimensional subspaces in which classification works best. Such methods may
be advantageous if classification information is concentrated on a lower dimensional subspace. Our set-ups
with 100% IVs can be expected to favour the former methods, whereas with 10% IVs the latter approaches
could do better. Cannings and Samworth’s assumption 3 is never fulfilled here with d as small as 5.

Misclassification rates are shown in Tables 7 and 8. In set-up 1, RP with LDA or knn does well. In
set-up 3, all versions of RP are competitive for 100% IVs; they do somewhat worse for 10% IVs. In set-ups
2 and 4 with independent skewed distributed variables, all RP classifiers perform badly. Often they deliver
the worst performances out of all methods (besides being slowest). For 100% IVs they were surprisingly

Supporting information
Additional ‘supporting information’ may be found in the on-line version of this article:

‘Random projection ensemble classification: supplementary material’.
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Table 7. Misclassification rates for set-ups 1 and 2 (with standard errors in parentheses)†

IV Rates for set-up 1, dependent ID symmetric Rates for set-up 2, independent ID asymmetric
variables variables

n=50, p=100 n=500, p=500 n=50, p=100 n=500, p=500

100% 10% 100% 10% 100% 10% 100% 10%

QCG 11.2 (0.6) 41.6 (0.6) 1.2 (0.1) 19.0 (0.2) 25.7 (1.0) 44.3 (0.5) 0.0 (0.0) 6.3 (0.1)
QCS 11.1 (0.5) 41.2 (0.6) 1.2 (0.1) 18.5 (0.2) 21.3 (0.8) 41.5 (0.6) 0.0 (0.0) 6.3 (0.1)
CC 13.5 (0.9) 42.2 (0.6) 0.7 (0.0) 19.1 (0.3) 42.7 (0.5) 44.0 (0.5) 22.4 (0.2) 46.0 (0.2)
MC 10.3 (0.4) 40.9 (0.7) 1.1 (0.0) 18.1 (0.2) 34.3 (0.7) 44.8 (0.4) 5.2 (0.1) 38.5 (0.2)
LDA 23.6 (0.7) 42.9 (0.5) 1.2 (0.1) 19.5 (0.7) 44.0 (0.4) 44.9 (0.4) 46.8 (0.2) 48.3 (0.2)
knn 13.8 (0.6) 44.0 (0.5) 1.1 (0.1) 32.5 (0.6) 45.6 (0.4) 45.3 (0.4) 45.6 (0.2) 48.5 (0.1)
n-Bayes 21.0 (0.7) 43.4 (0.5) 5.6 (0.2) 35.9 (0.8) 42.7 (0.5) 45.1 (0.4) 28.3 (0.2) 46.7 (0.2)
SVM 7.7 (0.5) 38.3 (0.7) 1.3 (0.1) 8.7 (0.1) 42.4 (0.5) 44.2 (0.4) 19.2 (0.2) 46.0 (0.2)
NSC 26.4 (0.7) 41.4 (0.6) 1.3 (1.1) 12.8 (0.2) 44.8 (0.5) 44.3 (0.4) 35.8 (0.3) 46.3 (0.2)
stepPlr 5.3 (0.3) 36.7 (0.8) 0.4 (0.0) 8.4 (0.1) 42.3 (0.5) 44.4 (0.4) 27.8 (0.2) 46.8 (0.2)
rpart 40.1 (0.6) 43.2 (0.5) 40.6 (0.2) 41.0 (0.2) 42.6 (0.5) 44.3 (0.4) 23.1 (0.3) 21.7 (0.3)
RP-LDA2 8.3 (0.5) 41.0 (0.7) 0.7 (0.0) 15.4 (0.2) 44.2 (0.7) 50.2 (0.6) 24.4 (0.2) 45.9 (0.2)
RP-LDA5 8.0 (0.5) 41.6 (0.7) 0.6 (0.0) 14.9 (0.2) 44.6 (0.8) 49.5 (0.7) 23.3 (0.2) 46.0 (0.2)
RP-QDA2 11.4 (0.6) 45.0 (0.7) 1.5 (0.1) 26.5 (0.8) 46.1 (0.7) 50.1 (0.7) 24.4 (0.3) 46.9 (0.2)
RP-QDA5 12.4 (0.7) 45.2 (0.6) 2.2 (0.2) 32.2 (1.0) 46.5 (0.7) 49.4 (0.7) 25.2 (0.4) 47.4 (0.2)
RP-knn2 8.9 (0.5) 42.4 (0.7) 0.8 (0.0) 24.5 (0.4) 45.7 (0.7) 50.2 (0.6) 36.7 (0.2) 49.2 (0.2)
RP-knn5 8.4 (0.5) 41.7 (0.7) 0.7 (0.0) 18.1 (0.3) 45.3 (0.6) 50.7 (0.7) 30.0 (0.2) 47.9 (0.2)

†ID, ‘identically distributed’; 100 replications, i.e. training and test sets.

more competitive than for 10% IVs. (Note that for n=500 and p=500 in set-up 4 they always classified
all observations to the bigger class.)

One could argue that high dimensional situations in which all variables are informative and (near)
independent may be very rare, so this may not be seen as a big problem for the RP classifier. The difficulty
to deal with the set-ups with 10% IVs seems to be a more important issue.

Secondly, we wondered whether there could be a problem caused by running the base classifier on
‘competition winning’ projections disregarding potential dependence between these. In case there is some
dominating information represented in many dependent variables, we suspected that other useful in-
formation for classification could be ignored by the RP classifiers. To test this, we ran a simulation
(set-up 5) with n= 2× 200 (200 observations in each class) and p= 200 variables X1, : : : , Xp. For class
i, j=1, : : : , 10, Xj∼N .aij , 1/ independently with a1j=0, a21=a22=1:5 and a2k=0:3 for k=3, : : : , 10. With
XÅ

j ∼N .0, 1/ for j= 11, : : : , 200 we used Xk= 0:9X1+ 0:1XÅ
k for k= 11, : : : , 100, Xk= 0:9X2+ 0:1XÅ

k for
k= 101, : : : , 150 and Xk=XÅ

k for k > 150. The idea was that the classification information in X1 and X2
should be present also in many other variables, ‘masking’ the independent information in X3, : : : , X10.
Results are shown in Table 9. The RP classifiers, to our surprise, performed excellently here. If this set-up
is a problem for them, it proved to be even more of a problem for almost all competitors.

A further interesting issue would be to give guidelines for when, in a practical situation, an RP classifier
(and which) should be used. Also we wonder about how situations could be recognized in which assumption
2 is fulfilled (or not).

Overall this is a fascinating paper and it is a pleasure for us to propose the vote of thanks.

David Hand (Imperial College London)
I should like to begin by congratulating Cannings and Samworth on a very impressive piece of work.
It combines extensive and revealing empirical demonstrations with deep and powerful theory and has
implications beyond the application that is described in the paper.

The idea of random-projection ensemble classifiers has been previously explored, for example, by Schclar
and Rokach (2009). However, this present paper explores the mathematical foundations and empirical
comparisons in considerably greater detail and rigour than Schclar and Rokach (2009) did.
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Table 8. Misclassification rates for set-ups 3 and 4 (with standard errors in parentheses)†

IV Rates for set-up 3, dependent not ID Rates for set-up 4, beta not ID variables with
variables unbalanced classes

n=50, p=100 n=500, p=500 n=50, p=100 n=500, p=500

100% 10% 100% 10% 100% 10% 100% 10%

QCG 21.0 (1.0) 43.9 (0.5) 0.2 (0.0) 24.9 (0.3) 6.5 (0.5) 23.4 (0.2) 0.0 (0.0) 5.4 (0.2)
QCS 24.2 (0.8) 43.9 (0.4) 0.4 (0.0) 28.6 (0.3) 5.6 (0.5) 22.9 (0.3) 0.0 (0.0) 4.6 (0.2)
CC 19.6 (0.5) 44.0 (0.5) 0.4 (0.0) 24.9 (0.2) 25.6 (0.4) 26.3 (0.4) 29.6 (0.3) 31.3 (0.3)
MC 20.3 (0.6) 42.8 (0.5) 0.8 (0.0) 28.5 (0.2) 19.3 (0.5) 25.5 (0.3) 1.3 (0.1) 26.2 (0.2)
LDA 31.5 (0.7) 43.5 (0.5) 41.7 (0.4) 47.4 (0.2) 25.1 (0.3) 25.6 (0.3) 46.6 (0.2) 46.9 (0.2)
knn 30.7 (0.6) 44.8 (0.4) 5.4 (0.2) 43.1 (0.2) 26.1 (0.5) 26.7 (0.5) 18.8 (0.3) 25.2 (0.1)
n-Bayes 31.6 (0.8) 43.5 (0.5) 4.8 (0.1) 38.8 (0.2) 4.1 (0.3) 23.1 (0.2) 0.0 (0.0) 8.9 (0.3)
SVM 20.9 (0.7) 43.7 (0.4) 0.5 (0.0) 27.1 (0.3) 24.0 (0.0) 24.0 (0.0) 22.3 (0.2) 25.0 (0.0)
NSC 25.2 (0.6) 41.7 (0.5) 0.4 (0.0) 18.9 (0.2) 24.0 (0.0) 24.0 (0.0) 25.0 (0.0) 25.0 (0.0)
stepPlr 21.8 (0.7) 43.7 (0.5) 0.6 (0.0) 28.2 (0.3) 24.0 (0.0) 24.0 (0.0) 25.7 (0.1) 25.0 (0.0)
rpart 30.5 (0.9) 38.8 (0.8) 3.9 (0.1) 2.8 (0.1) 16.5 (0.6) 21.4 (0.7) 2.0 (0.1) 4.4 (0.2)
RP-LDA2 21.5 (0.6) 45.2 (0.6) 0.7 (0.0) 26.7 (0.3) 34.8 (1.0) 36.8 (1.0) 25.0 (0.0) 25.0 (0.0)
RP-LDA5 21.8 (0.6) 45.9 (0.6) 0.6 (0.0) 26.0 (0.3) 36.9 (1.0) 40.1 (1.0) 25.0 (0.0) 25.0 (0.0)
RP-QDA2 21.6 (0.7) 46.4 (0.6) 0.8 (0.0) 27.5 (0.3) 30.1 (0.9) 34.3 (1.2) 25.0 (0.0) 25.0 (0.0)
RP-QDA5 22.2 (0.7) 46.8 (0.7) 0.6 (0.0) 26.9 (0.3) 27.0 (0.8) 33.8 (0.8) 25.0 (0.0) 25.0 (0.0)
RP-knn2 22.6 (0.7) 46.9 (0.6) 1.0 (0.1) 38.8 (0.2) 25.3 (0.6) 26.3 (0.5) 25.0 (0.0) 25.0 (0.0)
RP-knn5 21.4 (0.7) 46.2 (0.7) 0.7 (0.0) 32.5 (0.3) 30.3 (0.8) 34.9 (1.0) 25.0 (0.0) 25.0 (0.0)

†ID, ‘identically distributed’; 100 replications, i.e. training and test sets.

My questions relate mainly to the performance of random-projection methods. In general, the assessment
of a method tells us how good it is, whether it is ‘good enough’ for some application, whether it is better
than alternatives, and in what circumstances it has these properties. However, as I have shown in the past
(Hand, 2006), evaluations can often be misleading.

Duin (1996) has observed that

‘In comparing classifiers one should realize that some classifiers are valuable because they are heavily
parameterized and thereby offer a trained analyst a large flexibility in integrating his problem knowledge
in the classification procedure. Other classifiers on the contrary, are very valuable because they are
entirely automatic and do not demand any user parameter adjustment. As a consequence they can be
used by anybody’.

The point is that comparisons are not really of the methods per se, but rather of the combination of
method, user and the particular problem. The point was also elegantly illustrated by Bruce Hoadley in his
‘ping-pong theorem’ (Hoadley, 2001). He wrote:

‘This theorem says that if we revealed to Professor Breiman the performance of our best model and
gave him our data, then he could develop an algorithmic model using random forests, which would
outperform our model. But if he revealed to us the performance of his model, then we could develop a
segmented scorecard, which would outperform his model.’

The point is also manifest as the ‘not invented here’ effect, in which studies comparing newly invented
classification methods typically show that the new method is superior to existing methods—at least partly
because the new method is, by definition, being applied by people who are particularly expert in that
method and may be less so in applying the competitor methods.

The authors comment that

‘the flexibility offered by the random-projection ensemble classifier... allows the practitioner to adapt
the method to work well in a wide variety of problems’,

but one might interpret that as meaning that an expert in the method can choose a variant so that it does
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Table 9. Misclassification rates for set-up
5 (with standard errors in parentheses; 100
replications)

IV Rates for set-up 5,
n=200, p=200

QCG 16.7 (0.2)
QCS 17.1 (0.2)
CC 15.1 (0.2)
MC 17.5 (0.2)
LDA 24.4 (0.3)
knn 17.1 (0.2)
n-Bayes 15.3 (0.2)
SVM 14.2 (0.2)
NSC 15.1 (0.2)
stepPlr 16.2 (0.2)
rpart 23.4 (0.2)
RP-LDA2 14.3 (0.2)
RP-LDA5 14.2 (0.2)
RP-QDA2 14.1 (0.2)
RP-QDA5 14.5 (0.2)
RP-knn2 14.4 (0.2)
RP-knn5 14.5 (0.2)

well in comparative evaluations. Perhaps it would have been fairer also to use several versions of the other
classifiers in the comparisons. For example, the knn classifiers could include weighting training points
according to distance from the test point, as mentioned in the paper, and optimal choice of metric to
define ‘nearest’, and there are now (after about 80 years of use and development) many variants of linear
discriminant analysis.

More generally, although I appreciate that the vast number of classification methods which now ex-
ist means that comparative studies must make choices, that does inevitably open one to criticism. I
would have liked to know how the method compared with other simpler methods as well as more elab-
orate methods. For example, although the basic naive Bayes classifier (assuming feature independence)
is typically not the best in classification performance comparisons, it is usually among the best. Simi-
larly, Holte (1993) showed that a method based on the single best predictor also typically did reason-
ably well. And, at the other extreme, methods which seem to be winning classification competitions
at the moment seem to use variants of gradient boosting. State of the art comparisons should include
these.

In a complementary vein, I am obliged to ask how you chose the particular data sets that you used in
your comparisons. Generalizing from any such choices is always risky, and it could be that other choices
would have given results less complimentary to random-projection methods. In my view, the key issue
here is not that a particular method did well on a particular data set, but rather what properties of the
data (and problem) led to the method’s doing well. I accept that it is not easy to draw such conclusions
(see Jamain (2004) and Jamain and Hand (2008)) but knowing this would be more useful than results on
ad hoc data set choices and comparisons. Having said all that, I was pleased that the authors noted that,
although coming top may be desirable, it is almost as attractive that a classifier is always quite good—a
form of robustness.

The paper is very solidly based on the misclassification rate as the measure of performance. Is it really
appropriate to assume that the two types of misclassification error are equally serious? More generally,
it might be that entirely different but perhaps more relevant criteria give quite different results. This was
illustrated, using the ionosphere data as it happens, by Thomas Benton (Benton (2002), pages 155–156),
who produced a scatter plot based on two of the ionosphere data set variables, standardized to unit
variance, indicating the directions which maximized the gradient of the area under the receiver operating
characteristic curve, the proportion correctly classified, the log-likelihood and the standardized difference
between the class means. The gradients pointed in different directions, with those for the area under the
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receiver operating characteristic curve and proportion correctly classified lying at an angle of almost 60◦

to each other. Classifiers built by using these two measures would yield very different results.
It gives me great pleasure to second the vote of thanks.

The vote of thanks was passed by acclamation.

Wenyang Zhang (University of York)
I congratulate Professor Samworth and Dr Cannings for such a brilliant paper. I believe that it will have
much influence on high dimensional classification and will stimulate many further researches in this topic.

Classification is an important topic in data analysis. As the authors rightly point out, direct use of the
traditional approaches, such as linear discriminant analysis or the k-nearest-neighbour classifier, may not
work when the dimension of the data is high. In this paper, to deal with high dimensional classification, the
authors project the high dimensional data to a lower dimensional space in a very clever way and construct
an interesting classifier based on random projections sampled from the set of all projections.

For high dimensional classification, a natural approach would be based on some kind of penalized
generalized linear type models, such as penalized logistic regression. The results presented in Table 1
for model 1 in the simulation study section for the penalized logistic regression seem a little strange. I
understand that these results were obtained by using an R package; however, it seems to me that the
tuning parameters used may not be optimal. Is there any explanation why the proposed classifier is better
than the penalized logistic regression based classifier?

The projection of high dimensional data to a lower dimension space is somewhat equivalent to some
features of the high dimensional data, and the distribution, based on which the random projections are
sampled from the set of all projections, in the construction of the proposed classifier would act like a feature
selection. If this is so, would the classifier proposed benefit significantly from a very careful selection of
the distribution? Alternatively, would a weighted average be better than the simple average in expression
(1)? Of course, the weights would depend on both n and p.

On the theoretical front, what kind of role does the p play in the classifier proposed? Would the classifier
work for ultrahigh dimensional cases, say for example log.p/=O.nα/? Is d fixed? If it is, I guess that
assumption 3 would be difficult to satisfy for ultrahigh dimensional cases.

For ultrahigh dimensional cases, the ideas developed in Li et al. (2015) and Ke et al. (2016) can also be
used for classification. Their approach is based on penalized generalized linear type models though.

L. Anderlucci, A. Montanari and F. Fortunato (University of Bologna, Italy)
The paper is very motivating: the introduction of random projections (RPs) in the context of ensemble
classifiers enables us to improve classification accuracy while extending to the high dimensional context
methods originally developed for low dimensional data. However, a still open issue is the understanding
of the properties of the variable ranking induced by the RP ensemple classifier. Although such a classifier
highly improves the classification accuracy, it does not enable us to identify the variables with the highest
discriminative power, like a single classifier does.

Inspired by the random-forest process for feature selection, our idea is to adjust the ensemble based on
RP classifiers to keep the information on variable importance.

The idea is to detect the variables that mostly contribute to the best RP solution within each of the B1
blocks of projections. Specifically, the input features are ranked according to their relative importance,
measured through a specific coefficient, called the variable importance in projection (VIP).

Following Montanari and Lizzani (2001), for the ith variable the importance coefficient CI is defined as

CIib1 =
d∑

j=1

|aijb1 |si√ p∑
l=1

.aijb1 si/2

b1=1, : : : , B1

where aijb1 indicates the attribute i coefficient in the jth vector of the d-dimensional RP solution and si the
variability of each attribute. The VIP for feature i is then obtained as

VIPi=median
b1=1,:::,B1

CIib1 :

The p−h variables that present the smallest values for the VIP coefficient are deemed not to contribute
to the definition of the RP ensemble solution and, thus, can be removed. Our proposal explores all the
possible solutions and retains the first h variables that minimize the test error estimate.

The VIP criterion has been tested in a Monte Carlo simulation study and in real data applications,
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focusing on the ability both to recover the actually important features and to perform an accurate clas-
sification. Results showed that adjusting the RP ensemble classifier with the VIP information for feature
selection preserves the classification accuracy. In addition, the understanding of the classification problem
is enhanced by providing a ranking of the features in terms of their discriminative power.

F. Fortunato (University of Bologna)
It is a great pleasure to comment on such a thought-provoking paper that motivated me to investigate
further the discriminant analysis problem using random-projection (RP) ensembles.

Whereas Cannings and Samworth’s idea of ensemble classification is deeply rooted in machine learning,
the combination of such a strategy with RPs is definitely original.

My research in this context has aimed at investigating the ensemble post-pruning issue, as several studies
have shown that having a large number of models in an ensemble could produce redundancy.

Specifically, I focused my attention on ways to decrease the number of classifiers in the ensemble while
enhancing accuracy. Studying the characteristics of a good subset of classifiers, I noted that the binomial
distribution Bi.n,π/ is not appropriate to describe the ensemble accuracy. In fact, in spite of the indepen-
dence of the RPs, the assumption of independent classifiers is not realistic as they have been trained on
the very same data. To account for the intraclassifiers association, I proposed to use a natural generaliza-
tion of the binomial distribution to dependent binary data: the multiplicative binomial (MB) distribution,
introduced by Altham (1978),

P.X=x/=

(
n
x

)
ψx.1−ψ/n−xω.n−x/x

n∑
i=0

(
n
i

)
ψi.1−ψ/n−iω.n−i/i

:

Here, 0 <ψ< 1 is the marginal probability of success and ω> 0 is the new parameter which governs the
dependence between the binary responses: ω< 1 describes positively related responses, whereas ω> 1 a
negative global relationship. Results coming from a broad simulation study confirm that the MB should
be preferred to both the binomial and the beta–binomial models. The MB model, in fact, always seems to
characterize and predict the classification accuracy of an ensemble of classifiers better.

Combining the idea of using the MB as the reference model for ensemble accuracy and my result on
such a distribution,

ω> 1⇒ψ>π,

a simple ensemble selection algorithm (ESA) has been devised. This technique, starting from a single
classifier ensemble E, at each step adds to the existing ensemble the ith classifier that is most similar to
E in terms of accuracy and, at the same time, that provides the highest gain in terms of ω. Results of
applying two different pruning models (the ESA and a multiobjective genetic algorithm), as well as the
RP ensemble classifer on the same RP ensemble, demonstrate that the three are comparable in terms of
accuracy rates and the ESA, without loss of accuracy (and actually sometimes doing even better) always
tends to use a very small number of individual classifiers.

Frank Critchley (The Open University, Milton Keynes)
This is a wonderful paper, elegantly written and cogently argued, whose ultimate influence will I am sure
range well beyond its current domain. I have some questions and comments, which I hope may suggest
some fruitful ways forward.

(a) Assumptions: how far, and in which directions, might assumptions helpfully be relaxed (especially,
assumption 3, which appears not to be necessary in one of the examples)?

(b) Multiple classifiers: might results usefully be combined between, as well as within, classifiers (espe-
cially, (when) is there useful information in disagreements between them)?

(c) The Johnson–Lindenstrauss lemma: might this existence result be used any more directly construc-
tively (especially, its proof)?

(d) Parameter choice: avoiding ‘one size fits all’ guidance, might key method parameters .D, .B1, B2/,
{base classifiers}, : : :/ helpfully be chosen in terms of (n, p) and, both scientific and computational,
context?

(e) Marginal standardization of the p variables: for any base classifier, this would, of itself, ensure
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invariance to separate affine changes in their, generally disparate, scales of measurement. It could
also help to reduce any undue influence of, say, variables with relatively large variances. Performed
robustly, it would also highlight marginal outliers. That said, robustness may not be such a big issue
here, as we discuss next.

(f) Robustness: correct classification of a data point varying naturally with projection, it may be hoped
that the random-projection (RP) approach will prove relatively robust to outlying or ‘rogue’ obser-
vations x, and, to incorrect recording of class membership, y, in the training data.

(g) Unsupervised classification: might at least the spirit of RP be extended to the unsupervised case?
Replacing estimated test error by an appropriate index of ‘cluster structure’ of an automatically iden-
tified subspace, invariant co-ordinate selection provides one possibility here, given the remarkable
fact that this exploratory methodology can recover Fisher’s linear discriminant subspace without
knowing group membership.

(h) Potential synergies: what might RP and other methodologies have to offer each other? Sufficient
dimension reduction is one natural candidate ‘partner’ here. My colleagues, Radka Sabolová and
Paul Marriott, will comment further on this in their written contribution.

John T. Kent (University of Leeds)
Classic discriminant methods such as Fisher’s linear discriminant rule are equivariant under affine trans-
formations but require that n is not too large relative to p. Regularized methods may work well in high
dimensions, especially p>n, but can only be equivariant under a smaller group, e.g. orthogonal transfor-
mations. Tonight’s elegant randomized projection (RP) method is orthogonally equivariant (provided that
the base classifier is) since it relies on the simulation of uniformly distributed directions on a unit sphere.

To test the limits of the RP method we can look for situations with low discriminatory power. Consider
a toy Gaussian example in p=2 dimensions, where the two groups have common covariance matrix

Σ=
( 1 ρ
ρ 1

)
,

and let the vector δ denote the difference between the means.
The discriminatory power of Fisher’s rule can be characterized by the squared Mahalanobis distance

D2= δTΣ−1δ. After projecting onto a one-dimensional vector a, the discriminatory power drops to D2
a=

.aTδ/2=.aTΣa/, which ranges between 0, if a⊥δ, and D2, if a∝Σ−1δ. Let θ∈ [0,π] denote the angle between
the random projection a and δ, and consider two cases for p.

(a) Case 1: ρ=0. Then D2
a=D2= cos2.θ/.

(b) Case 2: ρ=0:99 and δ lies in the direction of the smaller principal axis. Then

D2
a=D2= cos2.θ/

cos2.θ/+199 sin2
.θ/

:

RPs are much less likely to see the signal in case 2; see Fig. 4. In particular, D2
a=D2 �0:5 for 50% of random

angles θ in case 1, but for only 5% of angles in case 2.
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Fig. 4. Relative discriminatory power, as a function of the angle θ2 [0,π] for case 1 ( ) and case 2
( )
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I am not sure whether to be concerned that RP can be broken in certain circumstances or reassured
that such an extreme value of ρ is needed. I suspect that extreme correlations are prohibited in the small
print of the regularity conditions. Perhaps a more nuanced reaction is to note that the simulated examples
in the paper involve only moderate correlation and that it is not immediately obvious how the vector δ is
oriented relative to the smallest principal axis. Further, it is not clear how much worse such effects will be
in higher dimensions.

Yining Chen (London School of Economics and Political Science) and Rajen D. Shah (University of
Cambridge)
We congratulate the authors for this interesting paper which introduces an important ensemble method for
random projections in classification problems. We shall limit our comments to the procedure of selecting
random projections and aggregating the results.

The basic procedure, as stated in Section 3, involves forming B :=B1×B2 random projections of the
data. A base classifier (e.g. k-nearest neighbours) is trained on each of these B projected versions of the
data. The resulting classifiers are then grouped consecutively into blocks of size B2, where we pick and
then average those with the lowest training or leave-one-out (LOO) cross-validation error from each group
and discard the rest. However, the blocking strategy perhaps does not make full use of the information
from the training or LOO estimates whose construction is usually the most computationally intensive part
of the procedure. Indeed, grouping base classifiers consecutively is somewhat arbitrary: the distribution
of the ensemble classifier, conditional on the data and the set of random projections, is unchanged when
permuting the list of classifiers. Therefore, one can construct new ensemble classifiers resulting from
multiple random groupings with little extra computational cost. Here each new classifier is still based on
the B base classifiers, but we instead randomly permute the order of the base classifiers before grouping
them into blocks consecutively. By aggregating these new classifiers by a simple majority vote, we form a
final classifier, which could potentially remove some of the variance resulting from the randomness of the
grouping.

To examine the performance, we applied both the original method and the variant to four real data sets
by using k-nearest neighbours with different training set sizes and setting B= 1000 and B2= 50. Results
are reported in Fig. 5. As expected, the proposed variant with multiple random grouping gives slightly
improved performance.

More generally, we could think of the training or LOO predictions from the base classifiers as covariates
of the new training data for a further classifier; an approach known as stacking or blending (Wolpert,
1992; Breiman, 1996). We looked at forming a final classifier via regression of the class labels on the LOO
predictions of k-nearest neighbours using l1-penalized logistic regression with a non-negativity constraint
on the coefficients. This can be viewed as a data-driven way of forming a weighted average of B classifiers
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Fig. 5. Misclassification rates and the corresponding confidence intervals of the original random-projection
ensemble classifier ( ) and the multiple random-grouping approach (�) on four real data sets (considered by
the authors in Section 6.2) with various training set sizes and .B, B2/ D .1000, 50/: (a) ionosphere; (b) musk;
(c) hill–valley; (d) eye state
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Table 10. Estimated misclassification rates and the
corresponding standard errors of various classifiers for
the eye state data

Classifier Misclassification
rate (%)

k-nn 14:450:16
RP-knn5, B=25000 13:540:19
RP-knn5 with stacking, B=500 12:860:08
RP-knn5 with stacking, B=5000 11:350:07

on the projected versions of the data. Results on the eye state data (see Section 6.2.1, where RP-knn5
performed the best) with n= 1000 are shown in Table l0. This suggests that some slightly more data-
driven variants of the aggregation procedure that were used in the paper may lead to further improved
performance in some settings, even with a smaller B.

The following contributions were received in writing after the meeting.

Amir Ahmad (United Arab Emirates University, Al Ain)
I congratulate Cannings and Samworth for this interesting paper. The paper discusses the use of random
projections for classifier ensembles for high dimensional classification. Microarray data sets are examples
of high dimensional data sets. It would be interesting if the authors could show some results on these data
sets.

The authors propose selecting some random projections from the pool of random projections for the final
results. Readers will benefit if the authors can show the effect of this step on real data sets by experiments.

Wicher Bergsma and Haziq Jamil (London School of Economics and Political Science)
Cannings and Samworth present impressive theoretical results. However, we are not yet convinced about
their practical use: as summarized in Table 11, we ran our own favourite classifier—Gaussian process
regression using fractional Brownian motion, GPR-FBM—and for five of the eight data sets we obtained
results better than random-projection (RP) ensembles. Furthermore, our preliminary analyses indicate
that RP ensembles worsen GPR-FBM classification, but this could be due to the small B1 and B2 we chose
because of time constraints (B1=30 and B2=5). Thus, although RP ensemble methods can demonstrably
improve frequently poor methods such as linear discriminant analysis, LDA, and knn, we wonder whether
they can improve good methods. If not, what then is the advantage of using RP ensembles?

It appears to us that there may be a mismatch between theory and practice. Theory tells us that the curse
of dimensionality is a problem for high dimensional regression and classification; for example, according
to Hastie and Tibshirani (1986), page 305, ‘the chief motivation for the additive model’ is that ‘it is well
known that smoothers break down in higher dimensions [because] the curse of dimensionality takes its
toll’. However, in view of the success of, for example, support vector machines and GPR, and the results
in Table 11, it seems to us that in practice smoothers do not break down in high dimensions. So it might
be wondered, is the curse of dimensionality a straw man undeserving of the broad attention it is receiving?

Our own GPR methodology and associated R package will be made available soon via arXiv. In par-
ticular, we shall propose a flexible empirical Bayes methodology based on the Fisher information for the
regression function, which in a well-defined sense can improve on Tikhonov regularization, and can further
improve some of the GPR results in Table 11.

Finally, our results were obtained by fitting the model

yi=f.xi/+"i, yi∈{0, 1}, xi∈Rp, f ∼GP.0, K/, K :Rp×Rp→R, "i
IID∼ N.0,σ2

" /, f ⊥⊥{"i}:

Table 11 provides results for GPR-linear, with covariance kernel

K.x, x′/=λ.x− x̄/T.x′ − x̄/, λ�0,

and for GPR-FBM-γ, with covariance kernel
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Table 11. Misclassification rates for eight data sets: GPR versus RP ensembles

Method Rates (%) for eye state data Rates (%) for ionosphere data

n=50 n=200 n=1000 n=50 n=100 n=200

RP5-LDA 42:10:38 38:60:29 36:30:21 13:10:38 10:80:25 9:80:26
RP5-QDA 39:00:39 32:40:42 30:90:87 8:10:37 6:20:37 5:20:20
RP5-knn 39:40:39 26:90:27 13:50:19 13:10:46 7:40:25 5:40:19
RP5-GPR-linear —† —† —† 36:00:11 35:90:16 35:50:28
RP5-GPR-FBM-1/2 —† —† —† 36:20:10 35:70:16 35:80:29
GPR-linear 46:60:92 42:30:95 37:50:48 17:30:17 14:60:14 13:50:18
GPR-FBM-1/2 37:00:27 24:00:13 10:30:08 11:20:14 8:00:17 6:30:10
GPR-FBM-γ̂ 12:10:32 8:60:26 6:40:20

Rates (%) for mice data Rates (%) for hill–valley data

n=200 n=500 n=1000 n=100 n=200 n=500

RP5-LDA 25:20:30 23:60:26 23:40:49 36:80:84 36:50:85 32:61:06
RP5-QDA 18:20:29 16:10:24 15:40:45 44:40:34 43:60:31 41:10:33
RP5-knn 11:20:29 2:20:10 0:60:09 49:10:24 47:30:26 36:40:29
RP5-GPR-linear —† —† —† —† —† —†
RP5-GPR-FBM-1/2 —† —† —† —† —† —†
GPR-linear 6:50:08 4:50:09 3:80:11 50:20:14 50:00:20 48:50:59
GPR-FBM-1/2 6:60:08 1:20:08 0:10:05 45:30:09 49:80:08 50:70:12
GPR-FBM-γ̂‡ 1:00:11 0:00:00 45:00:09 49:70:10 50:70:13

Rates (%) for musk data Rates (%) for arrhythmia data

n=100 n=200 n=500 n=50 n=100 n=200

RP5-LDA 14:60:31 12:20:23 10:20:15 33:20:42 30:20:35 27:50:30
RP5-QDA 12:10:27 9:90:18 8:60:13 30:50:33 28:30:26 26:30:28
RP5-knn 11:80:27 9:70:21 8:00:15 33:50:40 30:20:33 27:10:31
RP5-GPR-linear 15:20:11 15:50:09 15:50:09 47:30:32 47:50:40 46:20:33
RP5-GPR-FBM-1/2 15:30:10 15:50:10 15:20:11 47:10:33 46:70:27 46:40:25
GPR-linear 15:40:04 11:30:10 9:10:09 38:80:28 33:40:17 27:40:24
GPR-FBM-1/2 9:50:07 7:90:06 5:60:06 34:20:24 29:60:12 26:50:22
GPR-FBM-γ̂ 28:40:27 25:20:22

Rates (%) for activity recognition data Rates (%) for Gisette data

n=50 n=200 n=1000 n=50 n=200 n=1000

RP5-LDA 0:180:02 0:100:01 0:010:00 15:80:41 10:60:17 9:40:15
RP5-QDA 0:150:02 0:090:01 0:000:00 15:50:40 10:50:19 9:40:16
RP5-knn 0:210:02 0:110:01 0:010:00 16:00:46 11:10:17 9:60:16
RP5-GPR-linear —† —† —† —† —† —†
RP5-GPR-FBM-1/2 —† —† —† —† —† —†
GPR-linear 0:050:00 0:000:00 00 12:40:09 6:80:05 4:50:08
GPR-FBM-1/2 0:150:00 0:030:00 0:000:00 14:00:13 7:00:05 4:50:09
GPR-FBM-γ̂ — — — — — —

†Results are currently unavailable. γ̂ is the maximum likelihood estimator of γ.
‡Records with missing values removed from the data (GPR-FBM-γ̂ for the mice data).
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Kγ.x, x′/= K̃γ.x, x′/− 1
n

n∑
j=1

K̃γ.x, xj/− 1
n

n∑
i=1

K̃γ.xi, x′/+ 1
n2

n∑
i=1

n∑
j=1

K̃γ.xi, xj/, γ ∈ .0, 1/,

where

K̃γ.x, x′/= λ
2

.‖x‖2γ+‖x′‖2γ−‖x−x′‖2γ/, λ�0:

Scale parameter λwas estimated by using a modified maximum likelihood method. We have omitted GPR-
FBM-0.99999 from Table 11, which gives results competitive with the RP ensembles for the hill–valley data.
Code for replication of some of the results is provided at https://haziqjamil.github.io/rec-
jrss-reply/ (other results were obtained with Mathematica code).

Xin Bing and Marten Wegkamp (Cornell University, Ithaca)
We congratulate Cannings and Samworth on their inspiring paper.

Variable selection
The paper considers mainly projections onto lower d-dimensional spaces with d fixed, though the authors
propose to select d from D⊆{1, 2, : : : , p} by minimizing the empirical risk when D is small. But such a
minimization depends on α̂, that, in turn, should depend on d. Therefore, a potential alternating mini-
mization between α and d might be useful for further improvement. In general, however, ranging over all
d ∈{1, : : : , p} is not computationally feasible. This is regrettable, since the use of plug-in classifiers, which
is advocated in this paper, is problematic in high dimensional settings, where finding suitable hyperplanes
{x : θTx � 0} instead is typically preferred. For instance, we can utilize a convex loss l to minimize the
penalized empirical risk

1
n

n∑
i=1

l.θTXiYi/+λ‖θ‖1

over θ∈Rp and the lasso penalty promotes sparsity in θ by adaptively finding a lower dimensional space.
In a way, minimizing

1
n

n∑
i=1

l{θT.AXi/Yi}

over both θ and A could be viewed as trying to achieve the same thing, but it is computationally much
more difficult.

Interpretation of threshold α
The random-projection classifier defined in the paper can be viewed as a plug-in rule of the Bayes classifier.
Rewriting

1{νn.x/�α}=1{νn.x/+ . 1
2 −α/� 1

2 },

we can view 1
2 −α as an albeit constant bias correction of νn due to inherent bias of projecting onto a

lower d-dimensional space. It is not difficult to see that

R.CRPÆ

n /−R.CBayes/�2E[|νn.X/+ 1
2 −α−η.X/|]

�2
√

E[|νn.X/−μn.X/|2]+2E[|μn.X/+ 1
2 −α−η.x/|]

� 2√
B1
+2E[|μn.X/+ 1

2 −α−η.X/|];

see Devroye et al. (1996) for the first inequality. The role of B1 is immediately transparent, as well as the
need for a good fit for η and the advantage of using a cut-off α in lieu of 1

2 . Using the same reasoning as
in Herbei and Wegkamp (2006) we can derive a more refined result:

R.CRP
n /−R.CBayes/� inf

δ>0
[P{|νn.X/+ 1

2 −α−η.X/|� δ}+2δP{|η.X/− 1
2 |� δ}]

� inf
δ>0

[P{|νn.X/−μn.X/|� δ=2}+P{|μn.X/+ 1
2 −α−η.X/|� δ=2}

+2 δP{|η.X/− 1
2 |� δ}]:

The first term on the right can be bounded by exp.−cB1δ
2/ from Hoeffding’s inequality for a constant c

as we look at the deviation of an average νn around its mean of independently and identically distributed
bounded random variables. The second term expresses the need for μn.X/+ 1

2 −α to provide a good bound
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for η.X/, whereas the last term reflects the intrinsic difficulty of the classification problem and can be dealt
with by a margin condition (Tsybakov, 2004). Again, considering a general cut-off α not necessarily equal
to 1

2 offers additional flexibility to correct the bias and can be viewed as the first-order bias correction for
the estimate of η.X/. This approach circumvents the problematic assumption 2.

Rico Blaser and Piotr Fryzlewicz (London School of Economics and Political Science)
We congratulate Cannings and Samworth on their thought-provoking and well-written paper in this
promising area of research.

In our work on random-rotation ensembles (Blaser and Fryzlewicz, 2016) we randomly rotated the
feature space before applying a high dimensional classifier. In the present paper, the high dimensional
feature space is projected into a lower dimensional space before applying a low dimensional classifier. The
two strategies are closely related.

In the current paper, projections are performed randomly under the Haar measure. Interestingly, a
random rotation followed by a random axis-aligned projection in which d-of-p features are retained is
identical to the random projection described in the paper. Our tree-based ensemble classifiers perform axis-
aligned projections after rotation and thus effectively describe a random-projection ensemble, whereby the
final classification is restricted to a tree-based model.

More generally, we believe decoupling rotation from dimension reduction and dimension reduction
from classification is desirable. In particular, such a decomposition addresses the question, if the benefit of
a particular random projection arises from an advantageous viewpoint at the problem due to the rotation
or from an effective dimension reduction due to the feature selection, as the two operations can be analysed
and optimized separately.

The authors also provide interesting insights on the selection of retained projections and the determi-
nation of the voting threshold. They note that most random projections are unhelpful in classification: a
pattern that we have also observed for random rotations. Hence, a natural question to ask is how we can
identify (or explicitly generate) only the most helpful projections.

One way to address this issue is by performing a large number of candidate projections and retaining
only the most successful candidates. The authors of the present paper recommend retaining 2% of the
generated projections by default: substantially fewer than the 90% of rotations we examined. More accu-
racy is achieved at the expense of a higher overhead. Alternatively, analytical methods such as principal
component analysis can be used to determine successful rotations. In Rodriguez et al. (2006), this approach
is used for random subsets of the features.

Different subsets of the data frequently benefit from different rotations; for non-linear decision bound-
aries this is quite evident. Hence, it might also be useful to construct a classifier that rotates different
sections of the data independently.

The data-driven selection of the voting threshold suggested by the authors is insightful but is not
straightforward to generalize to multiclass problems.

Miguel de Carvalho (University of Edinburgh) and Garritt L. Page and Bradley Barney (Brigham
Young University, Provo)
We congratulate Cannings and Samworth for proposing a sturdy method based on randomly compress-
ing feature vectors before classification. Below, we focus on connecting the random-projection ensemble
classifier with ideas and concepts from compressed classification and compressed regression methods. Let
A={A∈Rd×p :AAT=Id×d} be the so-called Stiefel manifold. Similarly to Page et al. (2013), Cannings and
Samworth first compress the covariates by using projection matrices, but a key difference is that Cannings
and Samworth consider a set of independent projections, A1, : : : , AB1 ∈A, whereas in Page et al. (2013)
a single projection matrix A∈A is considered—and treated as a Bayesian parameter. In particular, Page
et al. (2013) considered a non-parametric Bayesian approach which leads to a principal subspace classifier
for a setting similar to that in the current paper and assigns to A a (conjugate) von Mises–Fisher prior
distribution on the Steifel manifold. In an analogy to the authors’ claim that

‘in a similar spirit to subsampling and bootstrap sampling, we can can think of each random projection
as a perturbation of the original data’,

the compressing paradigms described above—based on a single but random A—keep the data as fixed, and
posterior sampling about good directions along which to project the data is itself target. Both compressing
principles (single A∈A as a Bayesian parameter, versus an ensemble of random A1, : : : , AB1 ∈A) seem to
have their own merits, and we wonder whether the authors could comment on this remark. On another
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note, the recently proposed compressed regression approach by Guhaniyogi and Dunson (2015) is even
closer to the authors’ proposal, in the sense that it projects data into an ensemble of directions and uses
model averaging to arrive at a final regression model. The focus of Guhaniyogi and Dunson (2015) is on
regression itself though, but we also wonder about the authors’ view on this. Finally, the practitioner could
be left with the question: ‘How likely is it for the ensemble classifier to improve over the base classifier on
the original feature vectors?’.

Roberto Casarin and Lorenzo Frattarolo (University Ca’ Foscari of Venice) and Luca Rossini
(University Ca’ Foscari of Venice and Free University of Bozen-Bolzano)
Cannings and Samworth are to be congratulated on their excellent research, which has culminated in
the development of a characterization of the approximation errors in random-projection methods when
applied to classification. We believe that the approach can find many applications in economics such
as credit scoring (e.g. Altman (1968)) and can be extended to more general types of classifiers. In this
discussion we would like to draw the authors’ attention to copula-based discriminant analysis (Han et al.,
2013; He et al., 2016).

We consider X|Y= r distributed as a p-dimensional meta-Gaussian distribution and S|Y= r∼Np.0, Σr/,
where Σr is the linear correlation between variables. Given a p× d random projection A, AS|Y = r∼
Nd.0, ΣA

r /, where ΣA
r =AΣrA

T. If we assume that the information in the marginals is not relevant for the
classification, the Bayes decision boundary depends only on the transformed variables si=Φ−1{F.xi/}
with Φ and F the univariate normal and the marginal cumulative distribution functions respectively (Fang
et al., 2002), si and xi the ith element of s and x, and the correlation of the two groups

Δ.s;π0, Σ0, Σ1/= log
(
π1

π0

)
− 1

2
log

{
det.Σ1/

det.Σ0/

}
− 1

2
sT.Σ−1

1 −Σ−1
0 /s: .46/

Analogously the classifier in the random-projection ensemble will depend only on the random projection
of the transformed variables and their covariances. We use the empirical distribution function to obtain
the sample version of the transformed variables Si= .S1i, : : : , Spi/, with

Sji=Φ−1

(
1

n+1

n∑
k=1

1{Xjk�Xji}

)
, i=1, : : : , n, j=1, : : : , p: .47/

The estimator of ΣA
r is obtained by maximizing the pseudolikelihood:

Σ̂
A

r =
1
n

n∑
i=1

ASiS
T
i AT1{YA

i =r} for r=0, 1

where the asymptotic normality is guaranteed by results in Genest et al. (1995) and recently in Segers et al.
(2014). We propose the following robust quadratic discriminant analysis random-projection ensemble
classifier:

CA-RQDA
n .s/ :=

{
1 Δ.s; π̂0, Σ̂

A

0 , Σ̂
A

1 /�0,
0 otherwise:

.48/

We are very pleased to thank the authors for their work.

Emre Demirkaya and Jinchi Lv (University of Southern California, Los Angeles)
Dr Cannings and Professor Samworth are to be congratulated for their innovative and valuable contribu-
tion to the important problem of high dimensional classification. Dimension reduction plays a key role
in high dimensional classification, enabling the enhancement of both statistical efficiency and scalabil-
ity (Fan and Fan, 2008). Through a simple yet ingenious two-level design of using random projections,
Cannings and Samworth achieved these goals by proposing the general framework of random-projection
ensemble classification with an elegant theory to deal with high dimensionality and to boost the power
of existing classification procedures. The general philosophy of random-projection ensemble learning laid
out in the paper can also be applicable to many other statistical learning tasks such as clustering and
regression.

Our discussion will focus on the perspective of interaction network learning. Understanding large-
scale interaction network structures among features can be of fundamental importance in many sci-
entific studies. The problem of interaction network learning has received growing recent interest (Hall
and Xue, 2014; Jiang and Liu, 2014; Fan et al., 2015; Kong et al., 2016). Recently, Fan et al. (2015)
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Table 12. Percentages of retaining all important interactions
in model 1 of Fan et al. (2015) by RAPID over various settings
based on 100 replications when the threshold is chosen to be
[cn=log.n/] following the suggestion in Fan and Lv (2008) with
nD100 the sample size for each class

c Results (%) for p=100 Results (%) for p=500

d=5 d=10 d=5 d=10

0.5 0.99 0.97 0.93 0.95
1 1 0.97 0.97 0.95

introduced innovated interaction screening for high dimensional non-linear classification which depends
on large precision matrix estimation. An interesting question is whether we can avoid estimating large
precision matrices (Fan and Lv, 2016). To provide a partial answer to this question, we borrow the idea
in the current paper and suggest a possible extension called random-projection interaction delineation
(RAPID).

To illustrate the idea of RAPID, we adopt the framework in Fan et al. (2015) and consider a two-
class Gaussian classification problem with heterogeneous precision matrices. In view of the Bayes rule,
important interactions correspond to non-zero entries of precision matrix difference Ω. RAPID starts
by randomly projecting p-dimensional feature vectors to low dimensions d and building classifiers with
quadratic discriminant analysis following Cannings and Samworth. Each selected random projection
returns a d× d symmetric matrix from the quadratic form, which can be lifted back to the original p
dimensions through the given random projection. Each of B1 such matrices can be used as a proxy for
the original Ω. RAPID then evaluates the significance of each entry by using the t-statistics and ranks the
interactions by the magnitude of these t-statistics. A simulation study shows that RAPID can enjoy a nice
sure screening property (Fan and Lv, 2008) for interaction screening; see Table 12 for details. It would be
interesting to investigate the theoretical properties of this and further extensions.

Josh Derenski, Yingying Fan and Gareth M. James (University of Southern California, Los Angeles)
Cannings and Samworth propose a method of classification involving many random projections of the
data onto a lower dimensional space and then utilize a base classifier on the projected data to build
an ensemble classification rule. They develop theoretical results involving arbitrary base classifiers and
highlight the results when applied to particular base classifiers. In addition, they demonstrate the method’s
strong prediction accuracy with examples involving artificially generated data, and others involving real
data.

The random-projection ensemble classifier may also be useful in determining the relative importance of
the covariates. The authors suggest that the projections provide weights that can be used as a metric for
determining the relative importance of variables. In a similar spirit, using sparse random projections may
also assist in determining variable importance. Indeed, after the matrices have been generated and those
that yield the smallest test error have been chosen, a variable is selected if the corresponding entries in
the selected projection matrices are non-zero. The importance of a variable can be measured by, say, the
frequency of the variable being selected.

The authors’ proposed method has the flavour of a bagging algorithm, where the data are randomly
sampled, a classifier is applied to each new data set and the results are averaged at the end. Hence, it is
possible that prediction accuracy could be improved by applying a boosting-type approach. For example,
rather than applying the same classifier to each random permutation, one could reweight the observations
at each stage, placing higher weight on observations that were misclassified at the previous iteration.
This would be somewhat analogous to standard boosting and would potentially provide a similar level
of improvement in classification accuracy to that which boosting often has over bagging. Taking this
theme one step further, one could choose the random projection conditionally on the performance of the
classification method on the previous projection of the data, and then aggregate the results as in boosting.

The extensions suggested above also enable studying the random-projection ensemble classifier un-
der different methodologies for choosing the projection matrices. The authors suggest the possibility of
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choosing these matrices under different regimes, and there might not be a universally optimal way for se-
lecting these matrices. For example, one sampling scheme might perform better when the goal is inference
and another when the goal is prediction. Both these extensions enable the study of this possibility.

Robert J. Durrant (University of Waikato, Hamilton)
I thank Cannings and Samworth for an interesting paper, which I am sure will be of interest not only to
statisticians but also to researchers in communities such as machine learning.

This paper is initially motivated by the Johnson–Lindenstrauss lemma (JLL), which gives high proba-
bility guarantees for the approximate preservation of Euclidean geometry of randomly projected data in
Rd compared with the original data in the embedding space Rp, d�p. Here I shall discuss some apparent
implications of the JLL on the rejection sampling scheme for projection matrices described in this paper. In
particular, it is my experience with random projection that for (linear) classification centring and normal-
izing a set of observations is usually a sensible preprocessing step to apply before random projection, and
it appears that may be worthwhile here also. Below follows some informal argument supporting this view.

First note that projection using a sub-Gaussian random-projection matrix implies not only an ε–2δ
guarantee on norm preservation, but also an ε–2δ guarantee on dot product preservation, i.e., under the
same conditions as the JLL, for any ε, δ ∈ .0, 1] with probability at least 1− 2δ over the random draws
of A∈Rd×p where the Aij are independently and identically distributed sub-Gaussian with mean 0 and
variance σ2

A it holds that

dσ2
A · .vTw− ε‖v‖‖w‖/�vTATAw �dσ2

A · .vTw+ ε‖v‖‖w‖/:
For any fixed v, w∈Rp and random A this confidence interval depends on the Euclidean norms ‖v‖ and
‖w‖ independently of the angle between these vectors. Thus the JLL implies that, even for two pairs of
vectors with the same angle, absent normalization, some dot products will be preserved better than others.

In particular, instantiating w as an observation and v as any unit norm classifier learned in Rp, we see
that observations with large norms are more likely to be classified differently with respect to v following
projection to a fixed dimension d < p—i.e. by a sign change in the dot product—than those with small
norms. Assuming v was reasonably accurate in the first place this means they will largely be misclassified for
many instances of projection matrix A, and the corresponding projection matrix instances may risk being
rejected—not necessarily because they fail to capture meaningful structure in the data (for the classification
task)—instead because of systematic issues introduced by our choice of data representation. Thus it seems
that it could be a reasonable step to add data normalization before projection to the authors’ algorithm
as described here.

Jianqing Fan and Ziwei Zhu (Princeton University)
We congratulate Dr Cannings and Professor Samworth for such a brilliant and thought-provoking paper.
We believe that it will stimulate extensive research on statistical inference based on randomly projected
data.

The authors aim to handle the curse of high dimensionality in classification problems through voting
among multiple classifiers based on random data sketches. One of the most attractive aspects of their
theories is that the excessive risk of the proposed ensemble classifier depends only on the dimension
of the projected data d rather than the dimension of the original data p. To achieve this, the theory
requires sufficient dimension reduction conditions. This exact low dimensional structure assumption can
be sometimes stringent and some relaxations of the condition are welcome.

Besides overcoming the curse of dimensions, we emphasize that random projection is an accurate and
efficient way of dimension reduction when data have (approximately) low dimensional structure. For
example, consider the rank k approximation of X ∈Rn×p. Let A ∈Rp×.k+s/ be a random matrix with
independently and identically distributed standard Gaussian entries and Q∈Rn×.k+s/ be the orthonormal
column basis of XA. As shown in theorem 1 of Halko et al. (2011), for any s> 1,

E‖X−QQTX‖op �
{

1+ 4
√

.k+ s/

s−1
√

min.n, p/

}
σk+1,

where σk+1 is the .k+1/th singular value of X. Since σk+1 is the theoretical minimum of rank k approxi-
mation error, this result implies that the column space of the random sketch XA can capture the top k left
singular space of X. It will thus be interesting to investigate the sin.Θ/ distance between the column space
of Q and the top k left singular space of X. Furthermore, suppose that we create B1 independent sketches
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{XA.i/}B1
i=1 as in random-ensemble classification and derive the corresponding column basis {Q.i/}B1

i=1. Can
we construct an aggregated column basis Q̃ from {Q.i/}B1

i=1 such that Q̃ will converge to the top k left
singular space of X as B1 increases to∞?

Finally, we further stress an important advantage of the ensemble classifier proposed: its full adaptivity
to the distributed computing architecture. To implement the random-projection ensemble classification in
a distributed computing system, we first let each node computer solve for classification on randomly pro-
jected data. Then, according to the estimated risk of the base classifier on each node computer, we can screen
out the good projections as described in Section 3 of the paper and construct the final ensemble classifier.
Note that the algorithm does not require high communication cost since random projections are small.

Yang Feng (Columbia University, New York)
I congratulate Dr Cannings and Professor Samworth on their novel and stimulating contributions to
classification using random-projection ensembles (RPEs). It is quite a general framework and we expect
to see many follow-up works on the idea combined with some popular classifiers.

Regarding the choice of B2, the authors did a careful theoretical analysis through assumption 2 and
theorem 3. In assumption 2, I wonder whether β should depend on the sample size n or whether the authors
believe that there is a universal β for all n. If β in fact turns out to decrease as n increases, we would need
to conduct a more delicate analysis regarding the implications on the results of theorem 3 as n→∞.

Here, I propose a variant of the RPE approach. In this variant, the random projections are not generated
independently; instead, the selected B1 random projections are chosen sequentially and designed to be
mutually orthogonal. The intuition is that, by making the random projections mutually orthogonal, the
additional contribution of the newly recruited projections could be more significant than those without
such constraints. I expect the variant to have a competitive performance when B1 is small and the problem
is high dimensional. A detailed modification is outlined as follows.

First, generate A1 the same way as the RPE. Now, suppose that we have found the projections A1, A2, : : : ,
Ak, for some k. Then combine the corresponding random projections into the matrix Pk = .A1, A2, : : : ,
Ak/p×.dk/. To search for Ak+1, first generate B2 random projections {Ãk+1,b2}

B2
b2=1 according to the Haar

measure on A, and then define Ak+1,b2 = .I−Pk.PT
k Pk/

−1PT
k /Ãk+1,b2 as the orthogonal projection of Ãk+1,b2

onto the space P⊥k , which is the orthogonal complement of Pk. Afterwards, we can follow the same
procedure to find the optimal Ak+1 by using the new random-projections candidates. At the ensemble step,
I propose to use a weighted voting scheme based on the error rate on the test data {errb1}

B1
b1=1 as follows:

vn.x/ :=

B1∑
b1=1

wb1 I{C
Ab1
n .x/=1}

B1∑
b1=1

wb1

,

where wb1 = log{.1− errb1 /=errb1}. The final classifier can be created with a data-driven choice of the
threshold α by taking into account the weights.

Michael P. B. Gallaugher and Paul D. McNicholas (McMaster University, Hamilton)
We congratulate Cannings and Samworth on a very well-written, enjoyable, and interesting contribution.
Data collected today are often high dimensional and effective classification techniques for such data are
most welcome. In the simulations and the real data analyses, the authors compare the proposed ensemble
classifiers with the respective base classifiers as well as ‘state of the art’ techniques. We note the absence
of mixture discriminant analysis, which was introduced in this self-same journal over 20 years ago (Hastie
and Tibshirani, 1996) and subsequently studied by others (e.g. Fraley and Raftery (2002)). More general
discriminant analysis techniques could also be considered, where a flexible non-Gaussian density is used
for each class (see McNicholas (2016), section 9.2, for some discussion). It may also be interesting to
consider discriminant analysis using a mixture of factor analysers model (Ghahramani and Hinton, 1997)
or an extension thereof (see McNicholas (2016), chapter 3).

For brevity, we consider only mixture discriminant analysis, where the idea is to allow each class to be
modelled by using a Gaussian mixture model. For the eye state data set, we take 10 training–test splits
with 1000 observations in the training set, similar to the situation in the ‘n= 1000’ column of Table 3.
Using mixture discriminant analysis via the mclust package (Fraley et al., 2017), we obtained an average
misclassification rate, for the observations considered unlabelled, of around 0.18; this is a better result than
two of the three random-projection classifiers considered. We also note that the mice data set contains
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missing values; perhaps the authors could clarify how they deal with these missing values. Also, for the
hills-and-valleys example, there are multiple such data sets given in the repository at the University of
California, Irvine, and it is not clear which are used (presumably it is a training–test pair either with or
without noise).

A final point concerns extending the proposed classifiers to more than two classes. In Section 7, the
authors mention this possibility and we wonder whether they have actually used the proposed approaches
on more than two classes and, if so, what were their experiences?

Milana Gataric (University of Cambridge)
I congratulate Cannings and Samworth on their inspiring work that opens numerous avenues for future
research. Below I discuss a possible future direction related to the problem of variable ranking mentioned
briefly by the authors in the final section of their paper.

Consider the set of axis-aligned projections, namely

Ad={A∈{0, 1}d×p : AAT= Id×d}:

Although this set restricts the originally considered set of transformations, it is nonetheless attractive for
at least two reasons. First, the computational complexity reduces considerably since the multiplication of
a matrix with A∈Ad recasts as the selection of the matrix rows (or columns).

Second, this choice of projections paves the way for feature selection in high dimensional classification
by adding an additional aggregation step to the originally proposed screening method. Intuitively, by
selecting good axis-aligned projections we are selecting features that contribute the most to classification
success. Therefore, if Ab1 ∈Ad are selected by the original screening method, we could expect that the
aggregation such as

âÅ
j =B−1

1

B1∑
b1=1

1{.AT
b1

Ab1 /j,j=1}, j=1, : : : , p,

provides a good estimation of the classification power for each feature j. Furthermore, if

Ĵ ={j∈{1, : : : , p} : âÅ
j is among the s top elements of {âÅ

1 , : : : , âÅ
p }},

and Â
Å ∈As has non-zero columns corresponding to indices Ĵ , i.e. Â

Å ∈As is such that

Â
Å
·,j �=0s, j∈ Ĵ ,

we could potentially estimate the lower dimensional axis-aligned projection AÅ of X that explains Y , in
case such a projection exists.

In view of this last remark, one might draw insight from the special case X|{Y = r}∼Np.μr, Σ/, r=1, 2,
with discriminative direction β=Σ−1.μ2−μ1/ that is s sparse in the sense that card.J/� s, where J={j∈
{1, : : : , p} :βj �= 0}. In this case, AÅ ∈As defined such that AÅ

·,j �= 0, j ∈ J , is the projection that makes
assumption 3 of the paper hold. Therefore, we could expect that Â

Å
defined as above is a good estimator

for AÅ. This is demonstrated by a numerical example in Table 13.

Table 13. Results for the model X jY D r � Np.μr ,Σ/, μ1 D 0p, μ2 D Σβ, β D
.3, 2, 1, 0p�3/T and Σj,k D0:5jj�k j†

p n ‖AÅ− Â
Å‖F (âÅ

1 ,âÅ
2 ,âÅ

3 , maxj=4,:::,p âÅ
j )

200 100 0.0/ .0:4317.0:0068/, 0:3512.0:0069/, 0:1312.0:0033/, 0:0633.0:0010//
200 200 0.0/ .0:4379.0:0067/, 0:3467.0:0067/, 0:1287.0:0023/, 0:0650.0:0007//
400 100 0:05.0:0221/ .0:2754.0:0029/, 0:2557.0:0028/, 0:1501.0:0012/, 0:1018.0:0013//
400 200 0:03.0:0172/ .0:2794.0:0028/, 0:2516.0:0028/, 0:1499.0:0012/, 0:1054.0:0010//

†Here linear discriminant analysis is used as the base classifier, d= s=3, B1=500 and B2=
50, and the experiment is repeated 200 times.
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Table 14. Results for the model corresponding to model 1 of the paper†

p n ‖AÅ− Â
Å‖F (âÅ

1 ,âÅ
2 , maxj=3,:::,p âÅ

j )

100 50 0:22.0:0690/ .0:2978.0:0028/, 0:2966.0:0031/, 0:0514.0:0039//
100 100 0:16.0:0545/ .0:2995.0:0028/, 0:2980.0:0028/, 0:0530.0:0041//
100 200 0:20.0:0603/ .0:2966.0:0035/, 0:2949.0:0036/, 0:0520.0:0041//

†Here quadratic discriminant analysis is used as the base classifier, s=2, d=5, B1=
500 and B2=150, and the experiment is repeated 100 times.

Moreover, because of the flexibility of the original proposal in regard to the base classifier, it is to be
expected that these concepts translate well to all scenarios with sparse class boundaries, not necessarily
linear. In particular, in Table 14, this is illustrated on model 1 of the paper.

Tilmann Gneiting and Sebastian Lerch (Heidelberg Institute for Theoretical Studies and Karlsruhe
Institute of Technology)
We congratulate Cannings and Samworth on an impressive paper that spans the gamut from theory to
computation and empirical studies. The use of projections indeed has a rich history in statistics, with
classical work by Friedman and Stuetzle (1981), page 823, and Huber (1985), pages 435 and 499, on
projection pursuit alluding to classification in various places.

The paper restricts attention to binary classification under the symmetric 0–1 loss function, under which
the Bayes rule assigns class label 1 if the conditional predictive probability thereof exceeds the threshold
1
2 . The associated voting threshold α in the definition of the random-projection ensemble classifier (2) in
terms of the ensemble vote (1) is chosen by minimizing empirical 0–1 loss in cross-validation mode.

Applications frequently call for class probabilities so that decision makers can find the Bayes classifier
under the loss function at hand, which might be asymmetric (Hand (1997), chapter 8). The class probability
setting can be handled similarly, by modelling a non-decreasing calibration function B : [0, 1]→ [0, 1]
that assigns a calibrated predictive probability to the ensemble vote. The aforementioned threshold α
can then be thought of as satisfying B.α/= 1

2 . The calibration function B could be modelled by the
cumulative distribution function of the beta family, as proposed by Ranjan and Gneiting (2010), with the
beta parameters being estimated by minimizing the empirical loss under a proper scoring rule for probability
forecasts of a binary event (Gneiting and Raftery (2007), section 9.1). A more general calibration approach
has recently been proposed by Bassetti et al. (2017). In any practical setting, competing methods for class
probability estimation can be compared with proper scoring rules (Gneiting and Raftery (2007), section
3.2) and Murphy diagrams (Ehm et al., 2016). Theoretically, a natural question is whether the asymptotic
results in the paper admit generalizations in these directions.

Whether we seek class probabilities or a classifier, the ensemble vote might average over class probability
estimates, as opposed to averaging over classifiers. In conjunction with the k-nearest-neighbour approach
for the projected data, such an approach can be implemented straightforwardly. Intuitively, the k-nearest-
neighbour class probability estimate carries additional information, compared with the majority vote
classifier, so we might ask whether the asymptotic results in Section 4.3 could be sharpened, and empirical
results for the RP-kNNd techniques in Section 6 could be improved, by using class probability estimates
as input for the ensemble vote.

Lucas Janson (Stanford University)
I congratulate Cannings and Samworth on an excellent paper. The methodological idea is general, intuitive
and appealing, and the theoretical analysis and extensive simulations (including substantial supplemental
materials) supports its use and aids in its understanding. I draw two connections which may be enlightening
and suggestive of future directions.

(a) Axis-aligned projections: the authors mention in Section 7 the potential for using axis-aligned pro-
jections instead of Haar-distributed projections. If B2= 1, this results in a meta-algorithm that is
very similar to the random-subspace method (Ho, 1998). Axis-aligned projections also correspond
to randomly dropping features, raising the connection to dropout training (Hinton et al., 2012).
Dropout can also be viewed as a form of regularization (Wager et al., 2013), as can ensembling
random projections (Durrant and Kabán, 2015), although both these examples assume uniformly
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distributed projections (B2=1). It would be interesting, and potentially computationally beneficial,
to connect the ensembling in the present paper (with B2 > 1) to some form of regularization.

(b) Projection pursuit regression: the authors motivate random projections by the Johnson–Linden-
strauss lemma, pointing out that Haar-distributed projections have nice distance preserving prop-
erties. They then advocate doing some selection of the projections to choose those with the highest
predictiveness, or ability to distinguish the classes. The result is a trade-off between predictiveness
and variability among the projections (B2= 1 gives little predictiveness and maximal variability,
whereas B2→∞makes B1 irrelevant, since the most predictive projection will be chosen every time
with no variability), with the advantages of balancing this trade-off shown by the theory and simu-
lations. Whereas the approach proposed starts with highly variable projections and then selects for
predictiveness, a conceptual alternative is first to select projections with high predictiveness—the
goal of projection pursuit regression (see, for example, Friedman and Stuetzle (1981))—and then
to add in variability. For instance, one could choose any algorithm for projection pursuit regression
but apply it to random subsets of the features and then use the resulting projections for classifica-
tions which are then ensembled. The trade-off between predictiveness and variability also makes
clear a close connection with random forests, where tree classifiers are randomized by considering
random subsets of features at each tree splitting, and then the resulting classifications are ensem-
bled. A possible advantage of random-projection ensemble classification over random forests is
that it seems to give the user more flexibility, and indeed one could choose the base classifier to be
tree based. I wonder how such an implementation would compare with random forests in the pa-
per’s examples where random forests produced the lowest error (simulated model 4 and arrhythmia
data).

Dehan Kong (University of Toronto)
I congratulate Cannings and Samworth for their thought-provoking and fascinating work on random-
projection ensemble classification. They introduce a very general method for high dimensional classification
based on a careful combination of the results of applying an arbitrary base classifier to random projections
of the feature vectors into a lower dimensional space. The authors show that the test excess risk of the
random-projection ensemble classifier can be controlled by terms that do not depend on the original data
dimension. This is a very interesting and surprising finding. This work is a substantial contribution to high
dimensional classification problems.

I have several comments about the paper. First, it looks like the performance of the method proposed
sometimes may improve when p increases, e.g. the misclassification rates of RP-QDA5 and RP-knn5
for model 1. It is unclear why the performance improves because intuitively we would expect higher
misclassification rates when p increases. Second, the third term of the error bound in theorem 3 depends
on the constant β, which is defined in assumption 2. I guess that this β may depend on the dimension p,
although it is unclear what the relationship between β and p is. If it happens that β→0 when p→∞, B2
may have to depend on p to make the third term negligible. Third, it might be useful to extend the idea
in this paper to high dimensional regression problems, especially the cases when the sparsity assumption
does not hold.

Baibing Li (Loughborough University) and Keming Yu (Brunel University, Uxbridge)
The paper introduces a general method for high dimensional problems in discriminant analysis by applying
random projections of the feature vectors into a lower dimensional space. Discriminant analysis is usually
considered to be supervised learning where the desired output value (group label) of each object in the
training sample is known a priori (Bishop, 2006). Here we briefly discuss how this random-projection
ensemble classification method could be extended to cluster analysis or unsupervised learning where the
desired output value of each object is unknown.

Consider the pair .X, Y/ taking values in Rp × {1, −1}. Let the corresponding training sample be
{.x1, y1/, : : : , .xn, yn/}, where the group labels yi .i= 1, : : : , n/ in cluster analysis are assumed unknown.
Li (2006) developed a clustering-function-based method where a linear clustering function α+βTX with
coefficients α and β is estimated for clustering purposes through sign eigenanalysis such that each object
X=x is classified into one group (labelled 1) or the other (labelled−1), depending on the sign of α+βTx,
i.e. the classifier is

C.x/ :=
{1 if α+βTx�0,
−1 otherwise:
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We point out that this classifier can be used to deal with p > n clustering problems if random projections
can be applied properly. Specifically, for a random d×p projection matrix A, we define the projected data
zA

i :=Axi and yA
i := yi for i= 1, : : : , n. Then we look for a linear clustering function αA+ .βA/TZA and

yA
i := yi simultaneously. This linear clustering function can be further extended to a quadratic classifier,

i.e. αA+ .βA/TZA+ .ZA/TDAZA, where DA is a d×d coefficient matrix to be estimated.
Then we need a criterion function R.C/ to choose good random projections. There are many criteria

for evaluating classification results. Two widely used criteria are

(a) to maximize the ratio of the between-group to the within-group variance and
(b) to minimize the trace of the within-group covariance matrix.

The former is Fisher’s criterion in discriminant analysis and the latter is more commonly used in cluster
analysis (Everitt et al., 2011).

For the chosen criterion RA
n with a projection A, and B1, B2∈N, let {Ab1,b2 :b1=1, : : : , B1; b2=1, : : : , B2}

denote independent projections. Following equation (7), for b1=1, : : : , B1, let

bÅ
2 .b1/ := sarg min

b2∈{1,:::,B2}
R

Ab1, b2
n ,

and set Ab1 :=Ab1,bÆ
2 .b1/. We consider the random-projection classifier using the independent projections

A1, : : : , AB1 . The ultimate assignment of each object, yi for i=1, : : : , n, is made by aggregation and a vote.
In summary, we outline a new extension of the Fisher linear discriminant function and quadratic

discriminant function to cluster analysis with p>n. We shall pursue this research in detail elsewhere.

Yurong Ling, Xiaochen Yang and Jing-Hao Xue (University College London)
We congratulate Cannings and Samworth on their elegant contribution to both theory and methodology
of ensemble learning. In Section 6.1.3, the random-projection (RP) ensemble classifier with non-linear
base classifiers demonstrated encouraging performance when the class boundaries are non-linear. What
happens if the non-linearity is taken to extremes?

We experiment on the Swiss roll data, a type of benchmark data in manifold learning. We first generate
three-dimensional data of two classes lying on a non-linear manifold as illustrated in Fig. 6, and then
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Fig. 6. Three-dimensional Swiss roll data
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Table 15. Misclassification rates for the synthetic non-linear data†

Classifier Rates (%) for p=100 Rates (%) for p=1000

n=50 n=200 n=1000 n=50 n=200 n=1000

RP-knn2 19.21 12.82 9.74 32.65 25.54 21.71
RP-knn2-a 16.77 6.64 3.50 25.14 12.09 8.10
RP-knn5 13.55 6.70 3.80 31.42 22.52 20.36
RP-knn5-a 16.35 7.61 2.44 15.97 5.74 3.41
knn 7.48 3.01 1.45 20.00 11.95 7.94
RF 28.13 8.31 2.53 43.24 20.07 7.29
Radial SVM 49.38 47.04 26.29 50.00 49.97 50.16

†The best misclassification rates are in italics.

augment the data into a much higher dimensional space by adding independent dimensions of N.5, 1/
data such that there are many features irrelevant to classification.

In our experiments, we set B1= 500, B2= 50, π1= 0:5, ntest= 1000 and Nreps= 100, and try Gaussian-
distributed projections and axis-aligned projections. For the k-nearest-neighbours classifier knn and its RP
ensemble versions, we choose k from 1 to 7 via leave-one-out cross-validation; the parameters of random-
forests RF and the radial support vector machine SVM are the same as in the paper. The results are listed
in Table 15: knn achieves the lowest misclassification rate when p= 100, and RP-knn5-a (axis aligned)
performs the best when p=1000.

These patterns may be due to two reasons: most features are irrelevant to classification and the class
boundary is non-linear. When p=1000, whereas the entire class information is stored in only two features
in our experiments, Gaussian projections give weights to all features and hence limit the effectiveness of
the RP ensemble; knn does similarly. Therefore, by using axis-aligned projections, which place zero weight
on unselected lower dimensions, results have improved considerably. When p=100, the relative effect of
irrelevant features is lessened, but the limitation of the non-linear class boundary becomes relatively more
obtrusive to linear projections.

Meimei Liu and Guang Cheng (Purdue University, West Lafayette)
We congratulate Cannings and Samworth for an inspiring piece of work. Accuracy and stability are two
main principles in designing classification algorithms; see Yu (2013). This short note empirically examines
how these two measures are affected by the choice of .B1, B2, d/, which in turn determines the computational
cost of the proposed method in the paper.

According to Sun et al. (2016), one (statistically meaningful) way to define instability for a classification
procedure Φ is

CIS.Φ/=ED1,D2 [d.φ̂n1, φ̂n2/] .49/

where d.φ̂n1, φ̂n2/=PX{φ̂n1.X/ �= φ̂n2.X/} and φ̂ni=Φ.Di/ is the classifier trained on the basis of the sample
Di for i=1, 2, which is drawn from the same population.

In Fig. 7, we fix d=5 and study how the misclassification rate and CIS are affected by different combina-
tions of .B1, B2/. Fig. 7(a) shows that once B1 is sufficiently large the misclassification rate will not change
too much as B2 grows. However, the pattern of misclassification rates is roughly the same as B1 grows under
different choices of B2. This might indicate that B1 plays a more prominent role than B2 in determining
the misclassification rate. By examining Fig. 7(b) on CIS in a similar way, we find that the roles of B1 and
B2 are more comparable, though. We further investigate the least computational cost needed to achieve
the best accuracy and stability. In Fig. 7(a), three dots, denoted as .BÅ

1 , BÅ
2 /, are found to have the smallest

value of B1×B2, i.e. 275, among all combinations of .B1, B2/, leading to the smallest misclassification rate.
In contrast in Fig. 7(b) for CIS, we need a higher computational budget, i.e. BÅÅ

1 ×BÅÅ
2 =300, to obtain

the best stability.
However, the projection dimension d is another factor in determining the computational cost. Hence,

in Fig. 8, we fix the total number of random projections, i.e. B1×B2, while varying d. Fig. 8(a) shows that
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(a)

(b)

Fig. 7. Heat map of (a) the misclassification rate (d D5) and (b) CIS (d D5) under various values of .B1, B2/:
the training data set of size 200 and the testing data set of size 1000 were generated following Section 6.1.2
of the paper; the knn classifier is considered here; CIS is calculated by averaging the disagreement of two
classifiers on the testing data with 100 replications
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an increase in B1 leads to a smaller misclassification rate, but this improvement is no longer obvious when
B1 is sufficiently large. However, the pattern for CIS in Fig. 8(b) is not that clear. Another phenomenon in
Fig. 8 is that the misclassification rate and CIS in all curves cannot be further improved as d grows beyond
some critical point dÅ and dÅÅ respectively. Since B1×B2 are fixed in all curves, a sharp lower bound of d
might be viewed as the computational limit of the proposed algorithm from a statistical perspective.

All these empirical observations require new theoretical understanding of high dimensional classification
problems from the perspective of computational cost.

Xiaoou Lu and Jing-Hao Xue (University College London)
We congratulate Cannings and Samworth on their impressive paper. We suggest that their random-
projection (RP) ensemble may be enhanced through regularizing the diversity of base classifiers.

There are emprical results indicating that diversity can be benefical to ensemble learning (Dietterich,
2000; Kuncheva and Whitaker, 2003). Although diversity is not necessarily an issue with RP, lack of
diversity may happen with the proposed RP ensemble, as it retains only the projection that yields the
smallest estimate of test error in each of B1 blocks, which may result in B1 similar base classifiers when the
influential components are few, for instance.

For the RP ensemble to consider the trade-off between the diversity and the accuracy of the base
classifiers selected, a simple way perhaps is to penalize the similarity of projection matrices Ab1,bÆ

2
, for

b1=1, : : : , B1, while learning the optimal matrices. A greedy forward strategy is as follows. Suppose that
D.Ai,b2 , Aj,b2 / is a measure of dissimilarity between matrices Ai,b2 and Aj,b2 . When b1=1, let

bÅ
2 .b1/= sargmin

b2∈{1,:::,B2}
R

Ab1, b2
n ;

when b1 > 1, regularize the dissimilarity as

bÅ
2 .b1/= sargmin

b2∈{1,:::,B2}

{
R

Ab1, b2
n −λ 1

b1−1

∑
j<b1

D.Ab1,b2 , Aj,bÆ
2 .j//

}
,

with positive trade-off parameter λ to be tuned. The penalty

1
b1−1

∑
j<b1

D.Ab1,b2 , Aj,bÆ
2 .j//

is simply the average dissimilarity between a candidate projection matrix Ab1,b2 and the previously selected
projection matrices Aj,bÆ

2 .j/. Alternatively we can regularize the diversity of base classifiers’ parameters or
outputs, as practised in ensemble learning (Yu et al., 2011; Li et al., 2012).

Jorge Mateu (University Jaume I, Castellón)
Cannings and Samworth are to be congratulated on a valuable contribution and thought-provoking paper
on high dimensional classification focused on applying base classifiers to random projections, This is a
timely and extremely interesting topic transversely involved in various areas of science with, as the authors
state, a plethora of applications, including spam filtering, fraud detection, medical diagnoses, market
research and natural language processing. The random-projection ensemble classifier proposed seems to
be competitive, outperforming other widely used in the literature high dimensional classifiers, such as
linear discriminant analysis, support vector machines, kernel methods or nearest neighbour classifiers.
Our discussion here is more focused on linking the random-projection ensemble classifier with problems
related to spatial and functional data.

Consider the problem of detecting features of general shape in d-dimensional point processes in the pres-
ence of substantial clutter. In this context, we are interested in removing the clutter to clean and highlight
the corresponding features leading to a classification problem. Here the trick is handling the spatial struc-
ture as the observations are spatially correlated, and thus the more classical classifiers do not perform quite
correctly as they do not properly handle this structure. Alternatively, we can find classification methods
based on a stochastic version of the expectation–maximization algorithm that working on local versions
of the product density (local indicators of spatial association functions) can provide classification rules
that outperform rules based on the kth-nearest-neighbour technique (see, for example, Mateu et al. (2007,
2010)). Additionally, local indicators of spatial association functions are density functions associated with
individual locations in the d-dimensional space, providing the chance to perform functional data analysis
with spatial correlation (see, for example, Bohorquez et al. (2016, 2017)). Thus we face a classification
problem for functional data.
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We note that a model-based clustering technique has its roots in the linear discriminant analysis point
of view presented in Section 4.1 of the paper, However, the implicit assumption of Gaussianity prevents
its general use in the context of spatial processes. We thus advocate the implementation of a random-
projection ensemble classifier adapted to the case of spatial correlation. On the basis of our experience an
adapted version of the k-nearest-neighbour classifier in Section 4.3 could do a good job, in particular when
the dimension of the process is larger than 2. For planar events, we might additionally think of sample
splitting by using a kind of subsampling strategy.

Fionn Murtagh (University of Huddersfield) and Pedro Contreras (Thinking Safe, Egham)
We are grateful for this very important work in the area of supervised classification.

For unsupervised classification, there are certainly major benefits in aggregating over many random
projections. There is a clear distinction with regard to the central Johnson–Lindenstrauss lemma, that
expresses the precision of low dimensional mapping. Just as in unsupervised classification and related
pattern recognition, there is no curse of dimensionality whatsoever given that very high dimensional
spaces are naturally and inherently ultrametric, i.e. endowed with hierarchical topology (see Murtagh
(2017)). With massive high dimensional spaces being inherently hierarchical, a practical focus of interest
becomes (e.g. Murtagh and Contreras (2015, 2017)) the practical scaling of data that furnishes hierarchical
clustering (Critchley and Heiser, 1988). Our approach to random-projection-based, linear computational
time, hierarchical clustering, must differ in methodology in regard to distribution of the random axes
(here uniform, that allow for the compactification of massive data sets), normalization and aggregation to
the mean of projections (in Murtagh and Contreras (2015), compared with the dimensionality reduction
implementation of Kaski (1998)).

From all of this, there are the practical benefits, for unsupervised classification and related analytical
methods, from our outputs that are processed through random projection, just to express in more easily
and directly interpretable number systems. See Murtagh (2016).

This led us to take one of the data sets used here to carry out unsupervised clustering. We used the
ionosphere data set (Section 6.2.2), of dimensions 351×34, so arriving at random projection (99 random
axes, and also a close look at just one random axis), and then converted from decimal (10-ary or 10-adic)
to binary (2-adic), with the top level partition read off from the hierarchical tree. For the two predefined
classes in this data set, ‘good’ and ‘bad’, we determined recall and precision performance measures and
then misclassification rates. For the 99 random-projections-based approach, for the first class, there were
recall and precision of respectively 72.9% and 77.4%; for the second class, these measures were respectively
61.9% and 56.1%. The misclassification rate overall was poor: 31.1%. For one experiment with just a single
use of a random-projection axis, with the overall processing context being identical, we found recall and
precision measures for the first class of 91.1% and 75.4% and for the second class 46.8% and 74.7%. For
that case, the misclassification rate was 24.8%.

Radka Sabolová (The Open University, Milton Keynes) and Paul Marriott (University of Waterloo)
Thank you for a very stimulating paper. Our comments are twofold, involving joint work with Frank
Critchley.

First, as indicated in his oral discussion contribution, there might be potential synergies between random-
projection (RP) and sufficient dimension reduction (SDR) methodologies. Recall that the (in principle,
checkable) condition Y ⊥⊥X|AX defines what it means for span(AT) to be an SDR subspace for Y |X
regression. And that, under mild conditions (implicitly assumed), the intersection of all such subspaces is
itself an SDR subspace, called the central subspace for this regression and denoted SY |X. Possible synergies
include the following.

(a) SDR→RP? The idea here is to gain precision by ignoring any redundant dimensions, perhaps as
follows.
(i) With Z :=AX, use SDR to estimate SY |Z as span(AT

Z).
(ii) Put W :=AZZ, so that dim(W ) � dim(Z).
(iii) Proceed as in the paper, classifying via W , not Z.

(b) SDR ← RP? The idea here is to learn about SY |X via an ensemble of SY |Z subspaces. There is a
variety of ways in which this might be done, involving both random and, for given training data,
fixed projections. In the latter case, cognate ideas appear in Wang et al. (2016).

(c) SDR→ RP, again? The idea here is to use an estimate of the central subspace SY |X to give inter-
pretable classifiers, perhaps as follows.
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(i) Let SDR← RP (or any other procedure) estimate SY |X as span(AT
◦ ).

(ii) Proceed as in the paper, classifying via the explicit variables in Z◦ :=A◦X.
(iii) Additionally, for the training data, plotting Y against Z◦ may itself directly suggest a suitable

classifier.

Finally, we note that SDR may detect unexpected subpopulation regression structure (Cook and Critchley,
2000).

Second, random-projection ideas may have an important part to play in the challenging problem of
inference in large, sparse, discrete data settings. In particular, Marriott et al. (2015, 2016) studied how
sampling distributions can be dominated by continuous or discrete aspects. It may transpire that diagnostics
for the adequacy of a continuous approximation should be best calculated after a random projection of
the underlying sparse simplex.

Chengchun Shi, Rui Song and Wenbin Lu (North Carolina State University, Raleigh)
We congratulate Cannings and Samworth for their thoughtful paper on high dimensional classification.
Supervised classification is quite a challenging task when the number of features p is comparable with or
much larger than the sample size n. In the paper, the authors propose to apply an arbitrary base classifier
based on random projections of the feature vectors and to use a data-driven approach to aggregate these
results. Specifically, they divide the random projections into non-overlapping blocks, select the projection
that gives the smallest estimated test error and aggregate the classifiers on the basis of these selected random
projections. By doing so, they show that the test error of their classifier can be controlled by terms that are
independent of p (theorem 5).

We note that theorem 5 depends on assumption 2, which requires the distribution function of the
estimated test error of a random-projection-based classifier to be close to that of the minimum estimated
test error over all random projections. It implicitly assumes that the constants β0,β and ρ that are involved
in that condition are independent of p: When these constants depend on p, however, the upper bound
for the test error of their classifier will be dependent on p as well. It would be helpful if the authors
could elaborate more on this condition. For example, which values will β0,β and ρ take if we use linear
discriminant analysis, quadratic discriminant analysis or the k-nearest-neighbour classifier as the base
classifiers?

The authors provided an upper bound on the test error of their proposed classifier. It would be interesting
to study the asymptotic distribution of the test error of their random projection ensemble classifier. In
practice, the asymptotic distribution of the test error of the classifiers is often very useful, where a researcher
may need it for testing hypotheses or constructing confidence intervals. Statistical inference of the test error
of the classifier proposed remains unclear but would be quite useful in expanding the scope of applications.
Does the asymptotic distribution of the test error exist or not? If it exists, what are the conditions on n,
p, B1 and B2? We would appreciate comments from the authors on the possibilities and difficulties in
derivations of such inference.

Seung Jun Shin (Korea University, Seoul) and Chaowen Zheng and Yichao Wu (North Carolina State
University, Raleigh)
Cannings and Samworth are to be congratuated for an insightful and thought-provoking paper. We would
like to add a comment that the idea proposed can be naturally extended to more general problems beyond
binary classification.

Although the authors focused on the 0–1 loss, a general loss function such as squared loss for conditional
mean regression and check loss for conditional quantile regression can be used. Suppose that we are given
a pair of (X, Y ) taking values in Rp×R with joint distribution P . The goal is to find a function f :Rp→R
that minimizes

R.f/ :=
∫

Rp×R
L{f.x/, Y}dP.x, y/, .50/

where L denotes an appropriate loss function.
Let fn denote the minimizer of Rn.f/, an empirical version of expression (50). Given a random projection

A, we can compute a base regression estimator f A
n corresponding to fn by using the projected data.

Following the random-projection ensemble (RPE) idea, we set

νn.x/= 1
B1

B1∑
b1=1

f Ab1
n .x/
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Fig. 9. Test risk as a function of B1 (with a fixed B2 D 20) for (a) conditional mean regression and (b)
conditional quantile regression ( , LS; , LASSO LS; , RP LS), and averaged test risk
over 100 independent repetitions with B1 D 2000 and B2 D 20 for (c) conditional mean regression and (d)
conditional quantile regression

for B1 different random projections, A1, : : : , AB1 . Here Ab1 is chosen to be the best performer out of B2
independent projections for each b1=1, 2, : : : , B1. Now, the RPE regression estimator is

f RP
n .x/= νn.x/−αm

αs

,

where the constants αm ∈R and αs ∈R+ play a similar role to that of α, the threshold value in the RPE
classifier. We choose .α̂m, α̂s/=argminαm ,αs

Rn.f RP
n /.

We consider the model yi=βTxi+ εi, i=1, : : : , n, where β= .1, 1, 0, : : : , 0/T ∈Rp and components of xi

and εi are independently generated from N.0, 1/. We set p=100 and use training and test sets of sizes 200
and 800. We consider both squared loss for mean regression, LS, and check loss for quantile regression,
QR, to estimate the conditional 75th percentile. Figs 9(a) and 9(b) show empirical test risks of LS and QR
respectively as a function of B1 (with B2=20). Figs 9(c) and 9(d) show averaged test risks for LS and QR
respectively over 100 repetitions with B1=2000 and B2=20. Both are promising for sufficiently large B1.
The true β is sparse and it favours the lasso.
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Lastly, we would like to point out a connection to Halko et al. (2011) since both methods begin with
something random but end up identifying something meaningful.

Julian Stander and Luciana Dalla Valle (University of Plymouth)
We congratulate Cannings and Samworth on their paper and R package that makes the random-projection
ensemble (RPE) methodology readily applicable. Here we outline an experiment and ask two questions.

We worked with data discussed by Baldino (2016) comprising 120 trip advisor reviews and each re-
viewer’s star classification. We combined one, two and three stars into class 1, and four and five stars into
class 2. Using R’s tm package (Feinerer and Hornik, 2015), we computed the transpose of the term doc-
ument matrix. This word count matrix had n=120 rows corresponding to reviews and p=2644 columns
corresponding to words, with 97% 0s. We normalized the rows by dividing by review lengths. We randomly
selected 60 reviews as training data, with the remaining 60 being test data. We applied the RPE method
to the normalized word count feature matrix. For comparison, using dictionaries of 2006 positive and
4783 negative words (Liu et al., 2005), we calculated a sentiment score for each review as the difference
between the number of positive and negative word matches. We normalized these scores by dividing by
review length to obtain sentiment intensities. We then applied binary logistic regression with sentiment
intensity as explanatory variable. Over 50 repetitions, with d= 2 we obtained quite a low average mis-
classification rate of 25.5% (standard deviation 1.2%) for the normalized word count RPE methodology
using B1=500, B2=50, linear discriminant analysis, Gaussian projection and the leave-one-out test error.
The average α̂ was 1.69 (0.0127). When quadratic discriminant analysis or the axis projection method
was used, the RPE average misclassification rate was often considerably worse (non-overlapping confi-
dence intervals), although the RPE method seemed quite robust to other choices including the value of
d=3, : : : , 9. For our sentiment intensity logistic regression the average misclassification rate was lower at
12.2% (0.76%). We therefore conclude that the RPE method can be successfully used to classify hotels
by using only review word counts. Naturally, better classification results can be obtained by performing a
sentiment analysis which makes use of information from positive and negative word dictionaries.

Can the proportion of the classifications C1.x/, : : : , CB1 .x/ in each category be used to quantify classi-
fication uncertainty?

The copula construction (Sklar, 1957) provides flexible multivariate models, with vine copulas (Aas
et al., 2009) being used when p is large. Could the use of a classifier defined by using copula densities
estimated on low dimensional projections of the original data, perhaps with robust marginal modelling,
be a way of exploiting copula flexibility, while avoiding high dimension estimation problems?

Milan Stehlı́k (Johannes Kepler University in Linz and University of Valparaı́so) and Luboš Střelec
(Mendel University in Brno)
We congratulate Cannings and Samworth, introducing readers to a challenging world of high dimensional
classification.

Here we point out underlying algebraic and topological issues, which can play a crucial role for cases
of high dimensional classification. The main drawback of the methodology developed can be the need
for a group structure underlying the Haar measure. However, in a high dimensional data classification
problem, we should not be surprised if the algebraic underlying structure is less strong than a group; it can
be indeed a semigroup or even a less structured monoid. Unlike a group, its elements need not have inverses.
Thus there should be some construction of the test at hand, which can say ‘yes, Haar measure fits our data
cloud well’, before it is automatically applied. Otherwise, the drawback of random projection is that highly
unstable different random projections may lead to radically different clustering results. There is a well-
known approach to invariant statistical models based on groups and this will need more attention for cases
p�n. Consider James (1954), Obenchein (1971) and Francis et al. (2016) for orthogonal, linear and finite
reflection groups as a starter. Topology (as a limiting geometry) can bring much insight into the proper
classifier; here topological aggregation can shed light (see Stehlı́k (2016)). Considering the appropriate
topological approach also may enable researchers to control the discontinuities in the smoothing lemma
and thus it can achieve better bounds.

Several functionals can do a good classification job if we have a proper training sample. For example
deviation from normality in groups of training samples can give us a good chance to build up a simple
classifier (e.g. functional on p-value of a properly chosen robust test for normality; Stehlı́k et al. (2014)).
For example for the mice data set one can distinguish between 0 and 1 with robust normality tests LT,
RJB, MCLR and TTRT2 by the difference of p-values. In particular MCLR and TTRT2 are very robust;
see Stehlík et al. (2014).
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Paul Switzer (Stanford University)
I wish simply to point out the following early references to the use of random projections for classification:
Switzer (1970) and Wright and Switzer (1971).

Måns Thulin (Uppsala University)
I congratulate Cannings and Samworth on an impressive work which is sure to have an influence on high
dimensional statistics for years to come. My comments concern the choice of d and invariance properties.

I would like to stress that there are examples where the choice of d can greatly affect the performance
of the random-projection (RP) classifier. For instance, in the mice example with n= 200, the errors of
the LDA-RP and QDA-RP classifiers when d = 50 are only 5.5 and 4.3 respectively, which are both
substantially lower than the error rates for d= 5 reported in Table 4. If the cross-validation procedure
proposed in Section 5.4 is too costly, in addition to d=5, another possible default choice is d= .n−2/=2,
which has been shown to maximize the power of RP in two-sample tests (Lopes et al., 2012).

The random-subspaces method used by the axis-aligned RP classifier has previously been successfully
used for classification using decision trees (Ho, 1998; Breiman, 2001), linear classifiers (Skurichina and
Duin, 2002) support vector machines (Tao et al., 2006) and for two-sample testing (Thulin, 2014). A
potential advantage of using axis-aligned projections instead of Gaussian or Haar projections is that as
long as the base classifier is invariant under linear rescaling of the features the axis-aligned RP classifier
will also be invariant under linear rescaling.

However, the fact that the RP classifier is not invariant under linear rescaling when Gaussian or Haar
projections are used can perhaps be used to our advantage. Consider the mice example again. For a
particular test–training data split, the error rate of the RP-LDA5 classifier is 19.4 when using n= 200.
Multiplying a randomly chosen half of the features by 1

10 and the other half by 10, while the projections
used and the test–training split are kept constant, the misclassification rate of the RP-LDA5 classifier
can change to anywhere between 10.8 and 38.9, based on 1000 random selections. As a comparison, if
the random projections are changed for the non-scaled data with the same test–training split, the error
rate just varies between 17.2 and 22.8, and, if standardized data are used, the error is 17.2. Clearly, some
rescalings of the data will yield much more favourable results. A topic for future research may therefore
be combining RPs with random rescaling.

Jabed H. Tomal (University of Toronto Scarborough, Toronto) and William J. Welch and Ruben H.
Zamar (University of British Columbia, Vancouver)
We congratulate Cannings and Samworth for drawing attention to classification in high dimensional
settings and their novel approach based on random subsets of features.

A similar method, ensemble of phalanxes, EPX, was developed by Tomal et al. (2015), where the features
are hierarchically clustered into subsets. Base models are trained by using the respective subsets and
ensembled. The selection of the number and size of the models is automatic and data driven.

For example, consider the cardiac arrhythmia diagnoses data from Section 6.2.6 with 194 variables,
452 observations and two classes of sizes 245 and 207. EPX using random forests (RFs) as base learner
and the out-of-bag misclassification error (ME) rate as optimization criterion gives a single model with
191 variables. In this instance EPX data adaptively do not choose an ensemble of subsets but perform
some feature selection. Following the assessment methodology in the paper, 200 observations are chosen
at random for training and 252 are kept for testing. Repeating 100 times, EPX achieves an average test ME
of 22.85 (standard error se=0:24). In contrast, the top performing random projection has an ME of 26.31
(se=0:28). EPX suggests that the 191 variables belong together in one subset or model, and ensembling
is not supported.

The examples in the paper exhibit a balanced number of observations in the classes. Many applications,
however, have one much sparser class of interest (fraud detection, market research, drug discovery, Internet
search, etc.). With unbalanced classes the ME can be a misleading metric. Instead, such applications are
often treated as ranking problems: cases are ranked by their probability of belonging to the sparse class.
Measures of the quality of ranking include the average hit rate (AHR) (Wang, 2005) and initial enhancement
(IE) (Kearsley et al., 1996). Both criteria are larger the better. Looking at the cardiac arrhythmia data we
note that they have one normal class of size 245 and 13 abnormal classes with smaller frequencies (Table
16). For illustration, we consider the unbalanced data formed by keeping the 245 normal instances and 44
instances with coronary heart disease. EPX using RFs as the base classifier and the AHR as the optimization
criterion uncovers 11 subsets of the original variables. 100 repeats of tenfold cross-validation to evaluate
the ranking gives the results in Table 17. EPX is compared with RFs, a method shown by the authors to
be a top performer for this application. EPX wins in terms of the AHR and IE.
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Table 16. Cardiac arrhythmia classes and their frequencies

Class 1 2 3 4 5 6 7 8 9 10 14 15 16
Frequency 245 44 15 15 13 25 3 2 9 50 4 5 22

Table 17. Means of APR and IE from 100 random repeats of the fitting
process

Metric Result for EPX Result for RFs

Mean Standard error Mean Standard error

AHR 0.907 0.0006 0.777 0.0013
IE (shortlist=50) 5.166 0.0073 4.778 0.0091
IE (shortlist=100) 2.881 0.0022 2.744 0.0053

Howell Tong (University of Electronic Science and Technology of China, Chengdu)
I welcome this paper as it interacts with machine learning. If I were someone looking at the paper from
outside the statistical community, I would say that it presents quite an interesting extension to the body
of work on random projections, but the algorithm and experimental sections have room for improve-
ment.

For the algorithm section, a fairly natural comparison would be with a popular subset of neural networks.
Consider a multilayered neural network where the first layer has linear activations. This network can be
viewed as being initialized with a random projection to dimension d (where d is the number of neurons in the
first layer) or, equivalently, N random projections to dimension d=N. The subsequent non-linear layers of
the network can be viewed as the base classifier of this paper. Neural networks with word embeddings are an
example of such networks: http://colah.github.io/posts/2014-07-NLP-RNNs-Represent
ations/. References are contained therein.

These types of neural network are commonly used for high dimensional problems. During training, the
standard back-propagation neural network training algorithms can be viewed as simultaneously adjusting
the initial random projections and base classifier. Such an approach appears to be more elegant than the
piecemeal approach adopted in this paper. It would be helpful to understand the trade-offs between these
two methods.

For the experiments the ‘real world data sets’ are small (only 1000 training examples) and, in most part,
fairly low dimensional. Consequently, they are not entirely convincing from a modern machine learning per-
spective. Even 15 years ago, random-projection papers in machine learning were already using larger data
sets than most of those reported in this paper. Therefore, the challenge is a comparison on something of a
more realistic size for modern use such as the large movie review data set (25000 reviews, millions of dimen-
sions; see http://ai.stanford.edu/∼amaas/data/sentiment/), the entire modified National
Institute of Standards and Technology data set (60000 examples and 784 dimensions, all highly correlated;
see http://yann.lecun.com/exdb/mnist/), or similar. Adding neural networks as a competitor
method would also be useful. In the contemporary machine learning literature using random projections,
data sets of the size 2 million data instances and 50 million dimensions have been used. See, for example,
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.300.5246&rep=rep1
&type=pdf.

Xin Tong (University of Southern California, Los Angeles) and Jingyi Jessica Li (University of
California, Los Angeles)
We congratulate Cannings and Samworth for their innovative and thought-provoking paper. In recent
years, many classification methods have been developed for high dimensional settings, where the feature
dimension p is comparable with or larger than the sample size n. In the literature, most of the existing
work has aimed to build a specific procedure (e.g. screening and penalization approaches) to reduce
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model complexity effectively. From a different and novel perspective, Cannings and Samworth’s work has
developed a theory-backed ensemble classification procedure, which first projects features into many lower
dimensional spaces so that ‘base’ classifiers (e.g. linear discriminant analysis and quadratic discriminant
analysis) can be applied to the projected data without any modification, and secondly aggregates these low
dimensional classifiers via a proper voting scheme. The paper lays a good foundation that motivates us to
think about many questions including the following three.

(a) What is the consequence of relaxing assumption 3? This assumption states: ‘There exists a projection
AÅ ∈A such that

PX[{x∈Rp :η.x/� 1
2 }Δ{x∈Rp :ηAÆ

.AÅx/� 1
2 }]=0,

where Δ denotes the symmetric difference between sets’. Essentially, this assumption means that
there is one projection that leads to an oracle decision boundary essentially the same as the ora-
cle decision boundary in the original feature space. Although this is a reasonable and convenient
assumption, it can probably be relaxed, and the discrepancy between the two oracle decision bound-
aries, i.e. the discrepancy between the original Bayes classifier (in Rp) and the best projected Bayes
classifier (in Rd), can perhaps show up in the upper bound of the excess error.

(b) In the paper, the voting threshold α is to mimic αÅ in equation (12):

αÅ=argmin
α′∈[0,1]

[π1 Gn,1.α
′/+π2{1−Gn,2.α

′/}]:

This is a very natural choice when the classification target is to minimize the classification error (i.e.
risk) and when the empirical proportions π̂1 and π̂2 are good estimates of π1 and π2 respectively.
How would the authors choose α when we are interested in a type I–II error weighting different
from that implied by the class priors, or when good estimates of π1 and π2 are lacking?

(c) This comment is related to the first. If we relax assumption 3 to achieve the best performance bounds
in Section 4, we no longer prefer d as small as possible (while validating assumption 3). We expect
that the best choice of d will depend on the discrepancy between the two Bayes classifiers in Rp and
Rd .

Xiangyu Wang (Google, Mountain View) and Chenlei Leng (University of Warwick, Coventry)
We congratulate Cannings and Samworth for a thought-provoking paper on high dimensional ensemble
learning. The authors proposed an ensemble method based on random projection, by collecting in some
sense good projections, and showed how it could be applied to linear discriminant analysis, quadratic
discriminant analysis and other base classifiers. The theory focused on justifying the theoretical properties
of the ensemble learner and quantifying the generalizable error between the infinite simulation version and
the Bayes risk under three assumptions. We comment on assumption 2 and assumption 3.

The Johnson–Lindenstrauss lemma enables the dimensionality of the data to be reduced from p to
a lower number which is independent of p while preserving the pairwise distances of the data. We are
not sure, however, whether assumption 2 implicitly makes the dimension of the projected space depend
on p. For models with s sparse features (s�p), a ‘good’ projection that reduces the dimension from
p to d .d � O{log.n/} � s/ with a close-to-optimal empirical loss needs to concentrate on the sparse s-
dimensional space. The probability of sampling such a projection under Haar measure would vanish to 0
quickly when p→∞ for fixed d. Thus, assumption 2 might fail to hold or we might need a weaker version
of assumption 2 to make β depend on p.

Assumption 3 controls the difference between the optimal loss of the ensemble classifier and the Bayes
risk. This condition alone does not exclude the possibility that selecting a single optimal classifier could
perform better than the ensemble classifier, at least in theory. Thus, it would be interesting to see theoretical
results showing advantages of using the ensemble method over the single optimal classifier, perhaps in
having smaller sampling variance.

Yannis G. Yatracos (Cyprus University of Technology, Limassol)
I congratulate Cannings and Samworth on a stimulating and well-written paper. I shall focus on di-
mension reduction and the use of pseudovalues which introduce additional randomness in the statistical
experiment.

Dimension reduction may cause an increase in misclassification proportion. Let .X1, : : : , Xp/ be a ran-
dom vector from mixture density γf .p/ + .1− γ/h.p/, with Sf .p/ and Sh.p/ the supports of the densities
f .p/ and h.p/, 0 <γ< 1. When Sf .p/ ∩Sh.p/ =∅, observations from the mixture are naturally separated into
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two groups, from f .p/ and h.p/. When either the vector’s components are independently and identically
distributed or with mild assumptions on the conditional densities of Xi gives Xi−1, : : : , X1, 1� i�p,∫

S
f.p/∩S

h.p/∩{f .p/�h.p/}

h.p/.x/dx+
∫

S
f.p/∩S

h.p/∩{h.p/�f .p/}

f .p/.x/dx�ρ.f .p/, h.p//↓0,

as p→∞;ρ.f .p/, h.p// is the integral of
√

.f .p/ h.p// over Sf .p/ ∩Sh.p/ . Simulations confirm that misclassi-
fication proportions in f .p/ and h.p/ decrease to 0 as p increases (Yatracos, 2013, 2017). In this respect,
large p is a blessing in classification and cluster detection problems.

Random projections are similar in spirit to bootstrap samples. Both introduce additional randomness
in the experiment because, in practice, the numbers of random projections and of the bootstrap samples
are finite. This causes an additional positive term in the mean-square errors of estimates. Let CRP

n,B1
be the

random-projection ensemble classifier, R.CRP
n,B1

/ the estimate of R.CBayes/ and Tn the data, and E denotes
expected value:

R̃n,B1 =E[R.CRP
n,B1

/|Tn], E[R̃n,B1 ]=E[R.CRP
n,B1

/]:

Then the mean-square error of R.CRP
n,B1

/ is

E[R.CRP
n,B1

/−R.CBayes/]2=E[R̃n,B1 −R.CBayes/]2+E[var{R.CRP
n,B1

/|Tn}]: .51/

In equation (51), the cushion error var{R.CRP
n,Bl

/|Tn} is positive when B1 is finite. This term vanishes
with a jackknife-type approach when a finite number of pseudovalues are available and used, for example,
either obtained from all ‘leave-one-out data subsets’ instead of B .<∞/ bootstrap samples (Yatracos,
2002), or by considering orthogonal projections in hyperplanes determined by the data vectors Tn, which
carry all the information. The latter is useful with ‘ultrahigh dimensional settings’ (Section 7). For high
dimensional normal and t-mixtures, data projections on each observation vector reduced the misclassi-
fication proportion and the computational time achieved with ε-net projection vectors (Yatracos (20l3),
page 41).

The authors replied later, in writing, as follows.

We are very grateful to the discussants for their insightful comments on our work, and we are glad to
find a broad consensus that methods based on random projections offer considerable promise for high
dimensional data analysis. The comments are extremely wide ranging, and we apologize in advance for the
fact that, for brevity, we cannot address all of them. It is clear, however, that there is considerable scope
for future research in this area, and we look forward to witnessing and contributing to its development.

Correlation between features
Kent presents an interesting toy example, which focuses on the effect of the correlation between the features.
As we discuss in Fig. 1 of the main text, it is usually only sensible to aggregate over carefully selected
(rather than all) projections. Even in Kent’s high correlation case (ρ=0:99), where only 5% of projections
result in a base classifier with at least half the discriminatory power, we still expect with B2= 50 to find
such a projection in most groups. We carried out a small simulation study on Gaussian class conditional
distributions with π0=π1= 1

2 :
(a) case 1a, p=2, ρ=0,μ1=a1.1, 0/T andμ0=a1.−1, 0/T, where a1 is such that the Bayes risk is 14.44%;
(b) case 1b, p=2, ρ=0:99, μ1=a2.1, −1/T andμ0=a2.−1, 1/T, where a2 is such that the Bayes risk is

14.44%.
In Table 18 we present the misclassification errors for linear discriminant analysis (LDA) applied to the
original data and the random-projection ensemble classifier with d=1, B1=500, B2=50 and n=200, and
both Gaussian and axis-aligned projections. We also present the average test error of the LDA classifier
applied on the chosen projections. LDA is tailored to these set-ups, and indeed it performs very well;
the RP-LDA1 classifier has similar performance in both cases. The extreme correlation .ρ= 0:99/ does
not greatly affect the performance of the RP-LDA1 (Gaussian) classifier; in particular, although the high
correlation does have a small effect on the average error base classifier applied on the chosen projections,
this is overcome in the ensemble step. This illustrates what we believe to be the advantage of aggregation
over the choice of a single projection (discussed by de Carvalho, Page and Barney).
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Table 18. Misclassification rates for the Gaussian toy example

Case LDA Results for Gaussian projection Results for axis-aligned projection

RP-LDAd B−1
1

∑B1
b1=1 R(C

Ab1
n ) RP-LDAd B−1

1
∑B1

b1=1 R(C
Ab1
n )

1a 14:20:2 15:10:4 15:30:5 14:20:3 14:20:3
1b 14:80:3 15:30:3 17:60:3 47:10:4 47:10:4
2a 27:10:8 19:70:6 38:40:3 14:90:6 18:00:4
2b 27:70:9 21:60:9 38:80:3 19:40:8 25:10:3

We now repeat the experiment with p=100 and d=5, and all other parameters kept as before. The class
conditional covariance matrices have 1s on the diagonal and ρ on the off-diagonal:

(a) case 2a, p= 100, ρ= 0,μ1 = a3.1, 0, : : : , 0/T and μ0 = a3.−1, 0, : : : , 0/T, where a3 is such that the
Bayes risk is 14.44%;

(b) case 2b, p= 100, ρ= 0:99,μ1= a4.1, − 1, 0, : : : , 0/T and μ0= a4.−1, 1, 0, : : : , 0/T, where a4 is such
that the Bayes risk is 14.44%.

Here, the sample covariance matrix is ill conditioned, so LDA performs poorly, and the random-
projection ensemble classifier offers considerable improvement. In cases 1a, 2a and 2b, assumption 3 holds
with an axis-aligned projection. The axis-aligned version performs better here since we restrict the set of
projections, so we have a greater chance of finding good ones. However, in case lb there is no axis-aligned
projection that results in a classifier that is significantly better than a random guess, and the resulting
random-projection ensemble classifier is also close to a random guess.

Methodological variations
Many discussants suggested alternatives to our basic methodological proposal. These included the as-
signment of weights to the selected projections, based on their empirical performance (Chen and Shah,
Feng, Zhang, and Josh, Fan and James), choosing projections via projection pursuit (Janson), consid-
eration of the underlying algebraic and topological structure (Stehlı́k and Střelec), decoupling rotation
and dimension reduction (Blaser and Fryzlewicz) or averaging over class probability estimates rather than
classifiers (Gneiting and Lerch). These are attractive and sensible ideas, though, similarly to Chen and
Shah, we found in our experiments that more sophisticated weighting schemes led to only relatively minor
(if any) improvements. One advantage of our proposal is that it can be analysed theoretically, through
the independence of the selected projections, conditional on the training data. Meanwhile, Tomal, Welch
and Zamar highlight their ensemble-of-phalanxes method, where features are clustered hierarchically into
subsets, Casarin, Frattorolo and Rossini, and Stander and Dalla Valle suggest copula-based discriminant
analysis and Tong discusses neural network approaches, which are also attractive but currently seem less
amenable to theoretical understanding.

Some contributors discussed the axis-aligned version of our proposal in more detail (Janson, and Ling,
Yang and Xue). Another popular alternative was to generate the projections from different distributions
with the aim of finding good projections more efficiently (Blaser and Fryzlewicz, Zhang, and Derenski, Fan
and James). Other ideas included choosing new projections to be dissimilar to those already chosen; either
orthogonal (Feng) or by adding some similarity penalty (Lu and Xue). We remark that, in our experience
and in high dimensions, the selected projections tend to be nearly orthogonal anyway. Thulin suggests
including a random rescaling when generating the projections; in contrast, both Critchley and Durrant
discuss deterministic rescaling or standardizing of the variables. Although one could construct examples
where such renormalization would lead to poor performance, these ideas are certainly worth investigating
further.

Our paper focuses on 0–1 error loss, where the two types of misclassification are assumed equally serious.
As pointed out by both Hand, and Tong and Li, in practice often one type of error is more serious than
the other. Suppose now that, for some m> 0,

R.C/=π1

∫
Rp

1{C.x/=0}dP1.x/+mπ0

∫
Rp

1{C.x/=1}dP0.x/,
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so that assigning a class 0 observation to class 1 is m times more serious than the other error. Three mod-
ifications should be made to the methodology. First, the base classifier should target the misclassification
imbalance; for example, for LDA the projected data base classifier would be

CA−LDA
n .x/ :=

⎧⎨
⎩1 if log

(
π̂1

mπ̂0

)
+

(
Ax− μ̂

A
1 + μ̂A

0

2

)T

Ω̂
A
.μ̂A

1 − μ̂A
0 /�0:

0 otherwise:

Second, the projections should be selected on the basis of the corresponding weighted estimate (see equation
(7) in the main text), for example using the training error

RA
n := 1

n1+mn0

[ ∑
{iP :Yi=1}

1{CΛ
n .Xi/=0}+m

∑
{i:Yi=0}

1{CΛ
n .Xi/=1}

]
:

Finally, α should be chosen to mimic the weighted version of equation (5), i.e.

αÅ=argmin
α′∈[0,1]

[π1Gn,1.α
′/+mπ0{1−Gn,0.α

′/}]:

Theoretical extensions
Several discussants (Critchley, Fan and Zhu, Feng, Kong, Shi, Song and Lu, Tong and Li, and Wang
and Leng) comment on our theoretical assumptions, and in particular the quantity β in our assumption
2. Since the training data are considered fixed in the corresponding section of the paper, β can depend
on the training data (and therefore n and p). In the on-line supplement, we show that in practice we can
typically expect assumption 2 to hold with β not too small. We see in particular that increasing p does not
necessarily lead to β↘0 (recall that the Johnson–Lindenstrauss lemma guarantees that, regardless of the
magnitude of p, we can reduce dimension from p to O{log.n/} while nearly preserving pairwise distances).

Assumption 3 is at the population level. A natural relaxation is to assume that the oracle projection AÅ

does not perfectly preserve the class information, but instead to allow for a region where the projected
classifier disagrees with the Bayes classifier. This can be formalized through the existence of a projection
AÅ ∈A and τ �0 such that

PX.{x∈RP :η.x/� 1
2 }Δ{x∈Rp :ηAÆ

.AÅx/� 1
2 }/= τ :

Then, by a straightforward extension to proposition 2, we have that R.CBayes/�R.CAÆ−Bayes/�R.CBayes/+
τ .

Bing and Wegkamp suggest a possible alternative approach to our theoretical analysis, which involves
regarding the random-projection classifier as a plug-in rule with νn.x/+ 1

2 −α acting as an estimate of
η.x/. We have found that νn.x/ is not a good estimate of η.x/ (even with the suggested bias correction),
though it would be interesting to find conditions under which we can hope to estimate η by using our
random-projection methodology (see Gneiting and Lerch).

Numerical comparisons
We welcome the contributions which added to our numerical work, aiding the understanding of the prac-
tical properties of the random-projection ensemble classifier. For instance, Gallaugher and McNicholas
compare with mixture discriminant analysis, whereas Stander and Dalla Valle apply the random-projection
ensemble classifier to a trip advisor data set.

Hennig and Viroli found that our proposal performed poorly compared with their quantile-based clas-
sifier in two of their set-ups. In their set-up 2, class 1 has p independent, log-normal components, whereas
(in the 100q% signal variables case) class 0 has p independent components, qp log-normal components
shifted by 0.2 and .1−q/p log-normal components. A key characteristic of the data in this set-up is that
all variables are skewed and positive. In this example, our assumption 3 does not hold for d= 5, and in
fact the best low dimensional projection has high test error (compared with a Bayes risk of almost 0 when
q= 1). Nevertheless, we can check for skewness and include a marginal logarithmic transformation as
a preprocessing step in this instance. In Table 19, we present error rates when data are generated from
Hennig and Viroli’s set-up 2 with p=100 and n=50, and we take componentwise logarithms of the data
before applying the random-projection methodology. For reference we also present the performance of the
quantile-based methods QCG and QCS from Hennig and Viroli’s discussion. Our transformation works
very well when q=1 (it should be noted that many of the other methods discussed by Hennig and Viroli
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Table 19. Misclassification rates for the random-projection ensemble
classifier for set-up 2 with log-preprocessing (B1 D500I B2 D50; Gaussian
projections)

q Misclassification rates for the following classifiers:

RP-LDA5 RP-QDA5 RP-knn5 QCG QCS

1 18.40:9 12.61:6 16.42:2 25.7 21.3
0.1 46.70:7 46.40:6 46.10:5 44.3 41.5

may also benefit from this preprocessing). In the case q=0:1 and when n is this small, the problem is very
challenging and all methods struggle; in particular, we are unable to retain many of the signal projections
because our overfitting term εn is large.

Bergsma and Jamil use only B1=30 and B2=5 when using the random-projection methodology in con-
junction with Gaussian process regression with fractional Brownian motion for reasons of computational
cost. We have found that larger values of B1 and B2 give considerably better results, but fortunately sim-
ple (and quick-to-compute) base classifiers usually suffice. Hand suggests a comparison with a weighted
k-nearest-neighbour classifier. One option is the bagged nearest neighbour classifier, which is essentially
a weighted nearest neighbour classifier with geometrically decaying weights (Hall and Samworth, 2005;
Biau and Devroye, 2010). An alternative is to use the optimal weighting scheme, which produces an asymp-
totic improvement of 5–10% in excess risk over the unweighted k-nearest-neighbour classifier when d �15
(Samworth, 2012). It would be interesting to see whether similar improvements are obtained when used in
conjunction with the random-projection methodology.

Other statistical problems
It was particularly pleasing to see many contributions that discuss using the random-projection ensemble
framework to tackle other high dimensional statistical problems. Several contributors suggested ways
in which the information in the chosen projections can be aggregated to provide measures of variable
importance (Anderlucci, Montanari and Fortunato, Derenski, Fan and James, and Gataric). Li and Yu,
Critchley, and Murtagh and Contreas considered clustering (unsupervised learning) problems, where the
labels of the training data are unknown. Here we require both a (sample) measure of the performance
of the base method to select the projections analogously to equation (7) in the main text, and a suitable
method for aggregating the chosen projections. Fan and Zhu discuss the use of random projections for
the estimation of the top k left singular space of a data matrix; the result they state together with an
appropriate version of Wedin’s theorem (Wedin, 1972; Yu et al., 2015; Wang, 2016) may allow the control
of the sine angle distance they seek. Other interesting new directions discussed include interaction network
learning (Demirkaya and Lv), regression (Kong, and Shin, Zheng and Wu), feature detection (Mateu) and
estimation of central subspaces in the context of sufficient dimension reduction (Sabolová and Marriott).

Which random-projection ensemble classifier?
We are greatful to Switzer for pointing out two early references to the use of random projections for clas-
sification. As noted by some discussants (Hand, Hennig and Viroli, and Critchley), the flexibility offered
by our random-projection ensemble classification framework naturally poses the question of when a par-
ticular base classifier should be used (of course, analogous questions arise regardless of whether methods
are used in conjunction with random projections). If no natural choice is suggested from understanding
of the data-generating mechanism, one possible approach is to randomize the choice of base classifier for
each projection, say choosing between LDA, quadratic discriminant analysis and k-nearest neighbours,
each with probability 1

3 . Alternatively, we can try all three base methods on each projection and retain
the projection, base method pair that minimizes the leave-one-out error estimate. If one of these three
original classifiers is clearly best, then it should emerge as the ‘winner’ within most groups of B2 projec-
tions. This strategy therefore provides additional robustness, and the theory goes through unchanged for
these versions of the random-projection ensemble classifiers. Post-pruning, as suggested by Fortunato, is
another option, but we do not pursue that here. We implement both methods proposed above (denoted
RP-Randomd and RP-Mind) in a small simulation study, summarized in Table 20, where the model num-
bers refer to the settings described in Section 6.1. For models 2, 3 and 4, the risks of both variants of
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Table 20. Misclassification rates for the randomized and selected base
classifier variants, with p D 100, n D 200, B1 D 500, B2 D 50, d D 5 and
Gaussian projections†

Classifier Misclassification rates for the following classifiers:

Model 1 Model 2 Model 3 Model 4

RP-Random5 26.20:7 6.00:2 3.60:1 23.60:5
RP-Min5 23.60:7 6.10:3 3.70:2 23.90:6
Best RP 22.320:32 5.580:12 4.230:14 24.020:30

†For comparison, in the bottom row we present the risk of the best performing
version of the random-projection ensemble classifier as seen in Section 6.1 of
the main text.

the classifier are comparable with (or better than) that of the best performing choice of base method. For
model 1 there is only a slight deterioration in performance. Taking these ideas further, and addressing
comments from Bing and Wegkamp, Critchley, and Liu and Cheng, one could even add randomization
over d and/or Gaussian or axis-aligned projections.

Ultrahigh dimensional problems
Tong discusses the applicability of our random-projection methodology in contemporary machine learning
problems. He correctly points out that some modern data sets have potentially millions of features and
observations, far larger than the problem sizes we investigate in our numerical studies in Section 6. Of
course, the fact that such large data sets exist does not mean that we should neglect the (still relevant) smaller
problems. Moreover, in ultrahigh dimensional problems it is often reasonable to assume that only a subset
of the features are relevant. Indeed, many studies of such problems focus on reducing the data dimension
by attempting to screen out the noise variables (e.g. Fan and Lv (2008), Fan et al. (2009), Meinshuasen and
Bühlmann (2010) and Shah and Samworth (2013)). If high dimension is still a problem, another common
technique is to use a single random projection (e.g. Achlioptas (2003)) into a lower dimensional space.
Either or both of these techniques can be used as a preprocessing step to give thousands, say, rather than
millions of features, and then the random-projection methodology can be applied. In fact, in the paper
by Dahl et al. (2013) cited by Tong, to make the problem more manageable, the authors apply feature
screening and a sparse random projection to reduce the dimension to 4000, before applying a neural net
classifier.

Responses to direct questions
Gallaugher and McNicholas seek clarification about our real data settings—we used the hill–valley data
set without noise, pooled the training and test sets, and then subsampled at random our own training and
test sets as described in Section 6.2. The missing values in the mice data set were imputed as the sample
average value for that feature for the non-missing entries. Kong asks why the performance improves as
p increases for model 1. One reason is that, although the signal is the same (the Bayes risk is 4.45%
in both cases), the variance of the noise components is reduced in the higher dimensional setting; see
also the explanation of Yatracos. In answer to Zhang, penalized logistic regression does not perform well
in setting 1 because, despite the fact that the model is highly sparse (only two features are relevant for
classification), the class boundaries are non-linear. Stander and Dalla Valle ask whether it is possible to
quantify classification uncertainty by using CA1

n , : : : , C
AB1
n . Regarding the training data as fixed and having

observed νn.x/= t<α, say, one can indeed obtain a simple bound on the probability of observing νn.x/ at
least as small as t when CRPÆ

n .x/=1 (a kind of ‘p-value’), via the fact that νn.x/∼B−1
1 Bin{B1,μn.x/}.
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