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Abstract

We discuss the theoretical properties of weighted nearest neighbour classifiers. Sam-

worth (2012) derived an asymptotic expansion for the excess risk of a weighted nearest

neighbour classifier over any compact set when the feature vectors are d dimensional. It

is shown that when d = 1, under suitable conditions on the tails of the distributions, the

asymptotic expansion of the excess risk remains valid on the whole of R. Without such

conditions we see there may be an additional contribution to the excess risk of the same

order arising from the tails of the marginal distribution. For d ≥ 2 the problem is more

difficult, and we discuss where the results in one dimension may help us with future work.

1 Introduction

The problem of classification can be thought of as the decision process used in assigning an
object, or objects, to one of several groups. Think for example, of a doctor making a medical
diagnosis, an email spam filter determining whether an email is genuine, an expert performing
an authorship analysis, a machine deciding whether certain items pass a quality control test, or
identification of an animal’s species from an image. In this paper we focus on the supervised
setting, that is, we know in advance the characteristics or features of a number of objects and
the class to which each object belongs. This simple problem has led to a rich body of literature
on different methods and the theory behind them. Notable early works include Fix & Hodges
(1951) and Cover & Hart (1967); there are also many books on the subject (Devroye, Gyorfi &
Lugosi, 1996; Hand, 1981).
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1.1 Statistical setting

We work in the following setting: suppose we have independent, identically distributed pairs
(X, Y ), (X1, Y1), . . . , (Xn, Yn) taking values in Rd×{1, 2}, with P(Y = 1) = p = 1−P(Y =

2) and (X|Y = r) ∼ Pr, for r = 1, 2, where Pr is a probability measure on Rd. Define
the regression function η(x) := P(Y = 1|X = x) and the measures P̄ := pP1 + (1 − p)P2

and P ◦ := pP1 − (1 − p)P2. We are presented with the task of assigning a new object X to
either class 1 or 2. A classifier is a Borel measurable function C from Rd to {1, 2} with the
understanding that C assigns a point x ∈ Rd to the class C(x). Given a Borel measurable set
R ⊂ Rd we would like classifiers with a low misclassification rate, or risk over R, that is

RR(C) := P{C(X) 6= Y, X ∈ R}.

Observe that,

P{C(X) 6= Y,X ∈ R} =

∫
R

pP{C(X) = 2}P1(dx)+

∫
R
(1−p)P{C(X) = 1}P2(dx). (1.1)

Definition Define the Bayes classifier

CBayes(x) =

{
1 if η(x) ≥ 1

2
;

2 otherwise.

The following lemma can be found in Devroye et al. (1996, p. 10).

Lemma 1.1. The Bayes classifier minimises P{C(X) 6= Y, X ∈ R}.

Proof. Let CBayes be the Bayes classifier as above, and C be any other classifier. Then

P{C(X) = Y |X = x} = P{C(X) = 1, Y = 1|X = x}+ P{C(X) = 2, Y = 2|X = x}

= P(Y = 1|X = x)1{C(x)=1} + P(Y = 2|X = x)1{C(x)=2}

= η(x)1{C(x)=1} + {1− η(x)}1{C(x)=2}.

It follows that

P{C(X) 6= Y |X = x} − P{CBayes(X) 6= Y |X = x}

= η(x)(1{CBayes(x)=1} − 1{C(x)=1}) + {1− η(x)}(1{CBayes(x)=2} − 1{C(x)=2}).

= {2η(x)− 1}(1{CBayes(x)=1} − 1{C(x)=1}) ≥ 0,

by the definition of CBayes. The result follows by integrating over R with respect to x.
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In practice, the function η will be unknown. Nevertheless Lemma 1.1 gives us a benchmark
to aim for: Can we find classifiers that perform as well as the Bayes classifier? With that in
mind, the excess risk of a classifier C is defined to be RR(C) −RR(CBayes) ≥ 0. Denote by
Ĉn any classifier that depends on a training data set of size n. We will say Ĉn is consistent if
its excess risk converges to zero as n →∞. Furthermore, for consistent classifiers we can then
discuss the rate of convergence of the excess risk.

One might assume some parametric model for the conditional distributions P1 and P2, and
then estimate the parameters using the training data. Methods of this type are widely used in
practice and have been shown to work well in many situations. However, if the model is mis-
specified the resulting classifier can perform poorly (Devroye et al., 1996, p. 49). Alternative
methods do not rely on a parametric model assumption, for example kernel-based classifiers
(Fix & Hodges, 1951) and nearest neighbour methods (Cover & Hart, 1967). These nonpara-
metric techniques can be shown to be consistent for large classes of distributions. Stone (1977)
proved that under certain conditions on the choice of k (see later) the popular k-nearest neigh-
bour classifier is consistent no matter what the marginal distributions. Hall & Kang (2005) and
Samworth (2012) derived, under suitable regularity conditions, asymptotic expansions for the
rate of convergence of the excess risk over fixed compact sets for kernel and weighted nearest
neighbour classifiers respectively. It can be shown that these rates are minimax over certain
classes (Marron, 1983; Audibert & Tsybakov, 2007).

For the remainder of this paper we will focus on nearest neighbour classifiers. The main
purpose is to determine conditions on the tail behaviour of the measures P1 and P2 such that
the asymptotic expansion for the excess risk of a weighted nearest neighbour classifier (derived
by Samworth (2012)) remains valid over the whole of Rd. Section 1.3 explores some examples
for motivation and the main results are contained in Sections 2 and 3. We start by discussing
the properties of nearest neighbour classifiers in more detail.

1.2 Nearest Neighbour Classifiers

Given a point x ∈ Rd, let (X(1), Y(1)), (X(2), Y(2)), . . . , (X(n), Y(n)) be a reordering of the train-
ing data such that, ‖X(1) − x‖ ≤ ‖X(2) − x‖ ≤ · · · ≤ ‖X(n) − x‖, where ‖ · ‖ is some norm
on Rd (for the purpose of this report we can think of ‖ · ‖ as the Euclidean norm). We can then
define the regression estimate 1

k

∑k
i=1 1{Y(i)=1} at x and the corresponding k-nearest neighbour

classifier

Ĉknn
n (x) =

{
1 if 1

k

∑k
i=1 1{Y(i)=1} ≥ 1

2
;

2 otherwise.
(1.2)

This can be generalised by using a weighted sum of the nearest neighbours. Let wn :=
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{wni}n
i=1 be a weight vector with

∑n
i=1 wni = 1. Replacing the regression estimate above

by the weighted sum Sn(x) :=
∑n

i=1 wni1{Y(i)=1}, we define the weighted nearest neighbour

classifier

Ĉwnn
n (x) =

{
1 if

∑n
i=1 wni1{Y(i)=1} ≥ 1

2
;

2 otherwise.
(1.3)

Stone (1977) proved the following powerful result; for a proof see Devroye et al. (1996, p. 98).

Theorem 1.2. Suppose the the weights {wni}n
i=1 satisfy the following conditions; (i) maxi=1,...,n wni →

0 as n → ∞, and (ii)
∑k

i=1 wni → 1 as n → ∞ for some k := kn such that kn → ∞ and

kn/n → 0. Then the weighted nearest neighbour classifier is universally consistent, i.e. for

any distributions P1 and P2 and any prior probability p,

RRd(Ĉwnn
n )−RRd(CBayes) → 0.

Remarks Note that the conditions on the weights here include the unweighted k-nearest neigh-
bour classifier provided k := kn is such that kn →∞ and kn/n → 0.

1.2.1 Bagged Nearest Neighbour Classifiers

Consider the 1-nearest neighbour classifier; that is, the classifier that assigns a point to the
same class as that of its nearest neighbour. This procedure can be shown to be inconsistent
for many distributions. In other words, there exists ε > 0 such that for all n0 > 1 there exists
n > n0 with RR(Ĉ1nn

n ) − RR(CBayes) > ε. However, one can repeatedly use a 1-nearest
neighbour classifier on bootstrap resamples of the training data and subsequently classify to the
modal class arising from the resamples. This method is known as bagging (short for bootstrap
aggregating). Hall & Samworth (2005) and Biau & Devroye (2010) proved analogous results
to that of Stone (1977) and the large sample properties of this procedure were further studied
by Biau, Cérou & Guyader (2010). Bagging can be regarded as a natural way to choose the
weights for a weighted nearest neighbour classifier.

1.2.2 Optimal Weighted Nearest Neighbour Classifiers

Here we discuss the main theory in Samworth (2012). Firstly we require some more notation:
let Bδ(x) denote the closed ball of radius δ centred at x for the norm ‖ · ‖, and let ad denote the
d-dimensional Lebesgue measure of the unit ball B1(x). For a smooth function g : Rd → R
write ġ(x) for its gradient vector at x. For β > 0 let Wn,β be the set of non-negative weight
vectors wn = {wni}n

i=1 satisfying

• s2
n :=

∑n
i=1 w2

ni ≤ n−β;
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• t2n :=
(Pn

i=1 αiwni

n2/d

)2

≤ n−β , where αi = i(1+2/d) − (i− 1)(1+2/d);

• n2/d
∑n

i=k2+1 wni/
∑n

i=1 αiwni ≤ 1/ log n, where k2 = bn1−βc;

•
∑n

i=k2+1 w2
ni/
∑n

i=1 w2
ni ≤ 1/ log n;

•
∑n

i=1 w3
ni/(
∑n

i=1 w2
ni)

3/2 ≤ 1/ log n.

We also make use of the following assumptions;

A. 1. The set R ⊂ Rd is a compact d-dimensional manifold with boundary ∂R.

A. 2. The set S = {x ∈ R : η(x) = 1
2
} is non-empty. There exists an open set U0 that contains

S and such that the restrictions of P1 and P2 to U0 are absolutely continuous with respect to

Lebesgue measure, with twice continuously differentiable Radon–Nikodym derivatives f1 and

f2 respectively. Furthermore, η is continuous on U , where U is an open set containing R.

A. 3. There exists ρ > 0 such that
∫

Rd ‖x‖ρdP̄ (x) < ∞. Moreover, for sufficiently small δ > 0,

the ratio, P̄ (Bδ(x))/(adδ
d) is bounded away from zero uniformly over x ∈ R.

A. 4. For all x ∈ S, we have η̇(x) 6= 0, and for all x ∈ S ∩ ∂R, we have ∂̇η(x) 6= 0, where ∂η

denotes the restriction of η to ∂R.

The following theorem gives an asymptotic expansion of the excess risk under these as-
sumptions.

Theorem 1.3. (Samworth, 2012). Assume (A. 1), (A. 2), (A. 3), and (A. 4). Then for each

β ∈ (0, 1/2),

RR(Ĉwnn
n )−RR(CBayes) = γn(wn){1 + o(1)}, (1.4)

as n →∞, uniformly for wn ∈ Wn,β , where

γn(wn) = B1

n∑
i=1

w2
ni + B2

(
n∑

i=1

αiwni

n2/d

)2

. (1.5)

Explicit expressions for the constants B1 and B2 can be found in Samworth (2012).

We do not prove this here, indeed the proof is rather long. Instead we outline the main
argument in two parts. Part one involves bounding the dominant contribution to the excess risk
from points outside of a small tube around the boundary S. One can show that the k2 nearest
neighbours to a point x are concentrated on a small ball centred at x with high probability.
Therefore, when x is bounded away from S, the k2th nearest neighbour will be the correct side
of the boundary. As a result the weighted nearest neighbour classifier classifies such points in
the same way as the Bayes classifier with high probability. It is shown the excess risk arising
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from this region is O(n−M) for all M > 0. For points near the boundary S we use a bias-
variance decomposition argument to determine the dominant contribution to the risk. In the
asymptotic expansion above the

∑n
i=1 w2

ni term arises from the variance, and the
∑n

i=1
αiwni

n2/d

from the bias. Consequently there is a bias-variance trade-off in the choice of weights: with
few positive weights the bias will be small and the variance large. Increasing the number of
positive weights will reduce the variance, but only at the cost of increased bias.

More specifically Theorem 1.3 helps us to choose the weights in theory. We can minimise
the right hand side of (1.4) over wn ∈ Wn,β (or a subset thereof, for example restricting our-
selves to unweighted classifiers) to obtain optimal weights. The optimal weighting scheme w∗

n

is specified as follows: set k∗ = bB∗n
4

d+4 c (an explicit expression for B∗ is given in Samworth
(2012)) and let

w∗
ni =

{
1
k∗

[
1 + d

2
− d

2k∗2/d{i1+2/d − (i− 1)1+2/d}
]

for i = 1, 2, . . . , k∗;

0 for i = k∗ + 1, . . . , n.
(1.6)

A proportion O(n−d/(d+4)) of the optimal weights are positive, and under this scheme the rate
of convergence of the excess risk to zero is O(n−4/(d+4)). Moreover the theory provides a
simple, distribution independent, formula to go from an optimal unweighted nearest neighbour
classifier to an optimal weighted one and give guaranteed improvements in the constant in the
asymptotic expansion.

The assumption (A. 4) is closely related to the margin condition. Under this condition, and
mild assumptions on the smoothness of the Bayes decision boundary, Mammen & Tsybakov
(1999) and later Tsybakov (2005) investigate the rate of convergence of plug-in and empirical

risk minimisation type classifiers.

Although the theory in Samworth (2012) is powerful, there is a drawback: the result relies
on the compactness of R. In practice, to guarantee this rate of convergence, we would need to
specify a compact set in advance, and then ignore any observations we might observe outside
this set. We might expect that if the tails of the distribution are light enough, then we would
rarely observe such points, and the asymptotic expansion may still be valid.

1.3 Motivating Examples

We have seen that results on the rate of convergence of the excess risk are typically restricted to
an expansion over a compact set. Moreover, under certain regularity conditions on the under-
lying distributions, the dominant contribution to the asymptotic expansion arises from a small
interval around the boundary {x : η(x) = 1/2}. The following examples, which focus on
the d = 1 case, provide some insight as to when the task of classification in the tails of the
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distribution (i.e. outside of any fixed compact set) is difficult. By appealing to the theory in
Samworth (2012), intuition suggests that classification in the tails will be hard in two situations.
Firstly, when the conditional distributions are similar in the tails so that η(x) is close to 1/2

and secondly, when the tails are heavy. In each of the examples below we have (X, Y ) taking
values in R× {1, 2} with densities f1 and f2 for P1 and P2 respectively.

1.3.1 Normal Location Model

Suppose (X, Y ) has joint distribution specified by p = 1/2, X|Y = 1 ∼ N (µ, σ2) and X|Y =

2 ∼ N (−µ, σ2).
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Figure 1: Left panel: The densities given Y = 1 (red) and Y = 2 (blue) for µ = 2 and σ = 1.
Right panel: The corresponding regression function.

Here we see a situation in which classification is ‘easy’, the two distributions are light-
tailed and sufficiently different so that the regression function η(x) → 1 as x → ∞ and
η(x) → 0 as x → −∞.

1.3.2 Cauchy Location Model 1

Suppose (X, Y ) is such that p = 1/2 and X|Y = 1 ∼ Cauchy(µ), X|Y = 2 ∼ Cauchy(−µ).
Now the distributions have heavy tails and η(x) → 1/2 as |x| → ∞.
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Figure 2: Left panel: The densities given Y = 1 (red) and Y = 2 (blue) for µ = 2. Right panel:
The corresponding regression function.

1.3.3 Cauchy Location Model 2

Suppose (X, Y ) is such that p = 3/4 and X|Y = 1 ∼ Cauchy(µ), X|Y = 2 ∼ Cauchy(−µ).
In this case the prior probability is such that the regression function is bounded away from 1/2

in the tail.
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Figure 3: Left panel: The densities given Y = 1 (red) and Y = 2 (blue) for µ = 2. Right panel:
The corresponding regression function.

1.3.4 Sub-Cauchy Model

Suppose (X, Y ) is such that X|Y = 1 ∼ f1, X|Y = 2 ∼ f2 where f1(x) =
√

2
π{1+(x−µ)4} and

f2(x) =
√

2
π{1+(x+µ)4} with p = 1/2. Here η(x) → 1/2 as x → ∞ at the same rate as in the

Cauchy example above but the tails are lighter.
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Figure 4: Left panel: The densities given Y = 1 (red) and Y = 2 (blue) for µ = 2. Right panel:
The corresponding regression function.

1.3.5 Pareto Model

Suppose (X, Y ) is such that X|Y = 1 ∼ f1, X|Y = 2 ∼ f2 where f1(x) = (α−1)x−α
1{x≥1},

f2(x) = (β − 1)x−β
1{x≥1} and p = 1/2. In this example η(x) → 1 as x →∞.
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Figure 5: Left panel: The densities given Y = 1 (α = 1.5) (red) and Y = 2 (β = 2) (blue).
Right panel: The corresponding regression function.

1.3.6 Light Tailed Model

Suppose (X, Y ) is such that X|Y = 1 ∼ N (0, 1/2), X|Y = 2 ∼ f2 where f2(x) = K0

1+exp(x2)
,

for some normalising constant K0, and let p satisfy p
1−p

=
√

πK0 so that η(x) → 1/2 as

x → ±∞. Notice η(x) = 1+exp(x2)
1+2 exp(x2)

. In this final example we have light (normal type) tails,
however the prior probabilities are such that η(x) → 1/2 very fast in the tails.
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Figure 6: Left panel: The densities given Y = 1 (red) and Y = 2 (blue). Right panel: The
corresponding regression function.

1.3.7 Discussion

Proposition 2.2 in Section 2 shows that when η(x) is bounded away from 1/2 as x → ∞ (as
in Examples 1.3.1, 1.3.3 and 1.3.5) then the contribution to the excess risk from the tails is of
smaller order than that from the body of the distributions. If η(x) → 1/2 as x →∞, there is a
trichotomy of cases involving a trade off between the behaviour of η(x) and the P̄ measure in
the tail.

• Case 1: The P̄ measure of the tails is small in some sense compared to the rate that
η(x) → 1/2. Then the contribution will be of smaller order than that of the body of the
distribution.

• Case 2: There is a balance between P̄ and η(x) such that we have an additional contri-
bution of the same order.

• Case 3: The η(x) → 1/2 fast in the tails, and P̄ is not small enough to overcome this,
then the dominant contribution the the excess risk is coming from the tails.

It is unclear into which case each of the earlier examples fits. In Theorems 2.3 and 2.4 in
Section 2 we specify sufficient conditions to ensure we are in Case 1 (we will see that these
conditions are satisfied in example 1.3.4). Furthermore, we show in Propositions 3.1 and 3.2
that the situation in example 1.3.2 may fit into Case 1 or 2 depending on the choice of the
weight vector. Investigating Case 3 further is left to the subject of future work.
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2 Classification in the Tails

In this section we attempt to relax assumption (A. 1); we seek to obtain an asymptotic expansion
for the excess risk over Rd

RRd(Ĉwnn
n )−RRd(CBayes),

as n → ∞. There are very few results on this topic, indeed asymptotic expansions of the
excess risk are usually restricted to a compact set (Mammen & Tsybakov, 1999; Audibert &
Tsybakov, 2007; Biau et al., 2010; Samworth, 2012). Chanda & Ruymgaart (1989) and later
Hall & Kang (2005) investigated the asymptotics in the tails for one-dimensional kernel-based
classifiers. Hall & Kang (2005) use compactly supported kernels to classify univariate variables
into one of two classes, where it is assumed that densities f1 and f2 exist. Their method first
computes kernel density estimates f̂1 and f̂2 for f1 and f2 respectively, then classifies x ∈ R
to group 1 if pf̂1(x) > (1− p)f̂2(x) and group 2 otherwise. However both estimates f̂1 and f̂2

may be zero; this is common for x in the far tails of the conditional distributions. The authors
suggest the following way of classifying such points: suppose x is in the right tail such that
f̂1(x) = f̂2(x) = 0 and let

x̂ = inf{y : y ≤ x and f̂1(z) = f̂2(z) = 0 for all z ∈ [y, x]}.

Then, with probability one, exactly one of f̂1(x̂−) and f̂2(x̂−) will be non-zero - classify x

to that class. It is shown that, under certain regularity conditions, this classification method
performs well. The contribution from the tails to the excess risk is of smaller order than the
contribution from the body of the distribution. The authors show further, however, that for
Pareto type tails (specifically, f1(x) ∼ ax−α and f2(x) ∼ bx−β as x →∞, where a, b > 0 and
1 < α < β < α + 1 < ∞ as in example 1.3.5), the excess risk in the right tail is of larger order
than that in the body of the distribution.

Nearest neighbour classifiers avoid the possibility of such ties in the tail, indeed in the
extreme right tail the k nearest neighbour classifier will use the k largest order statistics from
the training data to classify.

Recall the definition of the weighted nearest neighbour classifier in (1.3), and the regres-
sion estimate Sn(x) =

∑n
i=1 wni1{Y(i)=1}. We will make use of the following equality: for any

set R ⊂ Rd

RR(Ĉwnn
n )−RR(CBayes) =

∫
R
[P{Sn(x) < 1/2} − 1{η(x)<1/2}]P

◦(dx). (2.1)
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2.1 One dimensional case

Here we discuss the univariate case where X takes values in R. The following lemma gives
bounds on the distance of the kth nearest neighbour to a point x in the tails.

Lemma 2.1. Suppose x0 is such that px0/2(x0) := P̄{Bx0/2(x0)} > 0 and let X(k)(x) denote

the kth nearest neighbour to x. Then for n sufficiently large,

P{X(k)(x) /∈ [x0/2, 2x] for some x > x0} ≤ exp

[
−

2{npx0/2(x0)− k}2

n

]
. (2.2)

Proof. Observe for n large enough,

P{X(k)(x) /∈ [x0/2, 2x] for some x > x0 } ≤ P{|X(k)(x0)− x0| > x0/2}

= P[Bin{n, px0/2(x0)} < k]

≤ exp

[
−

2{npx0/2(x0)− k}2

n

]
.

To see the first line note that if there are k points in [1
2
x0,

3
2
x0] then, for x > x0, there are at least

k in [1
2
x0, 2x]. Then we have used Hoeffding’s inequality to bound the binomial probability.

Lemma 2.1 gives us, with high probability, control of the maximum distance any point in
the tails can be from its kth nearest neighbour. This control proves crucial to enable us to bound
the excess risk in the far right tail. Consider now the case when η(x) is bounded away from
1/2 in the tail. Proposition 2.2 gives bounds on the excess risk in the tail under this condition.

Proposition 2.2. Assume that there exists ε > 0 and x0 ∈ R such that for all x > x0/2,

η(x)− 1
2

> ε. Then for each β ∈ (0, 1/2) and each M > 0,

sup
wn∈Wn,β

{R(x0,∞)(Ĉ
wnn
n )−R(x0,∞)(C

Bayes)} = O(n−M), (2.3)

as n →∞.

Proof. Fix M > 0. If the support of P̄ is compact there is nothing to prove. Therefore, without
loss of generality, we may assume px0/2(x0) > 0. We seek to bound P{Sn(x) < 1/2}. Letting

12



µn(x) = E{Sn(x)}, Lemma 2.1 yields the following:

inf
x>x0

µn(x)− 1/2

≥ inf
x>x0

n∑
i=1

wniP{Y(i) = 1 ∩X(k2) ∈ [x0/2, 2x]} − 1/2

≥ inf
x>x0

(
k2∑
i=1

wni

)
(1/2 + ε)P{X(k2) ∈ [x0/2, 2x] for all x > x0} − 1/2

≥ inf
x>x0

(1− n−β/2)(1/2 + ε)

(
1− exp

[
− 2

n
{npx0/2(x0)− k2}2

])
− 1/2

≥ ε/2,

for n large enough, uniformly for wn ∈ Wn,β . Here we have used the fact that infu∈[x0/2,2x] η(u) ≥
1/2 + ε. Now,

sup
x≥x0

P{Sn(x) < 1/2} = sup
x≥x0

P{µn(x)− Sn(x) > µn(x)− 1/2}

≤ sup
x≥x0

exp

[
− 2

s2
n

{µn(x)− 1/2}2

]
≤ exp

(
− ε2

2s2
n

)
= O(n−M) for all M > 0,

by Hoeffding’s inequality, uniformly for wn ∈ Wn,β , since s2
n ≤ n−β by assumption. It follows

that

sup
wn∈Wn,β

{R(x0,∞)(Ĉ
wnn
n )−R(x0,∞)(C

Bayes)}

= sup
wn∈Wn,β

∫ ∞

x0

P{Sn(x) < 1/2}P ◦(dx)

= O(n−M).

Remarks • Analogous results hold for η(x) < 1/2 and in the far left tail.

• This result does not require the tails of the distributions to be light, it only requires that
η(x) is eventually bounded away from a half. In the case where densities f1 and f2 exist
for P1 and P2 respectively, we simply require the ratio of pf1(x) and (1 − p)f2(x) to be
bounded away from one in the tail.

• Note that given similar conditions in the left tail we may take our compact set in Theorem

13



1.3 to be R = [−x0, x0], and provided (A.1) - (A. 4) hold, the dominant contribution the
the excess risk is coming from the Bayes decision boundary S since the contribution
from the tail is o(s2

n + t2n).

We might hope that even if the distributions are similar in the tails, so that η(x) → 1/2

as x → ∞, we will still be able to obtain good bounds on the contribution to the excess risk
from this region. By imposing conditions on the how heavy the tails can be, we show that this
is indeed the case. The following results give sufficient conditions for us to conclude that the
contribution to the excess risk arising from the tails is o(s2

n). Firstly, Theorem 2.3 without the
assumption that densities f1 and f2 exist for P1 and P2 in the tails, and secondly, Theorem 2.4
under similar, but more explicit, conditions in the case when densities do exist.

In Theorems 2.3 and 2.4 we make the assumption that there exists x0 ∈ R such that
η(x)− 1/2 > 0 for all x > x0. When this is the case let η+ and η− be decreasing functions on
[x0,∞] such that 1/2 < η−(x) ≤ η(x) ≤ η+(x) for all x > x0 and η+(x) → 1/2 as x →∞.

To ease notation we introduce the function

a(x) := exp

[
−W

{
2(η−(2x)− 1/2)2

a0

}]
,

for some a0 > 1, where W : (−1/e, 0) → (−∞,−1) returns the non-principal part of the
so-called Lambert-W function satisfying z = W (z) exp{W (z)} as in Figure 7. Notice that
a(x) →∞ as x →∞ since W (z) → −∞ as z → 0 from below.

-0.4 -0.3 -0.2 -0.1 0.0

-8
-7

-6
-5

-4
-3

-2
-1

z

W
(z
)

Figure 7: The non-principal part of the Lambert-W function for z ∈ (−1/e, 0).

Theorem 2.3. Assume there exists x0 such that η(x)− 1
2

> 0 for x > x0 and that η(x) → 1
2

as

14



x →∞. Assume further that

a(x){η+(x)− 1/2}P̄ ([x,∞)) → 0,

as x →∞. Then

R(x0,∞)(Ĉ
wnn
n )−R(x0,∞)(C

Bayes) = o(s2
n),

as n →∞, uniformly for wn ∈ Wn,β .

Proof. Firstly, by conditioning on the training data Dn, we have for any x1 ∈ R that

R(x1,∞)(Ĉ
wnn
n )−R(x1,∞)(C

Bayes) = E
[
2

∫ ∞

x1

{η(x)− 1/2}1{Sn(x)<1/2}dP̄ (x)

∣∣∣∣Dn

]
≤ 2

∫ ∞

x1

{η(x)− 1/2}dP̄ (x). (2.4)

Now choose an increasing sequence x1 := x1(n) such that

{η−(2x1)− 1/2}2 = −
(

a0 + 1

4

)
s2

n log(s2
n) =: λn,

for all n > n0 where n0 is such that supx>x0
{η−(2x) − 1/2}2 ≥ −

(
a0+1

4

)
s2

n0
log(s2

n0
). From

Lemma 2.1 we obtain,

inf
x∈(x0,x1)

µn(x)− 1

2
≥ inf

x∈(x0,x1)

n∑
i=1

wni
P{Y(i) = 1 ∩X(k2)(x) ∈ [x0/2, 2x]} − 1

2

≥ inf
x∈(x0,x1)

(
k2∑
i=1

wni

)
(1/2 + λ1/2

n )P{X(k2)(x) ∈ [x0/2, 2x] for all x > x0} −
1

2

≥ inf
x∈(x0,x1)

(1− n−β)(1/2 + λ1/2
n )

(
1− exp

[
− 2

n
{npx0/2(x0)− k2}2

])
− 1

2

≥
[{

a0 + 3

2(a0 + 1)

}
λn

]1/2

, (2.5)

for n large enough, uniformly for wn ∈ Wn,β . Hence

sup
x∈(x0,x1)

P{Sn(x) < 1/2} = sup
x∈(x0,x1)

P{µn(x)− Sn(x) > µn(x)− 1/2}

≤ sup
x∈(x0,x1)

exp

[
−2{µn(x)− 1/2}2

s2
n

]
≤ exp

{(
a0 + 3

4

)
log(s2

n)

}
= o(s2

n). (2.6)
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as n →∞, uniformly for wn ∈ Wn,β . It follows that∫ x1

x0

P{Sn(x) < 1/2}dP ◦(x) = o(s2
n), (2.7)

as n →∞, uniformly for wn ∈ Wn,β . Further, for n > n0

2

s2
n

∫ ∞

x1

{η(x)− 1/2}dP̄ (x)

≤ 2{η+(x1)− 1/2}
s2

n

∫ ∞

x1

dP̄ (x)

≤ exp

(
W

[
−2{η−(2x1)− 1/2}2

a0

])
{η+(x1)− 1/2}

∫ ∞

x1

dP̄ (x)

= a(x1){η+(x1)− 1/2}P̄ ([x1,∞)), (2.8)

which converges to zero by assumption. The result follows from (2.7) and (2.8).

If densities f1 and f2 exist for P1 and P2 let f̄ = pf1 + (1− p)f2, define

B(x) =
{η+(x)− 1/2}

−η̇−(2x){η−(2x)− 1/2}
f̄(x). (2.9)

Theorem 2.4. Assume that there exists x0 such that η(x) − 1/2 > 0 for x > x0 and η(x) −
1/2 → 0 as x → ∞. Assume further that for x > x0 densities f1 and f2 exist for P1 and P2

respectively. Suppose further that B(x) → 0 as x →∞. Then

R(x0,∞)(Ĉ
wnn
n )−R(x0,∞)(C

Bayes) = o(s2
n), (2.10)

as n →∞, uniformly for w ∈ Wn,β .

Proof. Let x1 := x1(n) be such that {η−(2x1) − 1/2}2 = −s2
n log(s2

n) (note that such a
sequence exists for n sufficiently large). By a similar argument to that leading to (2.6) we
have

sup
x∈(x0,x1)

P{Sn(x) < 1/2} = o(s2
n), (2.11)

as n →∞, uniformly for wn ∈ Wn,β . To bound the contribution from the interval [x1,∞], let
x2 := x2(n) be a sequence such that {η

−(2x2)−1/2}2
s2
n

= c for some constant c > 0 (note that for
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all c > 0 and n large enough x2 ∈ (x1,∞)). Then, by substituting t = {η−(2x)−1/2}2
s2
n

we have

sup
wn∈Wn,β

2

s2
n

∫ ∞

x2

{η(x)− 1/2}f̄(x)dx ≤ sup
wn∈Wn,β

∫ c

0

B(xt)/2dx

≤ sup
wn∈Wn,β

sup
x∈(x2,∞)

{B(x)}c/2 → 0. (2.12)

Furthermore, by a small modification to the argument leading to (2.5) we conclude

sup
wn∈Wn,β

µn(x)− 1

2
≥ 1

2
{η−(2x)− 1/2},

for n sufficiently large, uniformly for x ∈ (x1, x2). Hence,

P{Sn(x) < 1/2} ≤ exp

[
−{η

−(2x)− 1/2}2

2s2
n

]
,

for n sufficiently large, uniformly for wn ∈ Wn,β and x ∈ (x1, x2). Finally, we make the
substitution t = {η−(2x)−1/2}2

s2
n

again to conclude that

sup
wn∈Wn,β

1

s2
n

∫ x2

x1

P{Sn(x) < 1/2}dP ◦(x)

≤ sup
wn∈Wn,β

2

s2
n

∫ x2

x1

exp

[
−{η

−(2x)− 1/2}2

2s2
n

]
{η+(x)− 1/2}f̄(x)dx

= sup
wn∈Wn,β

∫ c

− log(s2
n)

exp(−t/2)

[
{η+(xt)− 1/2}f̄(xt)

η̇−(2xt){η−(2xt)− 1/2}

]
dt

= sup
wn∈Wn,β

∫ − log(s2
n)

c

exp(−t/2)B(xt)dt

≤ sup
wn∈Wn,β

sup
x∈(x1,x2)

{B(x)}
∫ − log(s2

n)

c

exp(−t/2)dt

= sup
x∈(x1,x2)

{B(x)}2{exp(−c/2)− sn} → 0 (2.13)

by assumption on B(x) since x1 →∞. The result follows from (2.11), (2.12) and (2.13).

Corollary 2.5. Assume the conditions of Theorem 2.4 except that B(x) → 0. Suppose that η

and f̄ are decreasing for x > x0 and the ratio f̄(x)
−η̇(x)

→ 0. Then

R(x0,∞)(Ĉ
wnn
n )−R(x0,∞)(C

Bayes) = o(s2
n), (2.14)

as n →∞, uniformly for wn ∈ Wn,β .
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Proof. Sketch; Since η(x) and f̄(x) are decreasing we can bound µn(x)−1/2 below by η(x)−
1/2 uniformly for x > x0. Hence we can replace B(x) in (2.12) and (2.13) by 4f̄(x)

−η̇(x)
.

The condition B(x) → 0 as x → ∞ amounts to the following: the faster η(x) → 1/2,
the lighter one requires the tails of P̄ . Note that the joint distribution of (X, Y ) is specified by
fixing f̄ and η(x). Moreover these choices can be made independently subject to η(x) ∈ [0, 1]

for all x ∈ R, and f̄ being a probability density function.

Example We return to the example in Section 1.3.4, X|Y = 1 ∼ f1, X|Y = 2 ∼ f2 with
f1(x) =

√
2

π{1+(x−µ)4} , f2(x) =
√

2
π{1+(x+µ)4} and p = 1/2. Here

B(x) ∼ 1/x

(1/2x)2(1/2x)
1/x4 → 0, as x →∞.

Hence for x0 large enough we can apply Theorem 2.4 to conclude

R(x0,∞)(Ĉ
wnn
n )−R(x0,∞)(C

Bayes) = o(s2
n),

as n →∞, uniformly for wn ∈ Wn,β .

3 Cauchy Distributions

We investigate the results in the previous section further by appealing to a particular example,
that is where the conditional distributions are location separated Cauchy distributions as in
Example 1.3.2. We have P(Y = 1) = 1/2 = P(Y = 2),

f1(x) =
1

π{1 + (x− µ)2}
, f2(x) =

1

π{1 + (x + µ)2}
, (3.1)

f̄(x) =
1 + x2 + µ2

π{1 + (x− µ)2}{1 + (x + µ)2}
,

η(x)− 1/2 =
µx

1 + x2 + µ2
,

η̇(x) =
µ(1− x2 + µ2)

(1 + x2 + µ2)2

and for x > µ,

P̄ (x,∞) =
1

2π

{
tan−1

(
1

x− µ

)
+ tan−1

(
1

x + µ

)}
.

Note that because η is decreasing in the right tail we can take η− = η = η+.
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In this case B(x) = {η(x)−1/2}
−η̇(2x){η(2x)−1/2} f̄(x) → 16

πµ
, so we cannot apply Theorem 2.4. How-

ever, by studying the proof of the theorem and the resulting corollary, we see that the contribu-
tion to the excess risk from the tail is bounded by

2c + 8 exp(−c/2)

πµ
s2

n =
2 + 4 log 2

πµ
s2

n,

for the optimal choice of c.

For simplicity we restrict use to unweighted k-nearest neighbour classifiers, i.e. wni =
1
k
1{i≤k}. Fix x0 > 0 and setR = [−x0, x0]. From Theorem 1.3 we have, for each β ∈ (0, 1/2),

RR(Ĉknn
n )−RR(CBayes) =

1

4πµk
{1 + o(1)},

as n →∞ uniformly for k ∈ [nβ, n1−β]. Note there is no contribution from the bias here since
the problem is symmetric about zero. This poses the question:

Q: Is the contribution to the excess risk arising from the tail, i.e. from outside any fixed

compact set containing an open neighbourhood about zero, of the same order as that from a

neighbourhood of the Bayes decision boundary x = 0 or can we obtain tighter bounds on the

tail contribution and show it is o(1/k)?

In the following two propositions we show that the answer depends on the choice of k.
Define

W̃n,k :=

{
wn : wni =

1

k
1{i≤k}

}
.

Proposition 3.1. Suppose f1 and f2 are as in (3.1) and that P(Y = 1) = P(Y = 2) = 1/2.

Suppose further wn ∈ W̃n,k and fix x0 > 0. Then for each β ∈ (0, 1/3)

R(x0,∞)(Ĉ
knn
n )−R(x0,∞)(C

Bayes) = o(1/k),

as n →∞, uniformly for k ∈ K1,β := [n2/3, n1−β].

Proof. Let x−3 = n
kπ

(
1− 1

2 log n

)
and x+

3 = n
kπ

(
1 + 1

2 log n

)
. Then

P̄ (x−3 ,∞) =
1

2π

{
tan−1

(
1

x−3 − µ

)
+ tan−1

(
1

x−3 + µ

)}
=

1

πx−3
{1 + o(1)},

and

P̄ (x+
3 ,∞) =

1

2π

{
tan−1

(
1

x+
3 − µ

)
+ tan−1

(
1

x+
3 + µ

)}
=

1

πx+
3

{1 + o(1)}.
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Suppose x is such that P̄ (x,∞) = o
(

k
n log n

)
. Arguing similarly the the proof of Lemma 2.1,

it is straightforward to show that

sup
k∈K1,β

P{X(k)(x) < x−3 } = O(n−M),

and
sup

k∈K1,β

P{X(k)(x) > x+
3 } = O(n−M).

Therefore, for such a choice of x, we have

µn(x)− 1/2 =
1

k

k∑
i=1

E{η(X(i))− 1/2}

= E

[
1

k

n∑
i=1

{η(X(i))− 1/2}1{X(i)∈(x−3 ,2x−x−3 )}

]
+O(n−M)

= E

[
n

k

n∑
i=1

1

n
{η(Xi)− 1/2}1{Xi∈(x−3 ,2x−x−3 )}

]
+O(n−M)

=
n

k

∫ 2x−x−3

x−3

{η(t)− 1/2}f̄(t)dt{1 + o(1)}

=
n

k

∫ ∞

x−3

{η(t)− 1/2}f̄(t)dt{1 + o(1)}

=
n

2πk

{
tan−1

(
1

x−3 − µ

)
− tan−1

(
1

x−3 + µ

)}
{1 + o(1)}

=
nµ

2πk(x−3
2 − µ2)

{1 + o(1)}

=
πµk

n
{1 + o(1)},

as n →∞, uniformly for k ∈ K1,β . Hence by Hoeffding’s inequality,

P{Sn(x) < 1/2} ≤ P{µn(x)−Sn(x) > µn(x)−1/2} ≤ exp
[
−k{µn(x)− 1/2}2

]
= o(1/k),

as n →∞, uniformly for k ∈ K1,β .

Set x1 =
(

µk
4 log k

)1/2

. We have P̄ (x1,∞) = o
(

k
n log n

)
and therefore

sup
x∈(x1,∞)

P{Sn(x) < 1/2} = o(1/k),
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as n →∞, uniformly for k ∈ K1,β . By a similar argument to that leading to (2.11)

sup
x∈(x0,x1)

P{Sn(x) < 1/2} = o(1/k).

It follows that

R(x0,∞)(Ĉ
knn
n )−R(x0,∞)(C

Bayes) = 2

∫ ∞

x0

P{Sn(x) < 1/2}{η(x)− 1/2}f̄(x)dx = o(1/k),

as n →∞, uniformly for k ∈ K1,β .

Proposition 3.2. Suppose f1 and f2 are as in (3.1) and that P(Y = 1) = P(Y = 2) = 1/2.

Suppose further wn ∈ W̃n,k and fix x0 > 0. Then for each β ∈ (1/3, 1/2)

R(x0,∞)(Ĉ
knn
n )−R(x0,∞)(C

Bayes) =
1

2kπµ
{1 + o(1)},

as n →∞, uniformly in k ∈ K2,β := [nβ, n1−β].

Proof. Let x1 = k1/2

log n
and x2 = k1/2 log n. For x ∈ (x1, x2), set x+ = x

(
1 + 1

2 log n

)
and

x− = x
(
1− 1

2 log n

)
. Then

inf
x∈(x1,x2)

n

k log n
P̄ (x−, x+) →∞,

and by similar arguments to that in Lemma 2.1, it can be shown that

sup
x∈(x1,x2)

P{X(k)(x) /∈ (x−, x+)} = O(n−M).

Thus,
µn(x)− 1/2 = {η(x)− 1/2}{1 + o(1)},

as n →∞, uniformly for x ∈ (x1, x2) and k ∈ K2,β .

By the Berry–Esseen theorem there exists C0, such that for all y ∈ R,

sup
k∈K2,β

sup
x∈(x1,x2)

|P[k1/2{Sn(x)− µn(x)} ≤ y]− Φ(y)| ≤ C0

n1/2(1 + |y|3)
,

where Φ denotes the standard normal distribution function. Hence

P{Sn(x) < 1/2} = Φ[−k1/2{µn(x)− 1/2}] +O(n−1/2)

uniformly for x ∈ (x1, x2) and k ∈ K2,β . By making the substitution t = k1/2{η(x)− 1/2} we
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have

2

∫ x2

x1

P{Sn(x) < 1/2}{η(x)− 1/2}f̄(x)dx

= 2

∫ x2

x1

Φ[k1/2{1/2− µn(x)}]{η(x)− 1/2}f̄(x)dx{1 + o(1)}

= 2

∫ x2

x1

Φ[k1/2{1/2− η(x)}]{η(x)− 1/2}f̄(x)dx{1 + o(1)}

=
2

k

∫ ∞

0

1

µπ
tΦ{−t}dt{1 + o(1)}

=
1

2kπµ
{1 + o(1)},

as n →∞, uniformly for k ∈ K2,β .

It remains to bound the contribution to the excess risk from the intervals (x0, x1) and
(x2,∞). Firstly, by a similar argument to that leading to (2.6)

sup
x∈(x0,x1)

P{Sn(x) < 1/2} = o(1/k),

as n →∞ uniformly for k ∈ K2,β . Secondly,

2

∫ ∞

x2

P{Sn(x) < 1/2}{η(x)− 1/2}f̄(x)dx ≤ 2

∫ ∞

x2

{η(x)− 1/2}f̄(x)dx = o(1/k),

as n →∞, uniformly for k ∈ K2,β .

Remarks • Propositions 3.1 and 3.2 give an asymptotic expansion for the excess risk in
the tail of the distribution for a k nearest neighbour classifier when the conditional dis-
tributions are Cauchy. We see that, depending on the choice on k, there are two cases.
In the first case, for large k; that is when k

n2/3 → ∞, it is shown that the excess risk is
o(1/k) and thus of smaller order than the that arising from and open neighbourhood of
zero. For smaller k, when k

n2/3 is bounded, the asymptotic expansion in the right tail is
µ

2πk
{1 + o(1)}. The dominant term in this expansion is of the same order as the expan-

sion over a neighbourhood of zero. For example when k = n4/5 (the optimal choice for
classification over a compact set), we have shown that

R(x0,∞)(Ĉ
knn
n )−R(x0,∞)(C

Bayes) = o(n−4/5),

as n →∞. However if k = n1/2 say, then

R(x0,∞)(Ĉ
knn
n )−R(x0,∞)(C

Bayes) =
1

2µπn1/2
{1 + o(1)},
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as n →∞.

• Due to the symmetry of the problem in this case we have the same conclusions for the
region (−∞,−x0).

4 Higher Dimensions

The situation for d ≥ 2 is somewhat different, here we may have situations where the Bayes
decision boundary S = {x : η(x) = 1

2
} extends to infinity (i.e. for every compact set R in Rd

there exists x /∈ R such that η(x) = 1/2).

To investigate this problem further we discuss the special case when X|Y = 1 ∼ Nd(µ, I)

and X|Y = 2 ∼ Nd(−µ, I) with µ = (µ, 0, . . . , 0), here η(x) = 1
1+exp(−µx1)

.

Proposition 4.1. Suppose d ≥ 5 and assume the normal location setting above. Suppose also

we use a weighted nearest neighbour classifier with optimal weights w∗
n given by (1.6). Then

RRd(Ĉwnn
n )−RRd(CBayes) = γn(w∗

n){1 + o(1)} = O
(
n−

4
d+4

)
,

as n →∞.

Proof. Sketch; The proof here follows from a slight modification to the proof in Samworth
(2012). The optimal weights w∗

n are contained in Wn,βd
, where βd = 4

d+4
. Let Rn = {x :

‖x‖2 ≤ 2
(

4
d+4

+ ε
)
log n} for some ε > 0 small. Then by a similar argument to that in the

proof of Theorem 1 in Samworth (2012), we can ensure that, uniformly for x ∈ Rn, X(k2) is
contained in a small ball centred at x. We conclude that X(k2) is the correct side of the boundary
with high probability. Further, it can be shown that

RRc
n
(Ĉwnn

n )−RRc
n
(CBayes) ≤ P

{
χ2

d ≥ 2

(
4

d + 4
+ ε

)
log n

}
= o

(
n−

4
d+4

)
.

Remarks • At present we have no results for d = 2, 3 or 4. Proposition 4.1 falls down in
these cases since we require the sequence of compact sets Rn to be growing at a faster
rate and can no longer guarantee that uniformly for x ∈ Rn, the k2th nearest neighbour
is close to x.
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5 Discussion

We have investigated the properties of weighted nearest neighbour classifiers where we are
interested in classifying points from the whole of Rd. We showed in Section 2.1 that, under
certain regularity conditions, classification in the tails of the marginal distribution of a univari-
ate variable X is ‘easy’. From the results in this section we can conclude that the asymptotic
expansion of the excess risk derived by Samworth (2012) remains valid over R, moreover, the
weights specified in (1.6) are asymptotically optimal for the task presented.

Without such regularity conditions we have shown that there are situations where the dom-
inant term in the asymptotic expansion of the excess risk from the tail of the distribution is
of the same order as that from the body. In this case the optimal weighting scheme will be
modified slightly; specifically the constant in the definition of k∗ in (1.6) will be different.

This paper is left with the following open questions:

• For d = 1, can we find an explicit expression for the additional contribution to the excess
risk for a general joint distribution for (X, Y );

• and determine exactly when the dominant contribution to the excess risk is arising from
the tails, and specify optimal weights in this case.

• What can we say if η is oscillating about 1/2 in the tail?

• For d ≥ 2, determine conditions under which we can we can derive analogous results to
those in Section 2.1.
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