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A short guide to university
mathematics

This chapter and the next are to be read before the lecture of Monday, 24
September 2018

Welcome! This chapter contains guidance on how to read, write and do math-
ematics at university level, as well as a summary of some fundamental facts
about sets and functions (some of which may be new to you). It will be useful
for all your courses, not just this one.

School mathematics tends to emphasize calculation. At university level, the
emphasis shifts more towards big, general concepts (‘abstraction’), underpinned
by watertight arguments (‘proof’). You’re here because you’re extremely good
at mathematics. But you’re not just a calculating machine! This course will
stretch your mind with abstract ideas and rigorous proofs.

The change in style from school to university mathematics takes some get-
ting used to. Moreover, these accelerated courses go fast. Be in no doubt:
‘accelerated’ is the right word! This chapter is full of tips and information to
help you adapt to university mathematics quickly.

If you want to read more about the spirit of mathematics at an advanced
level—this amazing, imaginary world where circles are perfect and numbers
are exact, but which has repeatedly proved its value in solving problems in the
imperfect and inexact world that we actually live in—try these two books. They
both do a good job of evoking that spirit without going into technical detail.

• Timothy Gowers, Mathematics: A Very Short Introduction. Oxford Uni-
versity Press, 2002.

• Eugenia Cheng, How to Bake π. Profile Books, 2015.

How to read mathematics

The accelerated courses put a lot of responsibility on you. Aside from whatever
you’re asked to read and prepare for classes, you’re expected to take the initiative
and look things up in other sources whenever you find it necessary. There’s a
lot to do, and not much time to do it in.

However, mathematics needs to be read s l o w l y . I might read a
300-page novel in a day, but if you handed me a 300-page mathematics text, I’d
expect it to take me months. So, you’ll need to organize yourself and make lots
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of time for the reading that you’re required to do. Here are some tips for using
that time effectively.

Active reading I’m a big fan of swimming. I spend hours every day watching
it on TV. I watch all the races, I know the names of all the star swimmers, and
I know exactly how they perform the strokes in order to swim at record speeds.
I’ve never actually got into the water myself, but after all that time watching,
I know how to swim, right? So I confidently jump in the sea, and drown.

If you read mathematics without pen and paper at your side, you’re making
the same mistake. You won’t learn it unless you do it.

Some concrete suggestions:

• Print out the notes. For this course, you’re required to do that anyway.
(And it’s obviously in your interests: you can take a printout of the notes
into the exam, but not an electronic copy.) However, I suggest you do
it for all courses. As you’re reading, annotate: highlight the parts that
are important, circle the parts you don’t understand, make notes in the
margin, etc.

Electronic annotation systems are getting better, but I still haven’t seen
one as good as pen and paper in terms of speed, flexibility, and handling
mathematical symbols without fuss.

• Constantly ask ‘Is that really true?’ At its heart, a mathematics text is
a sequence of statements, each one following logically from the previous
ones. But you won’t always be told exactly how it follows; the writer will
assume that you’ve understood most of the text so far and can fill in the
smaller gaps yourself. It’s very easy to lose concentration and move your
eyes over the text without really understanding how each step is justified.
So keep asking yourself, every sentence: ‘Is that true? Why?’ If you can’t
answer those questions, make a note in the margin to come back to it
later.

• Do the exercises. Apart from the homework and workshop activities,
the text for this course (and many others) contains small exercises and
questions for you to answer. Pick up that pen and do them! I promise
that if you do, you’ll understand the material better than if you don’t.

• Maintain a list of questions. In a notebook, keep a running list of out-
standing questions. Add to it every time you run into a part of the course
that you don’t understand or a homework problem you can’t do, or a ques-
tion occurs to you in the middle of the night. Get started right now. Find
answers to those questions by asking me or your tutors or your classmates,
or by reading, or by figuring it out yourself. Aim to have crossed every
question off your list by the end of semester.

• Before you read a proof, cover it up. University mathematics texts contain
a lot of theorems (and propositions, lemmas, etc.) followed by their proofs.
Every time you get to a theorem, stop before you read the proof. Cover
up the proof, and spend a few minutes trying to prove it yourself.

If you succeed, you’ll feel fantastic and you’ll gain a sense of ownership.
If you don’t succeed, it might be because you realize that you don’t really
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understand the statement of the theorem. (For instance, maybe you don’t
understand one of the words used.) That’s a very important realization!
In that case, you should go back to the earlier definitions until you’re
sure you do understand the statement. Or, it might be that you’ve failed
to find the proof simply because it’s difficult—in which case, you’ll come
away with an enhanced appreciation of where the difficulty lies. Whatever
happens, attempting to prove the theorem yourself will help you.

How do I know what’s important? These accelerated courses go at two
or three times the speed of the non-accelerated versions, so we’ve had to remove
almost all the material that isn’t absolutely essential. In that sense, everything
in them is important! But still, some things are more important than others.

In all mathematics courses,

The definitions are absolutely crucial.

It’s almost impossible to exaggerate this point. The definitions are the founda-
tion on which everything else is built.

For instance, suppose you’re not quite sure of the definition of linear inde-
pendence (a central concept in linear algebra, which we’ll meet soon). Then
it will be near-impossible for you to properly understand any theorem about
linear independence, or follow any proof using linear independence, or solve any
exercise on linear independence. You might be able to manage in a vague, half-
understanding way, but as definition builds on definition and theorem builds on
theorem, you’ll soon find that even that vague understanding slips away, and
before you know it you’re thoroughly lost.

So, spend as much time as you need to understand the definitions, before
you do anything else. Usually a definition is followed by some examples, and
you can use those to help you understand what the definition means.

Mathematicians use different names for different types of result, and these
names indicate which are the most important:

• Theorems. A theorem is a major, important result. These are the high
points, the results to which you should pay special attention.

• Propositions. A proposition is a medium-sized result.

• Lemmas. A lemma is a small result, typically used as preparation for a
proposition or theorem.

• Corollaries. A corollary is a result that follows easily from some other
result, usually the last one stated. It might follow from the earlier result
in such an obvious way that no proof is given at all; or if a proof is given,
it is usually very short.

For instance, you might see two lemmas followed by a proposition, then a the-
orem, then a corollary. From this, you can deduce that the theorem and its
corollary are the high point of the section—the dramatic climax—with the lem-
mas and proposition mainly acting as preparation.

Whether to call a result a theorem, proposition, lemma or corollary is a
matter of judgement. There are no hard and fast rules.
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A final tip for knowing what’s important: listen for what your lecturers say
about this, and write it down! If your lecturer spends five minutes in a class
raving about how amazing and important the spectral theorem is, then at the
very least pick up your pen and decorate your printout with stars etc. around
the spectral theorem, and preferably jot down in the margin why it’s so amazing
and important.

How to write mathematics

There’s not much point being a brilliant mathematician if you can’t communi-
cate your mathematics to other people. Part of what you’ll learn in your degree
is to write mathematics. We take this seriously, and reward it with marks in
homework and exams.

Writing mathematics is different from doing mathematics. It is also different
from writing ordinary English. It’s a skill that no one is born with. You’ll keep
learning how to write mathematics for as long as you keep doing mathematics,
and we’ll help you in this throughout your degree.

The overarching principle is:

Have mercy on the reader.

Always remember: you’re writing for someone else, not yourself.
Here are some specific tips.

• Use words. You don’t need a lot of words to write mathematics clearly,
and you shouldn’t waffle. But you do need some words.

• Write in sentences. You’re writing English: mathematical English, but
English all the same. Use capital letters at the start of sentences, full
stops at the end, and other punctuation in between. If it’s not clear where
one sentence ends and the next begins, your meaning may be ambiguous.

• Use logical symbols (and use them correctly). Every one of your homework
answers should be a logically coherent argument. As well as small words
like so and if, symbols like =⇒ and ⇐⇒ are essential.

Remember that these symbols have precise meanings (explained in the
next section). Some students are in the habit of scattering the symbol →
around their work as a kind of all-purpose connector. This symbol has
at least two meanings in mathematics: convergence (as in ‘xn → 1 as
n → ∞’) and function notation (as in ‘a function f : R → R’). If you’re
not using it with one of those two meanings, you’re probably not using it
right. If you mean =⇒, write =⇒!

• Connect up your equations. If someone asked you to solve the equation
2x + 7 = 15 out loud, you wouldn’t say ‘2x + 7 = 15 2x = 8 x = 4’.
Instead, you’d say something like ‘2x + 7 = 15, so 2x = 8, so x = 4’.
That way, you’re telling the listener how the equations are connected up
logically: what implies what.
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For exactly the same reason, if you were asked to solve the equation in
writing, you shouldn’t write

2x+ 7 = 15

2x = 8

x = 4.

Instead, you should write something like

2x+ 7 = 15

so 2x = 8

so x = 4.

Alternatively, you might use =⇒ in place of ‘so’; or maybe ⇐⇒ would
be more appropriate, depending on the context. The ‘Logic’ section below
goes into detail about which symbol or word you should use.

Your answers should be logical arguments, not disconnected lists of equa-
tions. Small words and symbols like so, i.e. (‘that is’), iff, ∴ , =⇒ and
⇐⇒ can be used to turn a disjointed list of equations into a watertight
chain of reasoning.

• Work in rough first. When you’re doing homework, you’ll find it really
frees up your thinking if you begin by doing everything in rough. First,
while you’re solving the problem, write down your thoughts in whatever
way comes naturally. Then, once it’s solved, write out the argument
properly, this time with your attention on clear communication. That
way, you don’t have to concentrate on two different tasks at once.

• Write left-to-right, top-to-bottom. This sounds obvious. . . but you’d be
surprised how many people don’t do it! Some people tend to write their
thoughts all over the page: in the right-hand margin, in the middle, wher-
ever. This creates at least two problems. First, the reader doesn’t know
what order to read it in. Second, if something’s written way over on the
right, is it actually intended to be read, or is it just rough work? (If
it’s rough work, best to write it only on rough paper, not on your final
hand-in.)

• Don’t write the conclusion first. Many mathematics questions ask you to
prove something. If the question says ‘Prove X = Y ’, don’t begin your
answer by writing ‘X = Y ’. You don’t know yet that X = Y . That’s
meant to be the end point of your argument, not the beginning!

There’s a natural tendency to write down the statement to be proved. Do
it in rough if you want, but I see no reason to do in your final draft. Or if
you must, always write ‘Claim:’ beforehand, to make clear that you’re not
making the mistake of assuming the statement that you’ve been asked to
prove.

• Define every letter you introduce. This is probably the most common error
I see. The golden rule is:
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If you use a letter that isn’t in the question, you have to define it.

Just about the only exceptions are π, e and i.

For instance, if the question asks you about the angle between two vectors
u and v, then you might write down the formula u ·v = ‖u‖ ‖v‖ cos θ, but
you need to say that by ‘θ’ you mean the angle between u and v. Never
make the reader guess what you mean: tell them!

Logic

Logic is as essential to a mathematical argument as your skeleton is to your
body. Without it, everything collapses into a mushy heap.

Common logical symbols In the explanations that follow, the letters P and
Q stand for statements that are either true or false.

• ∴ (therefore). Use ‘P ∴ Q’ when you know that P is true and are deducing
that Q is true. For instance, if you are given that x is a real number greater
than 2, you could write:

x > 2

∴ x2 > 4.

• =⇒ (implies). The expression ‘P =⇒ Q’ means ‘P implies Q’ or ‘if P then
Q’. The only way for ‘P =⇒ Q’ to be false is if P is true but Q is false.

The implies sign can be used in situations where we don’t know whether
P is true. For instance, suppose you are given that x is a real number.
Then it’s correct to write ‘If x > 2 then x2 > 4’ or ‘x > 2 =⇒ x2 > 4’.
But it’s not correct to write ‘x > 2, therefore x2 > 4’ or ‘x > 2 ∴ x2 > 4’,
because we don’t know that x is greater than 2.

• ⇐⇒ (if and only if). The expression ‘P ⇐⇒ Q’ means ‘P is true if and
only if Q is true’ or ‘P is equivalent to Q’. It means that P =⇒ Q and
Q =⇒ P . So, P ⇐⇒ Q is true when P and Q are either both true or
both false. For example, when x is a real number, |x| > 2 ⇐⇒ x2 > 4.
Sometimes ‘if and only if’ is abbreviated to ‘iff’.

• Occasionally people use the symbol ∵ (because). I strongly recommend
that you don’t use it. Why? Because every time I’ve seen it used, it has
been used badly, with chains of ∴ and ∵ signs whose logical meaning is
highly ambiguous. Personally, I don’t use either ∴ or ∵ at all.

On page 5, I encouraged you to connect up your equations, and explained
why you shouldn’t write things like

2x+ 7 = 15

2x = 8

x = 4.

7



So, what logical symbols or words should you connect them up with?
It depends on the context. If you know that x satisfies 2x + 7 = 15, you

could use so or =⇒ or ∴ . If you don’t know that x satisfies 2x + 7 = 15, but
merely want to say that if x satisfies 2x + 7 = 15 then x = 4, you should use
=⇒. If you want to say that the statements 2x+7 = 15 and x = 4 are equivalent
(in other words, 2x + 7 = 15 =⇒ x = 4 and x = 4 =⇒ 2x + 7 = 15), then you
should use ⇐⇒ . There’s no all-purpose solution: you always need to think
about what you mean!

Converse and contrapositive The converse of the implication P =⇒ Q is
the implication Q =⇒ P . An implication and its converse are logically indepen-
dent; that is, knowing whether one is true tells you nothing about whether the
other is true.

For instance, suppose we are considering a real number x. Then the impli-
cation ‘x > 2 =⇒ x2 > 4’ is true, but its converse is ‘x2 > 4 =⇒ x > 2’, which
is false (e.g. because (−10)2 > 4 but −10 ≤ 2). So in that case, the original
implication is true but its converse is false. You should be able to think of other
examples where an implication is false but its converse is true, or both are true,
or both are false.

On the other hand, the contrapositive of the implication P =⇒ Q is the
implication (not Q) =⇒ (not P ). Any implication is logically equivalent to its
contrapositive: either both implications are true or both are false.

For instance, the contrapositive of the implication ‘11x−x2 > 24 =⇒ x < 5’
is ‘x ≥ 5 =⇒ 11x − x2 ≤ 24’. These two statements have exactly the same
content. Either both implications are true, or both are false. (In fact, both are
false.) The contrapositive of ‘if it’s Saturday, it’s the weekend’ is ‘if it’s not the
weekend, it’s not Saturday’. (Here, both implications are true.)

The word ‘if ’ in definitions All human languages contain inconsistencies
and exceptions to rules, and that’s true for mathematical language too (although
it’s much more consistent than most). Here’s one inconsistency: in definitions,
the word ‘if’ is sometimes used to mean ‘if and only if’.

This is best illustrated by an example. Here’s the definition of prime number:

An integer n > 1 is prime if it has no factors except 1 and n.

Strictly speaking, the word ‘if’ here should be ‘if and only if’. An integer n is
prime if it has no factors except 1 and n, and only if it it has no factors except
1 and n. That’s what the definition means. Generally, any definition like ‘a
splodge X is purple if . . . ’ really means that a splodge X is defined to be
purple if and only if . . . . Although this is a slight inconsistency of language,
you’ll get used to it very quickly.

Quantifiers In mathematics, we often want to say that something is true for
all x, or alternatively that there exists some x satisfying a certain condition.
The terms in italics here are called ‘quantifiers’.

• Suppose we want to say that the square of a real number is always at least
zero. This is usually phrased as ‘For all x ∈ R, x2 ≥ 0’. We could also
use ‘for every’ or ‘for each’ instead of ‘for all’. Or we could use the symbol
∀, which means ‘for all’, so that the statement becomes ‘∀x ∈ R, x2 ≥ 0’.
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To prove a statement beginning with the words ‘For all x’, you have to
show that it is true for every x. It’s not enough to give just one or two
values of x for which it’s true.

On the other hand, to disprove a statement beginning with ‘For all x’, it’s
enough to find just a single value of x for which it fails. This is called
a counterexample to the original (false) statement. For instance, to

disprove the statement ‘for all x ∈ R, x2 ≥ x’, it is enough to point out
that x = 1/2 is a counterexample (since (1/2)2 < 1/2).

• Now suppose we want to say that there is some real number whose square
is 2. This is usually phrased as ‘There exists x ∈ R such that x2 = 2’, or
in symbols, ‘∃x ∈ R : x2 = 2’. An equivalent way of saying this is ‘There
is at least one x ∈ R such that x2 = 2’. (In fact, there are two such x: one
positive, one negative.) Or, we could say ‘x2 = 2 for some x ∈ R’—but
see the warning below about where to put the quantifiers.

To prove a statement beginning with the words ‘There exists x such that’,
you only need to find a single value of x satisfying the given condition.
On the other hand, to disprove it, you have to show that no matter which
value of x you pick, the condition is not satisfied.

Sometimes, you’ll have several quantifiers in a row. For instance, consider
the statement

for all x ∈ R, there exists y ∈ R such that x+ y > 0.

In cases like this, the order of the quantifiers is crucial. This statement is not
the same as

there exists y ∈ R such that for all x ∈ R, x+ y > 0.

In fact, the first statement is true and the second is false. (Have a think about
why.)

Because the order of the quantifiers is crucial, it’s advisable to put them all
at the start of the sentence. For instance, a statement like

for all x ∈ R, x+ y > 0, for some y ∈ R

is ambiguous, because it’s not clear which of the previous two statements it’s
supposed to mean. (In other words, is y allowed to depend on x or not?)

Sometimes it feels more natural to put a quantifier at the end of the sentence,
and I’ll probably do that myself now and then, but make sure when you’re doing
it that you don’t introduce any ambiguity.

Or In ordinary English, the word or sometimes means ‘one or the other but
not both’. (If I hold out a tray of cakes to you and say ‘take a chocolate one
or a lemon one’, and you take one of each, I’ll probably be annoyed.) But in
mathematics, or always allows the possibility that both things are true. For
instance, the set

{n ∈ Z : n is odd or n > 10}
contains the number 21, even though 21 is both odd and greater than 10. We
could say ‘n is odd or n > 10 or both’—but in mathematics we never need to
say ‘or both’, because it’s already contained in the mathematical definition of
or.
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TFAE It’s a fact that for real numbers x,

x ≥ 0 ⇐⇒ there exists y ∈ R such that x = y2 ⇐⇒ |x| = x.

When you have a list of logically equivalent conditions like this, sometimes you’ll
see them presented with the words ‘The following are equivalent’, as in:

Theorem Let x ∈ R. The following are equivalent:

i. x ≥ 0;

ii. there exists y ∈ R such that x = y2;

iii. |x| = x.

This means that each of the three conditions implies the other two.

WLOG This stands for ‘without loss of generality’. It’s used when you’re
about to make an assumption that on the face of it is unjustified, but is actually
harmless (usually for reasons of symmetry). Here’s an example:

Lemma Let m,n ∈ Z. If m is even or n is even then mn is even.

Proof Assume without loss of generality that m is even. Then
m = 2k for some integer k, so mn = 2(kn), so mn is even. �

The point here is that although we’re not given that m is even, we know that
if it’s not then n is even, and in that case we can carry out the same argument
with the roles of m and n reversed. So in assuming that m is even, we haven’t
really lost any ‘generality’—that is, we haven’t made any genuinely unjustified
assumptions.

The symbol � marks the end of a proof.

Proofs

xkcd.com/1724

A proof is a watertight argument. It is a complete chain of reasoning that
leaves no room for doubt. At least, that’s what ‘proof’ means in mathematics.
There are other uses of the word ‘proof’ outside mathematics; for instance,
your toothpaste may proclaim that it’s ‘clinically proven to reduce cavities’,
but that’s not proof in the mathematical sense.
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Much of university-level mathematics is proof-based. When you’re studying
big abstract concepts like infinity and 100-dimensional space, your intuition
easily fails you, so you need rigorous, formal reasoning to stop you from making
mistakes.

Watertight arguments are at the heart of mathematics, but other kinds of
argument can be useful too (as long as you don’t mistake them for proofs). For
instance, imagine you’re on a bus and you think you hear someone saying that
the infinite sum

1

12
+

1

22
+

1

32
+ · · ·

is equal to π2/6. You go home and try to prove it, but you can’t. So you ask
your computer to calculate

1

12
+

1

22
+ · · ·+ 1

10002

and discover that the result is within 0.001 of π2/6. Is that a proof that what
you overheard was correct? No. Is it reasonable evidence that it was probably
correct? Yes. Will this kind of reasoning be used in this course? No. Is this
kind of reasoning useful in other parts of mathematics? In some cases, yes.

Reading proofs In this course, you’ll be reading a lot of proofs. But why
should you read them? There are lots of reasons:

• Because a good proof explains why the result is true.

• Because it demonstrates that the result is correct. Authority counts for
nothing in mathematics: just because your lecturer says something or it’s
printed in a book, doesn’t mean it’s true! You should always be sceptical.

• Because if you don’t read the proof of a theorem, you’re less likely to
understand the statement of the theorem. It’s too easy to read a theorem,
say to yourself ‘yeah yeah, I believe that’, and move on, missing the point.
But working through the proof really forces you to understand what the
theorem says.

• Because it shows you which previous results are needed in order to prove
the result at hand. In other words, it shows you what depends on what.
Sometimes you’ll read a lemma and think ‘why did they bother stating
that?’ It might only be half a semester later, when that lemma plays a
crucial part in the proof of some big theorem, that you’ll see the point.

• Because it shows you how to reason about whatever subject you’re learn-
ing. So, it will help you think up your own proofs, as you’ll have to do in
the homework, workshops and exams.

• Because each proof is a demonstration of how to write mathematics. It’s
something for you to imitate to improve your writing style.

That’s why you should read proofs. But how should you read them?

• I already recommended on page 3 that before you read a proof, you should
cover it up and try to prove the result yourself.

11



• For longer proofs—say, half a page or more—it’s well worth trying to
reduce the proof to two or three bullet points. The idea is that if you were
stuck on a desert island and only able to remember those bullet points,
you’d be able to reconstruct the whole proof. This is a really excellent
way of deepening your understanding.

(It’s also a good habit to get into. Your exams this year are open-book,
but in later years they’ll be closed-book, and some of the questions will
ask you to reproduce proofs from the course. The exam hall then becomes
your desert island.)

Occasionally in this course (and others), a theorem will be stated with the
words ‘Proof omitted’. There are various reasons why we do this. Sometimes
there’s no time in the course, sometimes the proof’s too hard, sometimes it’s
just tedious, and sometimes it would require too much of a digression.

Thinking up your own proofs In the step up from school to university
mathematics, a big challenge is learning to think up your own proofs. Lots of
people find this hard. Here are my tips:

• Read your notes thoroughly. For homework questions that require you to
calculate something, you might be able to manage by just dipping into the
notes, finding a similar example, and imitating it. But for questions that
ask you to prove something, you often need to have read and understood
your notes—including the proofs!—from the beginning. There really is no
substitute for this.

• Make sure you understand all the relevant definitions. If you’re asked to
prove something about the nullity of a linear transformation, and you’re
not quite sure of the definition of nullity, your chances of being able to
produce a correct proof are very low. So, take the time to go back and
absorb those definitions. Once more: definitions are key!

• To repeat myself again: work in rough first. This frees your mind.

• Begin by writing down what you know. Many questions are of the form
‘assuming P , prove Q’. In rough, write down P at the top of the page—
including all the relevant definitions. Write down Q at the bottom of the
page—including all the relevant definitions. Then ask yourself how to fill
in the gap. You might be surprised how often this last stage is really easy.

• Draw a picture. Not enough students do this! Pictures are helpful in
almost all parts of mathematics, definitely including this course.

• If stuck, try an example. For instance, if you’re asked to prove something
about n× n matrices, try it for 2× 2 or 3× 3 (or even 1× 1) matrices. If
you succeed, it will usually give you a big clue as to how to do it in the
general case.

• If stuck, try to prove the opposite. If a question asks you to prove that
Q is true, and you’re struggling, try to prove that Q is false. You won’t
succeed at that either (unless the question is wrong!), but the attempt
might help you to see why Q must in fact be true.
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Checking your proof Congratulations! You’ve finally found a proof. Or at
least, you think you have. . . but how can you be sure?

The next step is to write it out neatly. You worked in rough first, right?
Now’s the time to go through your proof carefully again, writing it out properly
with correct language and logic. Mathematical language is designed deliberately
to make errors stand out, in the same way that lab scientists wear white coats
in order that stains and spills are immediately visible. Make sure you’re using
notation and terminology correctly. If you don’t, it’s all too easy to fool yourself
that you’ve got a correct argument, and as the physicist Richard Feynman said:

The first principle is that you must not fool yourself—and you are
the easiest person to fool.

Finally, ask yourself whether you’re using all the hypotheses (conditions) in
the question. For instance, suppose the question is this:

Let A be a square matrix whose rows are linearly independent. Prove
that the columns of A are linearly independent.

If your proof doesn’t use the hypothesis that A is square, you should be sus-
picious! Maybe the person setting the question put that condition in there by
accident, or to make the question easier, or to trick you. But it could also be a
sign that you’ve made a mistake.

Sets and functions

Sets and functions play a part in almost every area of mathematics, and it’s
important that you’re in control of both the fundamental concepts and the
notation.

Some standard sets Here are some sets that you’ll come across repeatedly.

• ∅, the empty set. (This symbol is different from φ, the Greek letter phi.)

• N, the set of natural numbers. Some people count 0 as a natural num-
ber, so that N = {0, 1, 2, . . .}. Others don’t, so that N = {1, 2, 3, . . .}. In
this course, I plan to avoid the issue by not using the symbol N or the
term ‘natural number’ at all. (But in case I slip up, I mean to include 0.)

• Z = {. . . ,−2,−1, 0, 1, 2, . . .}, the set of integers.

• Q, the set of rational numbers (numbers that can be expressed as m/n
for some integers m and n, with n 6= 0).

• R, the set of real numbers.

• C, the set of complex numbers.

Specifying a set To specify a finite set, you can simply list its elements:
{1, 3, 5}. This doesn’t work so well for infinite sets, but instead we can use
notation such as

A = {a ∈ Z : a2 − a ≥ 6} or B = {t2 : t ∈ R}.

13



Elements and subsets There is a difference between ∈ (‘is an element of’)
and ⊆ (‘is a subset of’, which some people write as ⊂). The statement ‘x ∈ Y ’
means that x is an element of Y , but the statement ‘X ⊆ Y ’ means that every
element of X is an element of Y .

For instance, 2 is an element of the set B = {t2 : t ∈ R}, because there
exists some t ∈ R such that t2 = 2. But 2 is not a subset of B: that doesn’t
even make sense, since 2 is not a set at all. On the other hand, {2} is a subset
of B, because every element of {2} is an element of B. Indeed, {2} only has
one element, 2 itself, so the statement that {2} ⊆ B is equivalent to the true
statement that 2 ∈ B.

The word contains is used in two different ways. Sometimes people say ‘Y
contains x’ to mean that x ∈ Y , and sometimes people say ‘Y contains X’ to
mean that X ⊆ Y . It’s not really ambiguous, since the context always makes it
clear which is intended.

How do you prove that two subsets are equal? Specifically, suppose we have
two subsets A and B of a set X, and we want to prove that A = B. A useful
strategy is to first prove that A ⊆ B, then prove that B ⊆ A. This means that
every element of A is an element of B and vice versa, and so A and B are equal.
If you’re going to use this strategy, your argument must have two parts. The
first part looks like this:

Let a ∈ A. . . . [argument goes here] . . . So a ∈ B. Hence A ⊆ B.

The second part looks like this:

Let b ∈ B. . . . [argument goes here] . . . So b ∈ A. Hence B ⊆ A.

Then you conclude that A = B. We’ll see some examples of this strategy later.

New sets from old Given subsets A and B of a set X, we can form several
new subsets of X:

• The intersection A ∩B = {x ∈ X : x ∈ A and x ∈ B}.

• The union A ∪ B = {x ∈ X : x ∈ A or x ∈ B}. Remember from page 9
that the word ‘or’ in mathematics always permits the possibility that both
things are true, so A ∩B ⊆ A ∪B.

• The complement A \B = {x ∈ X : x ∈ A but x 6∈ B}. Note that this is
defined whether or not B is a subset of A.

Functions, domains and codomains Here’s the fundamental definition. A
function (or mapping) consists of three things:

• a set A, called the domain of the function;

• another set B, called the codomain of the function; and

• a rule f that assigns to each element a ∈ A an element f(a) ∈ B.

We write
f : A→ B

to mean that f is a function with domain A and codomain B.
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For instance, there is a function f : R→ R given by f(a) = a2 (a ∈ R). Here
the domain is R and the codomain is also R. Different elements of the domain
can be mapped to the same element of the codomain (e.g. f(−3) = f(3)). Also,
some elements of the codomain may not have anything mapping to them at all
(e.g. there is no a in the domain such that f(a) = −1). However, f assigns to
each element of the domain exactly one element of the codomain. There is no
function g : R→ R defined by ‘g(x) = ±x’, for instance.

The following point tends not to be emphasized in school mathematics, but
is crucial at university level:

The domain and codomain are part of the function.

For example, there are functions

f : R→ R, g : R→ C, h : C→ C

defined by

f(x) = x2 (x ∈ R), g(x) = x2 (x ∈ R), h(x) = x2 (x ∈ C).

Although f , g and h are all given by the same formula, they are different
functions. In order for two functions to be equal, they must have the same
domain and the same codomain, as well as having the same effect on elements.
For instance, f 6= g because f and g have different codomains.

For similar reasons, if someone says to you ‘define a function F by F (x) = x2’
then they have not, in fact, defined a function, because they have not specified
a domain or a codomain.

Two types of arrow When we have a function f : A → B, we sometimes
write f : a 7→ b (or just a 7→ b) to mean that f(a) = b. For instance, instead of
writing ‘define a function f : Z → Q by f(n) = n2/2 (n ∈ Z)’, we might write
‘define

f : Z → Q
n 7→ n2/2

(n ∈ Z)’. But notice that→ and 7→ are different symbols. Don’t get them mixed
up! The → arrow goes between sets; the 7→ arrow goes between elements. For
example, ‘n→ n2/2’ is wrong.

Composition and identities Suppose we have functions f : A → B and
g : B → C. Then we can feed the output of f into the input of g to make a new
function g ◦ f : A→ C:

A

g◦f

99
f //B

g //C

This new function g ◦ f is given by

(g ◦ f)(a) = g(f(a))

(a ∈ A), and is called the composite of g and f .
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For any set A, there is a function 1A : A→ A, called the identity on A (and
sometimes written as idA). It is given by

1A(a) = a

(a ∈ A). In other words, it does nothing at all! You might wonder what use
this could possibly have. Thousands of years ago, people wondered what use
the number zero could possibly have—and in fact, there was serious resistance
to calling it a number at all. But both things turn out to be quite useful.

Injective, surjective and bijective functions Let A and B be sets. A
function f : A→ B is:

• injective (or one-to-one) if for each b ∈ B, there is at most one a ∈ A
such that f(a) = b;

• surjective (or onto) if for each b ∈ B, there is at least one a ∈ A such
that f(a) = b;

• bijective (or a one-to-one correspondence) if for each b ∈ B, there is
exactly one a ∈ A such that f(a) = b (or equivalently if f is both injective
and surjective).

For example, the function f : {2, 3} → {1, . . . , 10} defined by f(a) = a2 is
injective, because for each b ∈ {1, . . . , 10}, the equation a2 = b has at most one
solution a belonging to the set {2, 3}. (There is exactly one solution if b = 4
or b = 9, and there are none otherwise.) However, f is not surjective, because
there is no a ∈ {2, 3} such that a2 = 1, for instance.

The function g : {−2, 2} → {4} defined by g(a) = a2 is surjective, because
the only element of the codomain is 4, and (−2)2 = 4. (Also 22 = 4, but to prove
surjectivity we only need to find one element a of {−2, 2} such that a2 = 4.)
However, g is not injective, because (−2)2 = 22 and −2 6= 2.

The function h : R→ R defined by h(a) = a3 is bijective, because every real
number has exactly one real cube root.

Inverse functions Let A and B be sets and let f : A→ B be a function. If f
is bijective then there is a unique function f−1 : B → A such that f−1 ◦ f = 1A
and f ◦ f−1 = 1B . This function f−1 is called the inverse of f . Conversely, if
f has an inverse then f is bijective.

The words ‘there is a unique . . . ’ mean ‘there is one and only one . . . ’.
So I am saying that if f is bijective then there is exactly one function g : B → A
such that g ◦ f = 1A and f ◦ g = 1B , and I am writing this function g as f−1.

The Greek alphabet

Mathematicians like to use Greek letters as well as English letters, so you’ll
need to learn them sooner or later. The table below shows the Greek alphabet,
along with the name of each letter and how the name is pronounced by (British)
mathematicians.
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To any native Greek speakers, apologies for what we have done to your
language. How we say your letters is not how you say them. But if you want to
make yourself understood, I’m afraid you’ll have to do as we do.

Lower Upper Name Pronunciation
case case
α alpha AL-fa
β beta BEE-ta
γ Γ gamma GAM-ma
δ ∆ delta DEL-ta
ε epsilon EP-si-lon
ζ zeta ZEE-ta
η eta EE-ta
θ Θ theta THEE-ta (soft th, as in think)
ι iota eye-OH-ta
κ kappa KAP-pa
λ Λ lambda LAM-da
µ mu myoo (rhymes with few)
ν nu nyoo (rhymes with few)
ξ Ξ xi ksy (rhymes with pie)
o omicron never used in mathematics
π Π pi pie
ρ rho roe (rhymes with go)
σ Σ sigma SIG-ma
τ tau rhymes with now
υ upsilon almost never used in mathematics
φ Φ phi fy (rhymes with pie)
χ chi ky (rhymes with pie)
ψ Ψ psi psy (rhymes with pie); the p is pronounced
ω Ω omega OH-me-ga

Many uppercase Greek letters look like uppercase English letters. For example,
an uppercase α is A. These ones are not used in mathematics, or rather, are
interpreted as English rather than Greek letters. For that reason, they are not
shown in the table.
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Chapter A

Background

This chapter and the previous one are to be read before the lecture of Monday,
24 September 2018

This is a course on linear algebra. It is about the interplay between geome-
try—the study of space and position—and algebra—the study of symbolic ex-
pressions. Geometry gives us intuition and lets us harness our visual sense.
Algebra gives us certainty. We can often reduce hard-to-visualize geometric sit-
uations to simple algebraic calculations, and we can often understand algebraic
constructions by viewing them geometrically. The two ways of thinking are
complementary and mutually beneficial.

What is linear algebra? From the geometric viewpoint, ‘linear’ means that
we’re concerned with straight lines, planes, and so on: flat shapes, not curved
ones. From the algebraic viewpoint, it means that we will mostly encounter
expressions such as 2x+ 3y, not 2x2 + 3y3 or ex sin y.

This chapter collects together various pieces of background material that
we will need later in the course. Mostly it is about vectors and matrices (Sec-
tions A2–A5), including a section on the dot and cross products (Section A3)
that you may find useful if you are taking Several Variable Calculus and Differ-
ential Equations. There is also some background on complex numbers and the
fundamental theorem of algebra (Section A6). But first of all, we meet some
very useful notation for adding things up.

A1 Summation notation

Suppose we have numbers a1, a2, . . . , an and we want to consider their sum. We
could of course write it as

a1 + a2 + · · ·+ an,

but it is often convenient to write it instead as
∑n
i=1 ai. Here the letter i is a

‘dummy variable’, which means that you could use any other letter (j, q, Z, . . .)
and it would make no difference. Thus,

n∑
i=1

ai =

n∑
j=1

aj =

n∑
q=1

aq =

n∑
Z=1

aZ = a1 + a2 + · · ·+ an.
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This is very similar to the fact that
∫ b
a
f(t) dt =

∫ b
a
f(x) dx =

∫ b
a
f(q) dq = · · ·

(and indeed,
∫

can be thought of as a continuous version of
∑

).
I said that it makes no difference which letter you use, but that’s not quite

true: you need to be very careful about re-using letters that you’ve already used
elsewhere. Certainly you shouldn’t write

∑n
n=1 an, because then you’re using n

to mean two different things. But there are some more subtle cases.
For example, if you’re given numbers a1, a2, . . . , an and b1, b2, . . . , bn, is it

safe to write the sum of all of them as
n∑
i=1

ai +

n∑
i=1

bi ?

Yes, and it means

a1 + a2 + · · ·+ an + b1 + b2 + · · ·+ bn.

If you’re not comfortable with this notation, you could clarify it by inserting
some brackets: ( n∑

i=1

ai

)
+

( n∑
i=1

bi

)
.

Or you could change the second pair of is to js. But it’s OK not to.
Now suppose that you’re given numbers a1, a2, . . . , am and b1, b2, . . . , bn,

where perhaps m 6= n. Is it safe to write

m∑
i=1

ai +

n∑
i=1

bi ?

It’s not wrong, but I’d recommend against doing it. If i runs over 1, 2, . . . ,m in
one place and 1, 2, . . . , n in another, it’s a recipe for confusion. It’s much neater
if you can stick to the convention that throughout an argument, i always runs
over 1, 2, . . . ,m and j always runs over 1, 2, . . . , n, for instance. So in this case,
it would be better to write

m∑
i=1

ai +

n∑
j=1

bj

instead.
The notation

∑n
i=1 ai has some variants. Sometimes we write it as∑

1≤i≤n ai, or
∑
i ai, or

∑n
1 ai, or simply

∑
ai. Some of these forms omit

information that should in principle be included, but they’re safe as long as
there’s no possible misunderstanding in the context.

There’s nothing to stop you putting sums inside other sums. For instance,
if we have a grid of numbers

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

(A:1)

then we can write down the expression

m∑
i=1

n∑
j=1

aij .
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This expression means
∑m
i=1 si, where si =

∑n
j=1 aij for 1 ≤ i ≤ m. Now si is

the sum of the ith row of the grid, so
∑m
i=1 si is

(sum of the 1st row) + (sum of the 2nd row) + · · ·+ (sum of the mth row)

or equivalently

(a11 +a12 + · · ·+a1n) + (a21 +a22 + · · ·+a2n) + · · · + (am1 +am2 + · · ·+amn).

That’s what
∑m
i=1

∑n
j=1 aij means. But the summation notation is much

shorter!
We’ve just seen that

∑m
i=1

∑n
j=1 aij is the sum of all the numbers in the

grid (A:1), taken row by row. But we’d get the same grand total if we added
up the numbers column by column. So,

m∑
i=1

n∑
j=1

aij =

n∑
j=1

m∑
i=1

aij . (A:2)

In words, you can change the order of summation. This is an important principle
of working with sums.

Another important principle is that given numbers a1, a2, . . . , an and
b1, b2, . . . , bn,

n∑
i=1

(ai + bi) =

n∑
i=1

ai +

n∑
i=1

bi. (A:3)

For example,

(a1 + b1) + (a2 + b2) + (a3 + b3) = (a1 + a2 + a3) + (b1 + b2 + b3).

And another one is that given numbers a1, . . . , an and c,

n∑
i=1

cai = c

n∑
i=1

ai (A:4)

(e.g. ca1 + ca2 = c(a1 +a2)). For instance, if c =
∑p
k=1 bk for some b1, b2, . . . , bk

then equation (A:4) gives

n∑
i=1

( p∑
k=1

bk

)
ai =

( p∑
k=1

bk

)( n∑
i=1

ai

)
.

It’s worth getting used to summation notation. It might not come naturally
at first, but if you force yourself to use it then eventually it will pay off. So that
you don’t make mistakes while you’re adapting, use this policy:

If in doubt, write it out.

That is, if you’re not sure whether something you’ve done involving
∑

s is valid,
just write it out using + and · · · . That way, you’ll be able to tell whether what
you’ve done is correct.
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A2 Vectors

From a geometric viewpoint, a vector is something with direction and length.
This description might be good enough in 2- and 3-dimensional space, but what
does it mean in higher dimensions? What are higher dimensions?

Let n ≥ 0. For us, an n-dimensional vector is simply a list of n real numbers
x1, x2, . . . , xn, which we write in a column:

x1
x2
...
xn

 .

It saves space if we write

x =


x1
x2
...
xn

 , y =


y1
y2
...
yn

 , (A:5)

and so on. We will use this convention for the whole course. That is,
whenever we have a vector x, I will write its ith entry as xi, and I will not
usually explain that this is what I mean by xi. Similarly, the ith entry of a
vector y will be written as yi, the kth entry of a vector u will be written as uk,
and so on.

Remark A2.1 It is standard to use bold typeface for vectors. But in handwrit-
ing, it’s hard to write bold symbols like x, so we indicate a vector by underlining
instead: x. The point of this convention is to make sure we don’t get vectors
confused with scalars (elements of R).

So don’t forget: in your work, always underline vectors.

The set of all n-dimensional vectors is called Rn. Often elements of Rn are
written in the horizontal notation

(x1, x2, . . . , xn)

instead of as a column. It makes no real difference which notation one uses,
but in this course we are going to use column notation. The elements of Rn are
sometimes called ‘vectors’, sometimes ‘points’, and sometimes just ‘elements’.

What does Rn mean? I probably can’t visualize R10 much better than you.
It’s just the set whose elements are lists x1, x2, . . . , x10 of ten real numbers. For
instance, suppose I’m interested in foot shapes, and I do a survey of residents of
Edinburgh, recording for each person the length in millimetres of each of their
toes. That means that for each person surveyed, I have an element of R10: a
10-dimensional vector. There’s no deep meaning; it’s just a list of numbers.

When you tell non-mathematicians that you’re studying spaces of arbitrarily
high dimension, they sometimes ask ‘If time is the fourth dimension, what is
the fifth?’ If anyone asks you this, you should reply ‘It’s the length of your left
big toe’.
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x− y
x
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Figure A.1: Algebraic operations on vectors: (i) addition, (ii) scalar multiplica-
tion, and (iii) subtraction

When are two vectors equal? Again, there is no mystery or deep meaning.
Simply, the rule is that for x,y ∈ Rn,

x = y ⇐⇒ xi = yi for all i ∈ {1, . . . , n}.

Note that if x ∈ Rn and y ∈ Rm then we can’t possibly have x = y unless
n = m. When n 6= m, it doesn’t even make sense to ask whether x = y.

New vectors from old

Any two vectors x,y ∈ Rn can be added together to get a third vector x + y ∈
Rn, defined like this:

x + y =


x1 + y1
x2 + y2

...
xn + yn

 .

Any vector x in Rn can be multiplied by any scalar a ∈ R to get another vector
ax ∈ Rn, defined by

ax =


ax1
ax2

...
axn

 .

One especially important vector in Rn is the zero vector, defined by

0 =


0
0
...
0

 .

The geometric interpretations of addition and scalar multiplication are indicated
in Figure A.1.

Now here are some properties of addition and scalar multiplication of vectors.

Lemma A2.2 Let x,y, z ∈ Rn and a, b ∈ R. Then:

i. (x + y) + z = x + (y + z);

22



ii. x + y = y + x;

iii. x + 0 = x;

iv. a(bx) = (ab)x;

v. 1x = x;

vi. a(x + y) = ax + ay;

vii. (a+ b)x = ax + bx;

viii. 0x = 0.

Proof This is a series of routine checks using the definitions. I will just do
part (vi) and leave the rest to you. You should do a few of them, until you’re
confident that you could do them all.

For (vi), we have

a(x + y) = a



x1
x2
...
xn

+


y1
y2
...
yn


 by the convention introduced in (A:5)

= a


x1 + y1
x2 + y2

...
xn + yn

 by definition of vector addition

=


a(x1 + y1)
a(x2 + y2)

...
a(xn + yn)

 by definition of scalar multipliciation

=


ax1 + ay1
ax2 + ay2

...
axn + ayn

 since a(p+ q) = ap+ aq for all p, q ∈ R

=


ax1
ax2

...
axn

+


ay1
ay2

...
ayn

 by definition of vector addition

= a


x1
x2
...
xn

+ a


y1
y2
...
yn

 by definition of scalar multiplication

= ax + ay,

as required. �

We write (−1)x as −x; it is the vector whose ith entry is −xi, and it satisfies
−x + x = 0. As you’d guess, we write x + (−y) as x− y. Figure A.1(iii) shows
an example of subtraction of vectors.
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Distance

Pythagoras’s theorem tells us that in the plane R2, the distance between the

origin

(
0
0

)
and another point

(
x1
x2

)
is
√
x21 + x22. Put another way, this is the

length of the vector x =

(
x1
x2

)
. Similarly, you may be familiar with the fact

that in R3, the distance between

0
0
0

 and

x1x2
x3

 is
√
x21 + x22 + x23. So when

n is 2 or 3, the length of a vector x ∈ Rn is√√√√ n∑
i=1

x2i . (A:6)

That’s fine for two and three dimensions, but what is the length of a 248-
dimensional vector? Rather than try to develop our intuition about R248, we
simply define it by the formula above. That is:

Definition A2.3 Let n ≥ 0. The length of a vector x ∈ Rn is

‖x‖ =

√√√√ n∑
i=1

x2i . (A:7)

(Some people write |x| rather than ‖x‖. It doesn’t matter which we use; it’s
just a matter of convention.)

Let’s pause for a moment and reflect on what we just did. We took a
geometric concept, length, that we knew about in low dimensions (two and
three) but not in higher dimensions. We noted that in low dimensions, the
geometric concept has an algebraic formulation (equation (A:6)). We noted
that the algebraic formulation could be generalized in an obvious way to higher
dimensions. And we then used that as our definition of the concept in higher
dimensions. We’ll see this same pattern over and over again in this course, where
we generalize a geometric concept from low to high dimensions by turning it into
a piece of algebra.

We’ve considered distance between the origin and any other point of Rn.
More generally, the distance between two points x,y ∈ Rn is defined to be
‖y − x‖. For instance, if n = 10 and x and y represent the toe-lengths of two
people (as above), then the smaller ‖y−x‖ is, the more similar those two people
are in terms of the lengths of their toes.

Lemma A2.4 Let n ≥ 0, let x,y ∈ Rn, and let a ∈ R. Then:

i. ‖x‖ ≥ 0, with equality if and only if x = 0;

ii. ‖x− y‖ ≥ 0, with equality if and only if x = y;

iii. ‖ax‖ = |a| ‖x‖;

iv. ‖y − x‖ = ‖x− y‖.
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Remark A2.5 Before I give you the proof, I need to explain the term
with equality if and only if. Part (i) is stating two things: first, that
‖x‖ ≥ 0 for all x, and second, that ‖x‖ = 0 if and only if x = 0. And similarly
for part (ii).

Sometimes, when we’re talking about an inequality p ≥ q, we say
‘equality holds’ to mean that p = q.

Proof of Lemma A2.4 For (i), ‖x‖ is defined as the square root of the non-
negative real number

∑
i x

2
i , and the square root of a nonnegative real always

means the nonnegative square root, so ‖x‖ ≥ 0. Now

‖x‖ = 0 ⇐⇒

√√√√ n∑
i=1

x2i = 0

⇐⇒
n∑
i=1

x2i = 0

⇐⇒ x2i = 0 for all i ∈ {1, . . . , n} (since x2i ≥ 0 for each i)

⇐⇒ xi = 0 for all i ∈ {1, . . . , n}
⇐⇒ x = 0.

So ‖x‖ = 0 ⇐⇒ x = 0, as claimed.
For (ii), simply replace x by x− y in (i).
For (iii), we have

‖ax‖ =

√√√√ n∑
i=1

(axi)2 =

√√√√ n∑
i=1

a2x2i = |a|

√√√√ n∑
i=1

x2i = |a| ‖x‖.

(Here we’ve been careful not to fall into a trap:
√
a2 is |a|, not a!)

Finally, (iv) follows from (iii) by taking a = −1 and replacing x by x− y.�

A3 The dot and cross products

The dot product

Any two vectors x,y ∈ Rn have a dot product or scalar product x · y ∈ R,
defined by

x · y =

n∑
i=1

xiyi.

Note that x · y is a scalar, not a vector—hence the name ‘scalar product’.
The dot product is very important in mathematics, but it’s a little bit subtle.

It doesn’t directly correspond to a geometric concept such as length or angle,
although it’s closely related to both. But you can write the length of any vector
in terms of the dot product, as part (v) of the following lemma says.

Lemma A3.1 Let x,y, z ∈ Rn and a ∈ R. Then:

i. x · y = y · x;
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ii. x · (y + z) = x · y + x · z;

iii. x · 0 = 0;

iv. x · (ay) = a(x · y);

v. ‖x‖ =
√

x · x.

Proof Again, these are routine checks using the definitions. I will do part (ii)
and leave the rest to you.

For (ii), first note that both sides of the equation are scalars, so the equation
does make sense. (Reminder: it is inconceivable that a vector could be equal to
a scalar, or to a vector of different dimension. You should constantly keep your
eye on this kind of thing.) Write w = y + z. Then

x · (y + z) = x ·w by definition of w

=

n∑
i=1

xiwi by definition of ·

=

n∑
i=1

xi(yi + zi) by definition of vector addition

=

n∑
i=1

(xiyi + xizi) since p(q + r) = pq + pr for all p, q, r ∈ R

=

n∑
i=1

xiyi +

n∑
i=1

xizi by equation (A:3)

= x · y + x · z by definition of ·,

as required. �

This lemma shows that in many ways, the dot product behaves like ordinary
multiplication of real numbers. But the big difference is that x · y is a different
type of thing than x and y: it’s a scalar, whereas x and y are vectors. And
multiple dot products such as ‘x · y · z’ simply do not make sense.

You may have encountered the fact that whenever x and y are vectors in R2

or R3,
x · y = ‖x‖ ‖y‖ cos θ

where θ is the angle between x and y. Since | cos θ| ≤ 1 for all θ, it follows that

|x · y| ≤ ‖x‖ ‖y‖ (A:8)

for all x and y in R2 or R3. (The argument above only applies to nonzero
vectors, but it’s also obviously true if x or y is 0.)

The inequality (A:8) turns out to be very important, so let’s think about
it further. When does equality hold? (This is always a good question to ask,
whenever you meet an inequality.) That is, when is |x · y| equal to ‖x‖ ‖y‖?
Certainly equality holds if x = 0 or y = 0. Assuming now that neither x nor y
is 0, equality holds in (A:8) if and only if | cos θ| = 1, or equivalently cos θ = ±1.
This means that the angle between x and y is 0 or π. So in summary: equality
holds if and only if the points 0, x and y are collinear (all lie on some straight
line).

26



We now show that the inequality (A:8), and the condition for when equality
holds, generalize without change from dimensions 2 and 3 to all higher dimen-
sions:

Lemma A3.2 (Cauchy–Schwarz inequality) For all x,y ∈ Rn,

|x · y| ≤ ‖x‖ ‖y‖

with equality if and only if the points 0, x and y are collinear.

Proof If x = 0 or y = 0 then both sides of the inequality are 0 and the points
0, x and y are collinear. Now assume that x 6= 0 6= y.

The points 0, x and y are collinear if and only if x = ay for some a ∈ R. If
x = ay then

x · y = ay · y = a‖y‖2,

and so a = x · y/‖y‖2. Hence 0, x and y are collinear if and only if

x =
x · y
‖y‖2

y. (A:9)

We don’t know whether 0, x and y are collinear, but in any case, we can consider
the distance between the left- and right-hand sides of (A:9). We have

0 ≤
∥∥∥x− x · y

‖y‖2
y
∥∥∥2

=
(
x− x · y
‖y‖2

y
)
·
(
x− x · y
‖y‖2

y
)

= ‖x‖2 − 2
(x · y)2

‖y‖2
+

(x · y)2

‖y‖2

=
1

‖y‖2
(
‖x‖2 ‖y‖2 − (x · y)2

)
,

using Lemmas A2.4 and A3.1. So, rearranging,

(x · y)2 ≤ ‖x‖2 ‖y‖2.

Taking square roots on both sides gives

|x · y| ≤ ‖x‖ ‖y‖,

as required. Equality holds if and only if x − x·y
‖y‖2 y = 0; but we have already

shown that this is equivalent to the condition that 0, x and y are collinear. �

This is a good example of how we can use our knowledge of R2 and R3 to
guess (and then prove!) a fact about Rn for general n.

You may be familiar with the ‘triangle inequality’ in R2. This says that
for any triangle, the length of each side is less than or equal to the sum of
the lengths of the other two sides. (For instance, the distance from Edinburgh
to Glasgow can’t be more than the distance from Edinburgh to Stirling plus
the distance from Stirling to Glasgow.) Now let x,y ∈ R2, and look back at
Figure A.1(i), thinking about the triangle with vertices 0, x and x + y.

• The distance from 0 to x is ‖x− 0‖ = ‖x‖;
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• the distance from x to x + y is ‖(x + y)− x‖ = ‖y‖;

• the distance from 0 to x + y is ‖(x + y)− 0‖ = ‖x + y‖.

So in this case, the triangle inequality states that ‖x+y‖ ≤ ‖x‖+‖y‖. We have
a geometrically plausible (although not quite rigorous) argument for why this
should be true in R2, and maybe it’s also clear in R3. But can you really claim
that it’s clearly true in R14382? Maybe not. . . but it is true, by the following
algebraic argument.

Lemma A3.3 (Triangle inequality) Let n ≥ 0. For all x,y ∈ Rn,

‖x + y‖ ≤ ‖x‖+ ‖y‖.

Proof Using the Cauchy–Schwarz inequality,

‖x + y‖2 = (x + y) · (x + y)

= ‖x‖2 + 2x · y + ‖y‖2

≤ ‖x‖2 + 2|x · y|+ ‖y‖2

≤ ‖x‖2 + 2‖x‖ ‖y‖+ ‖y‖2

=
(
‖x‖+ ‖y‖

)2
.

Taking square roots on both sides gives the result. �

Both this proof and the proof of the Cauchy–Schwarz inequality demonstrate
an important lesson: it’s often easier to work with squares of distances than with
distances themselves, exploiting the fact that you can expand a squared distance
‖v‖2 as a dot product v · v.

Angles What is the angle between two nonzero vectors in Rn? We know what
‘angle’ means when n is 2 or 3, but what does it mean for vectors in R14382?
We don’t even have a definition.

To answer this question, we will again take our inspiration from the 2- and
3-dimensional cases (just like when we defined length in Rn). Recall that when
x and y are nonzero vectors in R2 or R3, with angle θ between them, we have

x · y = ‖x‖ ‖y‖ cos θ.

For nonzero x,y ∈ Rn, where n is arbitrary, we’re going to define the angle
between them to make this equation true. In other words:

Definition A3.4 Let n ≥ 0 and let x,y ∈ Rn be nonzero vectors. The angle
θ between x and y is defined to be

θ = cos−1
x · y
‖x‖ ‖y‖

∈ [0, π]. (A:10)

Here I am using the standard notation [a, b] = {x ∈ R : a ≤ x ≤ b}.
Let’s check that this ‘definition’ of angle really does make sense. The

Cauchy–Schwarz inequality implies that x·y
‖x‖ ‖y‖ ∈ [−1, 1]. Every number in
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[−1, 1] has infinitely many inverse cosines, but only one that belongs to [0, π].
So, the definition does indeed make sense. And it immediately implies that

x · y = ‖x‖ ‖y‖ cos θ

for all nonzero x,y ∈ Rn, extending the pattern we’ve already seen for n = 2
and n = 3.

Example A3.5 Let x =

 √2√
2√
12

 and y =

−√2

−
√

2√
12

. Then x · y = 8 and

‖x‖ = ‖y‖ = 4. Hence the angle θ between x and y is given by

θ = cos−1
8

4 · 4
= cos−1

1

2
= π/3.

Two vectors x,y ∈ Rn are said to be orthogonal if x · y = 0. (Other ways
of saying orthogonal are ‘perpendicular’ and ‘at right angles’.) This happens
exactly when x = 0 or y = 0 or the angle between x and y is π/2.

Lemma A3.6 (Pythagoras) Let x,y ∈ Rn be orthogonal vectors. Then

‖x + y‖2 = ‖x‖2 + ‖y‖2.

(Draw a picture to see why I’ve attributed this result to Pythagoras!)

Proof Using the hypothesis that x · y = 0, we have

‖x + y‖2 = (x + y) · (x + y)

= x · x + 2x · y + y · y
= ‖x‖2 + ‖y‖2,

as required. �

The cross product

Given two vectors x and y in R3, there is usually a unique direction orthogonal
to both of them. (I say ‘usually’ because it’s not unique if 0, x and y happen to
be collinear.) This is geometrically clear, but if I gave you two specific vectors,
in terms of their coordinates, you might not find it so easy to write down another
vector orthogonal to them both. However, the cross product provides a very
easy way of doing exactly that.

Definition A3.7 Let x,y ∈ R3. The cross product or vector product x×
y ∈ R3 is defined by

x× y =

x2y3 − x3y2x3y1 − x1y3
x1y2 − x2y1

 .

As the alternative name suggests, x×y is a vector, not a scalar (unlike the dot
product). Note also that the cross product is only defined for three-dimensional
vectors, not in Rn for arbitrary n (unlike the dot product). In this course, three-
dimensional space plays no special role, so we’ll hardly use the cross product at
all. However, you’ll need it for other courses.

The last part of the following lemma states that x× y is indeed orthogonal
to x and y. The other parts state other basic facts about the cross product.
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Lemma A3.8 Let x,y, z ∈ R3 and a ∈ R. Then:

i. x× y = −(y × x);

ii. x× x = 0;

iii. x× (y + z) = (x× y) + (x× z);

iv. x× (ay) = a(x× y);

v. (x× y) · x = 0 = (x× y) · y.

Proof Again, these are routine algebraic checks that you should try for yourself.
I’ll just prove the first part of (v): (x× y) · x = 0. We have

(x× y) · x =

x2y3 − x3y2x3y1 − x1y3
x1y2 − x2y1

 ·
x1x2
x3


= (x2y3 − x3y2)x1 + (x3y1 − x1y3)x2 + (x1y2 − x2y1)x3

= x1x2y3 − x1x3y2 + x2x3y1 − x1x2y3 + x1x3y2 − x2x3y1
= 0,

as required. �

Example A3.9 As in Example A3.5, let x =

 √2√
2√
12

 and y =

−√2

−
√

2√
12

. Then

x× y =

 √2
√

12 +
√

2
√

12

−
√

12
√

2−
√

2
√

12

−
√

2
√

2 +
√

2
√

2

 =

 2
√

24

−2
√

24
0

 .

And this vector is indeed orthogonal to x and y; that is, its dot product with x
and its dot product with y are both zero, as you can check.

So we know about the direction of x × y. What about its length? The
following result gives the answer.

Lemma A3.10 Let x and y be nonzero vectors in R3. Then

‖x× y‖ = ‖x‖ ‖y‖ sin θ

where θ ∈ [0, π] is the angle between x and y.

Proof We have

‖x× y‖2 + (x · y)2 = (x2y3 − x3y2)2 + (x3y1 − x1y3)2 + (x1y2 − x2y1)2

+ (x1y1 + x2y2 + x3y3)2

= (x21 + x22 + x23)(y21 + y22 + y23)

= ‖x‖2‖y‖2
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where the second equality is a routine calculation. Hence

‖x× y‖2 = ‖x‖2‖y‖2 − (x · y)2

= ‖x‖2‖y‖2 − (‖x‖‖y‖ cos θ)2

=
(
‖x‖‖y‖ sin θ

)2
.

Finally, sin θ ≥ 0 for all θ ∈ [0, π], so taking square roots on both sides gives the
result. �

This is a ‘rabbit-out-of-a-hat’ proof. When a magician pulls a rabbit from
a hat, the audience’s reaction is ‘where did that come from?’. That might also
be your reaction when you read a proof like this. In this case, it’s just a long
algebraic calculation that’s been packaged up in a neat way. Once again, it
exploits the fact that squared distances are easier to work with than actual
distances.

Example A3.11 Let’s verify Lemma A3.10 for the vectors in Example A3.9.
On the one hand,

‖x× y‖ =

∥∥∥∥∥∥
 2
√

24

−2
√

24
0

∥∥∥∥∥∥ =

√
(2
√

24)2 + (2
√

24)2 =
√

2× 22 × 24 =
√

192.

On the other,

‖x‖ ‖y‖ sin θ = 4 · 4 · sin(π/3) = 16 ·
√

3/2 = 8
√

3 =
√

82 × 3 =
√

192

(using the values of ‖x‖, ‖y‖ and θ that we found in Example A3.5). So in this
case, Lemma A3.10 states that

√
192 =

√
192. . . which is true!

A4 Matrices

Take integers m,n ≥ 0. An m×n real matrix consists of a real number aij for
each i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}. We visualize them arranged in a grid
with m rows and n columns:

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

 .

Let us call this matrix A. We refer to aij as the (i, j)-entry of A. Sometimes
we write

A = (aij)1≤i≤m, 1≤j≤n

to mean that A is an m×n matrix with (i, j)-entry called aij . But more often, we
just write A = (aij). This is a little bit ambiguous; brackets in mathematics are
used for multiple purposes! But you’ll see this notation a lot, so it’s important
to get used to it.

Often it’s useful to adopt a different convention, where the (i, j)-entry of a
matrix A is written as Aij , the (i, j)-entry of B is written as Bij , and so on.
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For instance, this would mean that the (i, j)-entry of the matrix (A + B)C is
written as ((A + B)C)ij . (The meaning of (A + B)C will be explained soon.)
Whenever I’m about to use this convention, I’ll say so.

An m-dimensional vector is just an m × 1 matrix. For us, vectors are by
default column vectors, but you can also consider row vectors. By definition,
an n-dimensional row vector is a 1× n matrix.

A 1×1 matrix is just a scalar (a real number). You might argue that a 1×1
matrix is really a scalar with a pair of brackets around it, and you’d be right,
but we won’t worry about the difference!

Since a vector is a special kind of matrix, it’s a little inconsistent that we
write vectors in bold typeface but matrices in ordinary typeface. However, it’s
a common convention and we’ll stick with it.

New matrices from old

There are several algebraic operations on matrices. To define them, I’ll use the
convention that the (i, j)-entry of a matrix M is written as Mij .

• Addition. Given m × n matrices A and B, we define an m × n matrix
A+B by

(A+B)ij = Aij +Bij

(1 ≤ i ≤ m, 1 ≤ j ≤ n). That is, the (i, j)-entry of A+B is the (i, j)-entry
of A plus the (i, j)-entry of B.

Two matrices can only be added if they have the same number of rows
and columns.

• Scalar multiplication. Given an m × n matrix A and a scalar c ∈ R,
we define an m× n matrix cA by

(cA)ij = c ·Aij

(1 ≤ i ≤ m, 1 ≤ j ≤ n). That is, the (i, j)-entry of cA is c times the
(i, j)-entry of A.

• Matrix multiplication. Given an m× n matrix A and an n× p matrix
B, we define an m× p matrix AB by

(AB)ik =

n∑
j=1

AijBjk

(1 ≤ i ≤ m, 1 ≤ k ≤ p). That is, the (i, k)-entry of AB is

Ai1B1k +Ai2B2k + · · ·+AinBnk.

Two matrices can only be multiplied if the number of columns in the first
is equal to the number of rows in the second.

One particularly important matrix is the m × n matrix all of whose entries
are 0. We call this matrix 0, too. Another important matrix is the n × n
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identity matrix

In =


1 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1

 .

When it’s clear which n is meant, we write In as just I.
Since vectors are matrices of a special kind, you can add up vectors of the

same dimension and multiply them by scalars. This is exactly the same as the
addition and scalar multiplication of vectors that we met in the last section.

But matrix multiplication also gives us something new to do with vectors. If
A is an m× n matrix and x is an n-dimensional vector (thought of as an n× 1
matrix), the definition above gives us the matrix product Ax. This is an m× 1
matrix, that is, an m-dimensional vector. It has entries

(Ax)i =

n∑
j=1

Aijxj (A:11)

(for 1 ≤ i ≤ m).
Here’s a crucial point about matrices:

Matrices of different sizes can’t be equal!

By ‘size’ I mean the numbers of rows and columns. For instance, a 3× 2 matrix
stands no chance of being equal to a 2 × 3 matrix, because they have different
sizes.

So if you’re given matrices A and B and asked to prove that they’re equal,
you have to do two things:

• prove that they have the same size;

• prove that they have the same entries.

We’ll see an example of this in the proof of the following lemma, which lists
some fundamental facts about matrix algebra.

Lemma A4.1 i. (A+B) +C = A+ (B+C) for any m×n matrices A, B
and C;

ii. A+B = B +A for any m× n matrices A and B;

iii. A+ 0 = A for any matrix A;

iv. c(A+B) = cA+ cB for any m× n matrices A and B and scalar c:

v. (AB)C = A(BC) for any m × n matrix A, n × p matrix B, and p × q
matrix C;

vi. AIn = A = ImA for any m× n matrix A;

vii. A(B+C) = AB+AC for any m×n matrix A and n× p matrices B and
C;
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viii. (A+B)C = AC +BC for any m×n matrices A and B and n× p matrix
C;

ix. c(AB) = (cA)B = A(cB) for any m× n matrix A, n× p matrix B, and
scalar c.

Proof Again, these are just algebraic checks using the definitions. I’ll prove (v)
as an example, using the convention that the (i, j)-entry of a matrix M is written
as Mij . You should try some others yourself.

To prove that (AB)C = A(BC), we have to show first that the two matrices
have the same size, and second that they have the same entries.

First, A is an m × n matrix and B is an n × p matrix, so AB is an m × p
matrix. Also C is a p× q matrix, so (AB)C is an m× q matrix. On the other
hand, B is n× p and C is p× q, so BC is n× q. Also A is m× n, so A(BC) is
m× q. We have now shown that (AB)C and A(BC) are both m× q matrices,
so they are the same size.

Second, we have to show that the m× q matrices (AB)C and A(BC) have
the same entries. So, let i ∈ {1, . . . ,m} and ` ∈ {1, . . . , q}; we have to show
that ((AB)C)i` = (A(BC))i`. On the one hand,

((AB)C)i` =

p∑
k=1

(AB)ikCk` by definition of matrix multiplication

=

p∑
k=1

( n∑
j=1

AijBjk

)
Ck` by definition of matrix multiplication

=

p∑
k=1

n∑
j=1

AijBjkCk`.

On the other hand,

(A(BC))i` =

n∑
j=1

Aij(BC)j` by definition of matrix multiplication

=

n∑
j=1

Aij

p∑
k=1

BjkCk` by definition of matrix multiplication

=

n∑
j=1

p∑
k=1

AijBjkCk`.

(Reminder: if you’re in doubt about any of these steps, write it out in full using
+ and · · · signs instead of summation notation.) And since we can change the
order of summation, it follows that

((AB)C)i` = (A(BC))i`,

as required. �

Lemma A4.1 is a result about matrices in general, but we can apply it in
the special case where some of the matrices are vectors. For instance, it tells us
that

A(x + y) = Ax +Ay, A(cx) = cAx, (A+B)x = Ax +Bx (A:12)
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whenever A, B, x and y are matrices and vectors of the appropriate sizes, and
c is a scalar.

Warning A4.2 Matrix multiplication is not commutative! That is, it’s not
always true that AB = BA for matrices A and B. For example, you can check
that if

A =

(
1 1
0 0

)
, B =

(
0 0
1 1

)
then AB = A and BA = B, so AB 6= BA. Sometimes, the order that we
do things in matters. Opening a window and sticking your head out is quite
different from sticking your head out of the window then opening it.

In this course, I’ll write e1, e2, . . . , en for the vectors in Rn defined by

e1 =


1
0
0
...
0

 , e2 =


0
1
0
...
0

 , . . . , en =


0
0
0
...
1

 . (A:13)

(Beware that not everyone uses this notation.) I’ll also write

A = (x1|x2| · · · |xn)

to mean that the columns of the matrix A are x1,x2, . . . ,xn. For instance, if A
is an m× n matrix with (i, j)-entry written as Aij , then x1 ∈ Rm is given by

x1 =


A11

A21

...
Am1

 .

Here’s a lemma that will be repeatedly useful later on.

Lemma A4.3 Let A = (x1|x2| · · · |xn) be an m× n matrix. Then:

i. Ay = y1x1 + y2x2 + · · ·+ ynxn for any vector y ∈ Rn;

ii. Aej = xj for any j ∈ {1, . . . , n}; that is, Aej is the jth column of A;

iii. A(y1|y2| · · · |yp) = (Ay1|Ay2| · · · |Ayp) for any y1, . . . ,yp ∈ Rn.

Proof I will prove (i) and (ii), and leave (iii) to you.
For (i), we first have to show that the two sides are the same size. On the

left, A is an m× n matrix and y is an n× 1 matrix, so Ay is an m× 1 matrix,
that is, an m-dimensional vector. On the right, each yj is a scalar and each
xj is an m-dimensional vector, so each yjxj is an m-dimensional vector; hence∑n
j=1 yjxj is an m-dimensional vector too. So both sides are m-dimensional

vectors.
Now we have to check that these two vectors have the same entries. Let

1 ≤ i ≤ m. Then, using equation (A:11) (page 33), the ith entry of Ay is

(Ay)i =

n∑
j=1

Aijyj .

35



On the other hand, the ith entry of x1 is Ai1, so the ith entry of y1x1 is y1Ai1,
and similarly for y2x2, . . . , ynxn. Hence the ith entry of y1x1+y2x2+ · · ·+ynxn
is

y1Ai1 + y2Ai2 + · · ·+ ynAin =

n∑
j=1

Aijyj .

So the ith entries of the two sides are equal, as required.
To prove (ii), just put y = ej in (i). �

A5 Inverse and transpose matrices

Inverses

Definition A5.1 An m × n matrix A is invertible if there exists an n × m
matrix B such that AB = Im and BA = In. It is called singular if it is not
invertible.

In the definition of invertibility, both equations are needed. It’s possible to
find an example of a matrix A such that there does exist a B satisfying AB = I,
but there does not exist a B satisfying BA = I.

Let A be an invertible m× n matrix. Then there can be only one matrix B
such that AB = Im and BA = In, since if B′ is another one then

B = BIm = B(AB′) = (BA)B′ = InB
′ = B′.

We call this matrix B the inverse of A, and write B as A−1.

Examples A5.2 i. The matrix

(
1 −2
−3 5

)
is invertible, with inverse(

−5 −2
−3 −1

)
. To prove this, you have to check that(

1 −2
−3 5

)(
−5 −2
−3 −1

)
=

(
1 0
0 1

)
and

(
−5 −2
−3 −1

)(
1 −2
−3 5

)
=

(
1 0
0 1

)
This check can be made quicker by using Theorem A5.3(ii) below.

ii. Take scalars a, b, c 6= 0. Thena 0 0
0 b 0
0 0 c

−1 =

1/a 0 0
0 1/b 0
0 0 1/c

 .

Exercise: check that this is true, as in (i).

iii. The matrix A =

(
1 −2 4
−3 5 6

)
is not invertible. To verify this, you have

to show that there is no matrix B =

b11 b12
b21 b22
b31 b32

 such that AB = I2 and

BA = I3. This can be done by a long and tedious calculation—but also
follows immediately from Theorem A5.3(i) below.
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Neither part of the following theorem is obvious. (If you think it is, try
proving it!) We’ll only prove it later, once we’ve developed some theory that
will make it easy.

Theorem A5.3 i. Every invertible matrix is square. That is, if A is an
invertible m× n matrix then m = n.

ii. Let A and B be n× n matrices. Then AB = In ⇐⇒ BA = In.

Part (ii) is only true for square matrices. For instance, you should be able
to find a 1 × 2 matrix A and a 2 × 1 matrix B with AB = I1 but BA 6= I2.
The truth of part (ii) is not obvious even for 2 × 2 matrices. That is, can you
prove directly that if A and B are 2× 2 matrices such that AB = I, then also
BA = I? If you can do it for 2× 2, can you do it for 3× 3, or, generally, n×n?
I know of no easy way.

Example A5.4 Consider a 2 × 2 matrix A =
(
a b
c d

)
. If ad − bc 6= 0 then A is

invertible and

A−1 =
1

ad− bc

(
d −b
−c a

)
.

Write B for the right-hand side. To check that B really is the inverse of A,
in principle we need to check that AB = I2 and BA = I2. However, Theo-
rem A5.3(ii) means that we only need to check one of these. This is straight-
forward (try it!).

The number ad − bc is called the determinant of A. (Questions: if ad −
bc = 0, is A still invertible? If so, why? If not, why not?) We’ll do more on
determinants later in the course.

Lemma A5.5 i. Let A and B be invertible n × n matrices. Then AB is
also invertible, and (AB)−1 = B−1A−1.

ii. The identity matrix In is invertible, with inverse In.

Proof For (i), we have

(AB)(B−1A−1) = A(BB−1)A−1 = AInA
−1 = AA−1 = In.

Also (B−1A−1)(AB) = In, either by a similar argument or by Theorem A5.3(ii).
So AB is invertible (by definition of invertibility), with inverse B−1A−1 (by
definition of inverse).

Part (ii) follows immediately from the fact that InIn = In, which is a special
case of Lemma A4.1(vi). �

Warning A5.6 In Lemma A5.5(i), note the reversal of order! The inverse of
AB is B−1A−1, not A−1B−1. It’s like this: at the beginning of the day, you
put on your socks and then put on your shoes. At the end of the day, you take
off your shoes and then take off your socks—not the other way round!
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Transposes

The transpose of an m×n matrix A is the n×m matrix AT whose (j, i)-entry
is the (i, j)-entry of A (for 1 ≤ i ≤ m, 1 ≤ j ≤ n). For instance,

(
1 −2 4
−3 5 6

)T
=

 1 −3
−2 5
4 6

 .

So a matrix and its transpose have different sizes, unless the matrix is square.
A square matrix A = (aij) is symmetric if AT = A, that is, aji = aij for

all i and j. It is skew symmetric (or antisymmetric) if AT = −A, that is,
aji = −aij for all i and j. For instance, the first of these matrices is symmetric
and the second is skew symmetric: 4 −7 2

−7 99 12
2 12 −10

 ,

 0 −7 2
7 0 12
−2 −12 0.

 .

The diagonal entries aii of a skew symmetric matrix A = (aij) must all be 0,
since aii = −aii for all i.

We can express the dot product in terms of matrix multiplication and trans-
pose:

Lemma A5.7 Let x,y ∈ Rn. Then x · y = xTy.

Proof The right-hand side is the 1× 1 matrix

(
x1 x2 · · · xn

)

y1
y2
...
yn

 = (x1y1 + x2y2 + · · ·+ xnyn).

But a 1×1 matrix is just a scalar, and the scalar here is exactly the dot product
x · y. �

Here are some further useful properties of transposes.

Lemma A5.8 i. (A+B)T = AT +BT for all m× n matrices A and B;

ii. (cA)T = cAT for every matrix A and scalar c;

iii. (AB)T = BTAT for every m× n matrix A and n× p matrix B.

iv. (AT )T = A

Proof Once again, I will leave most of these to you, just giving you the proof
of the hardest one: in this case, (iii). Again, I will use the convention that the
(i, j)-entry of a matrix M is written as Mij .

First we have to show that the two matrices have the same size. On the
left-hand side, A is an m × n matrix and B is an n × p matrix, so AB is an
m× p matrix, so (AB)T is a p×m matrix. On the right, BT is p× n and AT

is n×m, so BTAT is p×m. So, both sides are p×m matrices.
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Second, we show that the entries of these two p×m matrices are equal. Let
k ∈ {1, . . . , p} and i ∈ {1, . . . ,m}. On the left-hand side,

((AB)T )ki = (AB)ik by definition of transpose

=

n∑
j=1

AijBjk by definition of matrix multiplication.

On the right-hand side,

(BTAT )ki =

n∑
j=1

(BT )kj(A
T )ji by definition of matrix multiplication

=

n∑
j=1

BjkAij by definition of transpose.

So the (k, i)-entries of (AB)T and BTAT are equal, as required. �

Warning A5.9 Just as for inverses, note the reversal of order in (iii): (AB)T

is BTAT , not ATBT . Transpose is not the same as inverse, but in some respects
the two operations behave similarly.

Our final lemma connects these two concepts, transpose and inverse:

Lemma A5.10 Let A be an invertible matrix. Then AT is also invertible, and
(AT )−1 = (A−1)T .

Proof By definition of invertibility and of inverse, it is enough to show that
(A−1)TAT = I and AT (A−1)T = I. For the first, we have

(A−1)TAT = (AA−1)T by Lemma A5.8(iii)

= IT by definition of inverse

= I.

The proof of the second equation is very similar. �

A6 Complex numbers

Almost everything in this course is about the real numbers. However, it’s
an amazing fact—first discovered in 16th century Italy—that some statements
about real numbers are most easily proved using complex numbers. We’ll meet
an example of this phenomenon right at the end of the course. In preparation,
we now gather together some of the most important facts about the complex
numbers.

To obtain C from R, we begin by adjoining to R a new element i with
the property that i2 = −1. Because we want to be able to add and multiply
complex numbers, we also have to throw in elements a + bi for each a, b ∈ R.
Every complex number looks like this. More precisely, for every complex number
z, there are unique real numbers a and b such that z = a+ bi.

We constructed C deliberately so that the equation x2 + 1 = 0, which has
no solution in R, does have a solution in C. We simply invented (or ‘imagined’)
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0

p(0)

Lr, for small r

Lr, for large r

Figure A.2: The proof of the fundamental theorem of algebra, shown for a
polynomial of degree 3

a solution i. But there are lots of other polynomial equations that have no
solution in R, such as x6 + 1 = 0 or 2x4 + x+ 1 = 0. What if we try to perform
the same trick again, expanding C further so that it contain solutions to these
equations too?

The miracle is that we don’t need to. Although C was only designed in order
to contain a solution to x2 + 1 = 0, it actually already contains solutions to
all other polynomial equations! This fact is so miraculous and wonderful
and unexpected that it has a very grand name:

Theorem A6.1 (Fundamental theorem of algebra) Every non-constant
polynomial over C has at least one root in C.

Proof (sketch; non-examinable) There are many known proofs of this theo-
rem, but none is very simple as far as I know. Here is an outline of my favourite.
If you want to know how to make it precise, you should take the 4th year course
Algebraic Topology.

Let p(z) = anz
n+an−1z

n−1+· · ·+a1z+a0, with n ≥ 1 and an 6= 0. Suppose
for a contradiction that p has no root.

For r ≥ 0, write Cr for the circle in the complex plane with centre 0 and
radius r. As z moves one revolution around Cr, p(z) traces out a loop Lr in C.
It cannot pass through 0, since p has no root, but we can ask whether Lr winds
around 0.

(See Figure A.2. Picture a pole sticking up at 0 and the loop Lr as made of
string. The question is whether the string is wound around the pole.)

When r = 0, the loop Lr is constant at p(0), so it does not wind around 0.
When r is small, the whole loop Lr lies close to p(0), so again it does not wind
around 0. As r gradually increases, Lr gradually changes position, and so Lr
cannot wind around 0 for any value of r. (It takes some work to make that step
precise, but the intuitive idea is that if Lr doesn’t wind around 0 and Ls does,
then Lt must actually pass through 0 for some t between r and s, contradicting
our hypothesis.)

However, when r is large, p(z) behaves roughly like its leading term anz
n,

so the loop Lr winds n times round 0. Since n 6= 0, this is a contradiction. �

Corollary A6.2 Let p(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0 be a polynomial
over C. Then

p(z) = an(z − λ1)(z − λ2) · · · (z − λn)
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for some λ1, λ2, . . . , λn ∈ C.

Proof (sketch; non-examinable) This follows by induction from Theo-
rem A6.1. �

This corollary fails if you replace C by R. For example, the polynomial
p(z) = z2 + 1 cannot be written as (z−λ1)(z−λ2) for any real λ1 and λ2, since
if it could be, λ1 and λ2 would be real square roots of −1. You might think
that the complex numbers are harder than the real numbers, but results like
this mean that in some ways, they’re easier.

Coming down from the high of these towering results, we finish by summa-
rizing some of the facts about complex conjugates.

Let z be a complex number. Then z = x + iy for unique x, y ∈ R. The
complex conjugate of z is defined to be z = x − iy. Graphically, complex
conjugation is reflection in the real axis. A complex number z is real if and only
if z = z (that is, z lies on the axis of reflection).

A fundamental feature of complex conjugation is that it preserves addition
and multiplication:

z + w = z + w, z · w = z · w (A:14)

for all z, w ∈ C. You should check these properties yourself if you haven’t done
so before.

Another convenient feature is that the modulus |z| =
√
x2 + y2 of a complex

number z = x+ iy can be expressed in terms of conjugates:

|z| =
√
zz. (A:15)

Geometrically, |z| is the distance between 0 and z. Much as in Lemma A2.4(i),
modulus has the property that |z| ≥ 0 for all z, with |z| = 0 ⇐⇒ z = 0.

Beginners tend to express every complex number in terms of its real and
imaginary parts: z = x+iy. Actually, it’s often most graceful to avoid doing this
and think in terms of conjugates instead, only going to the real and imaginary
parts as a last resort.

Next time: we lay our hands on the slippery concept of dimension.
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Summary of Chapter A

This is for you to fill in.

The most important definitions and ideas in this chapter

The most important results in this chapter

Points I didn’t understand
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Chapter B

Dimension

To be read before the lecture of Monday, 8 October 2018

There is a romantic image of mathematicians as people who spend their time
struggling to solve immensely difficult problems, maybe trying to prove some
conjecture that was made hundreds of years ago, maybe trying to solve some
more recent problem. It’s true that we spend a lot of our time trying to solve
difficult problems, but often the problem is not to find a proof: it’s to find
the right definition of something. There have been countless historical episodes
where finding the right definition has taken decades of work by dozens of people.

What do I mean by the ‘right’ definition? A definition can’t really be right
or wrong, but what I mean here is a definition that is simple and elegant, that
captures the examples that ought to be captured, and that gives rise to useful
theorems. The challenge is to turn vague intuition into precise mathematics.

This chapter is about the quest for the definition of dimension. We all know
roughly what it means for a shape to be 1-, 2- or 3-dimensional, but what does
it mean precisely? And what about dimensions higher than 3?

Consider the shapes in Figure B.1. Shape (i) is obviously 3-dimensional.
Shape (ii) could be interpreted as either a solid or a hollow shape. If it’s solid
(like planet Earth) then it’s 3-dimensional. If it’s hollow (like the surface of
the Earth) then a mathematician would say that it’s 2-dimensional. You might
want to call it 3-dimensional, because it lives in R3, but the reason why it’s
2-dimensional is that any point on the surface of the Earth can be specified by
just 2 coordinates, longitude and latitude.

For similar reasons, the surface in (iii) is said to be 2-dimensional and the
curve in (iv) is 1-dimensional. Shape (v) is called the Koch curve (and if you
glue three of them together to make a star-like shape, what you get is called
the Koch snowflake). Its dimension is (log 4)/(log 3) = 1.261 . . .. Obviously
that can’t be explained in terms of ‘how many coordinates you need in order to
specify a point on it’, as it’s not a whole number. Explaining why its dimension
is (log 4)/(log 3) is not too hard, but since it has nothing to do with linear
algebra, I’ll leave it as a mystery. (You can easily find the answer on the web.)
Roughly speaking, the Koch curve is too wiggly to be 1-dimensional, but not
substantial enough to be 2-dimensional, so its dimension is between 1 and 2.

A great deal can be said about definitions of dimension, far more than would
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(i) (ii) (iii)

(iv) (v)

Figure B.1: Shapes of various dimensions. (Image credits: (i), (ii), (v) Wikime-
dia Commons; (iii) thephysicsmill.com.)

fit into a course of this length even if we studied nothing else. We are going to
restrict ourselves to something very humble. All we will study is the dimension
of flat, linear shapes: lines and planes and their higher-dimensional cousins.

We will use the ‘longitude and latitude’ idea: the dimension of a shape
should be how many numbers you need in order to specify the position of a
point in that shape. But it’s not so obvious how to take the idea of ‘how many
numbers do you need?’ and make it precise. For instance, it was shown over a
century ago that there is a bijection (one-to-one correspondence) between R2

and R. . . which means that two real numbers can be described using just one
real number! Nonetheless, we will find a way.

B1 Subspaces

What things are we going to define the dimension of ? I said just now that it
would be ‘lines and planes and their higher-dimensional cousins’. But what does
that mean, exactly? What things in 100-dimensional space are like lines and
planes in our familiar 3-dimensional space? This section is devoted to answering
these questions.

To make life easier, we’re only going to consider lines, planes, etc. through
the origin. Consider a plane P through the origin in R3 (Figure B.2). As
the figure shows, if we take any two points x and y on the plane P , then
their sum x + y is also on P . (Compare Figure A.1(i).) There is some
jargon for this: one says that P is closed under addition. Also, P is
closed under scalar multiplication, meaning that if we take any point x
on P and any scalar c, then cx is on P too.

So, any plane P through the origin has three properties:

i. 0 ∈ P (obviously!);

ii. P is closed under addition; that is, for all x,y ∈ P , we have x + y ∈ P ;
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P

0
x

y

x + y

cx

Figure B.2: Algebra in a plane P

iii. P is closed under scalar multiplication; that is, for all x ∈ P and c ∈ R,
we have cx ∈ P .

Now consider a line L through the origin in R3 or R2. You should be able to
convince yourself that L, too, has these three properties: it contains 0 and is
closed under addition and scalar multiplication.

You might be able to think of other properties of lines and planes through
the origin in R2 and R3, but it turns out that these three properties alone are
very powerful. We now take these properties and use them as a definition, valid
in all dimensions.

Definition B1.1 A linear subspace of Rn is a subset V of Rn with the fol-
lowing properties:

i. 0 ∈ V ;

ii. for all x,y ∈ V , we have x + y ∈ V ;

iii. for all x ∈ V and c ∈ R, we have cx ∈ V .

In short: a linear subspace of Rn is a subset of Rn containing 0 and closed
under addition and scalar multiplication.

Mathematicians use the word ‘space’ in many ways. For example, in the
next few years you may meet vector spaces, measure spaces, metric spaces, and
topological spaces. Similarly, the word ‘subspace’ is used in many ways. But in
the context of this linear algebra course, we will only be concerned with linear
subspaces, so it is safe if we call them subspaces for short.

Examples B1.2 i. Any plane or line through the origin in R3 is a linear
subspace of R3, and any line through the origin in R2 is a linear subspace
of R2. These were our motivating examples.

ii. {0} is a subspace of Rn (for any n ≥ 0), called the trivial subspace.

iii. Rn is a subspace of Rn (for any n ≥ 0). The subspaces {0} and Rn are not
tremendously interesting, but they satisfy the definition and shouldn’t be
forgotten!

iv. We now know of three kinds of subspace of R2: the trivial subspace {0},
lines through the origin, and R2 itself. In fact, these are the only subspaces
of R2. You can try proving this for yourself now, but it will be easier once
we have developed some technology in the next few sections.
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v. Similarly, there are exactly four kinds of subspace of R3: {0}, lines through
the origin, planes through the origin, and R3 itself.

Here is a rather general way of creating linear subspaces of Rn:

Definition B1.3 Let A be an m× n real matrix. The kernel of A is

ker(A) = {x ∈ Rn : Ax = 0}.

Some people (including Poole) call the kernel the null space.

Lemma B1.4 For any m× n matrix A, the kernel ker(A) is a linear subspace
of Rn.

Proof We have to check that the three conditions of Definition B1.1 are satis-
fied. To do this, we will use some of the algebraic laws in Lemma A4.1.

For condition (i), we have A0 = 0, so 0 ∈ ker(A).
For (ii), if x,y ∈ ker(A) then

A(x + y) = Ax +Ay = 0 + 0 = 0,

so x + y ∈ ker(A).
For (iii), if x ∈ ker(A) and c ∈ R then

A(cx) = c(Ax) = c0 = 0,

so cx ∈ ker(A). �

Example B1.5 Let

A =

(
1 −2 3
−4 5 −6

)
.

This is a 2× 3 matrix, so its kernel is a subspace of R3. It is given by

ker(A) = {x ∈ R3 : Ax = 0}

=


x1x2
x3

 ∈ R3 :

(
x1 − 2x2 + 3x3
−4x1 + 5x2 − 6x3

)
=

(
0
0

)
=


x1x2
x3

 ∈ R3 : x1 − 2x2 + 3x3 = −4x1 + 5x2 − 6x3 = 0

 .

Since ker(A) is a linear subspace of R3, it must be the trivial subspace {0}, a
line through 0, a plane through 0, or the whole of R3 (by Example B1.2(v)). In
fact, it is a line through 0.

Given a subspace V of Rn, you can repeatedly use the three conditions in
Definition B1.1 to show that if w,x,y, z ∈ V then 2w−7x−4y + 15z ∈ V , etc.
We finish this section with a definition and a lemma that capture the general
principle.

Definition B1.6 Let v1, . . . ,vm and y be vectors in Rn. Then y is a
linear combination of v1, . . . ,vm if there exist c1, . . . , cm ∈ R such that

y = c1v1 + c2v2 + · · ·+ cmvm.
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Examples B1.7 i. In R3, the vector y =

5
9
2

 is a linear combination of

the vectors v1 =

1
3
1

, v2 =

−2
4
3

 and v3 =

 1
−3
−2

, since

5
9
2

 = 4

1
3
1

+ 0

−2
4
3

+ 1

 1
−3
−2

 .

ii. For any m ≥ 0 and any v1, . . . ,vm ∈ Rn, the zero vector 0 is a linear
combination of v1, . . . ,vm, since

0 = 0v1 + 0v2 + · · ·+ 0vm.

This is true even if m = 0! In that case, the right-hand side of the
equation is the sum of no things. The sum of no things should always be
interpreted as zero. (In this case, ‘thing’ means vector, so ‘zero’ means the
zero vector.) Why? Well, at a supermarket, the price you pay is always
the sum of the prices of the items in your basket. If you put no items in
your basket, the price you pay is zero. You’d be upset otherwise!

Now we establish the general principle described just before Definition B1.6.

Lemma B1.8 Let V be a linear subspace of Rn, let m ≥ 0, and let v1, . . . ,vm ∈
V . Then every linear combination of v1, . . . ,vm also belongs to V .

Proof If m = 0 then (by Example B1.7(ii)) the only linear combination of
v1, . . . ,vm is 0, which belongs to V by definition of subspace.

Now suppose that m ≥ 1, and assume inductively that the lemma holds for
m− 1. Let v1, . . . ,vm ∈ V and let c1, . . . , cm ∈ R. Put

w = c1v1 + · · ·+ cm−1vm−1.

Then w ∈ V by inductive hypothesis, and cmvm ∈ V since vm ∈ V and
V is closed under scalar multiplication. Also V is closed under addition, so
w + cmvm ∈ V . But

∑m
i=1 civi = w + cmvm, so

∑m
i=1 civi ∈ V , completing the

induction. �

Example B1.9 I claim that the vector x =

5
9
3

 is not a linear combination of

the vectors v1,v2,v3 of Example B1.7(i). To prove this, we will use the lemma
just proved. Put A =

(
1 −1 2

)
, a 1 × 3 matrix. Observe that v1,v2,v3 ∈

ker(A) but x 6∈ ker(A). Since ker(A) is a linear subspace of R3, it follows from
Lemma B1.8 that x cannot be expressed as a linear combination of v1, v2 and
v3.

You might be wondering what made me think of that particular matrix A.
More generally, you might be wondering how, if someone gave you a specific
vector y and specific vectors v1, . . . ,vm, you could find out whether or not y
is a linear combination of v1, . . . ,vm. We will meet a general method for doing
this in the next chapter; it relies on the theory that we are about to develop.
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B2 Spanning sets

Let v and w be two points in R3, and suppose that neither is a scalar multiple
of the other. Then there is exactly one plane P passing through v, w and the
origin. Since P is a subspace, every linear combination of v and w also belongs
to P (Lemma B1.8). Conversely, as Figure B.2 suggests, every point of P can
be expressed as a linear combination of v and w. So, P is the set of linear
combinations of v and w.

More generally, for any list v1, . . . ,vm of vectors in Rn, it turns out to be
useful to consider the set of all linear combinations of v1, . . . ,vm. Here is the
definition.

Definition B2.1 Let v1, . . . ,vm ∈ Rn. The span of v1, . . . ,vm is the set

span{v1, . . . ,vm} = {x ∈ Rn : x is a linear combination of v1, . . . ,vm}.

When V = span{v1, . . . ,vm}, we sometimes say that v1, . . . ,vm span V ,
or that {v1, . . . ,vm} is a spanning set for V .

Examples B2.2 i. In the introductory paragraph to this section, P =
span{v,w}.

ii. Let e1, e2, . . . , en ∈ Rn be the vectors defined in equations (A:13)
(page 35). Then e1, e2, . . . , en span Rn, since for every y ∈ Rn we have

y = y1e1 + y2e2 + · · ·+ ynen ∈ span{e1, e2, . . . , en}.

iii. In R3, we have

span


 1
−1
0

 ,

 0
1
−1

 = {x ∈ R3 : x1 + x2 + x3 = 0}.

To prove this, we have to show that each side is a subset of the other

(following the strategy explained on page 14). Write v1 =
(

1
−1
0

)
and

v2 =
(

0
1
−1

)
, and write V = {x ∈ R3 : x1 + x2 + x3 = 0}.

To show that LHS ⊆ RHS, let v ∈ span{v1,v2}. Then v is a linear
combination of v1 and v2. Certainly v1,v2 ∈ V (since 1 + (−1) + 0 = 0 =
0 + 1 + (−1)). But V is a subspace of R3, since it is the kernel of the 1× 3
matrix (1 1 1). Hence v ∈ V by Lemma B1.8.

(Alternatively, you could write v = c1v1 + c2v2 and show by explicit
calculation that the coordinates of v sum to 0. But I encourage you to
minimize calculation whenever possible.)

To show that RHS ⊆ LHS, let x ∈ V . Then

x = x1v1 − x3v2

(check!). This is a linear combination of v1 and v2, so x ∈ span{v1,v2}.

iv. A similar argument shows that

span


 1
−1
0

 ,

 0
1
−1

 ,

 2
5
−7

 ,

−4
1
3

 = {x ∈ R3 : x1 + x2 + x3 = 0}.
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v. The span of a single vector v is just the set of all scalar multiples of v.
This is a line if v 6= 0, and is the trivial subspace {0} if v = 0.

vi. What does Definition B2.1 say if m = 0, so that there are no vis at all?
As we saw in Example B1.7(ii), the vector 0 is the one and only linear
combination of no vectors. So, the span of the empty list of vectors is {0}.

In all of these examples, span{v1, . . . ,vm} is not merely a subset of Rn, but
a linear subspace. This is no coincidence:

Lemma B2.3 Let v1, . . . ,vm ∈ Rn. Then span{v1, . . . ,vm} is a linear sub-
space of Rn.

Proof We verify the three conditions of Definition B1.1. Write V =
span{v1, . . . ,vm}.

For (i), we have 0 =
∑m
i=1 0vi, so 0 ∈ V .

For (ii), let x,y ∈ V . Then x =
∑m
i=1 civi and y =

∑m
i=1 divi for some

scalars c1, . . . , cm, d1, . . . , dm. Hence

x + y =

m∑
i=1

civi +

m∑
i=1

divi =

m∑
i=1

(civi + divi) =

m∑
i=1

(ci + di)vi,

so x + y ∈ V .
For (iii), let x ∈ V and c ∈ R. We have x =

∑m
i=1 divi for some scalars

d1, . . . , dm. Hence

cx = c

m∑
i=1

divi =

m∑
i=1

cdivi,

so cx ∈ V . �

So, we can manufacture subspaces of Rn simply by choosing a few vectors
and taking their span.

The span of v1, . . . ,vm is the smallest linear subspace containing v1, . . . ,vm,
in the following sense:

Lemma B2.4 Let v1, . . . ,vm ∈ Rn, and let V be a subspace of Rn. Then
v1, . . . ,vm ∈ V ⇐⇒ span{v1, . . . ,vm} ⊆ V .

Proof Suppose that v1, . . . ,vm ∈ V . By Lemma B1.8, any linear combination
of v1, . . . ,vm also belongs to V . So V contains the set of all such linear combina-
tions, which is exactly span{v1, . . . ,vm}. Conversely, if span{v1, . . . ,vm} ⊆ V
then certainly v1, . . . ,vm ∈ V , since v1, . . . ,vm ∈ span{v1, . . . ,vm}. �

Look back at Examples B2.2(iii) and (iv). In going from (iii) to (iv), we
have put in two extra vectors on the left-hand side. You might expect this to
make the span bigger; but it does not, since they were already in the span of
the original two vectors. Here is a general result explaining this:

Lemma B2.5 Let v1, . . . ,vm,vm+1, . . . ,vm+k ∈ Rn. Then:

i. span{v1, . . . ,vm} ⊆ span{v1, . . . ,vm,vm+1, . . . ,vm+k}.

ii. If vm+1, . . . ,vm+k ∈ span{v1, . . . ,vm} then

span{v1, . . . ,vm} = span{v1, . . . ,vm,vm+1, . . . ,vm+k}.
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Proof For (i), the right-hand side is a subspace of Rn containing v1, . . . ,vm,
so by Lemma B2.4, it also contains span{v1, . . . ,vm}.

For (ii), it remains to prove that RHS ⊆ LHS. But span{v1, . . . ,vm} is a sub-
space of Rn containing each of v1, . . . ,vm,vm+1, . . . ,vm+k, so by Lemma B2.4,
it contains the right-hand side. �

Matrices give rise to linear subspaces in several ways. We have already seen
that the kernel of a matrix is a subspace (Lemma B1.4). Here are two more
ways.

Let A be an m× n matrix. Each column of A is an element of Rm, and the
span of the n columns of A is called the column space of A, written as col(A).
It is a linear subspace of Rm.

Each row of A is an n-dimensional row vector. Strictly speaking, it is not
quite an element of Rn, since we made the convention that the elements of Rn
are n-dimensional column vectors (page 21). But the transpose of each row is
an n-dimensional column vector. The span of the transposes of the m rows of A
is called the row space of A, and is written as row(A). It is a linear subspace
of Rn.

Example B2.6 Let

A =

(
1 −1 0
0 1 −1

)
.

Then

col(A) = span

{(
1
0

)
,

(
−1
1

)
,

(
0
−1

)}
= R2

and

row(A) = span


 1
−1
0

 ,

 0
1
−1

 = {x ∈ R3 : x1 + x2 + x3 = 0},

where the last equality comes from Example B2.2(iii).

Here is another way of looking at the column space, which will be useful
later:

Lemma B2.7 Let A be an m× n matrix. Then

col(A) = {y ∈ Rm : y = Ax for some x ∈ Rn}.

Proof Let y ∈ Rm. We have to prove that y ∈ col(A) if and only if y = Ax
for some x ∈ Rn.

Write the columns of A as v1, . . . ,vn ∈ Rm. By definition of column space,
y ∈ col(A) if and only if

y = x1v1 + · · ·+ xnvn

for some x1, . . . , xn ∈ R. But by Lemma A4.3(i),

x1v1 + · · ·+ xnvn = A

(
x1

...
xn

)
.

Hence y ∈ col(A) if and only if y = Ax for some x ∈ Rn, as required. �
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Remember that our mission in this chapter is to find a good definition of
the dimension of a linear subspace V ⊆ Rn. We could attempt to define the
dimension of V as the smallest number of vectors needed in order to span V .
This would give the ‘right’ answer in the examples we have met so far, but as a
general definition, there are several potential problems.

For instance, how do we know that there is any finite set of vectors that
spans V ? If no such set exists, our ‘definition’ wouldn’t make sense. And,
supposing that you have found some vectors v1, . . . ,vm spanning V , and you
believe that V can’t be spanned by fewer than m vectors, how are you ever going
to prove it?

We will answer these questions, and find a good definition of dimension, in
the next few sections.

B3 Linear independence

There are infinitely many elements of Rn. However, if you start writing down
vectors

v1,v2,v3, . . . ,

you’ll eventually find that you start repeating yourself—not in the literal sense
that you’re mentioning vectors that you’ve mentioned before, but in the sense
that you’re mentioning vectors that are a linear combination of vectors you’ve
mentioned before.

To a linear algebraist, vectors v1, . . . ,vm are ‘truly different’ if none of them
is a linear combination of the others. (This is a much stronger requirement
than merely asking that none of them is equal to any of the others.) The formal
definition is as follows.

Definition B3.1 Vectors v1, . . . ,vm ∈ Rn are linearly independent if for
c1, . . . , cm ∈ R,

c1v1 + · · ·+ cmvm = 0 =⇒ c1 = · · · = cm = 0.

If v1, . . . ,vm are not linearly independent, they are said to be
linearly dependent. So, for v1, . . . ,vm to be linearly dependent means that
there exist scalars c1, . . . , cm, not all zero, such that

∑
i civi = 0.

Definition B3.1 doesn’t immediately look as if it’s saying ‘none of them can
be written as a linear combination of the others.’ But we will prove later that
it is equivalent to that condition (Lemma B3.4). First, some examples:

Examples B3.2 i. Consider the case of a single vector (m = 1 in Defini-
tion B3.1). The definition says that v1 ∈ Rn is linearly independent if and
only if, for scalars c,

c1v1 = 0 =⇒ c1 = 0.

This is true as long as v1 6= 0. If v1 = 0 then v1 is not linearly indepen-
dent; see (vi) below.

ii. For two vectors v1,v2 ∈ Rn to be linearly independent means that for
scalars c1 and c2,

c1v1 + c2v2 = 0 =⇒ c1 = c2 = 0.

51



Linear dependence means that there exist scalars c1 and c2, not both 0,
such that c1v1 + c2v2 = 0. Equivalently, v1 and v2 are linearly dependent
if there exist scalars a and b, not both 0, such that av1 = bv2. If a 6= 0
then we can divide through to get v1 = (b/a)v2, and similarly if b 6= 0. So,
v1 and v2 are linearly dependent if and only if one is a scalar multiple of
the other. (Note that v1 can be a scalar multiple of v2 without v2 being
a scalar multiple of v1. This happens if v1 = 0 6= v2.)

Geometrically, then, v1 and v2 are linearly dependent if and only if 0,
v1 and v2 are collinear. So in the Cauchy–Schwarz inequality |v1 · v2| ≤
‖v1‖ ‖v2‖ (Lemma A3.2), equality holds if and only if v1 and v2 are
linearly dependent.

iii. The vectors

v1 =


−1
−8
8
−1

 , v2 =


2
4
0
−2

 , v3 =


−1
1
−4
2


in R4 are linearly dependent, since 2v1 + 3v2 + 4v3 = 0. In the next
chapter, we will establish a general method for deciding whether a given
list of vectors is linearly dependent or independent.

iv. The vectors e1, . . . , en ∈ Rn (defined in equations (A:13), page 35) are
linearly independent. For let c1, . . . , cn ∈ R with

c1e1 + · · ·+ cnen = 0.

The left-hand side of this equation is simplyc1...
cn

 ,

so c1 = · · · = cn = 0, as required.

v. The empty list of vectors is linearly independent, for logical reasons that
are fundamental but slightly subtle. You could just take this as part of
the definition, or use the following argument.

We have to show, for n = 0, that
∑n
i=1 civi = 0 ⇒ c1 = · · · = cn = 0.

Any implication P ⇒ Q holds when Q is true, so it is enough to show,
when n = 0, that ci = 0 for all i ∈ {1, . . . , n}. This says that for all i ∈ ∅
we have ci = 0. But any statement beginning ‘for all i ∈ ∅’ is true, since
it could only be false if it failed for some i, and there are no i at all.

vi. Any list of vectors containing 0 is linearly dependent. Indeed, given vec-
tors v1, . . . ,vm with v1 = 0, we have 1v1 + 0v2 · · · + 0vm = 0, and not
all the coefficients on the left-hand side are zero.

Warning B3.3 It is easy to get the definition of linear (in)dependence wrong.
For instance, linear dependence of v1, . . . ,vm does not say that

∑
civi = 0 for

all c1, . . . , cm, nor that
∑
civi = 0 for some c1, . . . , cm. Linear independence

does not say that there are no c1, . . . , cm satisfying
∑
civi = 0.
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There are some useful ways of restating the definition of linear independence:

Lemma B3.4 Let v1, . . . ,vm ∈ Rn. The following are equivalent:

i. v1, . . . ,vm are linearly independent;

ii. for all i ∈ {1, . . . ,m}, we have vi 6∈ span{v1, . . . ,vi−1,vi+1, . . . ,vm} (that
is, none of the vectors is a linear combination of the others);

iii. for all x ∈ span{v1, . . . ,vm}, there are unique c1, . . . , cm ∈ R such that
x =

∑m
i=1 civi.

Proof We prove that (iii)⇒(ii)⇒(i)⇒(iii).
(iii)⇒(ii): assume (iii). Let i ∈ {1, . . . ,m} and suppose for a contradiction

that vi ∈ span{v1, . . . ,vi−1,vi+1, . . . ,vm} for some i. Then we can write

vi = c1v1 + · · ·+ ci−1vi−1 + ci+1vi+1 + · · ·+ cmvm

for some scalars c1, . . . , ci−1, ci+1, . . . , cm. But then

0v1 + · · ·+ 0vi−1 + 1vi + 0vi+1 + · · ·+ 0vm

= c1v1 + · · ·+ ci−1vi−1 + 0vi + ci+1vi+1 + · · ·+ cmvm,

and the coefficients of vi are different on the left- and right-hand sides, contra-
dicting the uniqueness in (iii).

(ii)⇒(i): assume (ii). Let c1, . . . , cm ∈ R with
∑
i civi = 0, and assume for

a contradiction that ci 6= 0 for some i. Then for that i, we have

vi = − 1

ci
(c1v1 + · · ·+ ci−1vi−1 + ci+1vi+1 + · · ·+ cmvm)

and so vi ∈ span{v1, . . . ,vi−1,vi+1, . . . ,vm}, a contradiction.
(i)⇒(iii): assume (i). Let x ∈ span{v1, . . . ,vm}, and suppose that x =∑
i civi =

∑
i divi. Subtracting,

∑
i(ci − di)vi = 0. But then by linear inde-

pendence, ci − di = 0 for all i, or equivalently ci = di for all i. �

Lemma B2.5(ii) tells us that if we start with a spanning set for a subspace
V of Rn, then put some more elements of V into it, the result stills spans V .
On the other hand, if we start with a linearly independent set of vectors, then
remove some of them, the result is still linearly independent. In summary: if
you make a spanning set bigger, it’s still spanning, and if you make a linearly
independent set smaller, it’s still linearly independent.

But so far we know nothing about how the sizes of spanning sets and of
linearly independent sets are related to one another. The next result describes
the relationship, and is the foundation stone of the theory of dimension.

Proposition B3.5 (Steinitz exchange lemma) Let V be a subspace of Rn.
Let v1, . . . ,vk be linearly independent vectors in V and let w1, . . . ,wm be vectors
spanning V . Then k ≤ m.

Before I give the proof, here is the intuitive idea. In a d-dimensional space,
any linearly independent set has≤ d elements, since there ‘isn’t enough room’ for
more than d linearly independent vectors inside V . (For instance, you can’t ‘fit’
4 linearly independent vectors into R3.) On the other hand, in a d-dimensional
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space, any spanning set must have ≥ d elements. So in the situation of Propo-
sition B3.5, if V is d-dimensional then k ≤ d and m ≥ d. It follows that k ≤ m.

However, right now we can’t make this intuitive idea precise, since we don’t
yet have a definition of dimension! So the following proof of Proposition B3.5
takes another path.

Proof In fact, we prove something stronger: that it is possible to choose k
members of the list w1, . . . ,wm in such a way that when these members are
replaced by v1, . . . ,vk, the resulting list still spans V . (For instance, if k = 3 and
m = 5 then it may be that w1,v1,v2,w4,v3 span V .) It will follow immediately
that k ≤ m, since otherwise it would not be possible to choose k members of
the list w1, . . . ,wm at all.

We choose the members to be replaced one by one. Let 0 ≤ i < k. Suppose
inductively thatm ≥ i and that we have chosen imembers of the list w1, . . . ,wm

in such a way that when these members are replaced by v1, . . . ,vi, the resulting
list spans V . (Clearly this is possible when i = 0.) We may assume without loss
of generality that the i members of the list replaced so far are the first i; thus,
we are assuming that v1, . . . ,vi,wi+1, . . . ,wm span V .

Since vi+1 ∈ V and V = span{v1, . . . ,vi,wi+1, . . . ,wm}, we can write

vi+1 = c1v1 + · · ·+ civi + ci+1wi+1 + · · ·+ cmwm (B:1)

for some scalars c1, . . . , cm. Since v1, . . . ,vk are linearly independent, not all of
ci+1, . . . , cm can be zero (by Lemma B3.4(ii)). In particular, this implies that
m ≥ i + 1. Assume without loss of generality that ci+1 6= 0. Then we can
rearrange equation (B:1) to show that

wi+1 ∈ span{v1, . . . ,vi,vi+1,wi+2, . . . ,wm}. (B:2)

Write W = span{v1, . . . ,vi,vi+1,wi+2, . . . ,wm}. Then W is a linear subspace
of V containing each of v1, . . . ,vi,wi+1,wi+2, . . . ,wm, by (B:2). (Notice the
difference between the lists of vectors in the last two sentences! That’s a crucial
point in the proof.) By Lemma B2.4, W therefore contains the span of this list,
which is V . So W is a subspace of V containing V ; that is, W = V . Hence
v1, . . . ,vi,vi+1,wi+2, . . . ,wm span V , completing the induction. �

Corollary B3.6 If v1, . . . ,vk ∈ Rn are linearly independent then k ≤ n.

Proof The vectors e1, . . . , en span Rn (Example B2.2(ii)), so the result follows
from Proposition B3.5 with V = Rn. �

Put another way, if k > n then any k vectors in Rn are linearly dependent.
For instance, any 4 vectors in R3 are linearly dependent: one must be in the
span of the others.

We could define the dimension of a subspace V of Rn as the largest number
of linearly independent vectors in V that it is possible to find. But in particular
examples, how could we ever verify that a larger linearly independent set could
not be found? And does this agree with the ‘definition’ of dimension proposed
at the end of Section B2? We are getting closer to being able to answer these
questions. . .
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B4 Bases

We have seen that the vectors e1, . . . , en span Rn and are linearly independent.
Another way of saying this is that every vector x ∈ Rn can be written as a
linear combination

x = c1e1 + · · ·+ cnen

in exactly one way. Indeed, for e1, . . . , en to span Rn means that every x ∈ Rn
can be written as a linear combination of e1, . . . , en in at least one way, and for
them to be linearly independent means that every x ∈ Rn can be written as a
linear combination of e1, . . . , en in at most one way (Lemma B3.4(iii)).

In the terminology we are about to introduce, e1, . . . , en is a ‘basis’ of Rn.
But remember that we are trying to find the right definition of dimension not
just for Rn itself, but for arbitrary linear subspaces. So we make the following
definition.

Definition B4.1 Let V be a subspace of Rn. A basis of V is a list v1, . . . ,vm
of elements of V that is linearly independent and spans V .

In other words, a basis of V is a linearly independent spanning set. The
plural of basis is bases (pronounced ‘base-eez’).

Examples B4.2 i. Take V to be Rn itself. The list of vectors e1, . . . , en is
a basis of Rn, called the standard basis of Rn.

ii. For any nonzero x ∈ R, the one-element list x is a basis of R. It is linearly
independent by Example B3.2(i), and spans R because every element of
R is a multiple of x.

iii. Let v ∈ Rn be any nonzero vector, and consider the line V = span{v}.
For any scalar c 6= 0, the one-element list cv is a basis of V (for the same
reasons as in (ii)).

iv. The empty list of vectors is a basis of the trivial subspace {0} of Rn,
since it spans {0} (Example B2.2(vi)) and is linearly independent (Exam-
ple B3.2(v)). (Poole’s book wrongly states that {0} has no basis.)

v. Let V = {x ∈ R3 : x1 + x2 + x3 = 0}. As observed in Example B2.2(iii),
V is a linear subspace of R3 spanned by the vectors

v1 =

 1
−1
0

 , v2 =

 0
1
−1

 .

It is straightforward to show that v1 and v2 are linearly independent.
(As always, when you read a sentence like that, you should treat it as an
exercise!) It follows that the two-element list v1,v2 is a basis of V .

vi. With the same V as in the last example, another basis is

w1 =

 1
0
−1

 , w2 =

−3
−5
8

 .
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Our next lemma extends the observations about e1, . . . , en in the first para-
graph of this section.

Lemma B4.3 Let V be a linear subspace of Rn and let v1, . . . ,vm ∈ V .

i. v1, . . . ,vm span V ⇐⇒ for all x ∈ V , there is at least one list of scalars
c1, . . . , cm such that x =

∑
civi.

ii. v1, . . . ,vm are linearly independent ⇐⇒ for all x ∈ V , there is at most
one list of scalars c1, . . . , cm such that x =

∑
civi.

iii. v1, . . . ,vm is a basis of V ⇐⇒ for all x ∈ V , there is exactly one list of
scalars c1, . . . , cm such that x =

∑
civi.

Proof Part (i) is the definition of spanning, part (ii) follows from Lemma B3.4,
and part (iii) follows from parts (i) and (ii). �

Warning B4.4 Examples B4.2(v) and (vi) demonstrate that the same sub-
space can have multiple bases. If you ever find yourself writing the words ‘the
basis’, you’re probably making a mistake.

Remark B4.5 The list of vectors e1, . . . , en is called the ‘standard’ basis of Rn
because it is in some sense the obvious one. It is not the only basis of Rn; even
R1 has multiple bases, as Example B4.2(ii) shows. But Rn has the property
that an obvious choice of basis exists.

However, it is important to appreciate that for most subspaces V of Rn,
there is no obvious choice of basis. For instance, consider the plane V = {x ∈
R3 : x1 + x2 + x3 = 0}. It is unlikely that anyone would claim that the basis in
Example B4.2(vi) is ‘obvious’, but perhaps the basis in Example B4.2(v) looks
a bit more natural. However, can you really claim that it is superior to the basis
v1,w1, for instance, or the basis −w1,−v2?

Although the same subspace can have many different bases, you may have
noticed that in all the examples so far, all the bases of a given subspace have
the same number of elements. This is a general truth:

Proposition B4.6 Let V be a linear subspace of Rn. Then any two bases of
V have the same number of elements.

Proof Let v1, . . . ,vk and w1, . . . ,wm be bases of V . Since any basis of V is lin-
early independent and spans V , the Steinitz exchange lemma (Proposition B3.5)
implies that both k ≤ m and m ≤ k. Hence k = m. �

We could now attempt to define the dimension of V as the number of el-
ements in a basis of V . . . but we still have a problem! That ‘definition’ only
makes sense if every subspace has at least one basis. And so far, we don’t know
that. We will, however, prove it soon.

First we show that given any list of vectors spanning V , we can get a basis
by deleting some of them.

Lemma B4.7 (Deletion) Let V be a subspace of Rn and let v1, . . . ,vm ∈ V
be vectors spanning V . Then some subset of {v1, . . . ,vm} is a basis of V .
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This subset could consist of all, some or none of v1, . . . ,vm. ‘All’ would be
the case if v1, . . . ,vm was already a basis. ‘None’ would be the case if V = {0}
(Example B4.2(iv)).

Proof Consider all subsets of {v1, . . . ,vm} that span V . Choose one with the
smallest possible number of elements: k, say. Without loss of generality, we
may assume that it is of the form {v1, . . . ,vk}.

I claim that v1, . . . ,vk is a basis of V . Certainly it spans V , so it only remains
to show that it is linearly independent. Suppose not. Then by Lemma B3.4,
there exists i ∈ {1, . . . , k} such that vi ∈ span{v1, . . . ,vi−1,vi+1, . . . ,vk}. But
then v1, . . . ,vi−1,vi+1, . . . ,vk span V , by Lemma B2.5(ii). This is a subset of
{v1, . . . ,vm} that spans V and has fewer than k elements, a contradiction. �

Examples B4.8 Let V = {x ∈ R3 : x1 + x2 + x3 = 0}, a subspace of R3.

i. The vectors

v1 =

 1
2
−3

 , v2 =

 1
0
−1

 , v3 =

 1
4
−5


span V . Hence by Lemma B4.7, some subset of this list must be a basis
of V . In fact, any two of them form a basis of V . (Check!)

ii. The vectors

w1 =

 1
2
−3

 , w2 =

 1
0
−1

 , w3 =

 2
0
−2


also span V . This time, w1,w2 is a basis and w1,w3 is a basis, but w2,w3

is not a basis. (Again, check!)

The mirror image of Lemma B4.7 is the next result, which states that any
linearly independent set can be extended to make a basis.

Lemma B4.9 (Extension) Let V be a subspace of Rn and let v1, . . . ,vk be
linearly independent vectors in V . Then there is some basis of V containing all
of the vectors v1, . . . ,vk.

Proof Consider all lists of linearly independent vectors in V containing
v1, . . . ,vk. By Corollary B3.6, no such list contains more than n elements.
We can therefore choose one with the largest number of elements (m, say) and
call it v1, . . . ,vk,vk+1, . . . ,vm.

I claim that v1, . . . ,vm is a basis of V . Certainly it is linearly independent,
so it only remains to show that it spans V . Let v ∈ V . The list of vectors
v1, . . . ,vm,v has more than m elements, so these vectors are linearly dependent.
Hence there exist scalars c1, . . . , cm, c, not all zero, such that

c1v1 + · · ·+ cmvm + cv = 0.

Since v1, . . . ,vm are linearly independent, we must have c 6= 0. Rearranging the
equation then shows that v is a linear combination of v1, . . . ,vm, as required.�
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spanning

linearly independent

bases

Figure B.3: Schematic diagram of the main results of this section

Example B4.10 Let V = R3, and put

v1 =

1
2
3

 , v2 =

4
5
6

 .

Then v1,v2 are linearly independent. To extend to a basis, we simply pick any

vector v3 not in span{v1,v2} (such as v3 =
(

1
0
0

)
); then v1,v2,v3 is a basis.

We can now easily deduce the result that we hoped for above:

Proposition B4.11 Every linear subspace of Rn has at least one basis.

Proof This follows from Lemma B4.9 by taking v1, . . . ,vk to be the empty list
(i.e. the list with k = 0), which is linearly independent by Example B3.2(v). �

The main results of this section are summarized in Figure B.3. Don’t take
it too literally; this is not a picture of Rn. It is to be interpreted as follows.

Let V be a subspace of Rn. Each point in Figure B.3 represents a set of
vectors in V , with higher-up points representing larger sets. As remarked just
before Proposition B3.5, if you take a spanning set for V and put some more
elements of V into it, it still spans V . Correspondingly, in Figure B.3, if you
take a point representing a spanning set and move upwards, you are still in
the zone of spanning sets. Similarly, moving downwards in Figure B.3 from
a point representing a linearly independent set always gives you another point
representing a linearly independent set, because if you remove some vectors from
a linearly independent set then it’s still linearly independent.

Moreover, if we start with a spanning set then it is always possible to move
downwards to reach a basis. This is the deletion lemma (Lemma B4.7). And if
we start with a linearly independent set, it is always possible to move upwards
to reach a basis; that’s the extension lemma (Lemma B4.9).

Finally, all the bases are shown at the same height, because all bases of V
have the same number of elements (Proposition B4.11).

So, many of our results are encapsulated in Figure B.3. But the diagram
is also misleading in some ways. For instance, if V is nontrivial then V has
infinitely many bases, even though Figure B.3 shows only three.
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B5 The definition of dimension

We are finally ready to define the dimension of a linear subspace of Rn, and to
show that it enjoys all the good properties that we might hope for.

Definition B5.1 Let V be a linear subspace of Rn. The dimension of V ,
written as dimV , is the number of elements in any basis of V .

In order for this definition to make sense, we need to know two things: that
every subspace V of Rn has at least one basis, and that any two bases of V have
the same number of elements. We proved these in Propositions B4.11 and B4.6,
respectively.

Examples B5.2 i. dim(Rn) = n, since Rn has a basis e1, . . . , en with n
elements (Example B4.2(i)).

ii. dim({0}) = 0, since the empty list is a basis of {0} (Example B4.2(iv)).

iii. The subspace
V = {x ∈ R3 : x1 + x2 + x3 = 0}

of R3 has dimension 2, since it has a basis with 2 elements (Exam-
ple B4.2(v)). Two-dimensional subspaces of Rn are often called planes,
and one-dimensional subspaces are lines.

iv. The subspace

V = {x ∈ R3 : x1 + x2 + x3 = 0, x1 = x2}

of R3 has dimension 1 (it’s a line), since the one-element list
(

1
1
−2

)
is a

basis (exercise!).

At the end of Section B2, we proposed a definition of dimension using span-
ning sets, and at the end of Section B3, we proposed another definition of
dimension using linearly independent sets. At the time, it wasn’t clear that
the definitions made sense or agreed with each other. But we can now show
that they do indeed make sense, and that they both agree with the definition
of dimension just given.

Proposition B5.3 Let V be a linear subspace of Rn.

i. dimV is the smallest number of elements in any spanning set of V . That
is, V has a spanning set with exactly dimV elements, and every spanning
set has ≥ dimV elements.

ii. dimV is the largest number of elements in a linearly independent subset
of V . That is, there is a linearly independent subset of V with exactly
dimV elements, and every linearly independent subset of V has ≤ dimV
elements.

Proof Choose a basis v1, . . . ,vm of V . Then dimV = m.
For (i), v1, . . . ,vm is a spanning set of V with m = dimV elements. Now

let w1, . . . ,wk be a spanning set of V . By the deletion lemma (Lemma B4.7),
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some subset of {w1, . . . ,wk} is a basis of V ; but any basis has m elements, so
k ≥ m = dimV .

For (ii), v1, . . . ,vm is a linearly independent subset of V with m = dimV
elements. Now let {w1, . . . ,wk} be a linearly independent subset of V . By
the extension lemma (Lemma B4.9), there is some basis of V containing all of
w1, . . . ,wk; but any basis of V has m elements, so k ≤ m = dimV . �

Let V be an m-dimensional subspace of Rn. What if we have a list of m
vectors in V and want to know whether it is a basis of V ? In that situation,
the following result is very useful.

Proposition B5.4 Let V be an m-dimensional linear subspace of Rn, and let
v1, . . . ,vm be m vectors in V . Then

v1, . . . ,vm is a basis of V

⇐⇒ v1, . . . ,vm span V

⇐⇒ v1, . . . ,vm are linearly independent.

Proof Any basis of V is certainly linearly independent and spans V , so it
remains to prove the converses: if v1, . . . ,vm span V or are linearly independent
then they are a basis of V .

First suppose that v1, . . . ,vm span V . By the deletion lemma (Lemma B4.7),
some subset of {v1, . . . ,vm} is a basis of V . But any basis of V has exactly m
elements, so this subset must be the whole of {v1, . . . ,vm}. Hence v1, . . . ,vm
is a basis of V .

The proof in the case that v1, . . . ,vm are linearly independent is very similar,
using the extension lemma instead (Lemma B4.9): exercise. �

Warning B5.5 It’s certainly not true that an arbitrary spanning set or linearly
independent set is a basis. The crucial point in Proposition B5.4 is that the
number of vectors in the list is the same as the dimension of the subspace.

Proposition B5.4 can also be seen in Figure B.3: any spanning set or linearly
independent set at the same height as the dots representing the bases is itself a
basis.

Example B5.6 Once more, consider the subspace V = {x ∈ R3 : x1+x2+x3 =
0} of R3. We have already shown that V is 2-dimensional, that is, a plane
(Example B5.2(iii)).

Suppose you wanted to show that the vectors

x1 =

−2
3
−1

 , x2 =

 1
5
−6


form a basis of V . (It’s clear that they do belong to V , since −2 + 3 + (−1) =
0 = 1 + 5 + (−6).) You could do this by calculating explicitly that x1 and x2

span V , and that they are linearly independent. However, the theory we have
developed enables us to do it with almost no calculation at all, as follows.

The vectors x1 and x2 are not scalar multiples of one another, which by
Example B3.2(ii) implies that they are linearly independent. Since dimV = 2,
Proposition B5.4 then implies that x1,x2 is a basis of V . And that’s it!
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Remark B5.7 Proposition B5.4, or something like it, is also useful in the con-
text of differential equations. Suppose we have proved that the space of solutions
of a 2nd order linear ordinary differential equation is 2-dimensional, and we have
found two linearly independent solutions of the equation. Then it follows that
our two solutions span the space of solutions: in other words, every solution is
a linear combination of our two.

What’s needed here is not quite Proposition B5.4, but a very similar result
in the theory of vector spaces. These are just beyond the scope of this course.

Proposition B5.4 is also used to prove the following useful result.

Proposition B5.8 Let v1, . . . ,vm ∈ Rn. Then dim(span{v1, . . . ,vm}) ≤ m,
with equality if and only if v1, . . . ,vm are linearly independent.

Proof Exercise. �

Let V and W be subspaces of Rn with V ⊆ W . Then we would expect
dimV to be no greater than dimW . Moreover, dimV should be strictly smaller
than dimW unless V = W ; for instance, you can’t have one plane in R3 being
a proper subset of another. Our intuition is, on this occasion, correct:

Lemma B5.9 Let V and W be linear subspaces of Rn with V ⊆ W . Then
dimV ≤ dimW , with equality if and only if V = W .

Proof Choose a basis v1, . . . ,vk of V . Then v1, . . . ,vk are linearly independent
vectors in W , so by the extension lemma (Lemma B4.9), we can extend this
list to a basis v1, . . . ,vk,vk+1, . . . ,vm of W . In particular, k ≤ m, that is,
dimV ≤ dimW . If dimV = dimW then k = m, so v1, . . . ,vk is a basis of both
V and W , so

V = span{v1, . . . ,vk} = W.

Conversely, if V = W then dimV = dimW immediately. �

This lemma provides a useful strategy for showing that two subspaces V and
W of Rn are equal: first show that V ⊆W , then show that dimV = dimW .

We use this strategy in the second part of the following lemma. Recall from
Examples B5.2 that {0} is a 0-dimensional subspace of Rn and that Rn is an
n-dimensional subspace of Rn. In fact, these are the only 0- and n-dimensional
subspaces of Rn:

Lemma B5.10 The only 0-dimensional subspace of Rn is {0}, and the only
n-dimensional subspace of Rn is Rn.

Proof Let V be a 0-dimensional subspace of Rn. Then V has a basis with
no elements; that is, ∅ is a basis of V . Hence V = span∅ = {0} by Exam-
ple B2.2(vi).

Now let V be an n-dimensional subspace of Rn. Since V ⊆ Rn and dimV =
dimRn, Lemma B5.9 implies that V = Rn. �
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0

v1

v2

Figure B.4: A basis of R2

B6 Orthonormal bases

The easiest example of a basis is the standard basis e1, . . . , en of Rn. However,
as an example it is somewhat misleading, since it has the special properties
that the basis vectors all have length 1 and are all orthogonal to each other. In
general, basis vectors can be more or less any length and at more or less any
angle to each other. For instance (Figure B.4), any two vectors v1,v2 ∈ R2

form a basis of R2, just as long as neither is a scalar multiple of the other (by
the argument of Example B5.6).

In this section, we will consider bases that, like the standard basis, enjoy the
special properties just mentioned.

Recall from Section A3 that two vectors x,y ∈ Rn are said to be orthogonal
if x · y = 0. Now we extend this definition to lists of any number of vectors.

Definition B6.1 Let v1, . . . ,vm ∈ Rn.

i. We say that v1, . . . ,vm are orthogonal if vi · vj = 0 for all i, j ∈
{1, . . . ,m} with i 6= j.

ii. We say that they are orthonormal if they are orthogonal and ‖vi‖ = 1
for all i ∈ {1, . . . ,m}.

Examples B6.2 i. The standard basis vectors e1, . . . , en are orthonormal,
since ei · ej = 0 for all i 6= j and ‖ei‖ = 1 for all i.

ii. The vectors

v1 =

1
0
0

 , v2 =

0
2
3

 , v3 =

0
1
4


are not orthogonal, as even though v1 · v2 = 0 and v1 · v3 = 0, we have
v2 · v3 6= 0. (Suggestion: draw a picture showing v1,v2,v3.)

iii. The vectors
(
1
1

)
,
(

3
−3
)
∈ R2 are orthogonal. But they are not orthonor-

mal, as their lengths are not 1.

iv. The vectors
(√

2/2√
2/2

)
,
( √

2/2

−
√
2/2

)
are orthonormal (Figure B.5). This exam-

ple was obtained from the previous example by rescaling the two vectors
to make them have length 1.
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0

(√
2/2√
2/2

)

( √
2/2

−
√
2/2

)

1

1

Figure B.5: Two orthonormal vectors in R2

The definition of orthonormality can be rephrased neatly as follows.

Lemma B6.3 Let v1, . . . ,vm ∈ Rn. Then v1, . . . ,vm are orthonormal if and
only if for all i, j ∈ {1, . . . ,m},

vi · vj =

{
0 if i 6= j,

1 if i = j.

Proof This follows from the fact that ‖v‖ =
√

v · v for all v ∈ Rn. �

We now show that orthonormal vectors are always linearly independent. Or-
thonormality is a much stronger condition than linear independence: linearly
independent vectors need not even be orthogonal, let alone orthonormal (Fig-
ure B.4).

Lemma B6.4 Let v1, . . . ,vm ∈ Rn. If v1, . . . ,vm are orthogonal and all
nonzero then they are linearly independent. In particular, orthonormal vectors
are linearly independent.

Proof Let c1, . . . , cm be scalars such that

m∑
i=1

civi = 0. (B:3)

Taking the dot product of each side of equation (B:3) with v1 gives( m∑
i=1

civi

)
· v1 = 0.

By Lemma A3.1 and induction, the left-hand side is
∑
i ci(vi · v1). Then by

orthogonality, the left-hand side is c1‖v1‖2. Hence c1‖v1‖2 = 0; but v1 6= 0, so
c1 = 0. Similarly, c2 = · · · = cm = 0. So v1, . . . ,vm are linearly independent.�

Let V be a subspace of Rn. An orthonormal basis of V is an orthonormal
list of vectors that is a basis of V . For example, the standard basis e1, . . . , en
is an orthonormal basis of Rn.

Corollary B6.5 Let V be an m-dimensional subspace of Rn and let v1, . . . ,vm
be m orthonormal vectors in V . Then v1, . . . ,vm is an orthonormal basis of V .
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Proof By Lemma B6.4, v1, . . . ,vm are linearly independent. But dimV = m,
so by Proposition B5.4, they are a basis of V . �

Geometrically, then, an orthonormal basis of an m-dimensional subspace V
consists of m unit-length vectors in V all at right angles to each other.

When v1, . . . ,vm is a basis of V (not necessarily orthonormal), we can write
any vector x ∈ V as a linear combination

x =

m∑
i=1

civi

for a unique list c1, . . . , cm of scalars. (We saw this in Lemma B4.3(iii).) But
how do we actually find these scalars? For instance, the vectors−2

1
5

 ,

1
4
2

 ,

 2
7
−4


form a basis of R3, so there are unique scalars c1, c2, c3 such that1

0
0

 = c1

−2
1
5

+ c2

1
4
2

+ c3

 2
7
−4

 .

How would we go about finding the coefficients c1, c2 and c3? We’d have to
solve a set of simultaneous equations. In the next chapter, we’ll see how to do
that sort of computation efficiently. But right now, the point is that when the
basis is orthonormal, this task is much easier. In fact, the coefficients are given
by a very simple formula:

Lemma B6.6 Let V be a linear subspace of Rn and let v1, . . . ,vm be an or-
thonormal basis of V . Then for all x ∈ V ,

x =
m∑
i=1

(x · vi)vi.

Proof By definition of basis, x =
∑
i civi for some scalars c1, . . . , cm. Let

j ∈ {1, . . . ,m}. Taking the dot product of each side of this equation with vj
gives

x · vj =

( m∑
i=1

civi

)
· vj =

m∑
i=1

ci(vi · vj) = cj ,

by Lemma B6.3. So cj = x · vj , and the result follows. �

Examples B6.7 i. Take V = Rn with its standard basis e1, . . . , en, which

we have already noted is orthonormal. For x =


x1
x2
...
xn

 ∈ Rn, we have

x ·ei = xi. So in this case, Lemma B6.6 simply states that x =
∑n
i=1 xiei.
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ii. We observed in Example B6.2(iv) that the vectors

v1 =

(√
2/2√
2/2

)
, v2 =

( √
2/2

−
√

2/2

)
are orthonormal. It follows from Corollary B6.5 that they form a basis of
R2. How can we find the unique scalars c1, c2 such that(

5
3

)
= c1v1 + c2v2?

Lemma B6.6 gives the answer:

c1 =

(
5
3

)
· v1 = 4

√
2, c2 =

(
5
3

)
· v2 =

√
2,

and so (
5
3

)
= 4
√

2 v1 +
√

2 v2.

You can check directly that this is correct.

Back in Proposition B4.11, we showed that every subspace of Rn has at
least one basis. But so far, we don’t know whether every subspace of Rn has an
orthonormal basis. For all we know so far, it could be that some subspaces have
no orthonormal basis at all. However, we will soon show that every subspace
of Rn does have an orthonormal basis. To do this, we introduce the concept of
‘orthogonal complement’.

B7 Orthogonal complements

Given a line through the origin in R3, you can take the plane through the origin
orthogonal to it. Similarly, given a plane through the origin in R3, you can take
the line through the origin orthogonal to it. Here is the general definition.

Definition B7.1 Let V be a linear subspace of Rn. The
orthogonal complement of V is

V ⊥ = {x ∈ Rn : x · v = 0 for all v ∈ V }.

V ⊥ is pronounced ‘V -perp’. In order for a vector x to belong to V ⊥, it must
be orthogonal to everything in V .

Lemma B7.2 Let V be a linear subspace of Rn. Then V ⊥ is also a linear
subspace of Rn.

Proof We verify the three conditions of Definition B1.1.
For (i), certainly 0 · v = 0 for all v ∈ V .
For (ii), let x,y ∈ V ⊥. Then for each v ∈ V , we have

(x + y) · v = x · v + y · v = 0 + 0 = 0,

so x + y ∈ V ⊥.
The proof of (iii) is similar and left as an exercise. �
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0

x

P (x)

V

Figure B.6: Projecting a vector x onto a subspace V

To check that an element x ∈ Rn belongs to V ⊥, in principle we need to
check that x · v = 0 for every v ∈ V . That might seem very hard: typically V
has infinitely many elements, so in principle there are infinitely many checks to
do. The following lemma makes life much easier.

Lemma B7.3 Let V be a linear subspace of Rn and let v1, . . . ,vm ∈ V be
vectors spanning V . Then

V ⊥ = {x ∈ Rn : x · v1 = · · · = x · vm = 0}.

Proof Exercise. �

Example B7.4 Let V = span
{(

1
1
1

)}
, which is a line in R3. Then by

Lemma B7.3,

V ⊥ =
{

x ∈ R3 : x ·
(

1
1
1

)
= 0
}

= {x ∈ R3 : x1 + x2 + x3 = 0}.

Thus, V ⊥ is the plane that has appeared in several recent examples.

Let V be a subspace of Rn. Any vector x ∈ Rn can be ‘resolved’ into a
component in V and a component orthogonal to V . What this means is that
we can write x = v + w for some v ∈ V and some w ∈ V ⊥. In fact, there is
only one possible choice of v and w with this property. We spend most of the
rest of this section proving this.

Figure B.6 illustrates the first of our lemmas:

Lemma B7.5 Let V be a subspace of Rn and let v1, . . . ,vm be an orthonormal
basis of V . For x ∈ Rn, write

P (x) =

m∑
i=1

(x · vi)vi.

Then P (x) ∈ V and x− P (x) ∈ V ⊥.

We haven’t proved yet that every subspace of Rn has an orthonormal basis
(though we will soon). And the statement of this lemma doesn’t assume that
every subspace has an orthonormal basis. It merely says that if v1, . . . ,vm is
an orthonormal basis of V then the stated result holds.
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Proof Evidently P (x) ∈ span{v1, . . . ,vm} = V . To prove that x − P (x) ∈
V ⊥, it suffices (by Lemma B7.3) to show that (x − P (x)) · vj = 0 for each
j ∈ {1, . . . ,m}. Let j ∈ {1, . . . ,m}. Then

P (x) · vj =

( m∑
i=1

(x · vi)vi
)
· vj =

m∑
i=1

(x · vi)(vi · vj) = x · vj

where the last step is by orthonormality. Hence (x−P (x))·vj = 0, as required.�

In Section B4, we proved the extension lemma: every linearly independent
set in a subspace V can be extended to a basis of V . Now we prove an analogous
fact in the orthonormal context:

Lemma B7.6 (Orthonormal extension) Let V be a subspace of Rn and let
v1, . . . ,vk be orthonormal vectors in V . Then there is some orthonormal basis
of V containing all of the vectors v1, . . . ,vk.

Proof Write m = dimV and W = span{v1, . . . ,vk}. If k = m then v1, . . . ,vk
is a basis of V (by Corollary B6.5), so we are done. Otherwise, k < m and W
is a proper subset of V , so we can choose some y ∈ V \W . Define

w =

k∑
i=1

(y · vi)vi.

Then w ∈W , so y 6= w, so we can define

vk+1 =
y −w

‖y −w‖
.

We have y,w ∈ V , so vk+1 ∈ V . Now Lemma B7.5 implies that vk+1 ∈ W⊥,
so vk+1 · vi = 0 for all i ≤ k. Moreover, ‖vk+1‖ = 1. Since v1, . . . ,vk are
orthonormal, it follows that v1, . . . ,vk,vk+1 are orthonormal too.

We have now extended our original list v1, . . . ,vk of orthonormal vectors
in V to a list v1, . . . ,vk,vk+1 of orthonormal vectors in V . After doing this
construction m− k times, we obtain a list

v1, . . . ,vk,vk+1, . . . ,vm

of orthonormal vectors in V . By Corollary B6.5, it is an orthonormal basis of
V . �

Just as for non-orthonormal bases, we can use this extension lemma to prove
that every subspace has at least one orthonormal basis—something we didn’t
know until now.

Proposition B7.7 Every linear subspace of Rn has at least one orthonormal
basis.

Proof This follows from Lemma B7.6 by taking v1, . . . ,vk to be the empty list
(i.e. the list with k = 0), which is orthonormal. �
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Given a subspace of Rn, how could we actually construct an orthonormal
basis of it? For instance, if I gave you a matrix and ask you to find an orthonor-
mal of its kernel, how could you do it? Careful examination of the proof of
Lemma B7.6 reveals an algorithm for this. We will meet this algorithm in the
next chapter.

Just before Lemma B7.5, I promised we would show that, for a subspace V
of Rn, every vector in Rn can be uniquely resolved into a component in V and
a component orthogonal to V . This is part (ii) of our next result.

Proposition B7.8 Let V be a linear subspace of Rn. Then:

i. V ∩ V ⊥ = {0};

ii. for each x ∈ Rn, there are unique v ∈ V and w ∈ V ⊥ such that x = v+w;

iii. dimV + dimV ⊥ = n.

Proof For (i), certainly 0 ∈ V ∩V ⊥, since both V and V ⊥ are subspaces. Now
take any element x ∈ V ∩V ⊥. We have x ·v = 0 for all v ∈ V , and in particular
this holds when v = x. Hence x · x = 0, that is, ‖x‖2 = 0, so x = 0.

For (ii), let x ∈ Rn. By Proposition B7.7, we can choose an orthonormal
basis v1, . . . ,vm of V . Now put

P (x) =

m∑
i=1

(x · vi)vi.

Evidently
x = P (x) + (x− P (x)),

and by Lemma B7.5, P (x) ∈ V and x − P (x) ∈ V ⊥. Putting v = P (x) and
w = x− P (x), we have x = v + w with v ∈ V and w ∈ V ⊥.

To prove uniqueness, let v′ ∈ V and w′ ∈ V ⊥ with x = v′ + w′. We must
show that v′ = v and w′ = w. Now,

v + w = x = v′ + w′,

so v − v′ = w′ − w. But v − v′ ∈ V and w′ − w ∈ V ⊥, so both belong to
V ∩ V ⊥, which is {0} by (i). Hence v = v′ and w = w′, as required.

For (iii), choose orthonormal bases v1, . . . ,vm of V and w1, . . . ,wk of V ⊥

(as Proposition B7.7 allows us to do). I claim that v1, . . . ,vm,w1, . . . ,wk is an
orthonormal basis of Rn.

First we prove orthonormality. Since both v1, . . . ,vm and w1, . . . ,wk are
orthonormal lists of vectors, all these vectors have unit length, the vectors vi
are orthogonal to each other, and the vectors wj are orthogonal to each other.
It only remains to show that vi ·wj = 0 for all i and j; but this is true because
vi ∈ V and wj ∈ V ⊥.

Now we show that v1, . . . ,vm,w1, . . . ,wk span Rn. Let x ∈ Rn. By (ii),
there exist v ∈ V and w ∈ V ⊥ such that x = v + w. But v is a linear
combination of v1, . . . ,vm and w is a linear combination of w1, . . . ,wk, so x is
a linear combination of v1, . . . ,vm,w1, . . . ,wk, as required.

Hence v1, . . . ,vm,w1, . . . ,wk is an orthonormal spanning set of Rn. Since
orthonormality implies linear independence (Lemma B6.4), it is a basis. But
m = dimV and k = dimV ⊥, and all bases of Rn have n elements, so dimV +
dimV ⊥ = n. �
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For example, take a line L through the origin in R3. Then L⊥ is a plane, so
dimL+ dimL⊥ = 1 + 2 = 3, in accordance with part (iii) of Proposition B7.8.

What if we take the orthogonal complement of an orthogonal complement?
In the example just mentioned, (L⊥)⊥ is simply L again. In fact, this is a
general phenomenon:

Corollary B7.9 Let V be a linear subspace of Rn. Then (V ⊥)⊥ = V .

Proof We use the strategy described just after Lemma B5.9, proving that V ⊆
(V ⊥)⊥ and dimV = dim(V ⊥)⊥.

First we prove that V ⊆ (V ⊥)⊥. Let v ∈ V . To show that v ∈ (V ⊥)⊥, we
have to show that v · w = 0 for all w ∈ V ⊥; but this is immediate from the
definition of V ⊥.

By Proposition B7.8(iii) applied to V , we have dimV + dimV ⊥ = n. But
we can also apply Proposition B7.8(iii) to V ⊥, giving dimV ⊥+ dim(V ⊥)⊥ = n.
Hence dimV = dim(V ⊥)⊥.

It follows from Lemma B5.9 that V = (V ⊥)⊥. �

We have now shown that subspaces of Rn come in pairs. Each subspace has
a kind of ‘partner’, its orthogonal complement, and Corollary B7.9 says that its
partner’s partner is itself. The dimensions of a subspace of Rn and its partner
add up to n. For instance, in R100, the 23-dimensional subspaces are partnered
with the 77-dimensional subspaces.

Remark B7.10 Orthogonal complements work a bit like set-theoretic comple-
ments. Write E = {1, . . . , n}. Then every subset V of E has a complement or
‘partner’ E \ V = {x ∈ E : x 6∈ V }. The complement of the complement of
V is V (that is, E \ (E \ V ) = V ), much as (V ⊥)⊥ = V for linear subspaces.
Moreover, |E \V | = n− |V | (where the bars mean ‘number of elements’), much
as dimV ⊥ = n− dimV in the linear situation.

This is only an analogy, but it is quite a fruitful one. Visualizing orthogonal
complements in dimensions higher than three is difficult, and analogies like this
can help our intuition.

Next time: we use all this theory to calculate stuff.
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Summary of Chapter B

This is for you to fill in.

The most important definitions and ideas in this chapter

The most important results in this chapter

Points I didn’t understand
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Chapter C

Matrices and linear systems

To be read before the lecture of Monday, 22 October 2018

A linear system is a system of simultaneous linear equations, like this:

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...
... (C:1)

am1x1 + am2x2 + · · ·+ amnxn = bm.

Here aij , xj and bi all represent scalars, but we think of aij and bi as ‘known’
and xj as ‘unknown’. The fundamental questions about a linear system are
these: are there any solutions? If so, how many? And how can we compute
them?

Equations (C:1) can be written much more compactly as

Ax = b

where

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

 , x =


x1
x2
...
xn

 , b =


b1
b2
...
bm

 .

It turns out that viewing a linear system in this way not only saves space, it
is also very useful mathematically. A great deal is known about matrices, and
this knowledge can be applied to help us analyse linear systems.

The first few sections of this chapter develop some of the theory of matrices.
The last few are computational. Building on the theory developed, they provide
methods that will enable you to answer natural computational questions about
vectors, matrices and linear systems. For instance, how do you tell whether a
given list of vectors is linearly independent? Given a subspace of Rn, how do
you find an orthogonal basis of it, or even any basis at all? How do you tell
whether a given matrix is invertible, and if it is, how do you find its inverse?
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By the end of this chapter, you will know how to answer all these questions,
as well as the ‘fundamental questions’ about a linear system mentioned above.

On page 2, I wrote that school mathematics tends to emphasize computa-
tion and university mathematics tends to emphasize concepts. This is the most
computational chapter of the course, but I hope you will notice how much the
computational methods later in the chapter depend on the conceptual, theoret-
ical developments that come first.

C1 Rank

As you know, there are two whole numbers associated with any matrix: the
number of rows and the number of columns. In this section we will see that
there is also a third, called its rank. Very crudely indeed, it indicates ‘how much
stuff’ there is in the matrix. Later, we will see that it can also be interpreted
in terms of linear systems.

Definition C1.1 Let A be an m× n matrix.

i. The column rank of A is dim(col(A)).

ii. The row rank of A is dim(row(A)).

iii. The nullity of A is dim(ker(A)).

Recall that col(A) denotes the column space of A, row(A) denotes the row
space of A, and ker(A) denotes the kernel of A. They are subspaces of Rm or
Rn, as follows:

col(A) ⊆ Rm, row(A) ⊆ Rn, ker(A) ⊆ Rn.

Example C1.2 Consider the 4× 3 matrix

A =


1 3 4
0 0 0
2 5 7
12 35 47

 .

Write the rows of A as x1,x2,x3,x4 and the columns as y1,y2,y3.
Looking at the row space, we have

x2 = 0x1 + 0x3, x4 = 10x1 + x3,

so xT1 and xT3 span row(A). (Recall from page 50 that strictly speaking, the row
space of A is spanned by the transposes of the rows, rather than the rows them-
selves.) Moreover, xT1 and xT3 are linearly independent (by Example B3.2(ii)),
so they form a basis of row(A). Hence the row rank of A is 2.

Now looking at the column space, we have

y3 = y1 + y2,

and y1,y2 are linearly independent, so they form a basis of col(A). Hence the
column rank of A is also 2.
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A short calculation shows that the kernel of A is spanned by
(

1
1
−1

)
. Hence

ker(A) is 1-dimensional, that is, the nullity of A is 1.
In this example, we have calculated the row rank, column rank and nullity in

a rather improvised way. Later in the chapter, we will see how to do calculations
of this type systematically.

We now seem to have not just three but five whole numbers associated with
any matrix: the number of rows, the number of columns, the row rank, the
column rank, and the nullity. However, this is not really the case. We will
prove that the row rank is equal to the column rank. This is perhaps a surprise,
as row(A) is a subspace of Rn but col(A) is a subspace of Rm. Once we’ve done
that, we’ll refer to both as just ‘rank’. So there are really only four numbers in
play.

We will also prove that rank + nullity = number of columns. So, if you know
the number of columns of a matrix and its rank then you know its nullity. So
there are actually only three numbers in play.

Before we prove these big results, we make a small but important observa-
tion.

Lemma C1.3 Let A be an m× n matrix. Then the row rank and column rank
of A are both less than or equal to min{m,n}.

Once we have shown that the row rank is equal to the column rank, this
statement will simply say that rank(A) ≤ min{m,n}.

Proof We prove it for column rank. The proof for row rank is similar.
Write the columns of A as y1, . . . ,yn ∈ Rm. Since y1, . . . ,yn span col(A)

(by definition of col(A)), Proposition B5.8 implies that dim(col(A)) ≤ n. On the
other hand, col(A) is a subspace of Rm, so dim(col(A)) ≤ m by Lemma B5.9.�

Now we prove the first major result about rank. It is called the rank-nullity
theorem (or the rank theorem). Figure C.1 illustrates the proof. Don’t take
the figure too literally: it shows various relationships between the vectors and
subspaces involved, but it’s not a geometric diagram.

Theorem C1.4 (Rank-nullity, column version) For any matrix A,

column-rank(A) + nullity(A) = number of columns of A.

Proof Let A be an m × n matrix. Choose a basis w1, . . . ,w` of col(A) and a
basis v1, . . . ,vk of ker(A). Then ` is the column-rank of A and k is the nullity
of A, so we have to prove that k + ` = n.

By Lemma B2.7, we can choose vk+1, . . . ,vk+` ∈ Rn such that

Avk+1 = w1, Avk+2 = w2, . . . , Avk+` = w`.

I claim that v1, . . . ,vk,vk+1, . . . ,vk+` is a basis of Rn. If we can show this then
it will follow that k + ` = n (since all bases of Rn have n elements), and so the
proof will be finished.

First, we prove that v1, . . . ,vk+` span Rn. Let x ∈ Rn. Then Ax ∈ col(A)
by Lemma B2.7. But w1, . . . ,w` span col(A), so

Ax = d1w1 + · · ·+ d`w`
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x

v1

...

vk

ker(A)

vk+1

...

vk+`

Rn

Ax

0
w1

...

w`

col(A)

Rm

Figure C.1: Schematic diagram of the proof of Theorem C1.4

for some scalars d1, . . . , d`. Since w1 = Avk+1 etc.,

Ax = d1Avk+1 + · · ·+ d`Avk+` = A(d1vk+1 + · · ·+ d`vk+`).

Put x̂ = d1vk+1 + · · · + d`vk+` ∈ Rn. Then Ax = Ax̂, so A(x − x̂) = 0, or
equivalently x− x̂ ∈ ker(A). But v1, . . . ,vk span ker(A), so

x− x̂ = c1v1 + · · ·+ ckvk

for some scalars c1, . . . , ck. Substituting in the definition of x̂ and rearranging
gives

x = c1v1 + · · ·+ ckvk + d1vk+1 + · · ·+ d`vk+`.

So x ∈ span{v1, . . . ,vk+`}, as required.
Second, we prove that v1, . . . ,vk+` are linearly independent. Let

c1, . . . , ck, d1, . . . , d` be scalars such that

c1v1 + · · ·+ ckvk + d1vk+1 + · · ·+ d`vk+` = 0. (C:2)

Multiplying each side by A gives

c1Av1 + · · ·+ ckAvk + d1Avk+1 + · · ·+ d`Avk+` = 0.

But v1, . . . ,vk ∈ ker(A) and Avk+i = wi, so this gives

d1w1 + · · ·+ d`w` = 0.

Now w1, . . . ,w` are linearly independent, so d1 = · · · = d` = 0. Hence equa-
tion (C:2) reduces to

c1v1 + · · ·+ ckvk = 0.

But v1, . . . ,vk are also linearly independent, so c1 = · · · = ck = 0. We have now
shown that all the scalars cj and di are zero. Hence v1, . . . ,vk+` are linearly
independent, completing the proof. �
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This result is very important, but so far we have proved nothing about row
rank. The key to understanding the row space is the following lemma. It says
that the row space and kernel of a matrix are ‘partners’ in the sense of page 69:
each is the orthogonal complement of the other.

Lemma C1.5 ker(A) = row(A)⊥ and row(A) = ker(A)⊥, for any matrix A.

Proof Let A be an m×n matrix. We first show that ker(A) = row(A)⊥. Both
sides are subspaces of Rn, so we have to show that for x ∈ Rn,

Ax = 0 ⇐⇒ x ∈ row(A)⊥.

Let x ∈ Rn. Write the rows of A as r1, . . . , rm; thus, ri is a row vector and
rTi is a column vector. By definition of matrix multiplication and dot product,

Ax =

rT1 · x
...

rTm · x

 .

Hence

Ax = 0 ⇐⇒ rT1 · x = · · · = rTm · x = 0

⇐⇒ x ∈
(
span{rT1 , . . . , rTm}

)⊥
by Lemma B7.3

⇐⇒ x ∈ row(A)⊥ by definition of row(A).

This proves that ker(A) = row(A)⊥. Applying ( )⊥ to each side and using
Corollary B7.9 then gives ker(A)⊥ = row(A). �

We have now done all the work and can read off two more big theorems.

Theorem C1.6 (Rank-nullity, row version) For any matrix A,

row-rank(A) + nullity(A) = number of columns of A.

Proof Let A be an m × n matrix. Then row(A) is a subspace of Rn, so
dim(row(A)) + dim(row(A)⊥) = n by Proposition B7.8. By Lemma C1.5, this
is equivalent to dim(row(A)) + dim(ker(A)) = n, which is exactly what the
theorem states. �

Theorem C1.7 The row rank of a matrix is equal to its column rank.

Proof This is immediate from Theorems C1.4 and C1.6. �

We can now define the rank of a matrix A, written as rank(A), to be either
the row rank or the column rank of A: they’re the same! So both versions of
the rank-nullity theorem state that

rank + nullity = number of columns.

But we needed to prove both versions in order to deduce that the two kinds of
rank were the same.
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Example C1.8 Let us check that these theorems hold for the 4× 3 matrix A
of Example C1.2. First, the row rank is indeed equal to the column rank: both
are 2. So, rank(A) = 2. Second, the rank plus the nullity is 2 + 1 = 3, which is
indeed equal to the number of columns of A.

At the start of this section, I said that very crudely, you could think of the
rank of a matrix as the ‘amount of stuff in it’. A more refined interpretation is
that rank is the ‘effective number of rows’, or equivalently the ‘effective number
of columns’. For instance, our matrix A has 3 columns, but the third is in the
span of the first two (which are linearly independent), so there are ‘effectively’
only two columns. Correspondingly, the rank is 2.

Phrases such as ‘amount of stuff’ and ‘effective number’ are informal and
unrigorous, but may help you to understand what rank means.

C2 Invertibility

Back in Theorem A5.3, we made two nontrivial statements about invertible
matrices: that they are always square, and that for square matrices A and
B of the same size, AB = I ⇐⇒ BA = I. But we didn’t prove either
statement. In fact, we observed that even for 2 × 2 matrices, proving that
AB = I ⇐⇒ BA = I isn’t a pushover.

But we now have the technology to prove the theorem. We can prove the
first part immediately:

Theorem C2.1 Every invertible matrix is square.

Proof Let A be an m× n invertible matrix. We must prove that m = n.
The kernel of A is trivial, since if x ∈ Rn with Ax = 0 then A−1Ax = A−10,

so x = 0. Hence A has nullity 0. The rank-nullity theorem then implies that
rank(A) = n. But rank(A) ≤ m by Lemma C1.3, so n ≤ m.

We have just shown that the number of columns in an invertible matrix is
less than or equal to the number of rows. Applying this to the n×m invertible
matrix A−1 tells us that m ≤ n. Hence m = n. �

For the rest of this section, we will build up to the proof of the second
part of Theorem A5.3: that for square matrices A and B of the same size,
AB = I ⇐⇒ BA = I. Along the way, we will establish a large number of
equivalent conditions for invertibility.

We will soon show that the following four conditions are equivalent to in-
vertibility, but for now we just show that they are equivalent to each other:

Lemma C2.2 Let A be an n× n matrix. The following are equivalent:

i. the columns of A are linearly independent;

ii. the columns of A span Rn;

iii. the columns of A are a basis of Rn;

iv. rank(A) = n.

Proof The equivalence of conditions (i)–(iii) follows from Proposition B5.4.
Also, (ii) is equivalent to (iv) since by Lemma B5.10, col(A) = Rn if and only
if dim(col(A)) = n. �
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Now we can prove that all those conditions, and more besides, are equivalent
to invertibility.

Theorem C2.3 (Equivalent conditions for invertibility, part 1) Let A
be an n× n matrix. The following are equivalent:

i. A is invertible;

ii. there exists an n× n matrix A′ such that A′A = I;

iii. ker(A) = {0};

iv. nullity(A) = 0;

v. the columns of A are linearly independent;

vi. the columns of A span Rn;

vii. the columns of A are a basis of Rn;

viii. rank(A) = n;

ix. for all b ∈ Rn, there is exactly one x ∈ Rn such that Ax = b;

x. for all integers p ≥ 0 and all n× p matrices B, there is exactly one n× p
matrix X such that AX = B.

Proof We have just shown that (v)–(viii) are equivalent, and Lemma B5.10
implies that (iii) is equivalent to (iv). So, it suffices to prove that
(i)=⇒(ii)=⇒(iii)=⇒(v) and (vii)=⇒(ix)=⇒(x)=⇒(i). (Suggestion: draw a dia-
gram showing all the implications.)

(i)=⇒(ii) is immediate from the definition of invertibility.
(ii)=⇒(iii): take some A′ such that A′A = I, and let x ∈ ker(A). Then

A′(Ax) = A′0 = 0. But also A′(Ax) = (A′A)x = x, so x = 0.
(iii)=⇒(v): assume that ker(A) = {0}, and write the columns of A as

v1, . . . ,vn. Let c1, . . . , cn be scalars such that
∑
civi = 0. By Lemma A4.3(i),

Ac = c1v1 + · · ·+ cnvn = 0

where c =

(
c1
...
cn

)
. Hence c ∈ ker(A) = {0}, and so c1 = · · · = cn = 0. Thus,

v1, . . . ,vn are linearly independent.
(vii)=⇒(ix): again, write the columns of A as v1, . . . ,vn. Let b ∈ Rn. By

Lemma A4.3(i), we must prove that there is exactly one x ∈ Rn such that

x1v1 + · · ·+ xnvn = b.

But v1, . . . ,vn is a basis of Rn, so this follows from Lemma B4.3(iii).
(ix)=⇒(x): assume (ix), and let B be an n × p matrix. Write the columns

of B as b1, . . . ,bp ∈ Rn. By (ix), there are unique x1, . . . ,xp ∈ Rn such that

Ax1 = b1, . . . , Axp = bp.

By Lemma A4.3(iii), an equivalent statement is that there is a unique n × p
matrix X such that AX = B. This proves (x).
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(x)=⇒(i): assume (x). Taking B = In, there is a unique matrix A′ such that
AA′ = I. Observe now that A(A′A) = (AA′)A = IA = A and AI = A. So, the
equation AX = A holds for both X = A′A and X = I. But taking B = A in (x)
tells us that there is only one matrix X such that AX = A. Hence A′A = I.
But also AA′ = I, so A is invertible. �

What’s the point of having so many equivalent conditions for invertibility?
First, if you want to show that some matrix is invertible, you can verify any of
these conditions—whichever one is easiest. Second, if you want to show that
some matrix is not invertible, you can prove the failure of whichever one of these
conditions you like. Third, if you have some matrix that you already know to be
invertible, then you can immediately deduce that it has all these properties. . .
and fourth, if you have some matrix that you know not to be invertible, then it
fails every one of them.

Further equivalent conditions for invertibility can be obtained by swapping
the roles of the rows and columns. The neatest way to handle this is to use
transposes, as follows.

Theorem C2.4 (Equivalent conditions for invertibility, part 2) Let A
be an n× n matrix. The following are equivalent:

i. A is invertible;

ii. there exists an n× n matrix A′ such that AA′ = I;

iii. the rows of A are linearly independent;

iv. the rows of A span Rn;

v. the rows of A are a basis of Rn.

Proof We apply Theorem C2.3 to the matrix AT .
Condition (i) of the present theorem states that A is invertible, which by

Lemma A5.10 is equivalent to AT being invertible. This is condition (i) of
Theorem C2.3 applied to AT .

Condition (ii) of the present theorem holds if and only if there is some A′

satisfying (AA′)T = I, if and only if there is some A′ satisfying (A′)TAT = I,
if and only if there is some A′′ satisfying A′′AT = I. This is condition (ii) of
Theorem C2.3 applied to AT .

The rows of A are the columns of AT , so condition (iii) of the present the-
orem is equivalent to condition (v) of Theorem C2.3 applied to AT . Similarly,
conditions (iv) and (v) of the present theorem are equivalent to conditions (vi)
and (vii) of Theorem C2.3 applied to AT .

So each of the five conditions in the present theorem is equivalent to one of
the conditions of Theorem C2.3 applied to AT . Since all the conditions of that
theorem are equivalent, so too are the five conditions above. �

We now achieve our goal, easily deducing the second half of Theorem A5.3:

Corollary C2.5 Let A and B be n× n matrices. Then AB = I ⇐⇒ BA = I.
Moreover, if AB = I or BA = I then A is invertible and B = A−1.
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Proof Suppose that AB = I. Then A is invertible by Theorem C2.4, so B =
A−1AB = A−1I = A−1, so BA = A−1A = I. A similar argument applies if
BA = I. �

So although AB and BA are not usually equal for n× n matrices A and B,
they are equal if AB or BA is I.

C3 Determinants

This course swings back and forth between geometric and algebraic viewpoints.
The section on invertibility was purely algebraic. This section involves both
viewpoints: determinants are defined algebraically, but have a strong geometric
interpretation in terms of volume.

You’ve already met determinants for 2 × 2 and maybe 3 × 3 matrices, but
here we’ll consider arbitrary n× n matrices.

What’s the point of determinants? First, they’ll give us yet another condition
for invertibility of a matrix, and a (very inefficient) method for computing the
inverse. Second, they turn out to be essential for changing variables in several-
variable integrals. (We won’t cover that in this course, but the word to watch
out for elsewhere is Jacobian.) This is closely related to the third reason: a
determinant can be understood as a kind of volume scale factor.

Intuitive background

Let us begin with 2× 2 matrices A =
(
a b
c d

)
. As you know from Example A5.4

or elsewhere, the determinant of A is defined as det(A) = ad − bc. But what
does ad− bc mean geometrically?

Consider the two columns of our matrix,
(
a
c

)
and

(
b
d

)
. Draw a parallelogram:

(
0
0

)
(
a
c

)
(
b
d

) (
a+b
c+d

)

It’s not too hard to see that the area of this parallelogram is ad− bc (exercise).
So, the determinant of A is the area of the parallelogram whose edge-vectors
are the columns of A.

We can try something similar in dimension three. Let A be a 3× 3 matrix.
The three columns v1, v2 and v3 of A are vectors in R3, and we can think about
the volume of the ‘squashed cube’ whose edges are those three vectors:

0
v1

v2

v3
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A ‘squashed cube’ is called a parallelepiped. So to continue the pattern that
we observed in two dimensions, we’d like to define the determinant of a 3 × 3
matrix A to be the volume of the parallelepiped whose edge-vectors are the
columns of A.

Below, we give an algebraic definition of the determinant of an n × n ma-
trix. It can be shown that in the 3 × 3 case, the determinant really is equal
to the volume of our parallelepiped. And once suitable definitions of ‘higher-
dimensional volume’ and ‘higher-dimensional parallelepiped’ have been made,
it can be shown that the same pattern continues in all dimensions.

There is a subtlety concerning signs. Determinants can sometimes be nega-
tive, whereas areas and volumes cannot. For example, det

(
0 1
1 0

)
= −1, and yet

the parallelogram with edge-vectors
(
0
1

)
and

(
1
0

)
is the unit square{

x ∈ R2 : 0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 1
}
,

which has area +1. Actually, the area of the parallelogram (in the two-
dimensional case) or volume of the parallelepiped (in the three-dimensional
case) is the absolute value of the determinant of the matrix. The sign of the
determinant depends on the order in which the edge-vectors are listed, as Propo-
sition C3.4(i) makes clear.

Definition and examples

We define the determinant det(A) of an n× n matrix A by induction on n.
The determinant of a 1× 1 matrix (a) is a.
Now let n ≥ 2, and suppose inductively that we have already defined the

determinant of any (n− 1)× (n− 1) matrix. Let A = (Aij) be an n×n matrix.
Whenever i, j ∈ {1, . . . , n}, write A[i, j] for the (n−1)×(n−1) matrix obtained
from A by deleting the ith row and jth column. (This is not standard notation.)
The determinant of A is

det(A) =

n∑
j=1

(−1)1+jA1j det(A[1, j]).

Examples C3.1 i. Let A =
(
a b
c d

)
. Then A[1, 1] = (d) and A[1, 2] = (c), so

det(A) = (−1)1+1a det((d)) + (−1)1+2bdet((c)) = ad− bc.

So, our new definition agrees with the definition in Example A5.4.

ii. Let

A =

A11 A12 A13

A21 A22 A23

A31 A32 A33


be a 3× 3 matrix. Then

det(A) = A11 det

(
A22 A23

A32 A33

)
−A12 det

(
A21 A23

A31 A33

)
+A13 det

(
A21 A22

A31 A32

)
and each of the individual 2×2 determinants can be worked out using the
formula in the previous example.

80



iii. Similar calculations can be performed for larger matrices. For instance, if
A is a 4× 4 matrix then

det(A) = A11 det(A[1, 1])−A12 det(A[1, 2])+A13 det(A[1, 3])−A14 det(A[1, 4]),

and A[1, 1], A[1, 2], A[1, 3] and A[1, 4] are 3 × 3 matrices, so their deter-
minants can be computed as in the previous example.

iv. An easy proof by induction shows that det(In) = 1 for all n.

v. More generally, you can show by induction that if

A =


c1 0 · · · 0

0 c2
. . .

...
...

. . .
. . . 0

0 · · · 0 cn


then det(A) = c1c2 · · · cn.

The definition of determinant appears to give a special status to the first
row. The next result says that this is an illusion: the same kind of expansion
can be done along any row, or even any column. Pay attention to the is and js!

Proposition C3.2 Let A be an n× n matrix. Then for each i ∈ {1, . . . , n},

det(A) =

n∑
j=1

(−1)i+jAij det(A[i, j]).

Moreover, for each j ∈ {1, . . . , n},

det(A) =

n∑
i=1

(−1)i+jAij det(A[i, j]).

Proof Omitted. �

We can use this result to speed up calculations of determinants, as in the
next example. To handle the signs (−1)i+j , it is useful to notice that they form
a chessboard pattern: 

+ − + − · · ·
− + − + · · ·
+ − + − · · ·
− + − + · · ·
...

...
...

...
. . .


Example C3.3 Suppose we want to compute the determinant of

A =


3 1 0 2
10 4 3 −9
4 −1 0 4
−7 2 0 0

 .
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If we simply use the definition of determinant then we will have three summands
to deal with, one for each nonzero entry in the top row. However, Proposi-
tion C3.2 allows us to expand along any other row or column. We make the
calculation easier by expanding down the third column, which gives:

det(A) = −3 det

 3 1 2
4 −1 4
−7 2 0

 .

(The minus sign on the right-hand side is because (−1)2+3 = −1, as in the
chessboard pattern.) To compute the determinant of this 3×3 matrix, it makes
life easier if we expand along its third row (or column). This gives

det(A) = −3

[
−7 det

(
1 2
−1 4

)
− 2 det

(
3 2
4 4

)]
= −3

[
−7(1× 4 + 2× 1)− 2(3× 4− 2× 4)

]
= −3[−7× 6− 2× 4] = 150.

Properties of determinants

Here are some properties of determinants, stated without proof.

Proposition C3.4 Let A be an n× n matrix, with rows r1, . . . , rn.

i. Let B be the matrix obtained from A by swapping rows i and j (where
i 6= j). Then det(B) = −det(A).

ii. Let B be the matrix obtained from A by multiplying the ith row by a scalar
c. Then det(B) = cdet(A).

iii. If some row ri is 0 then det(A) = 0.

iv. Let r′i be an n-dimensional row vector, write A′ for the matrix with rows

r1, . . . , ri−1, r
′
i, ri+1, . . . , rn,

and write B for the matrix with rows

r1, . . . , ri−1, ri + r′i, ri+1, . . . , rn.

Then det(B) = det(A) + det(A′).

v. det(AT ) = det(A).

vi. det(AB) = det(A) det(B) for any n× n matrix B.

Proof Omitted. �

Part (v) implies that for every property of determinants involving rows, there
is a similar property involving columns. For example, if some column of A is
zero then det(A) = 0.

Corollary C3.5 Let A be an n× n matrix. If two rows of A are identical, or
two columns of A are identical, then det(A) = 0.
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Proof Suppose that two rows are identical. Then det(A) = −det(A) by Propo-
sition C3.4(i), so det(A) = 0.

If two columns of A are identical then two rows of AT are identical, so
det(AT ) = 0, so det(A) = 0 by Proposition C3.4(v). �

Corollary C3.6 Every invertible matrix A has nonzero determinant, and
det(A−1) = 1/det(A).

Proof Let A be an invertible matrix. Then AA−1 = I, so det(A) det(A−1) =
det(I) = 1 by Proposition C3.4(vi) and Example C3.1(iv). The result follows.�

We will also prove the converse: a matrix with nonzero determinant is in-
vertible. For this, we introduce some terminology. The (i, j)-cofactor of A is
Cij = (−1)i+j det(A[i, j]). So by Proposition C3.2,

det(A) =

n∑
j=1

AijCij

for any i ∈ {1, . . . , n}.
The adjugate of A is the n × n matrix adj(A) whose (i, j)-entry is Cji.

Note the reversal of the indices! (The adjugate is sometimes called the
classical adjoint, or simply the adjoint. This terminology is problematic,
since the word ‘adjoint’ also has another, different, meaning in linear algebra.)

Example C3.7 The adjugate of a 2× 2 matrix A =
(
a b
c d

)
is

adj(A) =

(
C11 C21

C12 C22

)
=

(
d −b
−c a

)
.

Notice that in this case, A adj(A) = det(A)I. We will now show that this is
actually true for all square matrices, not just 2× 2.

Proposition C3.8 A adj(A) = det(A)I for all square matrices A.

Proof Let A be an n×n matrix. Both A adj(A) and det(A)I are n×n matrices,
so it remains to prove that they have the same entries. We use the convention
that the (i, j)-entry of a matrix M is written as Mij .

Let i, k ∈ {1, . . . , n}. We must show that (A adj(A))ik is equal to det(A) if
i = k, or 0 if i 6= k. We have

(A adj(A))ik =

n∑
j=1

AijCkj =

n∑
j=1

(−1)k+jAij det(A[k, j]).

If i = k then this sum is equal to det(A), by Proposition C3.2, as required.
Now suppose that i 6= k. Let A′ be the n × n matrix obtained from A

by replacing the kth row by the ith row (and leaving all the other rows alone,
including the ith). The rows of A′ and A are the same apart from the kth, so
A′[k, j] = A[k, j] for all j. Also, A′kj = Aij for all j. Hence

(A adj(A))ik =

n∑
j=1

(−1)k+jA′kj det(A′[k, j]),

which is equal to det(A′) by Proposition C3.2. But two rows of A′ are equal, so
det(A′) = 0 by Corollary C3.5. Hence (A adj(A))ik = 0, as required. �
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Theorem C3.9 (Equivalent conditions for invertibility, part 3) Let A
be an n × n matrix. Then A is invertible if and only if detA 6= 0, and in
that case A−1 = 1

detA adj(A).

Proof ‘Only if’ is part of Corollary C3.6. For ‘if’, suppose that detA 6= 0. Then
A
(

1
detA adj(A)

)
= I by Proposition C3.8, so by Corollary C2.5, A is invertible

with inverse 1
detA adj(A). �

Example C3.10 By Theorem C3.9, a 2 × 2 matrix A =
(
a b
c d

)
is invertible if

and only if ad 6= bc, and in that case,

A−1 =
1

ad− bc

(
d −b
−c a

)
.

Let us finish by seeing how Theorem C3.9 fits with the volume-based un-
derstanding of determinants. We introduced determinants for 3 × 3 matrices
by saying that det(A) (or really |det(A)|) is the volume of the parallelepiped
whose edge-vectors are the columns v1,v2,v3 of A. According to the theorem
we just proved, A is invertible exactly when that volume is nonzero. Does that
make sense?

The volume of the parallelepiped is zero if and only if v1,v2,v3 all lie on
some plane. This happens if and only if v1,v2,v3 are linearly dependent. But
we know from Theorem C2.3 that they are linearly dependent if and only if A is
not invertible. So, the volume of the parallelepiped is nonzero if and only if A
is invertible. Since the volume is |det(A)|, that fits exactly with Theorem C3.9.

C4 Linear systems

We now begin our study of linear systems (defined on page 71). Linear systems
include collections of equations like this:

2x− 3y = z + 6

y + 5 = −2z − 3(x− 2)

0 = x+ y + z

3x+ 4 = 2y.

Although this is not literally in the form of equations (C:1) (page 71), it is easily
put into that form by tidying up the equations so that all the variables are on
the left and all the constants are on the right.

In the rest of this chapter, we will address the ‘fundamental questions’ listed
after equations (C:1), using our earlier observation that a linear system can be
expressed in the form Ax = b. But let us start in a very elementary way, by
considering some small examples.

Example C4.1 A 2× 2 linear system consists of equations

a11x+ a12y = b1

a21x+ a22y = b2

in variables x and y. Assuming that a11 and a12 are not both zero, the first
equation represents a straight line in the (x, y)-plane. Assuming that a21 and
a22 are not both zero, the second represents a straight line too.
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The set of solutions is the set of points that lie on both lines. There are
several possibilities:

• The lines intersect at a single point. Then the system has exactly one
solution.

• The lines are parallel but not the same. Then the system has no solutions.

• The lines are the same. Then the system has infinitely many solutions.

How can we actually solve the equations? Multiply the first by a21 and the
second by a11, then subtract. This gives

(a11a22 − a12a21)y = a11b2 − a21b1.

Assuming that a11a22 − a12a21 6= 0, this gives

y =
a11b2 − a21b1
a11a22 − a12a21

from which it follows that

x =
a22b1 − a12b2
a11a22 − a12a21

.

So as long as a11a22 − a12a21 6= 0, there is a unique solution.
As you may have noticed,

a11a22 − a12a21 = det

(
a11 a12
a21 a22

)
.

So, we have just shown that if this matrix is invertible then the system has a
unique solution. We will come back to this connection later.

I leave you the exercise of investigating the case where a11a22 − a12a21 = 0.

Example C4.2 We want a methodical way of calculating the solutions of any
linear system. A 2× 2 system isn’t big enough to illustrate the method, so let’s
try a 3× 3 system, say

2x+ 3y − z = 3

x+ y + z = 4

3x− 4y + z = 1.

We start by trying to eliminate the xs from all but one equation. We could
do this by subtracting suitable multiples of the first equation from each of the
other two, but the numbers will be easier if we use the second equation instead.
So let’s begin by swapping the first two equations:

x+ y + z = 4

2x+ 3y − z = 3

3x− 4y + z = 1.
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Obviously, changing the order of the equations makes no difference to the so-
lutions! Now let’s subtract 2 times the first equation from the second equation
and subtract 3 times the first equation from the third equation. This gives:

x+ y + z = 4

0x+ y − 3z = −5

0x− 7y − 2z = −11.

Doing this doesn’t change the solutions either: numbers x, y and z satisfy the
old equations if and only if they satisfy the new ones.

We’re now done with x, having eliminated it from all but one equation. Next
let’s eliminate y, by subtracting 1 times the second equation from the first and
adding 7 times the second equation to the third. This gives:

x+ 0y + 4z = 9

0x+ y − 3z = −5

0x+ 0y − 23z = −46.

Again, this has the same solutions as the original equations. We might as well
simplify the third equation by taking out a factor of −23:

x+ 0y + 4z = 9

0x+ y − 3z = −5

0x+ 0y + z = 2

(which again, doesn’t change the solutions). Finally, we eliminate the z by
subtracting 4 times the third equation from the first equation and adding 3
times the third to the second. This gives

x+ 0y + 0z = 1

0x+ y + 0z = 1

0x+ 0y + z = 2

or equivalently x = 1, y = 1 and z = 2. So this particular linear system has a
unique solution.

Remark C4.3 You might think that the method above misses out a move
commonly used in solving simultaneous equations: make one variable (x, say)
the subject of an equation, then substitute it into the other equations in order to
eliminate x. But in fact, this is really the same as the move we used repeatedly
above, where we eliminated a variable by subtracting suitable multiples of one
equation from all the others. It only looks different because we are insisting on
keeping all the variables on the left-hand side and all the constants on the right.

Example C4.4 Consider a different 3× 3 linear system:

x+ 2y + 3z = 1

3x+ 5y − 2z = 2

4x+ 7y + z = 3.
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Subtract 3 times the first equation from the second, and 4 times the first equa-
tion from the third, to get:

x+ 2y + 3z = 1

0x− y − 11z = −1

0x− y − 11z = −1.

To eliminate y, first multiply the second equation by −1 so that y has a coeffi-
cient of 1:

x+ 2y + 3z = 1

0x+ y + 11z = 1

0x− y − 11z = −1.

Then subtract 2 times the second equation from the first and add 1 times the
second equation to the third:

x+ 0y − 19z = −1

0x+ y + 11z = 1

0x+ 0y + 0z = 0.

The last equation tells us nothing and can therefore be ignored. In the first two,
we can choose z freely, say by putting z = t for an arbitrary scalar t. Thus, the
solutions of the system are:

x = −1 + 19t, y = 1− 11t, z = t (t ∈ R).

We call z a free variable (since we can choose it freely) and x and y
leading variables. The method for solving linear systems illustrated in the
last two examples is called Gaussian elimination.

It is useful to consider the special kind of linear system where all the con-
stants on the right-hand side are 0:

a11x1 + a12x2 + · · ·+ a1nxn = 0

a21x1 + a22x2 + · · ·+ a2nxn = 0

...
... (C:3)

am1x1 + am2x2 + · · ·+ amnxn = 0.

A linear system with this property is called homogeneous. Otherwise, it is
called inhomogeneous.

We observed on page 71 that any linear system (C:1) can be expressed in
matrix notation:

Ax = b.

So in matrix notation, a homogeneous linear system is an equation of the form

Ax = 0

where A is a given m×n matrix, x ∈ Rn is an unknown vector, and 0 is the zero
vector in Rm. The set of solutions of this homogeneous linear system is exactly
the kernel of A (immediately from the definition of kernel). In other words:
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The kernel of A is the set of solutions x of the homogeneous linear
system Ax = 0.

This is one way of understanding kernels. By Lemma B1.4, then, the solution-
set of a homogeneous linear system in n variables is always a linear subspace of
Rn.

We saw in Example C4.1 that a linear system need not have any solu-
tions at all. But a homogeneous linear system always has at least one, the
trivial solution x = 0.

Now consider an arbitrary linear system Ax = b (not necessarily homoge-
neous). I claim that if we can find just one solution of the system, then all other
solutions can be obtained by adding on any solution of the homogeneous system
Ax = 0. That is:

Lemma C4.5 Consider a linear system Ax = b, where A is an m× n matrix
and b ∈ Rm. Let x = u be a solution. Then the set of all solutions is

{x ∈ Rn : x = u + w for some w ∈ ker(A)}.

Proof We have to prove two things: that every element of this set is a solution,
and that every solution belongs to this set.

First, let w ∈ ker(A); we must prove that x = u + w satisfies Ax = b. And
indeed,

A(u + w) = Au +Aw = b + 0 = b.

Second, let x ∈ Rn be a solution of Ax = b; we must prove that x = u + w
for some w ∈ ker(A). Put w = x− u. Then x = u + w, and

Aw = A(x− u) = Ax−Au = b− b = 0,

so w ∈ ker(A). �

Example C4.6 (See Figure C.2.) Suppose that our system consists of a single
equation in two variables,

2x− 3y = 7.

(In the notation above: m = 1, n = 2, A = (2 − 3), and b = (7).) The
associated homogeneous system is

2x− 3y = 0.

One solution of the original system is x = 5, y = 1. The general solution of the
homogeneous system is

( x
y

)
=
(
3t
2t

)
(t ∈ R). So by Lemma C4.5, the general

solution of the original system is(
x
y

)
=

(
5
1

)
+

(
3t
2t

)
(t ∈ R).

Just before Lemma C4.5, we saw that the solution-set of a homogeneous
linear system in n variables is always a linear subspace of Rn. The solution-set
S of an inhomogeneous linear system is never a subspace, since x = 0 is not
a solution. However, Lemma C4.5 tells us that S is a subspace translated by
some vector (called u in the statement of the lemma).

For instance, in Example C4.6, the set S of solutions of 2x−3y = 7 is the line
2x−3y = 0 translated by the vector

(
5
1

)
. The solution-sets of the homogeneous

and inhomogeneous systems are both lines, but only for the homogeneous system
is it a line through the origin.
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x

y

2x− 3y = 0

2x− 3y = 7
(5, 1)

Figure C.2: The solution-sets of an inhomogeneous linear system and its asso-
ciated homogeneous linear system (Example C4.6)

Remark C4.7 (Non-examinable.) A very similar result holds in the theory of
linear differential equations. Consider, for instance, the differential equation

2f ′(θ)− 3f(θ) = cos θ

(where f is an unknown function and the equation is to hold for all θ). Suppose
we have found one solution, say f = u. Then the other solutions are the
functions of the form u+w where w is a solution of the homogeneous differential
equation

2w′(θ)− 3w(θ) = 0.

It’s not hard to show this directly; the proof is very similar to that of
Lemma C4.5. (Maybe you’ve already shown this in SVCDE. In traditional
terminology, u is called a ‘particular integral’ and w is called the/a ‘comple-
mentary function’.) A crucial fact here is that differentiation is linear, meaning
that (f + g)′ = f ′ + g′ and (cf)′ = cf ′ for any scalar c.

In Example C4.6, the homogeneous system had infinitely many solutions.
There are other examples of homogeneous systems that have only one solution,
namely, the trivial solution 0. (Can you think of an example?) In fact, these
are the only possibilities:

Lemma C4.8 A homogeneous linear system has either just one solution (the
trivial solution 0) or infinitely many solutions.

Proof The set of solutions of a homogeneous system Ax = 0 is ker(A), which
is a linear subspace of Rn. So if the system has a nontrivial solution x 6= 0 then
cx is a solution for all c ∈ R. But the vectors cx are different for different values
of c ∈ R (since x 6= 0), so there are infinitely many solutions. �

We saw in Example C4.1 that some inhomogeneous linear systems have
no solutions, some have exactly one solution, and some have infinitely many
solutions. Again, these are the only possibilities:

Lemma C4.9 A linear system has no solutions, exactly one solution, or in-
finitely many solutions.
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Proof Consider a linear system Ax = b. If it has any solutions at all, then by
Lemma C4.5, the set of all solutions has exactly as many elements as the set
of solutions of the homogeneous system Ax = 0. But by Lemma C4.8, this set
has either one element or infinitely many. �

So if, for instance, you have found two different solutions of a linear system,
you can immediately deduce that it has infinitely many solutions.

C5 How to solve a linear system

In Examples C4.2 and C4.4, we solved some linear systems in a more or less
methodical way. We used three operations repeatedly:

• interchange two equations;

• multiply an equation by a nonzero scalar (on both sides);

• add a multiple of one equation to another equation.

We’ve seen that a linear system can be expressed most efficiently in matrix form.
So, let’s now translate these operations into matrix terms.

When dealing with a linear system Ax = b, it is often convenient to write
the m×n matrix A next to the m-dimensional vector b, making a single matrix
with a vertical bar separating A from b:

a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
...

...
am1 am2 · · · amn bm

 .

Here A = (aij).
This is called the augmented matrix of the linear system. The equations

of the linear system correspond to the rows of the augmented matrix, with the
bar separating the left-hand side from the right-hand side. The three operations
on equations correspond to the following three operations on a matrix, which
are called the elementary row operations:

• interchange two rows;

• multiply a row by a nonzero scalar;

• add a scalar multiple of one row to another row.

Since we will be using these operations repeatedly, we set up some notation for
them. Interchanging rows i and j is written as Ri ↔ Rj , multiplying row i by
a nonzero scalar c is written as Ri → cRi, and adding c times row j to row i is
written as Ri → Ri + cRj .

Example C5.1 The augmented matrix of the linear system in Example C4.2
is 2 3 −1 3

1 1 1 4
3 −4 1 1

 .
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When we solved this system in Example C4.2, we did it explicitly in terms of
equations and variables. Here it is again: exactly the same argument as in
Example C4.2, but this time in terms of elementary row operations.2 3 −1 3

1 1 1 4
3 −4 1 1

 −−−−−−−−−−−−−−−−−−→
R1↔R2

1 1 1 4
2 3 −1 3
3 −4 1 1


−−−−−−−−−−−−−−−−−−→

R2→R2−2R1

R3→R3−3R1

1 1 1 4
0 1 −3 −5
0 −7 −2 −11


−−−−−−−−−−−−−−−−−−→

R1→R1−R2

R3→R3+7R2

1 0 4 9
0 1 −3 −5
0 0 −23 −46


−−−−−−−−−−−−−−−−−−→

R3→(−1/23)R3

1 0 4 9
0 1 −3 −5
0 0 1 2


−−−−−−−−−−−−−−−−−−→

R1→R1−4R3

R2→R2+3R3

1 0 0 1
0 1 0 1
0 0 1 2

 .

(Notice how we cleared the columns one by one, working from left to right.) We
conclude that the unique solution of the linear system isxy

z

 =

1
1
2

 .

Warning C5.2 It’s sometimes OK to do multiple row operations at once, as
shown in the last example. But in any one step, don’t do more than one oper-
ation to any individual row, as that’s where mistakes can arise.

Warning C5.3 When you’re doing row reductions, always say which row
you’re operating on. I say this because Poole uses a form of notation that I
discourage you from using; for instance, he writes ‘R1 → R1 + R2’ as just
‘R1 + R2’. So, for him, ‘R1 + R2’ and ‘R2 + R1’ mean different things! Don’t
do this. Stick to the notation above.

How do we know this method gives the correct set of solutions? It is the same
method that we used as in Examples C4.2 and C4.4, just in different notation.
Back then, we used the principle that changing the order of the equations,
or multiplying an equation by a nonzero constant, or adding a multiple of one
equation to another, doesn’t change the solution-set. The first two are clear, but
the last perhaps less so, and in any case we should state the principle formally:

Lemma C5.4 Let A be an m × n matrix and b ∈ Rm. Let A′ be the matrix
obtained from A by performing a single row operation, and let b′ be the vector
obtained from b by performing the same row operation. Then for x ∈ Rn,

Ax = b ⇐⇒ A′x = b′.
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Proof There are three cases to prove, corresponding to the three types of ele-
mentary row operation. I will do the third type only; the first two are similar,
easier, and left to you as an exercise.

So, suppose that A′ is obtained from A by the row operation Ri → Ri+ cRj
(where i, j ∈ {1, . . . ,m} and c ∈ R), and similarly b′ from b. Assume without
loss of generality that i = 1 and j = 2. Write the rows of A as r1, . . . , rm.

Let x ∈ Rn. By definition of matrix multiplication,

Ax =


r1x
r2x

...
rmx

 .

(Each row rp is a 1 × n matrix, and x is an n × 1 matrix, so rpx is a 1 × 1
matrix, that is, a scalar.) The rows of A′ are r1 + cr2, r2, . . . , rm, so

A′x =


(r1 + cr2)x

r2x
...

rmx

 =


r1x + cr2x

r2x
...

rmx

 .

Hence

A′x = b′ ⇐⇒


r1x + cr2x

r2x
...

rmx

 =


b1 + cb2
b2
...
bm



⇐⇒


r1x
r2x

...
rmx

 =


b1
b2
...
bm

 ⇐⇒ Ax = b

where the second ‘⇐⇒’ follows from the observation that(
r1x + cr2x = b1 + cb2 and r2x = b2

)
⇐⇒

(
r1x = b1 and r2x = b2

)
.

This completes the proof. �

Now that we have shown our method to be valid, here is another example.

Example C5.5 The augmented matrix of the linear system in Example C4.4
is 1 2 3 1

3 5 −2 2
4 7 1 3

 .

The reductions performed in Example C4.4 can be translated into row opera-
tions. (Exercise: try it!) The end result is1 0 −19 −1

0 1 11 1
0 0 0 0

 .
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As in Example C4.4, we conclude that the set of solutions is
−1

1
0

+ t

 19
−11

1

 : t ∈ R

 .

The matrices we ended up with in both of the last two examples were of a
certain special type. Here is the terminology.

Definition C5.6 A matrix is in row echelon form (REF) if:

i. any rows consisting entirely of zeros are at the bottom; and

ii. in each nonzero row, the first nonzero entry (called the leading entry) is
to the left of all the leading entries below it.

Example C5.7 The matrix
1 2 3 4 5
0 6 7 8 9
0 0 0 10 11
0 0 0 0 0


is in row echelon form. The leading entries are underlined.

The word echelon comes from the Latin word for staircase, which also gives
rise to modern English words such as escalator.

Definition C5.8 A matrix is in reduced row echelon form (RREF) if it
is in row echelon form, and:

i. all leading entries are equal to 1; and

ii. each column containing a leading 1 has zeros everywhere else.

Examples C5.9 The final matrices in Examples C5.1 and C5.5 are both in
reduced row echelon form, and so is

1 0 3 0
0 1 6 0
0 0 0 1
0 0 0 0

 .

It is a fact that by repeatedly performing elementary row operations, any
matrix can be put into reduced row echelon form. It is also a fact that the RREF
is unique. In other words, if you give the same matrix M to two different people
and ask them to put it into RREF, they might use different row operations to
get there, but they are guaranteed to arrive at the same final answer.

In summary, a systematic way to solve a linear system is to:

• write down the augmented matrix;

• use elementary row operations to put it into reduced row echelon form;

• read off the solutions.
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As in Lemma C4.9, there may be no solutions, exactly one solution, or infinitely
many solutions.

Remark C5.10 What’s the point of non-reduced row echelon form? The an-
swer is practical: it can be a useful intermediate stage. For example, suppose
we have used elementary row operations to reduce a system to1 1 4 6

0 1 −5 −3
0 0 2 8

 .

This is in REF. It is not in RREF, since it fails both conditions in Defini-
tion C5.8. But still, we can use it to write down the solution(s) quickly, as
follows. This matrix corresponds to the linear system

x+ y + 4z = 6

y − 5z = −3

2z = 8.

The third equation gives z = 4. Substituting this into the second equation gives
y = 17. Then substituting these into the first equation gives x = −27. So this
is the unique solution.

C6 How to invert a matrix

. . . or more accurately, ‘How to tell whether a matrix is invertible, and how to
invert it if it is’.

In Section C3, we found a determinant-based method for telling whether a
matrix is invertible and inverting it if it is: a square matrix A is invertible if
and only if det(A) 6= 0, and in that case, A−1 = adj(A)/ det(A). However, this
method is disastrously inefficient. Calculating a 4×4 determinant is already long
and tedious for a human being. Computers are faster, but even so, calculating
the determinant of a 100× 100 matrix using the definition in Section C3 needs
about 10158 operations, which even at a trillion trillion trillion operations per
second would take more than

1 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000

years. And in mathematical models of real-world situations, a 100× 100 matrix
isn’t especially big—systems of thousands of equations in thousands of variables
are routine.

(There are faster methods of computing determinants, but still, determinants
are hardly ever used in real-life numerical computing.)

In this section, we will use elementary row operations to derive a much more
efficient method. We begin with the question of whether a matrix is invertible.

Lemma C6.1 Let A be a matrix and let A′ be another matrix obtained from A
by a sequence of elementary row operations. Then ker(A) = ker(A′).

Proof This follows by induction from Lemma C5.4, taking b = 0 there. �
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Lemma C6.2 The only n× n invertible matrix in reduced row echelon form is
In.

Proof Let R be an n × n invertible matrix in REF. Since R is invertible,
Theorem C2.4 implies that the rows of R are linearly independent, so by Ex-
ample B3.2(vi), R has no rows consisting entirely of zeros. Since R is in REF,
the leading entry of each of the n rows is to the left of the leading entries below
it, and since R has only n columns, the leading entries must all be on the main
diagonal. Hence R is of the form

∗ ∗ · · · ∗

0 ∗
. . .

...
...

. . .
. . . ∗

0 · · · 0 ∗


where ∗ denotes any scalar and the diagonal entries Rii are all nonzero.

Now assume that R is in reduced REF. Every leading entry is 1, and every
column containing a leading entry has zeros everywhere else, so R = In. �

Theorem C6.3 (Equivalent conditions for invertibility, part 4) Let A
be an n× n matrix. Then A is invertible if and only if the reduced row echelon
form of A is In.

Proof Write R for the RREF of A. By Theorem C2.3, A is invertible if and only
if ker(A) = {0}, and R is invertible if and only if ker(R) = {0}. But ker(A) =
ker(R) by Lemma C6.1, so A is invertible if and only if R is. Lemma C6.2 now
completes the proof. �

This gives an efficient practical method for deciding whether a matrix is
invertible: use elementary row operations to compute the RREF, then check to
see whether the RREF is the identity. If so, the original matrix is invertible;
if not, it isn’t. We will see an example later, once we have answered the next
question: if a matrix is invertible, how do we actually compute the inverse?

Let A = (aij) be an invertible n × n matrix. By Theorem C2.3(ix), for
any vector b ∈ Rn, the inhomogeneous linear system Ax = b has exactly one
solution, namely, x = A−1b. So we can find A−1b by solving this system. We
know how to solve any linear system Ax = b, but the fact that A is invertible
makes things especially simple: the RREF is I, so the unique solution x is simply
whatever is to the right of the vertical bar at the end of the reduction process.
For instance, in Example C5.1, the final matrix in the reduction process was1 0 0 1

0 1 0 1
0 0 1 2

 ,

and the unique solution was x =
(

1
1
2

)
.

These observations give us a way of computing A−1, as follows. By
Lemma A4.3(ii), the first column of A−1 is A−1e1. In other words, it is the
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unique solution x1 of the equation Ax1 = e1. And we have just seen how to
compute this! We write down the augmented matrix

a11 · · · a1n 1
a21 · · · a2n 0
...

...
...

an1 · · · ann 0

 ,

we do elementary row operations until the part to the left of the bar is in RREF
(which will be In, since A is invertible), and then we read off the vector to the
right of the bar. This will be the first column of A−1.

Of course, the same thing works for all the other columns too. And since
the same process is involved every time, we might as well do all the columns at
once, putting all of e1, . . . , en to the right of the bar. This gives an algorithm
for computing the inverse of an invertible matrix, as well as (simultaneously)
an algorithm for deciding whether a matrix is invertible. It is best illustrated
by some examples.

Example C6.4 Is the matrix

A =

1 0 2
0 3 0
4 0 5


invertible? If so, what is its inverse?

Place the vectors e1, e2, e3 (that is, the identity matrix) next to A:1 0 2 1 0 0
0 3 0 0 1 0
4 0 5 0 0 1

 .

Using elementary row operations on the whole 3 × 6 matrix, put the left-hand
half into reduced row echelon form:1 0 2 1 0 0

0 3 0 0 1 0
4 0 5 0 0 1

 −−−−−−−−−−−−−−−−−−→
R3→R3−4R1

1 0 2 1 0 0
0 3 0 0 1 0
0 0 −3 −4 0 1


−−−−−−−−−−−−−−−−−−→

R2→(1/3)R2

R3→(−1/3)R3

1 0 2 1 0 0
0 1 0 0 1/3 0
0 0 1 4/3 0 −1/3


−−−−−−−−−−−−−−−−−−→

R1→R1−2R3

1 0 0 −5/3 0 2/3
0 1 0 0 1/3 0
0 0 1 4/3 0 −1/3

 .

The RREF of A is I, so by Theorem C6.3, A is invertible. Moreover, the
argument just given shows that A−1 is the right-hand half; that is,

A−1 =

−5/3 0 2/3
0 1/3 0

4/3 0 −1/3

 .
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Example C6.5 Is the matrix

A =

9 8 7
6 5 4
3 2 1


invertible? If so, what is its inverse?

Apply the same method:9 8 7 1 0 0
6 5 4 0 1 0
3 2 1 0 0 1

 −−−−−−−−−−−−−−−−−−→
R1→(1/9)R1

1 8/9 7/9 1/9 0 0
6 5 4 0 1 0
3 2 1 0 0 1


−−−−−−−−−−−−−−−−−−→

R2→R2−6R1

R3→R3−3R1

1 8/9 7/9 1/9 0 0
0 −1/3 −2/3 −2/3 1 0
0 −2/3 −4/3 −1/3 0 1


−−−−−−−−−−−−−−−−−−→

R3→R3−2R2

1 8/9 7/9 1/9 0 0
0 −1/3 −2/3 −2/3 1 0
0 0 0 1 −2 1

 .

We haven’t yet reduced the left-hand half to RREF, but it already has a zero
row, so the RREF will have a zero row too. Hence A is not invertible, by
Theorem C6.3. (The right-hand half plays no part this time; it only would have
been useful if A had turned out to be invertible.)

C7 How to calculate everything else

If I gave you a list of vectors in Rn, how could you determine whether they
were linearly independent? How could you find a basis of the subspace that
they span? Or if I gave you a matrix, how could you calculate a basis of its
row space? What about its column space, or its kernel? And how could you
compute its rank and nullity? Or, suppose I gave you a subspace of Rn. How
could you find an orthonormal basis of it? How could you find a basis of its
orthogonal complement?

In this section, we will see how to answer all these questions. To do so, we
need the following three useful results.

Lemma C7.1 Let A be a matrix and let A′ be another matrix obtained from
A by a sequence of elementary row operations. Then row(A) = row(A′) and
rank(A) = rank(A′).

Proof The first equation follows from Lemmas C1.5 and C6.1. The second
follows from the first by taking the dimension of each side. �

Warning C7.2 The matrices A and A′ need not have the same column space.
For instance, A =

(
1 0
1 0

)
can be transformed by an elementary row operation

into A′ =
(
1 0
0 0

)
, but col(A) = span

{(
1
1

)}
6= span{

(
1
0

)
} = col(A′). There is also

a notion of elementary column operation, and a matrix has the same column
space as anything obtained from it by elementary column operations.

Lemma C7.3 Let R be a matrix in row echelon form. Then the nonzero rows
of R are a basis of row(R).
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(Strictly speaking, it is actually the transposes of the nonzero rows that are
a basis of row(R); see the definition on page 50. But never mind!)

Proof By definition, the rows of R span row(R). Omitting the zero rows does
not alter the span, so the nonzero rows of R also span row(R). It remains to
show that the nonzero rows are linearly independent.

Suppose that the matrix R is m× n, with k nonzero rows. By definition of
REF, they are the first k rows. For i ∈ {1, . . . , k}, write the ith row as ri ∈ Rn,
write the leading entry in the ith row as `i, and let us suppose that this leading
entry is in the pith column. By definition of REF,

1 ≤ p1 < p2 < · · · < pk ≤ n.

Now let c1, . . . , ck be scalars such that

c1r1 + c2r2 + · · ·+ ckrk = 0. (C:4)

We must prove that c1 = · · · = ck = 0.
Apart from the first row, there are no nonzero entries in the p1th column.

So, comparing the p1th entries on each side of equation (C:4) gives c1`1 = 0.
But `1 is a leading entry, so is not zero, so c1 = 0. Hence (C:4) now gives

c2r2 + · · ·+ ckrk = 0.

If we delete the first row from A then what remains is still in REF, so we can
repeat the same argument to get c2 = 0. Continuing in this way gives ci = 0
for all i ∈ {1, 2, . . . , k}, as required. �

Proposition C7.4 The rank of a matrix is equal to the number of nonzero
rows in any reduced echelon form.

Proof This follows from Lemmas C7.1 and C7.3. �

These results tell us that a lot of information about a matrix can be read off
from any row echelon form. This is illustrated in the following examples.

Example C7.5 Given a matrix, how can we calculate a basis of its row space?
Take, for instance,

A =


1 1 3 1 6
2 −1 0 1 −1
−3 2 1 −2 1
4 1 6 1 3

 ,

After a sequence of elementary row operations, we find that the RREF of A is

R =


1 0 1 0 −1
0 1 2 0 3
0 0 0 1 4
0 0 0 0 0

 .

By Lemma C7.3, the nonzero rows of R (or really their transposes) form a basis
of row(R), which by Lemma C7.1 is equal to row(A). So

1
0
1
0
−1

 ,


0
1
2
0
3

 ,


0
0
0
1
4

 (C:5)
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form a basis of row(A).
Here we calculated the reduced row echelon form of A, but any other row

echelon form would also have worked, for the same reasons.

Example C7.6 Given a list of vectors, how can we calculate a basis of their
span? For instance, take

v1 =


1
1
3
1
6

 , v2 =


2
−1
0
1
−1

 , v3 =


−3
2
1
−2
1

 , v4 =


4
1
6
1
3

 .

Turn these into row vectors (i.e. take transposes) and put them together as
the rows of a matrix. In this example, this gives the matrix A of Exam-
ple C7.5. Then span{v1,v2,v3,v4} = row(A), and we have already found
a basis of row(A): the three vectors in (C:5). These, then, are a basis of
span{v1,v2,v3,v4}.

Example C7.7 Similarly, to calculate a basis of the column space of a matrix,
we calculate a basis of the row space of its transpose. For instance, one basis of
the column space of 

1 2 −3 4
1 −1 2 1
3 0 1 6
1 1 −2 1
6 −1 1 3


is the list of three vectors in (C:5), for exactly the reasons given in the last
example.

Example C7.8 Given a matrix, how can we calculate its rank and nullity?
By Proposition C7.4, we can calculate the rank by computing a row echelon

form and counting its nonzero rows. So for the matrix A of Example C7.5, we
have rank(A) = 3. Then by the rank-nullity theorem,

nullity(A) = (number of columns of A)− rank(A) = 5− 3 = 2.

Example C7.9 Given a list of vectors, how can we determine whether they
are linearly independent?

Vectors v1, . . . ,vm ∈ Rn are linearly independent if and only if
dim(span{v1, . . . ,vm}) = m (Proposition B5.8). But dim(span{v1, . . . ,vm})
is the rank of the matrix A with rows vT1 , . . . ,v

T
m, and we already know how to

compute the rank of a matrix. Since A is an m×n matrix, it has rank m if and
only if a row echelon form of A has no zero rows.

Thus, to determine whether v1, . . . ,vm are linearly independent:

• form the matrix A with rows vT1 , . . . ,v
T
m;

• compute a row echelon form R of A;

• if R has a zero row then v1, . . . ,vm are linearly dependent; otherwise,
they are independent.
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For v1,v2,v3,v4 ∈ R5 as in Example C7.6, the last row of the reduced row
echelon form is zero, so they are linearly dependent.

Example C7.10 Given a matrix A, how can we calculate a basis of ker(A)?
By definition, ker(A) is the set of solutions x of the homogeneous linear

system Ax = 0. We already know how to solve linear systems: put A into
reduced row echelon form, then just read off the solutions. For instance, take
the matrix A of Example C7.5, whose RREF is

1 0 1 0 −1
0 1 2 0 3
0 0 0 1 4
0 0 0 0 0

 .

So the solutions of Ax = 0 are the vectors x satisfying

x1 + x3 − x5 = 0,

x2 + 2x3 + 3x5 = 0,

x4 + 4x5 = 0.

The leading entries of the RREF are in columns 1, 2 and 4. Correspondingly,
each of these equations contains exactly one of x1, x2 and x4 (each with a
coefficient of 1) together with some of the remaining variables. Moving the
remaining variables to the right-hand sides, we find that x is a solution if and
only if

x1 = −x3 + x5,

x2 = −2x3 − 3x5,

x4 = −4x5.

So, writing s = x3 and t = x5,

ker(A) =




−s+ t
−2s− 3t

s
−4t
t

 : s, t ∈ R

 =

s

−1
−2
1
0
0

+ t


1
−3
0
−4
1

 : s, t ∈ R

 .

(In the terminology introduced in Example C4.4, x3 and x5 are ‘free’ variables.)
This has a basis 

−1
−2
1
0
0

 ,


1
−3
0
−4
1

 .

This confirms our calculation in Example C7.8 that ker(A) has dimension 2.

Example C7.11 Given a subspace V of Rn, presented as the span of vectors
v1, . . . ,vm, how can we find a basis of its orthogonal complement V ⊥?

Once more, let A be the m × n matrix with rows vT1 , . . . ,v
T
m. Then V =

row(A), so V ⊥ = row(A)⊥ = ker(A) by Lemma C1.5. Finding a basis of V ⊥ is,
therefore, the same as finding a basis of ker(A), which we just saw how to do in
Example C7.10.
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The one remaining question is how to find an orthonormal basis of a given
subspace of Rn. We showed in Proposition B7.7 that every subspace does have
at least one orthonormal basis. If we work carefully through the proofs of that
proposition and the results it depends on (especially the proof of Lemma B7.6),
we arrive at the following algorithm for actually constructing an orthonormal
basis.

Let V be a linear subspace of Rn, with basis y1, . . . ,ym. We can construct
an orthonormal basis v1, . . . ,vm of V by putting

v1 =
y1

‖y1‖
,

v2 =
y2 − (y2 · v1)v1

‖y2 − (y2 · v1)v1‖
,

v3 =
y3 −

[
(y3 · v1)v1 + (y3 · v2)v2

]∥∥y3 −
[
(y3 · v1)v1 + (y3 · v2)v2

]∥∥ ,
...

vk =
yk −

∑k−1
i=1 (yk · vi)vi∥∥∥yk −∑k−1
i=1 (yk · vi)vi

∥∥∥
...

This procedure is called the Gram–Schmidt process.

Example C7.12 Let V = span{y1,y2,y3}, where

y1 =


−5
3
1
1

 , y2 =


1
0
−4
3

 , y3 =


1
−3
2
0

 .

How can we find an orthonormal basis of V ?
First check that y1,y2,y3 are linearly independent, as in Example C7.9. It

follows that y1,y2,y3 form a basis of V . So, we can now apply the Gram–
Schmidt process to obtain an orthonormal basis v1,v2,v3 of V .

To calculate v1:

v1 =
y1

‖y1‖
=

1

6


−5
3
1
1

 .

To calculate v2: we have

y2 − (y2 · v1)v1 =


1
0
−4
3

− (1

6
×−6

)1

6


−5
3
1
1

 =
1

6


1
3
−23
19


and so

v2 =
y2 − (y2 · v1)v1

‖y2 − (y2 · v1)v1‖
=

1

30


1
3
−23
19

 .

101



To calculate v3: we have

y3 −
[
(y3 · v1)v1 + (y3 · v2)v2

]
=


1
−3
2
0

−
(1

6
×−12

)1

6


−5
3
1
1

+
( 1

30
×−54

) 1

30


1
3
−23
19




=
1

150


−91
−273
143
221


and so

v3 =
y3 −

[
(y3 · v1)v1 + (y3 · v2)v2

]∥∥y3 −
[
(y3 · v1)v1 + (y3 · v2)v2

]∥∥ =
1

390


−91
−273
143
221

 =
1

30


−7
−21
11
17

 .

These vectors v1,v2,v3 are automatically an orthonormal basis of V . (You can
also check directly that v1,v2,v3 are orthonormal and belong to V , which by
Corollary B6.5 implies that they are an orthonormal basis of V .)

As this example shows, the Gram–Schmidt process is rather labour-
intensive—and if the numbers aren’t as convenient as in this example, there
are usually a lot of square roots involved too. But it is clearly a method that
could be implemented on a computer, and indeed, most computer algebra pack-
ages do include an implementation.

C8 How many solutions does a linear system
have?

We already saw an answer in Lemma C4.9: 0, 1, or ∞. But in a sense, this
answer is not very satisfactory. After all, if the set of solutions of one linear
system is a line and the set of solutions of another is a plane, then both have
infinitely many solutions, but we would intuitively say that the second has more.
If the line and plane are through the origin, we already have the language to
make this precise: the first solution-set has dimension 1, and the second has
dimension 2.

So that we can talk about the dimension of the solution-set, let us stick to
homogeneous linear systems for now. In other words, let us consider equations of
the formAx = 0 whereA is anm×nmatrix. The set of solutions is ker(A) ⊆ Rn,
and its dimension can be thought of as the ‘number of independent solutions’.
How many of these would we expect?

Very roughly, we expect lots of solutions when there are many variables and
only a few equations, and few solutions when there are few variables constrained
by many equations. For n equations in n variables, there is usually exactly one
solution.

However, we have to be careful what we mean by the ‘number of equations’.
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For instance, if we have two equations

7x− 8y + 5z = 0

70x− 80y + 50z = 0

then there might as well be only one equation, since the second is a scalar
multiple of the first. Or, less obviously, if we have three equations

2x+ 3y + 4z = 0

20x+ 90y − 80z = 0

14x+ 51y − 32z = 0

then there might as well be only two, since each of them is a linear combination of
the other two. So, what we really want is the ‘number of independent equations’.
Each equation corresponds to a row of A, so this is the ‘number of independent
rows’ of A. In precise terms, it is the dimension of the row space of A.

To summarize the argument so far: the intuitive idea of the ‘number of
independent solutions’ is made precise as the dimension of the kernel of A, and
the intuitive idea of the ‘number of independent equations’ is made precise as
the dimension of the row space of A. In other words, they are the nullity and
rank of A, respectively. And the number of variables in the system is simply n,
which is the number of columns of A.

Now, the rank-nullity theorem tells us that

nullity(A) = n− rank(A).

So in informal terms, the rank-nullity theorem can be understood as saying that
for a homogeneous linear system,

number of independent solutions

= number of variables − number of independent equations.

I say ‘informally’ because phrases such as ‘number of independent solutions’
aren’t precisely defined. (However, the only sensible interpretations are the
ones given here.)

In particular, if there are more variables than equations then there are cer-
tainly more variables than independent equations, so there should be at least
one nontrivial solution. And indeed, there is:

Proposition C8.1 A homogeneous linear system with more variables than
equations has at least one nontrivial solution.

Such systems are said to be underdetermined.

Proof Write n for the number of variables and m for the number of equations;
then m < n. Write A for the matrix of coefficients. Then A is an m×n matrix,
so rank(A) ≤ m. Hence rank(A) < n, and so nullity(A) > 0 by the rank-nullity
theorem. But nullity(A) is the dimension of the set of solutions of the system,
so 0 is not the only solution. �
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What about inhomogeneous systems? These need not have any solutions at
all, even if they have more variables than equations. For instance, the system

2x1 + 3x2 + 4x3 = 1

20x1 + 30x2 + 40x3 = 1

has no solutions.
However, something can be said. Suppose that our inhomogeneous system

Ax = b does have at least one solution: u, say. Then by Lemma C4.5, the
set of all solutions consists of the vectors u + w where w is a solution of the
homogeneous system Ax = 0. So, the set of solutions of the inhomogeneous
system is obtained from the set of solutions of the homogeneous system by
translating it by the vector u, as in Figure C.2.

Example C8.2 Take an inhomogeneous system Ax = b, and suppose that the
solutions of the homogeneous system Ax = 0 form a 2-dimensional subspace
of Rn—that is, a plane through the origin. Then the set of all solutions of the
inhomogeneous system is either empty or a plane (although not one that passes
through the origin). Put another way, either the inhomogeneous system has no
solutions, or its general solution has two free variables.

Next time: we gain a geometric viewpoint on much of the algebra we have
developed.

104



Summary of Chapter C

This is for you to fill in.

The most important definitions and ideas in this chapter

The most important results in this chapter

Points I didn’t understand
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Chapter D

Linear transformations

To be read before the lecture of Monday, 5 November 2018

In the last chapter, we showed that matrices are very useful for understand-
ing and solving linear systems. That’s an algebraic use of matrices. In this
chapter, we’ll focus on a geometric use of matrices. We’ll show that they are
closely related to linear transformations—things like rotations, reflections and
projections, which are often easy to visualize and draw.

A linear transformation is a function of a certain kind. So for this chapter,
it’s important that you’re in control of the concept of function and the associ-
ated notation and terminology. I strongly suggest that you reread the summary
of functions on pages 14–16. There are two mistakes that students make par-
ticularly often. The first is forgetting that

Every function comes with a specified domain and codomain.

For instance, the function f : R → R defined by x 7→ x2 is not equal to the
function g : R→ C defined by x 7→ x2. This is simply by definition of function:
f and g have different codomains, so cannot be equal. The second mistake
is to confuse the arrows → and 7→. The → symbol goes between sets (as in
‘f : R→ R’) and the 7→ symbol goes between elements (as in ‘x 7→ x2’). Don’t
get them muddled up! And see pages 14–16 for further explanation.

D1 Definition and examples

Often we are interested in ways of transforming vectors in Rn, such as by rotating
or reflecting or stretching them. These are all methods for taking one vector
in Rn and producing another. More generally, we will be interested in ways of
taking a vector in Rn and producing a vector in Rm, where perhaps m 6= n.
For instance, when the sun is out, every point in 3-dimensional space R3 casts
a shadow on the ground, which is the 2-dimensional space R2.

Thus, we are interested in functions from Rn to Rm. Since we’re doing
linear algebra, we’re primarily interested in those functions that ‘respect the
linear structure’. For example, if you rotate or reflect or stretch a plane in R3,
you get another plane. The shadow cast on the ground by a plane is usually a
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x =

(
x1
x2

)

T (x) =

(
x1
−x2

)

Figure D.1: Reflection in the horizontal axis as a linear transformation
T : R2 → R2

plane, and although it is occasionally a line (if the plane aligns exactly with the
sun), it is never curved. No bending occurs.

Put another way, a linear transformation from Rn to Rm is a function Rn →
Rm that ‘gets along well with addition and scalar multiplication’, in the following
exact sense.

Definition D1.1 Let n,m ≥ 0. A linear transformation (or linear map,
or linear mapping) from Rn to Rm is a function T : Rn → Rm with the fol-
lowing properties:

i. T (0) = 0;

ii. T (x + y) = T (x) + T (y) for all x,y ∈ Rn;

iii. T (cx) = cT (x) for all c ∈ R and x ∈ Rn.

These might remind you of the three conditions in the definition of subspace
(Definition B1.1).

In condition (i), the 0 on the left-hand side is the zero vector of Rn, whereas
the 0 on the right-hand side is the zero vector of Rm. This is the only possible
interpretation if the equation is to make sense.

Examples D1.2 i. Let T : R2 → R2 be reflection in the x-axis. Thus,

T

(
x1
x2

)
=

(
x1
−x2

)
for all x1, x2 ∈ R (Figure D.1). (Strictly speaking, we should have written
T
((

x1
x2

))
on the left-hand side, but we usually drop one pair of brackets.)

I claim that T is a linear transformation. To prove this, we check the three
conditions in Definition D1.1:

• T (0) = T
(
0
0

)
=
(
0
0

)
= 0.

• For x,y ∈ R2,

T (x+y) = T

(
x1 + y1
x2 + y2

)
=

(
x1 + y1
−(x2 + y2)

)
=

(
x1
−x2

)
+

(
y1
−y2

)
= T (x)+T (y).
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• For c ∈ R and x ∈ R2,

T (cx) = T

(
cx1
cx2

)
=

(
cx1
−cx2

)
= c

(
x1
−x2

)
= cT (x).

So T is indeed a linear transformation.

ii. Define a function T : R2 → R3 by

T

(
x1
x2

)
=

3x1 + 2x2
x2 − 4x1
−x2


(x1, x2 ∈ R). Again, I claim that T is a linear transformation. Let’s check
the three conditions:

• T (0) = T
(
0
0

)
=
(

0
0
0

)
= 0.

• For x,y ∈ R2,

T (x + y) = T

(
x1 + y1
x2 + y2

)

=

3(x1 + y1) + 2(x2 + y2)
(x2 + y2)− 4(x1 + y1)

−(x2 + y2)


=

3x1 + 2x2
x2 − 4x1
−x2

+

3y1 + 2y2
y2 − 4y1
−y2


= T (x) + T (y).

• For c ∈ R and x ∈ R2,

T (cx) = T

(
cx1
cx2

)
=

3cx1 + 2cx2
cx2 − 4cx1
−cx2

 = c

3x1 + 2x2
x2 − 4x1
−x2

 = cT (x).

This proves that T is a linear transformation, as claimed.

iii. Define a function T : R2 → R1 = R by

T

(
x1
x2

)
= 3x1 − 2x2

(x1, x2 ∈ R). You can show that T is a linear transformation by check-
ing the three conditions in Definition D1.1, much as in the previous two
examples (exercise).

iv. Define functions S, T : R2 → R2 by

S

(
x1
x2

)
=

(
1
x1

)
, T

(
x1
x2

)
=

(
x21
x2

)
(x1, x2 ∈ R). Then neither S nor T is a linear transformation.
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To prove that S is not, it is enough to show that it fails just one of the
three conditions in Definition D1.1. In fact, it fails the first one, since
S(0) 6= 0.

To prove that T is not, note that

T

(
2

(
1
0

))
= T

(
2
0

)
=

(
4
0

)
whereas

2T

(
1
0

)
= 2

(
1
0

)
=

(
2
0

)
,

and so T
(
2
(
1
0

))
6= 2T

(
1
0

)
. So, T fails the third condition in Defini-

tion D1.1, and is therefore not a linear transformation.

In the first two examples above, checking the three conditions was quite
tedious. We will see a much quicker way of doing it in Section D3. For instance,
this approach will enable us to prove without fuss that rotations in the plane
are linear transformations.

Meanwhile, a small saving in labour can be made by taking advantage of the
following lemma. It shows that the three conditions in Definition D1.1 can, in
fact, be reduced to one:

Lemma D1.3 Let n,m ≥ 0, and let T : Rn → Rm be a function. Then T is a
linear transformation if and only if for all a, b ∈ R and x,y ∈ Rn,

T (ax + by) = aT (x) + bT (y).

Proof First suppose that T is a linear transformation. Then for all a, b ∈ R
and x,y ∈ Rn, we have

T (ax + by) = T (ax) + T (by) = aT (x) + bT (y)

where the first equality follows from condition (ii) of Definition D1.1 and the
second follows from condition (iii).

Conversely, suppose that T (ax + by) = aT (x) + bT (y) for all a, b ∈ R and
x,y ∈ Rn. We show that the three conditions in Definition D1.1 hold.

i. We have T (1 0+1 0) = 1T (0)+1T (0), or equivalently T (0) = T (0)+T (0).
Subtracting T (0) from each side gives 0 = T (0).

ii. Let x,y ∈ Rn. Then T (1x + 1y) = 1T (x) + 1T (y), or equivalently T (x +
y) = T (x) + T (y), as required.

iii. Let c ∈ R and x ∈ Rn. Then T (cx + 0x) = cT (x) + 0T (x), or equivalently
T (cx) = cT (x), as required. �

Examples D1.4 i. Let’s use Lemma D1.3 to show that the function
T : R2 → R of Example D1.2(iii) is a linear transformation. Let x,y ∈ R2

and a, b ∈ R. Then

T (ax + by) = T

(
ax1 + by1
ax2 + by2

)
= 3(ax1 + by1)− 2(ax2 + by2)

= a(3x1 − 2x2) + b(3y1 − 2y2)

= aT (x) + bT (y).
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x

P (x)
0

Figure D.2: A point x in the air and its shadow P (x) on the ground

Hence by Lemma D1.3, T is a linear transformation.

ii. Define a function T : R2 → R3 by

T

(
x1
x2

)
=

x1x2
0


(x1, x2 ∈ R). Then T is a linear transformation. Again, you can easily
check this using Lemma D1.3 (exercise).

In the introduction to this section, I mentioned shadows cast by the sun
as an informal example of a linear transformation. When the sun is directly
overhead, every point x in the air is mapped to the closest point P (x) on the
ground, much as in Figure D.2 or the similar Figure B.6 (page 66). We now
examine this situation more closely.

Let n ≥ 0 and let V be a subspace of Rn. (In the previous paragraph, n was
3 and V was 2-dimensional.) In Proposition B7.8(ii), we proved that for every
x ∈ Rn, there are unique vectors v ∈ V and w ∈ V ⊥ such that x = v + w.
Put another way, for every x ∈ Rn, there is a unique vector v ∈ V such that
x− v ∈ V ⊥. So, the following definition is logically valid.

Definition D1.5 Let V be a linear subspace of Rn and let x ∈ Rn. The
orthogonal projection of x onto V is the unique vector PV (x) ∈ V such that

x− PV (x) ∈ V ⊥.

(Again, see Figures B.6 and D.2.) Another point of view is that PV (x) is the
point of V closest to x. You’ll prove this during a workshop.

This describes PV (x) geometrically. How can we describe it algebraically?
The next lemma gives the answer.

Lemma D1.6 Let V be a linear subspace of Rn. Let x ∈ Rn, and write PV (x)
for the orthogonal projection of x onto V . Then

PV (x) =

m∑
i=1

(x · vi)vi

for any orthonormal basis v1, . . . ,vm of V .
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Proof By definition, PV (x) is the unique element of V such that x− PV (x) ∈
V ⊥. But by Lemma B7.5,

∑
(x · vi)vi is an element of V with this property.

Hence PV (x) =
∑

(x · vi)vi. �

Given a subspace V of Rn, we have shown how each point x ∈ Rn gives rise
to another point of Rn, its orthogonal projection PV (x) onto V . This defines a
function PV : Rn → Rn. And this function is, in fact, a linear transformation:

Lemma D1.7 Let V be a subspace of Rn. Define a function PV : Rn → Rn
by taking PV (x) to be the orthogonal projection of x onto V , for each x ∈ Rn.
Then PV is a linear transformation.

Proof Let x,y ∈ Rn and a, b ∈ R. We will show that PV (ax + by) = aPV (x) +
bPV (y).

By definition, PV (ax + by) is the unique point of V such that

(ax + by)− PV (ax + by) ∈ V ⊥.

So, it is enough to prove that aPV (x) + bPV (y) also has this property. That is,
it is enough to prove that aPV (x) + bPV (y) is a point of V satisfying

(ax + by)− (aPV (x) + bPV (y)) ∈ V ⊥. (D:1)

To see this, first note that aPV (x) + bPV (y) is indeed a point of V , since
PV (x), PV (y) ∈ V and V is a linear subspace of Rn. Second,

(ax + by)− (aPV (x) + bPV (y)) = a(x− PV (x)) + b(y − PV (y)).

Now x − PV (x) ∈ V ⊥ and y − PV (y) ∈ V ⊥ by definition of PV , so any linear
combination of them also belongs to V ⊥. Hence (D:1) holds, as required. �

Examples D1.8 Consider orthogonal projection onto a subspace V of R3.
Then dimV ∈ {0, 1, 2, 3}, so there are four cases to consider:

i. Suppose that dimV = 0. Then V is the trivial subspace {0}, so PV (x) = 0
for all x ∈ V .

ii. Suppose that dimV = 1. Then V is a line through the origin, and PV
maps each point x ∈ R3 to the closest point PV (x) to x on the line V .

For instance, if V = span
{(

1
0
0

)}
(the ‘x-axis’) then PV

(
x1
x2
x3

)
=
(
x1
0
0

)
.

iii. Suppose that dimV = 2. Then V is a plane through the origin, and
again, PV maps x ∈ R3 to the closest point PV (x) on V . For instance, if

V = span
{(

1
0
0

)
,
(

0
1
0

)}
then PV

(
x1
x2
x3

)
=
(
x1
x2
0

)
(Figure D.2).

iv. Suppose that dimV = 3. Then V = R3, and PV (x) = x for all x ∈ R3.
That is, PV is the identity mapping.
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D2 The standard matrix of a linear transforma-
tion

We’ve seen various examples of linear transformations, some motivated by ge-
ometric considerations (such as orthogonal projections) and some given by an
algebraic formula. One might ask: what are all the linear transformations
Rn → Rm? Is there any way of organizing them?

In this section and the next, we’ll completely answer these questions. We’ll
see that linear transformations Rn → Rm are very closely related to m × n
matrices. Any linear transformation Rn → Rm gives rise to an m × n ma-
trix (called its ‘standard matrix’), and any m × n matrix gives rise to a linear
transformation Rn → Rm. This back-and-forth process sets up a one-to-one
correspondence between linear transformations Rn → Rm and m× n matrices,
as we will see.

We begin with a simple observation. Let T : Rn → Rm be a linear trans-
formation. Any vector x ∈ Rn can be expressed as a linear combination of the
standard basis vectors e1, . . . , en ∈ Rn:

x =


x1
0
...
0

+


0
x2
...
0

+ · · ·+


0
0
...
xn

 = x1e1 + x2e2 + · · ·+ xnen.

Since T is linear, this implies that

T (x) = x1T (e1) + x2T (e2) + · · ·+ xnT (en)

for all x ∈ Rn (using Lemma D1.3 and induction). But this tells us something
important: the whole of the linear transformation T is determined by the vectors
T (e1), . . . , T (en) ∈ Rm. In other words, if we have two linear transformations
T, S : Rn → Rm with T (ej) = S(ej) for each j ∈ {1, . . . , n}, then T (x) and S(x)
must be equal for all x ∈ Rn.

We have just shown that given vectors u1, . . . ,un ∈ Rm, there is at most
one linear transformation T : Rn → Rm such that

T (e1) = u1, T (e2) = u2, . . . , T (en) = un.

The result we are about to prove states that, in fact, there is exactly one. Better
still, none of this is specific to the standard basis: the same is true for any basis
of Rn whatsoever.

Proposition D2.1 Let n,m ≥ 0, let v1, . . . ,vn be a basis of Rn, and let
u1, . . . ,un be any vectors in Rm. Then there is exactly one linear transfor-
mation T : Rn → Rm such that

T (v1) = u1, T (v2) = u2, . . . , T (vn) = un.

Proof First we show that there is at most one such T , then that there is at
least one such T .
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At most one Let T, S : Rn → Rm be linear transformations such that T (vj) =
uj and S(vj) = uj for all j ∈ {1, . . . , n}. We must show that T = S.

Since T and S are functions Rn → Rm, this means showing that T (x) = S(x)
for all x ∈ Rn. Let x ∈ Rn. Since v1, . . . ,vn span Rn, we can write

x = c1v1 + c2v2 + · · ·+ cnvn

for some c1, . . . , cn ∈ R. So by Lemma D1.3 and induction,

T (x) = c1T (v1) + c2T (v2) + · · ·+ cnT (vn).

But T (vj) = uj for each j, so

T (x) = c1u1 + c2u2 + · · ·+ cnun. (D:2)

Similarly,
S(x) = c1u1 + c2u2 + · · ·+ cnun.

Hence T (x) = S(x), as required.

At least one We must prove that there exists a linear transformation
T : Rn → Rm such that T (vj) = uj for all j ∈ {1, . . . , n}. Since v1, . . . ,vn
is a basis of Rn, each vector x ∈ Rn can be written as

x = c1v1 + c2v2 + · · ·+ cnvn

for unique scalars c1, . . . , cn ∈ R. Define

T (x) = c1u1 + c2u2 + · · ·+ cnun ∈ Rm.

(The inspiration for that step was (D:2).) This defines a function T : Rn → Rm
such that T (vj) = uj for each j ∈ {1, . . . , n}.

To show that T is linear, we use Lemma D1.3. Let a, b ∈ R and x,y ∈ Rn.
Write x =

∑n
j=1 cjvj and y =

∑n
j=1 djvj ; then

ax + by =

n∑
j=1

(acj + bdj)vj .

Hence

T (ax + by) =

n∑
j=1

(acj + bdj)uj

= a

n∑
j=1

cjuj + b

n∑
j=1

djuj

= aT (x) + bT (y),

as required. �

Example D2.2 Let v1, . . . ,vn be any basis of Rn and let c1, . . . , cn be any
scalars. Then by Proposition D2.1, there is exactly one linear transformation
T : Rn → Rn such that T (vj) = cjvj for each j = 1, . . . , n.
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Geometrically, this transformation scales Rn by a factor of cj in the direction
of vj . For example, if n = 2 and v1,v2 is the basis of R2 shown in Figure B.5
(page 63), and if c1 = 2 and c2 = 3, then T scales by a factor of 2 in the north-
east direction and 3 in the south-east direction. (Or it might be the other way
round, depending on which of the vectors in Figure B.5 is v1 and which is v2.)

If any of the scale factors cj are negative, then T reverses the direction
parallel to vj . For instance, take n = 2 again, take the standard basis e1, e2,
and take c1 = 1 and c2 = −1. Then T is the unique linear transformation
R2 → R2 such that T (e1) = e1 and T (e2) = −e2. This is exactly the T
of Example D1.2(i), namely, reflection in the x-axis. Note that reflecting in
span{e1} (the x-axis) means reversing the direction parallel to e2.

Proposition D2.1 implies that if you have a basis of Rn, then knowing what
a linear transformation T : Rn → Rm does to every basis element tells you what
it does to every point of Rn. Applied to the standard basis, this means that
a linear transformation T : Rn → Rm is completely determined by the vectors
T (e1), . . . , T (en) ∈ Rm. Since these n m-dimensional vectors completely specify
T , it is natural to compile them into an m× n matrix and give it a name:

Definition D2.3 Let T : Rn → Rm be a linear transformation. The
standard matrix of T is the m× n matrix

[T ] =
(
T (e1)|T (e2)| · · · |T (en)

)
.

That is, it is the m× n matrix [T ] whose jth column is T (ej), where ej is the
jth standard basis vector of Rn.

Examples D2.4 i. Let T : R2 → R2 be reflection in the x-axis, as in Ex-
ample D1.2(i). Then

T (e1) =

(
1
0

)
, T (e2) =

(
0
−1

)
,

so T has standard matrix

[T ] =

(
1 0
0 −1

)
.

ii. Take the linear transformation T : R2 → R3 of Example D1.2(ii). Then

T (e1) =

 3
−4
0

 , T (e2) =

 2
1
−1

 ,

so the standard matrix of T is the 3× 2 matrix

[T ] =

 3 2
−4 1
0 −1

 .

iii. The standard matrix of the linear transformation T : R2 → R defined in
Example D1.2(iii) is (3 − 2), similarly.
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0

x =
(
r cosα
r sinα

)
Rθ(x) =

( r cos(α+θ)
r sin(α+θ)

)
αθ

x1

x2

Figure D.3: Rotation of the plane by an angle θ about the origin

iv. Let T : R3 → R3 be orthogonal projection onto the plane span{e1, e2}, as
in Example D1.8(iii). Then

T (e1) = e1, T (e2) = e2, T (e3) = 0,

so

[T ] =

1 0 0
0 1 0
0 0 0

 .

D3 Matrices vs. linear transformations

We have just seen that any linear transformation Rn → Rm gives rise to an
m×n matrix. But in the other direction, any m×n matrix gives rise to a linear
transformation Rn → Rm, as follows.

Let A be an m × n matrix. Then any vector x ∈ Rn can be multiplied by
A to give a vector Ax ∈ Rm. This defines a function LA : Rn → Rm. In other
words, we define

LA(x) = Ax ∈ Rm (D:3)

for each x ∈ Rn.

Lemma D3.1 Let A be an m× n matrix. Then the function LA : Rn → Rm is
a linear transformation.

Proof By Lemma D1.3, it is enough to show that LA(ax + by) = aLA(x) +
bLA(y) for all x,y ∈ Rn and scalars a, b. And indeed,

LA(ax + by) = A(ax + by) = aAx + bAy = aLA(x) + bLA(y),

using the basic identities for matrix multiplication in equation (A:12)
(page 34). �

(Beware: the notation LA is just something I have made up for this course.
Other people use other notation. Poole writes LA as TA, for instance.)

Examples D3.2 i. Let θ ∈ R. Let Rθ : R2 → R2 be the function that
rotates by an angle θ anticlockwise about 0 (Figure D.3). As the figure
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shows, for a point x ∈ R2 with polar coordinates (r, α), the pointRθ(x) has
polar coordinates (r, α+ θ). Now using standard trigonometric formulas,

Rθ(x) =

(
r cos(α+ θ)
r sin(α+ θ)

)
=

(
r cos(α) cos(θ)− r sin(α) sin(θ)
r cos(α) sin(θ) + r sin(α) cos(θ)

)
=

(
x1 cos θ − x2 sin θ
x1 sin θ + x2 cos θ

)
= Ax

where

A =

(
cos θ − sin θ
sin θ cos θ

)
.

We have just shown that Rθ(x) = Ax for all x ∈ R2. But this means
exactly that Rθ = LA. So by Lemma D3.1, Rθ is linear.

The linearity of Rθ should also be clear visually. The sum x + y of two
vectors x and y is the fourth corner of the parallelogram whose other
three corners are 0, x and y (Figure A.1, page 22). But if you rotate
a parallelogram, the result is still a parallelogram. Hence Rθ(x + y) is
the fourth corner of the parallelogram whose other three corners are 0,
Rθ(x) and Rθ(y). In other words, Rθ(x + y) = Rθ(x) +Rθ(y). A similar
geometric argument shows that Rθ(cx) = cRθ(x) (exercise).

ii. Take the 3× 2 matrix

A =

 3 2
−4 1
0 −1

 .

Then LA is the linear transformation R2 → R3 defined by LA(x) = Ax
(x ∈ R2). So,

LA(x) =

 3 2
−4 1
0 −1

(x1
x2

)
=

3x1 + 2x2
x2 − 4x1
−x2


for all x ∈ R2.

We first met this linear transformation in Example D1.2(ii), where it was
called T . There, we checked laboriously that it was linear by verifying the
three conditions directly. But this example demonstrates a quicker way:
once we have recognized that T = LA for some matrix A, Lemma D3.1
implies immediately that T is linear.

Examples D2.4(ii) and D3.2(ii) both involve the linear transformation

T : R2 → R3(
x1
x2

)
7→

3x1 + 2x2
x2 − 4x1
−x2

 (D:4)

and the matrix

A =

 3 2
−4 1
0 −1

 . (D:5)
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Example D2.4(ii) states that A = [T ] (that is, A is the standard matrix of
T ), whereas Example D3.2(ii) states that T = LA. Is it coincidence that both
statements are true? For instance, if we start with any linear transformation
T : Rn → Rm, take its standard matrix [T ], and then take the linear transfor-
mation L[T ] : Rn → Rm, is it always equal to the linear transformation T that
we started with? Or did they just happen to be equal for this particular linear
transformation T?

There was no coincidence; it is indeed true for all linear transformations:

Lemma D3.3 Let T : Rn → Rm be a linear transformation. Then L[T ] = T .
Thus, [T ]x = T (x) for all x ∈ Rn.

Proof First we check that the linear transformations T and L[T ] have the same
domain and codomain. (If you don’t see why this is necessary, see page 15.) By
definition, [T ] is an m× n matrix, so L[T ] is a map Rn → Rm. So is T . Hence
T and L[T ] do indeed have the same domain and codomain.

For each j ∈ {1, . . . , n}, we have L[T ](ej) = [T ]ej (by definition of L[T ]).
But [T ]ej is the jth column of the matrix [T ] (by Lemma A4.3(ii)), which by
Definition D2.3 is T (ej).

We have just shown that L[T ] and T are linear transformations Rn → Rm
satisfying L[T ](ej) = T (ej) for each j ∈ {1, . . . , n}. But Proposition D2.1
implies that there is only one linear transformation satisfying these equations.
Hence L[T ] = T , as required.

Finally, for each x ∈ Rn we have L[T ](x) = T (x); but by definition of L[T ],
this means that [T ]x = T (x). �

Remark D3.4 Students often find proofs like this hard at first. The key is
to take it slowly, referring carefully to the definitions. You should constantly
ask yourself ‘what type of thing is this?’ For example, when you see the ex-
pression [T ]ej , you should say to yourself: [T ] is an m × n matrix, and ej is
an n-dimensional vector, so the matrix product [T ]ej makes sense and is an m-
dimensional vector. Or when you see T (ej), you should think: T is a function
Rn → Rm, and ej ∈ Rn, so T can be applied to ej to give an element T (ej) of
Rm. Take your time, and breathe.

Lemma D3.3 says that if we start with a linear transformation T , turn it
into a matrix [T ], then turn that into a linear transformation L[T ], we get back
exactly what we started with. It’s natural to ask what happens the other way
round: if we take a matrix A, turn it into a linear transformation LA, then turn
that into a matrix [LA], is the result just A again? Yes:

Lemma D3.5 Let A be an m× n matrix. Then [LA] = A.

Proof First we check that the matrices [LA] and A have the same number of
rows and columns. By definition, LA is a linear transformation Rn → Rm, so
[LA] is an m × n matrix. So is A. Hence [LA] and A do indeed have the same
number of rows and columns.

Let j ∈ {1, . . . , n}. The jth column of [LA] is LA(ej) (by Definition D2.3).
But LA(ej) = Aej (by definition of LA), and Aej is the jth column of A (by
Lemma A4.3(ii)). Hence [LA] and A have the same jth column. This holds for
all j, so [LA] = A. �
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Example D3.6 Again, consider the 3×2 matrix A of (D:5). Example D3.2(ii)
shows that LA is the linear transformation T : R2 → R3 of (D:4). Exam-
ple D2.4(ii) shows that [LA], the standard matrix of LA, is equal to A. This is
exactly what Lemma D3.5 predicts.

Putting together the last two lemmas gives a complete description of all
linear transformations in terms of matrices:

Theorem D3.7 Let m,n ≥ 0. There is a one-to-one correspondence between

{linear transformations Rn → Rm} and {m× n matrices},

with a linear transformation T : Rn → Rm corresponding to its standard matrix
[T ], and an m× n matrix A corresponding to the linear transformation LA.

Proof The statement of the theorem means three things: (i) that if T is a
linear transformation Rn → Rm then [T ] is an m × n matrix; (ii) that if A is
an m × n matrix then LA is a linear transformation Rn → Rm; and (iii) that
the two processes T 7→ [T ] and A 7→ LA are inverse to one another (that is,
L[T ] = T for all T and [LA] = A for all A). We have already proved every part
of this. �

For example, under this one-to-one correspondence, the linear transforma-
tion T : R2 → R3 of (D:4) corresponds to the 3× 2 matrix A of (D:5).

Corollary D3.8 Let T : Rn → Rm be a linear transformation. Then there is
exactly one m× n matrix A such that T = LA.

Proof This follows immediately from Theorem D3.7. Alternatively, we can
deduce it from the previous lemmas. To prove there is at least one such A, put
A = [T ]: then LA = L[T ] = T by Lemma D3.3. To prove there is only one
such A, let B be an m× n matrix such that T = LB : then B = [LB ] = [T ] by
Lemma D3.5. �

This corollary implies that every linear transformation can be expressed as
multiplication by a matrix.

Example D3.9 Let V be a linear subspace of Rn. By Lemma B7.5, orthogonal
projection onto V is a linear transformation PV : Rn → Rn. So, there is one
(and only one) n× n matrix A such that for all vectors x,

PV (x) = Ax.

This matrix A is simply the standard matrix of PV .

Warning D3.10 We have proved that there is a very close relationship between
linear transformations Rn → Rm and m× n matrices. . .

But linear transformations and matrices are not the same!

A linear transformation is a function with certain properties. A matrix is a grid
of numbers. So, when T is a linear transformation and A is a matrix, it never
makes sense to write ‘T = A’, any more than it makes sense to write ‘

( x
y

)
= 5’.

In both cases, the left- and right-hand sides are simply different types of thing.
Many mistakes that students make come from treating linear transformations
as matrices, or vice versa.

118



D4 Composing and inverting linear transforma-
tions

If doing a linear transformation is in any way interesting or useful, then doing
one transformation after another is also likely to be interesting or useful. For
instance, reflecting in any line through the origin defines a linear transformation
R2 → R2, so we might ask: what is the combined effect of reflecting in one line
and then another? (I’ll leave this particular question for you to think about.)

In this section, we first look at what happens when you compose linear
transformations. Then we consider inverses of linear transformations: when
they exist, and what they are.

First recall from pages 14–16 the notion of the composite g ◦f (or gf) of two

functions A
f−→ B

g−→ C. It is only defined if the codomain of f is equal to the
domain of B! Also recall from there the notion of the identity function 1A on
a set A. It has the properties that 1A ◦ f = f for any function f : Z → A, and
similarly g ◦ 1A = g for any function g : A→ B.

Lemma D4.1 i. Let p, n,m ≥ 0, and let T : Rn → Rm and U : Rp → Rn
be linear transformations. Then the composite T ◦ U : Rp → Rm is also a
linear transformation.

ii. Let n ≥ 0. Then the identity function 1Rn : Rn → Rn is a linear transfor-
mation.

Proof We use Lemma D1.3. For (i), let a, b ∈ R and x,y ∈ Rp. Then

(T ◦ U)(ax + by) = T (U(ax + by)) by definition of T ◦ U
= T (aU(x) + bU(y)) by linearity of U

= aT (U(x)) + bT (U(y)) by linearity of T

= a(T ◦ U)(x) + b(T ◦ U)(y) by definition of T ◦ U.

For (ii), let a, b ∈ R and x,y ∈ Rn. Then

1Rn(ax + by) = ax + by = a1Rn(x) + b1Rn(y). �

Example D4.2 In Example D3.2(i), we constructed the linear transformation
Rπ/2 : R2 → R2 that rotates the plane about 0 by an angle of π/2, and in
Lemma D1.7, we showed that orthogonal projection PV of R2 onto the x-axis
V = span{e1} is also a linear transformation R2 → R2. So there is a composite
linear transformation PV ◦Rπ/2 : R2 → R2:

R2

PV ◦Rπ/2

77
Rπ/2 //R2 PV //R2.

This composite transformation PV ◦ Rπ/2 takes a point in the plane, rotates it
by π/2, then projects it onto the x-axis. For instance, Rπ/2(e1) = e2, so

(PV ◦Rπ/2)(e1) = PV (Rπ/2(e1)) = PV (e2) = 0.

Similarly, you can show that (PV ◦Rπ/2)(e2) = −e1.
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Given two linear transformations Rp U−→ Rn T−→ Rm, you can compose
them to get T ◦U , then take its standard matrix [T ◦ U ]. Alternatively, you can
multiply together the individual standard matrices of T and U to get another
matrix, [T ][U ]. We now show that the two end results, [T ◦ U ] and [T ][U ], are
actually the same. In short:

Multiplying matrices corresponds to composing linear transforma-
tions.

(By ‘corresponds’, I’m referring to the one-to-one correspondence of Theo-
rem D3.7.) In the same spirit, identity matrices correspond to identity linear
transformations. All this and more is in the following result.

Lemma D4.3 i. Let n,m, p ≥ 0, let A be an m × n matrix, and let B be
an n× p matrix. Then LAB = LA ◦ LB.

ii. Let n ≥ 0. Then LIn = 1Rn .

iii. Let n,m, p ≥ 0, and let T : Rn → Rm and U : Rp → Rn be linear transfor-
mations. Then [T ◦ U ] = [T ][U ].

iv. Let n ≥ 0. Then [1Rn ] = In.

Proof For (i), first note that LA, LB and LA◦LB have domains and codomains
as shown:

Rp

LA◦LB

66
LB //Rn LA //Rm.

Also AB is an m × p matrix, so LAB is a linear transformation Rp → Rm.
Hence LA ◦LB and LAB are functions with the same domain (Rp) and the same
codomain (Rm). (Again, see page 15 if you don’t understand why this step is
necessary.) Now for all x ∈ Rp, directly from the definitions,

(LA ◦ LB)(x) = LA(LB(x)) = LA(Bx) = ABx = LAB(x).

Hence LA ◦ LB = LAB .
For (ii), first note that In is an n×nmatrix, so LIn is a function Rn → Rn. So

the functions LIn and 1Rn have the same domain (Rn) and the same codomain
(also Rn). Now for all x ∈ Rn, directly from the definitions,

LIn(x) = Inx = x = 1Rn(x).

Hence LIn = 1Rn .
We will deduce (iii) from (i) and (iv) from (ii). For (iii), write A = [T ] and

B = [U ]. Then T = LA and U = LB by Lemma D3.3, so

[T ◦ U ] = [LA ◦ LB ] = [LAB ] = AB = [T ][U ],

where the second equality follows from (i) and the third from Lemma D3.5.
Finally, for (iv), we have

[1Rn ] = [LIn ] = In,

where the first equality follows from (ii) and the second from Lemma D3.5. �
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Example D4.4 Is there a 2 × 2 matrix A such that A 6= I but A13 = I?
Lemma D4.3 makes this easy to answer. Put A = [R2π/13], where the linear
transformation R2π/13 : R2 → R2 is as defined in Example D3.2(i). We have
R2π/13 6= 1R2 , and different linear transformations have different standard ma-
trices (by Theorem D3.7), so A 6= I. But R13

2π/13 = 1R2 (where R13
2π/13 means

the 13-fold composite R2π/13 ◦R2π/13 ◦ · · · ◦R2π/13), so

A13 = [R2π/13]
13

= [R13
2π/13] = [1R2 ] = I

by Lemma D4.3 and induction. So A has the properties required.

Now we turn to inverses. Recall the terminology of bijective and inverse
functions (pages 14–16).

Lemma D4.5 Let n,m ≥ 0. Let T : Rn → Rm be a bijective linear transforma-
tion. Then the inverse function T−1 : Rm → Rn is also a linear transformation.

Proof We use Lemma D1.3. Let a, b ∈ R and v,w ∈ Rm. By linearity of T ,

T
(
aT−1(v) + bT−1(w)

)
= aT (T−1(v)) + bT (T−1(w)) = av + bw.

So T
(
aT−1(v) + bT−1(w)

)
= av + bw. Applying T−1 to both sides gives

aT−1(v) + bT−1(w) = T−1(av + bw), as required. �

A linear transformation is said to be invertible if it has an inverse linear
transformation. By Lemma D4.5, a linear transformation is invertible if and
only if it is bijective. When T is invertible, we can ask: what is the standard
matrix of T−1 in terms of that of T?

Lemma D4.6 A linear transformation T is invertible if and only if its standard
matrix is invertible. In that case, [T−1] = [T ]

−1
.

Proof Let T : Rn → Rm be a linear transformation.
First suppose that T is invertible. We have T−1 ◦ T = 1Rn , so by

Lemma D4.3, taking the standard matrix of each side gives [T−1][T ] = In.
Similarly, [T ][T−1] = Im. It follows that [T ] is invertible with inverse [T−1].

Conversely, suppose that the matrix [T ] is invertible. We have [T ]
−1

[T ] = In,
so by Lemma D4.3, L[T ]−1 ◦L[T ] = 1Rn . But then by Lemma D3.3, L[T ]−1 ◦T =
1Rn . Similarly, T ◦ L[T ]−1 = 1Rm . So T is invertible, with inverse L[T ]−1 . �

We already proved that any invertible matrix has the same number of rows
and columns. This implies that the domain and codomain of an invertible linear
transformation have the same dimension:

Proposition D4.7 Let n,m ≥ 0. If there exists an invertible linear transfor-
mation from Rn to Rm, then n = m.

Proof If such a linear transformation T exists then by Lemma D4.6, there is an
m×n invertible matrix [T ]. But invertible matrices are square (Theorem C2.1),
so m = n. �

For example, there is no bijective linear transformation R2 → R3, even
though there do exist non-bijective linear transformations R2 → R3 (and, for
that matter, bijective nonlinear functions R2 → R3).
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Rn Rm
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ker(T )

im(T )

Figure D.4: The kernel and image of a linear transformation

D5 The rank of a linear transformation

We now know about the correspondence between linear transformations and
matrices (Theorem D3.7), and we have a definition of the rank of a matrix
(Section C1). We could put these two things together to get a definition of the
rank of a linear transformation; that is, we could define the rank of a linear
transformation to be the rank of its standard matrix.

However, despite the correspondence between linear transformations and
matrices, each type of thing has its own ‘feel’ and brings separate insights.
(Matrices are more algebraic, linear transformations more geometric.) So, we
will define the rank of a linear transformation without reference to matrices,
later proving a relationship with the rank of a matrix. And we will do similar
things for the concepts of nullity and kernel.

Definition D5.1 Let T : Rn → Rm be a linear transformation.

i. The image of T is

im(T ) = {y ∈ Rm : y = T (x) for some x ∈ Rn}.

ii. The kernel of T is

ker(T ) = {x ∈ Rn : T (x) = 0}.

See Figure D.4.

Example D5.2 Let V be the subspace span{e1, e2} of R3, and consider
PV : R3 → R3, orthogonal projection onto V . We met this transformation
before in Example D1.8(iii), and gave a formula for it.

The image of PV is the set of points y ∈ R3 that can be expressed as PV (x)
for some x ∈ R3. In fact, im(PV ) = V . For on the one hand, PV (x) ∈ V for all
x, giving im(PV ) ⊆ V , and on the other hand, any element x of V is equal to
PV (x), giving V ⊆ im(PV ).

The kernel of PV is V ⊥ = span(e3), since for x ∈ R3, we have PV (x) =
0 ⇐⇒ x1 = x2 = 0.
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Remark D5.3 Some people (including Poole) call the image of a linear trans-
formation its range. But other people use ‘range’ to mean codomain, so it is
less ambiguous to avoid the word altogether.

Lemma D5.4 Let T : Rn → Rm be a linear transformation. Then

im(T ) = col([T ]), ker(T ) = ker([T ]).

In other words, the image of a linear transformation is equal to the column
space of its standard matrix, and the kernel of a linear transformation is equal
to the kernel of its standard matrix.

Proof For both equations we use Lemma D3.3, which tells us that T (x) = [T ]x
for all x ∈ Rn. Then im(T ) = col([T ]) using Lemma B2.7 (applied with A =
[T ]), and ker(T ) = ker([T ]) immediately. �

Lemma D5.5 Let T : Rn → Rm be a linear transformation. Then im(T ) is a
linear subspace of Rm and ker(T ) is a linear subspace of Rn.

Proof This follows from Lemma D5.4 and the facts that the column space and
kernel of an m× n matrix are subspaces of Rm and Rn, respectively. �

Since the image and kernel of a linear transformation are subspaces, it makes
sense to talk about their dimensions.

Definition D5.6 Let T : Rn → Rm be a linear transformation.

i. The rank of T is rank(T ) = dim(im(T )).

ii. The nullity of T is nullity(T ) = dim(ker(T )).

Lemma D5.4 immediately implies:

Lemma D5.7 Let T : Rn → Rm be a linear transformation. Then rank(T ) =
rank([T ]) and nullity(T ) = nullity([T ]). �

So, as promised, the definitions of rank and nullity for linear transformations
fit very well with the definitions for matrices.

Example D5.8 Consider the linear transformation T : R3 → R4 defined by

T

x1x2
x3

 =


x2
x3
0
0

 .

Then

im(T ) =



y1
y2
y3
y4

 ∈ R4 : y3 = y4 = 0


and

ker(T ) =


x1x2
x3

 ∈ R3 : x2 = x3 = 0

 .
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So im(T ) is 2-dimensional, giving rank(T ) = dim(im(T )) = 2, and ker(T ) is
1-dimensional, giving nullity(T ) = dim(ker(T )) = 1. Another way to compute
the rank and nullity is to observe that

[T ] =


0 1 0
0 0 1
0 0 0
0 0 0

 ,

then calculate the rank and nullity of the matrix [T ] using the methods of
Chapter C, and finally use the fact that T has the same rank and nullity as [T ].

Theorem D5.9 (Rank–nullity for linear transformations) For any lin-
ear transformation T : Rn → Rm,

rank(T ) + nullity(T ) = n.

Proof Since the rank and nullity of T are equal to the rank and nullity of its
standard matrix [T ] (which has n columns), this follows from the rank-nullity
theorem for matrices (Section C1). �

Remark D5.10 The rank-nullity theorem for linear transformations can be
understood as follows (Figure D.4). Think of T as some kind of process. The
number n is the dimension of the domain, which can loosely be thought of as
‘how much stuff you start with’. The nullity of T is the dimension of the set of
vectors that are mapped to 0, and can therefore be viewed as ‘how much stuff
you lose’. The rank of T is the dimension of the image, which is ‘how much stuff
you end up with’. So Theorem D5.9, rearranged as rank(T ) = n − nullity(T ),
states that

how much stuff you end up with

= how much stuff you start with − how much stuff you lose.

This interpretation of the rank-nullity theorem is closely related to our earlier
interpretation of it in terms of linear systems (page 103).

Remark D5.11 If you do Fundamentals of Pure Mathematics next semester,
you will probably meet the first isomorphism theorem for groups, which implies
that for a homomorphism θ : G → H of finite groups, | im(θ)| = |G|/| ker(θ)|
(where the bars denote the number of elements). This is closely related to the
rank-nullity theorem.

Example D5.12 The linear transformation T : R3 → R4 of Example D5.8 has
rank 2 and nullity 1. Theorem D5.9 predicts that the domain of T has dimension
2 + 1 = 3, which indeed it does.

In Section C2, we found many conditions on a matrix equivalent to it being
invertible. Using the version of the rank-nullity theorem that we just proved,
we can do something similar for linear transformations.

First, we look at some conditions on a linear transformation that are equiv-
alent to it being injective (one-to-one), and also some conditions equivalent to
it being surjective (onto).
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Lemma D5.13 Let T : Rn → Rm be a linear transformation. Then:

i. T is injective ⇐⇒ ker(T ) = {0} ⇐⇒ nullity(T ) = 0.

ii. T is surjective ⇐⇒ im(T ) = Rm ⇐⇒ rank(T ) = m.

Proof For (i): suppose that T is injective. Certainly 0 ∈ ker(T ). On the other
hand, if x ∈ ker(T ) then T (x) = 0 = T (0), so by injectivity, x = 0. Hence
ker(T ) = {0}.

Conversely, suppose that ker(T ) = {0}. To prove that T is injective, let
x,x′ ∈ Rn with T (x) = T (x′); we must show that x = x′. By linearity,

T (x− x′) = T (x)− T (x′) = 0,

so x− x′ ∈ ker(T ). But ker(T ) = {0}, so x− x′ = 0, so x = x′, as required.
We have shown that T is injective if and only if ker(T ) = {0}. By

Lemma B5.10, this is equivalent to the condition that nullity(T ) = 0.
For (ii), it is immediate from the definitions that T is surjective if and only

if im(T ) = Rm. By Lemma B5.10, this is equivalent to the condition that
rank(T ) = m. �

We are often interested in linear transformations with the same domain and
codomain. So, it is worth giving them a special name.

Definition D5.14 A linear operator on Rn is a linear transformation Rn →
Rn.

When we take m = n in the last lemma, we obtain an important result about
linear operators on Rn.

Theorem D5.15 Let T be a linear operator on Rn. Then

T is injective ⇐⇒ T is bijective ⇐⇒ T is surjective.

Proof By Lemma D5.13 and the rank-nullity theorem for linear transforma-
tions (Theorem D5.9),

T is injective ⇐⇒ nullity(T ) = 0 ⇐⇒ rank(T ) = n ⇐⇒ T is surjective.

So if T is either injective or surjective then it is both, that is, bijective. Con-
versely, if T is bijective then by definition it is both injective and surjective. �

Warning D5.16 This is only true for linear transformations whose domain and
codomain have the same dimension! For transformations Rn → Rm with m 6= n,
it is certainly possible to be injective but not surjective (as in Example D1.4(ii))
or surjective but not injective (as in Example D1.2(iii)).

Remark D5.17 Theorem D5.15 strongly resembles Proposition B5.4. In fact,
it can be deduced from that proposition (exercise). It also resembles the fact
that for a finite set A, a function f : A→ A is injective if and only if it bijective
if and only if it is surjective.
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v1

T (v1) = 2v1

v2

T (v2) = −v2

Figure D.5: A linear operator T on R2 and its effect on non-standard basis
vectors v1 and v2

D6 Change of basis

In Proposition D2.1, we saw that a linear transformation T : Rn → Rm can
be described just by saying what it does to each element of a basis of Rn. To
keep things simple, let’s stick to the case n = m, that is, linear operators on
Rn (Definition D5.14). Let v1, . . . ,vn be a basis of Rn. Proposition D2.1 tells
us that we can define a linear operator T on Rn just by specifying vectors
T (v1), . . . , T (vn) ∈ Rn.

For example, take any basis v1,v2 of R2 (Figure D.5). Then by Proposi-
tion D2.1, there is a unique linear operator T on R2 such that T (v1) = 2v1 and
T (v2) = −v2.

The description of T in terms of this basis v1,v2 is quite simple and con-
venient. But the description of T in terms of the standard basis will proba-
bly be more complicated. Maybe, for instance, T (e1) = −1.85e1 + π

4 e2 and

T (e2) = −
√

2/11e1 + 0.79e2. (I’ve just made these numbers up; the actual
numbers will depend on what v1 and v2 are.) This shows that sometimes it’s
easier to use a non-standard basis of Rn.

In this section, we will see how to do this. We will see that it’s possible to
talk about the matrix of a linear operator on Rn with respect to any basis of
Rn, not necessarily the standard one. And we will see how to convert back and
forth between matrices with respect to the standard basis and matrices with
respect to non-standard bases.

We begin by defining the matrix of a linear operator with respect to a basis.
To warm up to the definition, we’ll first think about the standard matrix.

Example D6.1 Let

A =

 3 2 −2
−4 4 3
−2 −2 −3


and consider the linear operator T = LA on R3 given by T (x) = Ax (x ∈ R3).
Then, for instance,

T (e1) =

 3
−4
−2

 = 3e1 − 4e2 − 2e3.
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The coefficients here are the entries of the first column of A. This is no co-
incidence: A is the the standard matrix [T ] of T (by the correspondence in
Theorem D3.7), and by definition, the jth column of [T ] is T (ej). The same
goes for e2 and e3: so

T (ej) =

3∑
i=1

Aijei

for each j = 1, 2, 3, where Aij means the (i, j)-entry of A.

Of course, there was nothing special about this particular example. In gen-
eral, for a linear operator T on Rn with standard matrix A = [T ],

T (ej) =

n∑
i=1

Aijei (D:6)

for all j ∈ {1, . . . , n}, simply because T (ej) is the jth column of A.
All of that was about the standard basis. But equation (D:6) suggests how

to define the matrix of an operator with respect to any basis:

Definition D6.2 Let T be a linear operator on Rn, and let v1, . . . ,vn be a
basis of Rn. The matrix of T with respect to v1, . . . ,vn is the n×n matrix
B = (Bij) defined by

T (vj) =

n∑
i=1

Bijvi

for each j ∈ {1, . . . , n}.

To understand the words ‘defined by’ here, recall from Lemma B4.3 that
any element of Rn can be expressed uniquely as a linear combination of the
basis vectors v1, . . . ,vn. Here we are expressing T (vj) as a linear combination
of v1, . . . ,vn, and calling the coefficients B1j , . . . , Bnj .

Examples D6.3 i. The matrix of a linear operator with respect to the stan-
dard basis e1, . . . , en is simply its standard matrix, by equation (D:6).
Example D6.1 gives a particular example of this.

ii. Let v1,v2 be any basis of R2, and let T be the unique linear operator on
R2 such that T (v1) = 2v1 and T (v2) = −v2 (as in Figure D.5). What is
the matrix of T with respect to the basis v1,v2?

Call this matrix B. We have

T (v1) = 2v1 + 0v2,

so the first column of B is
(
2
0

)
. Similarly,

T (v2) = 0v1 + (−1)v2,

so the second column of B is
(

0
−1
)
. Hence

B =

(
2 0
0 −1

)
.
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iii. More generally, take any basis v1, . . . ,vn of Rn, take any scalars c1, . . . , cn,
and consider the linear operator T on Rn defined by

T (v1) = c1v1, T (v2) = c2v2, . . . , T (vn) = cnvn

(as in Example D2.2). Then the matrix of T with respect to v1, . . . ,vn is
c1 0 · · · 0

0 c2
. . .

...
...

. . .
. . . 0

0 · · · 0 cn

 .

This is an example of a diagonal matrix, that is, a square matrix M such
that Mij = 0 for all i, j such that i 6= j. Diagonal matrices are extremely
easy to work with. So, given a linear operator T on Rn, an important
question is whether we can find a basis of Rn such that the matrix of T
with respect to that basis is diagonal. If we can, everything becomes much
simpler. We’ll explore this question in the final chapter of the course.

Let’s come back to the operator T of Figure D.5. We know that whatever
v1 and v2 may be, the matrix of T with respect to the basis v1,v2 is

(
2 0
0 −1

)
.

But what is its standard matrix? The answer depends on what the vectors v1

and v2 actually are, and is given by the main result of this section:

Theorem D6.4 (Change of basis) Let T be a linear operator on Rn and let
v1, . . . ,vn be a basis of Rn. Write:

• A for the standard matrix of T ;

• B for the matrix of T with respect to v1, . . . ,vn;

• P for the matrix (v1|v2| · · · |vn).

Then P is invertible, A = PBP−1, and B = P−1AP .

This matrix P is called a change of basis matrix.

Proof The columns of the n × n matrix P form a basis of Rn, so by The-
orem C2.3, P is invertible. Both equations will follow if we can prove that
AP = PB.

We prove this by evaluating T (vj) in two ways, for each j ∈ {1, . . . n}. On
the one hand,

T (vj) =

n∑
i=1

Bijvi by definition of B

=

n∑
i=1

Bij

n∑
i′=1

Pi′iei′ by definition of P

=

n∑
i′=1

( n∑
i=1

Pi′iBij

)
ei′ by changing the order of summation

=

n∑
i′=1

(PB)i′jei′ by definition of matrix multiplication.
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On the other hand,

T (vj) = T

( n∑
j′=1

Pj′jej′

)
by definition of P

=

n∑
j′=1

Pj′jT (ej′) by linearity of T

=

n∑
j′=1

Pj′j

n∑
i′=1

Ai′j′ei′ by definition of A

=

n∑
i′=1

( n∑
j′=1

Ai′j′Pj′j

)
ei′ by changing the order of summation

=

n∑
i′=1

(AP )i′jei′ by definition of matrix multiplication.

Comparing the two expressions for T (vj) gives

n∑
i′=1

(PB)i′jei′ =

n∑
i′=1

(AP )i′jei′

for all j. It follows that (PB)i′j = (AP )i′j for all i′ and j; hence PB = AP , as
required. �

Example D6.5 Let’s use this result to find the standard matrix of the operator
T of Figure D.5, taking (for instance) v1 =

(
3
1

)
and v2 =

(
7
4

)
. We have already

seen in Example D6.3(ii) that the matrix of T with respect to the basis v1,v2

is

B =

(
2 0
0 −1

)
.

The change of basis matrix P is

P = (v1|v2) =

(
3 7
1 4

)
.

Theorem D6.4 implies that the standard matrix A = [T ] is given by

A = PBP−1 =

(
3 7
1 4

)(
2 0
0 −1

)(
3 7
1 4

)−1
=

1

5

(
31 −63
12 −26

)
.

You can check this answer by calculating directly that when you multiply this
matrix by v1, you get 2v1, and when you multiply it by v2, you get −v2.

Remark D6.6 You can think of a basis as a kind of language, and a change of
basis matrix as a kind of dictionary, as follows.

Suppose I give you the Catalan sentence

Veig el vostre véı

and ask you to transform it from the present to the past tense. Unless you speak
Catalan, you’re stuck; but suppose I also allow you to use a piece of software
that translates between Catalan and English. Then you can solve the problem
like this. First use the software to translate the original sentence from Catalan
to English. It outputs
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I see your neighbour.

Then transform it into the past tense:

I saw your neighbour.

Then use the translation software again to put it back into Catalan, giving the
final result:

Vaig veure el vostre véı.

And that solves the problem. In a diagram:

Veig el vostre véı � translate //
_

transform

��

I see your neighbour
_

transform

��
Vaig veure el vostre véı I saw your neighbour�

translate
oo

Think of the standard basis as like English, the other basis v1, . . . ,vn as like
Catalan, the change of basis matrix P as like translation from Catalan into
English, and the linear transformation as like transforming from the present to
the past tense:

x � P //
_

B

��

Px_

A

��
Bx = P−1APx APx

�
P−1

oo

Thus, the equation B = P−1AP is like the three-step method for transforming
a Catalan sentence from the present to the past tense.

Theorem D6.4 tells us that matrices of the same linear operator with re-
spect to different bases are related in a certain way. It is useful to have some
terminology for this.

Definition D6.7 Let A and B be n × n matrices. We say that A is similar
to B (or ‘A and B are similar’), and write A ∼ B, if there exists an invertible
n× n matrix P such that A = PBP−1.

Examples D6.8 i. The matrices

A =
1

5

(
31 −63
12 −26

)
, B =

(
2 0
0 −1

)
are similar, because we showed in Example D6.5 that A = PBP−1 for a
certain invertible matrix P .

ii. The zero matrix 0 =
(
0 0
0 0

)
is not similar to any matrix apart from itself,

since P0P−1 = 0 for every invertible P .

The next lemma says that the word ‘similar’ behaves in a sensible way: if A
is similar to B then B is similar to A, and so on.
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Lemma D6.9 i. Let A be an n× n matrix. Then A ∼ A.

ii. Let A and B be n× n matrices. If A ∼ B then B ∼ A.

iii. Let A, B and C be n× n matrices. If A ∼ B and B ∼ C, then A ∼ C.

In the jargon that you probably either met recently or will meet soon, these
three conditions say that similarity is an equivalence relation on the set of
all n× n matrices.

Proof For (i), we have A = IAI−1, so A ∼ A.
For (ii), suppose that A ∼ B; then we can choose an invertible matrix P

such that A = PBP−1. Put Q = P−1. Then Q is invertible and B = P−1AP =
QAQ−1, so B ∼ A.

For (iii), suppose that A ∼ B and B ∼ C. Then we can choose invertible
matrices P and Q such that A = PBP−1 and B = QCQ−1. By Lemma A5.5,
PQ is invertible with inverse Q−1P−1, giving

A = P (QCQ−1)P−1 = (PQ)C(PQ)−1.

Hence A ∼ C. �

Proposition D6.10 Let T be a linear operator on Rn, and let v1, . . . ,vn and
v′1, . . . ,v

′
n be bases of Rn. Then the matrix of T with respect to v1, . . . ,vn is

similar to the matrix of T with respect to v′1, . . . ,v
′
n.

Proof Write B for the matrix of T with respect to v1, . . . ,vn and B′ for the
matrix of T with respect to v′1, . . . ,v

′
n. Write A for the standard matrix of

T . Theorem D6.4 implies that both A ∼ B and A ∼ B′. Then B ∼ A by
Lemma D6.9(ii), so B ∼ B′ by Lemma D6.9(iii). �

Looking at matrices of the same linear transformation with respect to dif-
ferent bases is something like looking at a sculpture from different angles. It’s
the same sculpture, but you see different aspects of it from different angles, and
understanding what you’re seeing may be easier from some angles than others.
In the same way, the linear transformation T of Example D6.5 is much easier
to understand (and has a much simpler matrix) from the point of view of the
non-standard basis

(
3
1

)
,
(
7
4

)
than from the point of view of the standard basis.

D7 The determinant of a linear operator

We have seen that linear transformations Rn → Rm correspond to m × n ma-
trices. What about the special case m = n? For linear transformations, taking
m = n means considering only linear operators. For matrices, taking m = n
means considering only square matrices. So, transformations correspond to ma-
trices and operators correspond to square matrices.

Some of the things we do with matrices require them to be square. Taking
the determinant is one of those things. We will see that there is a corresponding
definition of the determinant of a linear operator. To get to the definition, we
need a lemma:

Lemma D7.1 Similar matrices have the same determinant.
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Proof Let A and B be similar matrices. Then A = PBP−1 for some invertible
matrix P . Recall from Proposition C3.4(vi) that det(XY ) = det(X) det(Y ) for
any n×n matrices X and Y , and from Corollary C3.6 that if X is an invertible
matrix then det(X−1) = 1/ detX. It follows that

det(A) = det(P ) det(B) det(P−1) = det(P ) det(B)/ det(P ) = det(B). �

Let T be a linear operator on Rn. By Proposition D6.10 and the lemma
we just proved, the matrix of T with respect to any basis always has the same
determinant, no matter which basis we choose. We can therefore define the
determinant det(T ) to be the determinant of any of these matrices.

Example D7.2 Consider again the linear transformation T : R2 → R2 of Ex-
ample D6.5. The standard matrix of T is 1

5

(
31 −63
12 −26

)
, and its matrix with respect

to a certain non-standard basis is
(
2 0
0 −1

)
. Our results guarantee (and you can

check directly) that these two matrices have the same determinant. Of course,
it’s easier to calculate the second determinant, which is −2. So by definition,
det(T ) = −2.

The concept of linear operator sheds light on the idea of determinant. I
introduced determinants in terms of area and volume (Section C3). We saw
that for a matrix A =

(
a b
c d

)
, the area of the parallelogram G with edges parallel

to
(
a
c

)
and

(
b
d

)
is |det(A)|. This parallelogram G is given by

G =
{
x1
(
a
c

)
+ x2

(
b
d

)
: 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1

}
.

On the other hand, the unit square S is given by

S = {x1e1 + x2e2 : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1}.

It follows that the linear transformation LA : R2 → R2 maps the unit square S
onto the parallelogram G: for

{LA(x) : x ∈ S} = {A(x1e1 + x2e2) : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1}
= {x1(Ae1) + x2(Ae2) : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1}
= G

where in the last step we used the fact that Ae1 and Ae2 are the columns of A.
Here’s the point: the unit square S has area 1, and the parallelogram G

has area |det(A)|, which is equal to |det(LA)| (by definition of the latter). So,
applying LA to S multiplies its area by a factor of |det(LA)|.

In fact, it can be shown that for any sensible subset H of R2, and for any
linear transformation T : R2 → R2, the area of {T (x) : x ∈ H} is the area of H
multiplied by |det(T )|. (‘Sensible’ just means that it is possible to measure the
area of H.) And similar results hold in R3 for volume instead of area—and even
in higher dimensions, once a higher-dimensional notion of ‘volume’ has been
defined. This principle is crucial to computing multi-dimensional integrals, as
you may have discovered already in SVCDE.

In a slogan:

Determinant is volume scale factor.
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More accurately, the absolute value of determinant is volume scale factor. In
other words, applying a linear transformation T to a shape multiplies its volume
by |det(T )|.

In questions about volume scale factors, it’s useful to know that in mathe-
matics, the word circle always refers to a hollow figure (such as {

( x
y

)
∈ R2 :

x2 + y2 = 1}) and the word disc is used for a circle with the inside filled in
(such as {

( x
y

)
∈ R2 : x2 + y2 ≤ 1}). Similarly, a sphere is always hollow and

the solid, filled-in shape is called a ball.
Finally, a linear operator is invertible unless its volume scale factor is zero:

Lemma D7.3 A linear operator T is invertible if and only if det(T ) 6= 0.

Proof T is invertible if and only if its standard matrix [T ] is invertible (by
Lemma D4.6), if and only if det([T ]) 6= 0 (by Theorem C3.9). But det(T ) =
det([T ]) by definition. �

Intuitively, then, an operator is invertible unless it crushes something down
to nothing. This fits with the fact that an operator is invertible unless its kernel
is nontrivial (a consequence of Lemma D5.13 and Theorem D5.15).

Next time: we learn that many features of a linear operator are encapsulated
by certain scalars called its ‘eigenvalues’.
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Summary of Chapter D

This is for you to fill in.

The most important definitions and ideas in this chapter

The most important results in this chapter

Points I didn’t understand
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Chapter E

Eigenvalues and
eigenvectors

To be read before the lecture of Monday, 19 November 2018

The last chapter was about linear transformations T : Rn → Rm, where the
domain Rn and codomain Rm could have different dimensions. But there are
especially interesting things to say about linear operators, which are linear trans-
formations whose domain and codomain are the same (Definition D5.14). In
terms of matrices, these are the square ones.

Here are some of the things you can do with a linear operator that you can’t
do with a linear transformation in general:

• Iterate it—that is, do it repeatedly. If T is a linear operator on Rn then
the composites T 2 = T ◦ T (‘do T twice’), T 3 = T ◦ T ◦ T , etc., all make
sense. These composites only exist because T has the same domain and
codomain.

• Look for an inverse. (When n 6= m, we can ask whether a linear trans-
formation Rn → Rm has an inverse, but Proposition D4.7 says that the
answer is always no.)

• Take its determinant (as defined in Section D7).

• Ask which points x of Rn are ‘fixed’ by T , in the sense that T (x) = x.

• Ask whether it is ‘diagonalizable’—that is, whether its matrix with respect
to some basis of Rn is diagonal. We investigate this in Sections E3 and E6.

We’ll see that when we study linear operators (or square matrices), a crucial
role is played by the so-called eigenvalues and eigenvectors. They enable us to
solve certain problems very easily. For instance, let

A =

 14 −14 −16
−14 23 −2
−16 −2 8

 .
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Can you find a formula for Ar, for an arbitrary positive integer r? Eigenvalues
and eigenvectors will make this problem easy (Example E6.8). Or, consider the
following problem (which we’ll come back to):

Wolves can be classified as either young or adult (capable of repro-
ducing). In a certain wolf community, the following happens every
year: 60% of the young wolves die, 10% of the adults die, 20% of
the young become adults, and new young are born at a rate of 3.9
individuals per adult. What is the ratio of young wolves to adult
wolves in the long run?

On the face of it, this has nothing to do with linear algebra. Yet the easiest way
of solving it also uses eigenvalues and eigenvectors.

E1 Definitions and examples

Here we meet the definitions of eigenvalue and eigenvector. We approach them
via some examples.

Examples E1.1 i. Consider reflection of the plane in the x-axis, which is
a linear operator T on R2 (Figure D.1). When we are using this operator,
are any points of R2 more special or interesting than the others?

Obviously a special role is played by the x-axis: it’s the axis of reflection!
More precisely, the x-axis is exactly the set of vectors x such that T (x) =
x. A point x such that T (x) = x is called a fixed point of T ; so in this
case, the fixed points of T are exactly the points on the x-axis.

A little less obviously, the y-axis also plays a special role for T , since it has
the special property that when it is reflected in the x-axis, it is mapped
onto itself—but flipped around. This isn’t true for any other line. We can
make this precise by observing that the y-axis is exactly the set of vectors
x such that T (x) = −x.

So in summary, for this particular linear operator T on R2, there are two
especially interesting types of vector: those satisfying T (x) = x, and those
satisfying T (x) = −x.

ii. Now let V be any subspace of Rn and consider PV , the operator on Rn of
orthogonal projection onto V (Definition D1.5). Think of the case n = 3
and V = span{e1, e2} if you like.

Again, let us ask: when we are applying this operator PV , which vectors
are particularly special or interesting?

The subspace V is certainly interesting, since that’s what we’re projecting
onto. The definition of PV immediately implies that a vector x ∈ Rn
belongs to V if and only if PV (x) = x.

On the other hand, the definition of PV also involves the orthogonal com-
plement V ⊥ of V . And again, it’s an easy consequence of the definition of
PV that a vector x ∈ Rn belongs to V ⊥ if and only if PV (x) = 0.

So in summary, for this particular linear operator PV on Rn, there are
two especially interesting types of vector: those satisfying PV (x) = x, and
those satisfying PV (x) = 0.
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iii. Generally, for any linear operator T on Rn, we’ve seen that an important
role is played by the kernel of T , which is the set of vectors x satisfying
T (x) = 0.

Bringing these three examples together, we see that for a linear operator
T on Rn, a special role is played by the vectors x satisfying T (x) = 1x or
T (x) = −1x or T (x) = 0x. In other examples, a special role is played by the
vectors x satisfying T (x) = λx for other scalars λ. This leads to the following
definition.

Definition E1.2 Let T be a linear operator on Rn.

i. An eigenvalue of T is a real number λ such that T (x) = λx for some
vector x 6= 0 in Rn.

ii. An eigenvector of T with eigenvalue λ is a vector x 6= 0 in Rn such that
T (x) = λx.

In other words, an eigenvector of T is a nonzero vector x such that T (x)
is a scalar multiple of x. Figure D.5 (page 126) shows an eigenvector v1 with
eigenvalue 2 and an eigenvector v2 with eigenvalue −1.

Warning E1.3 By definition, eigenvectors are nonzero. The zero vector 0 is
not counted as an eigenvector. Why not? Because by definition of linearity,
T (0) = λ0 for all real λ. If we allowed 0 as an eigenvector, then every real
number would be an eigenvalue. This would not be a very useful definition!

Examples E1.4 i. Let T : R2 → R2 be reflection in the x-axis. Then
T
(
x
0

)
=
(
x
0

)
for all x ∈ R. Hence 1 is an eigenvalue of T , and

(
x
0

)
is

an eigenvector of T with eigenvalue 1 for all real x 6= 0.

Also, T
(
0
y

)
= −

(
0
y

)
for all x ∈ R. Hence −1 is also an eigenvalue of T ,

and
(
0
y

)
is an eigenvector of T with eigenvalue −1 for all real y 6= 0.

In fact, ±1 are the only eigenvalues of T . Later, we’ll prove a general
result that allows us to conclude this immediately. For now, you should
be able to see intuitively that if x is a vector such that T (x) is a scalar
multiple of x then x is either on the x-axis or on the y-axis.

ii. Similarly, let V be any 2-dimensional subspace of R3 (plane through 0),
and let T : R3 → R3 be reflection in V . Then every nonzero point on the
plane V is an eigenvector with eigenvalue 1, and every nonzero point on
the line V ⊥ through the origin perpendicular to V is an eigenvector with
eigenvalue −1. These are the only two eigenvalues of T .

iii. Let V be any subspace of Rn, and consider orthogonal projection
PV : Rn → Rn. Then for the reasons explained in Example E1.1(ii), every
nonzero vector in V is an eigenvector with eigenvalue 1, and every nonzero
vector in V ⊥ is an eigenvector with eigenvalue 0. In fact, it can be shown
that there are no other eigenvalues or eigenvectors.

iv. Consider the linear operator Rπ/3 on R2 (rotation by π/3 about 0). There
are no vectors x ∈ R2 such that Rπ/3(x) is a scalar multiple of x, apart
from 0. Hence Rπ/3 has no eigenvalues or eigenvectors at all.

The same is true of Rθ for any other value of θ except integer multiples
of π. (Exercise: why did I exclude those values?)
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v. Define a linear operator T on Rn by T (x) = −7x for all x ∈ Rn. Then
every nonzero vector is an eigenvector with eigenvalue −7.

Remark E1.5 Eigenvectors are not allowed to be zero, but eigenvalues can be.
In fact, eigenvectors with eigenvalue 0 are very useful: for a linear operator T
on Rn, the eigenvectors of T with eigenvalue 0 are exactly the nonzero elements
of the kernel of T . This is because T (x) = 0x ⇐⇒ T (x) = 0.

Proposition E1.6 Let T be an operator on Rn. Then 0 is an eigenvalue of T
if and only if T is not invertible.

Proof By Remark E1.5, 0 is an eigenvalue of T if and only if ker(T ) 6= {0}.
By Lemma D5.13(i), this is equivalent to T not being injective, which by The-
orem D5.15 is equivalent to T not being invertible. �

Geometrically, an eigenvector of an operator T is roughly speaking a line
unmoved by T . For instance, when T : R2 → R2 is reflection in the x-axis, both
the x-axis and the y-axis are unmoved by T . But I say ‘roughly speaking’ for
three important reasons.

First, by ‘unmoved’ I mean that the line is mapped into itself by T , not that
individual points on it are fixed by T . If x is an eigenvector with eigenvalue λ
then the line span{x} is mapped into itself by T , scaling by a factor of λ, since

T (cx) = cT (x) = cλx = λ(cx)

for all c ∈ R. When λ < 0, this means that the line is flipped around. For
instance, this is the case for the y-axis in the reflection example above.

Second, things look a bit different when λ = 0. In that case, the line spanned
by an eigenvector x is still mapped into itself by T , but everything on the line
is mapped to 0.

Finally, if x is an eigenvector with eigenvalue λ then so is cx for each real
c 6= 0, since T (cx) = λ(cx). So, it’s not quite right to say that an eigenvector
is a line unmoved by T , since different eigenvectors can all span the same line
(e.g. x, 3x and −2x). But it gives some useful intuition.

A major theme of the last chapter was that we can translate back and
forth between linear transformations and matrices (Theorem D3.7). For linear
operators, this means the following. In one direction, every linear operator T on
Rn has a standard matrix [T ] (an n × n matrix). In the other direction, every
n×n matrix A gives rise to a linear operator LA on Rn, defined by LA(x) = Ax
(x ∈ Rn).

We now take the definitions of eigenvalue and eigenvector for linear operators
and translate them into the language of matrices. An eigenvalue or eigenvector
of a matrix A is exactly an eigenvalue or eigenvector of the linear operator LA.
Explicitly, this means the following:

Definition E1.7 Let A be an n× n real matrix.

i. An eigenvalue of A is a real number λ such that Ax = λx for some vector
x 6= 0 in Rn.

ii. An eigenvector of A with eigenvalue λ is a vector x 6= 0 in Rn such that
Ax = λx.
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e1 Ae1 = 2e1

e2

Ae2 = 3e2

Figure E.1: Eigenvectors and eigenvalues of the 2×2 matrix in Example E1.8(ii)

Examples E1.8 i. Let A =
(
1 0
0 −1

)
. Then

A

(
x
0

)
=

(
x
0

)
, A

(
0
y

)
= −

(
0
y

)
(x, y ∈ R). Hence

(
x
0

)
is an eigenvector of T with eigenvalue 1 for any

real x 6= 0, and
(
0
y

)
is an eigenvector of T with eigenvalue −1 for any real

y 6= 0.

ii. Let A be a diagonal matrix, that is, a matrix of the form

A =


c1 0 · · · 0

0 c2
. . .

...
...

. . .
. . . 0

0 · · · 0 cn


where c1, . . . , cn ∈ R. Then Aej = cjej for each j ∈ {1, . . . , n} (since by
Lemma A4.3(ii), Aej is the jth column of A). Hence ej is an eigenvector
of A, with eigenvalue cj , for each j. Figure E.1 shows the case A =

(
2 0
0 3

)
.

Recall from Lemma D3.3 that when T : Rn → Rm is a linear transformation,
T (x) = [T ]x for all x ∈ Rn. It follows that the eigenvalues and eigenvectors of
a linear operator T are exactly the eigenvalues and eigenvectors of its standard
matrix [T ]. So when reasoning with eigenvalues and eigenvectors, it makes little
difference whether we work with linear operators or square matrices.

Example E1.9 The linear operator T on R2 defined by reflection in the x-
axis has standard matrix [T ] =

(
1 0
0 −1

)
(Example D2.4(i)). We already saw in

Example E1.4(i) that 1 and −1 are eigenvalues of the operator T , so they are
also eigenvalues of the matrix [T ]; moreover, the eigenvectors are the same. In
fact, [T ] is exactly the matrix A of Example E1.8(i), so we have just confirmed
what we found there.

It is useful to think about the set of all the eigenvectors of T that share a
particular eigenvalue:

Definition E1.10 Let T be a linear operator on Rn, and let λ ∈ R. The
λ-eigenspace of T is

Eλ(T ) = {x ∈ Rn : T (x) = λx}.
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Similarly, for an n× n real matrix A, the λ-eigenspace of A is

Eλ(A) = {x ∈ Rn : Ax = λx}.

In other words, the λ-eigenspace of a matrix or operator is the set of all
eigenvectors with eigenvalue λ, together with the zero vector 0.

Example E1.11 Let V be a plane through 0 in R3 and let T : R3 → R3 be
reflection in V , as in Example E1.4(ii). Then the 1-eigenspace of T is V , and
the (−1)-eigenspace of T is the line V ⊥. For λ 6= ±1, the λ-eigenspace of T is
{0}, because ±1 are the only eigenvalues. (We will see how to prove this in the
next section.)

The definitions of eigenspace for operators and matrices are really the same,
in the sense that the λ-eigenspace of an operator is equal to the λ-eigenspace
of its standard matrix. The next few results could equally well be presented
in terms of matrices or linear operators. We will mostly present them in the
language of matrices.

First, eigenspaces are closely related to kernels. Evidently E0(A) = ker(A).
More generally:

Lemma E1.12 Let A be an n×n matrix, and let λ be a scalar. Then Eλ(A) =
ker(A− λI).

Proof For x ∈ Rn, we have

x ∈ Eλ(A) ⇐⇒ Ax− λx = 0

⇐⇒ (A− λI)x = 0

⇐⇒ x ∈ ker(A− λI). �

We have already seen that if x is an eigenvector for some matrix or operator,
with eigenvalue λ, then so is every scalar multiple of x (apart from 0). So every
eigenspace is closed under scalar multiplication. Better still:

Lemma E1.13 Every eigenspace of an n × n square matrix, or of a linear
operator on Rn, is a linear subspace of Rn.

Proof Let A be an n×n matrix and λ ∈ R. Then Eλ(A) = ker(A−λI), which
by Lemma B1.4 is a linear subspace of Rn. This proves the result on matrices.
The result follows for operators T , since Eλ(T ) = Eλ([T ]). �

We defined the λ-eigenspace for all scalars λ, even if λ is not an eigenvalue.
If λ is not an eigenvalue then Eλ(A) is the trivial subspace {0}. The eigenvalues
of A are exactly those scalars λ such that Eλ(A) is nontrivial:

Proposition E1.14 Let A be an n×n square matrix and λ ∈ R. The following
are equivalent:

i. λ is an eigenvalue of A;

ii. the λ-eigenspace Eλ(A) is nontrivial (that is, not equal to {0});

iii. A− λI is not invertible;
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iv. det(A− λI) = 0.

Proof (i)⇔(ii): by definition of eigenvalue, λ is an eigenvalue of A if and only
if Eλ(A) contains some nonzero vector, or in other words, is nontrivial.

(ii)⇔(iii): Eλ(A) = ker(A−λI), so (ii) states that ker(A−λI) is nontrivial,
which by Theorem C2.3 is equivalent to A− λI not being invertible.

(iii)⇔(iv) follows immediately from Theorem C3.9. �

Corollary E1.15 (Equivalent conditions for invertibility, part 5) Let
A be a square matrix. Then A is invertible if and only if 0 is not an eigenvalue
of A.

Proof Take λ = 0 in (i)⇔(iii) of Proposition E1.14. �

Remark E1.16 Proposition E1.6 and Corollary E1.15 say essentially the same
thing: an operator or square matrix is invertible if and only if it does not have
0 as an eigenvalue. Either of these results could be deduced from the other by
using the correspondence between operators and square matrices.

E2 The characteristic polynomial

Imagine that someone hands you a specific square matrix. How would you find
its eigenvalues and eigenvectors? For some of the examples in the previous
sections, we had a simple geometric description of the corresponding linear
operator, so we were able to use our intuition to guess. But what if we don’t
have a geometric description?

This section provides a method for computing eigenvalues and eigenvectors
of any square matrix. The key is Proposition E1.14, where we saw that λ is an
eigenvalue for a square matrix A if and only if det(A− λI) = 0.

Lemma E2.1 Let A be an n× n matrix. Then det(A− λI) is a polynomial in
λ of degree n, with leading coefficient (−1)n.

Proof Omitted (but not hard). �

This polynomial has a name:

Definition E2.2 Let A be a square matrix. The characteristic polynomial
of A is the polynomial χA(λ) = det(A− λI).

Proposition E1.14 immediately implies:

Proposition E2.3 Let A be a real square matrix. Then the eigenvalues of A
are exactly the real roots of its characteristic polynomial χA. �

Examples E2.4 i. Once again, consider reflection of R2 in the x-axis (Ex-
amples E1.1(i), E1.4(i) and E1.9). Its standard matrix A is

(
1 0
0 −1

)
, and

χA(λ) = det

(
1− λ 0

0 −1− λ

)
= (1− λ)(−1− λ) = (λ− 1)(λ+ 1).

So the roots of χA are ±1. By Proposition E2.3, the eigenvalues of A are
exactly 1 and −1; there are no others. (Previously, we had concluded this
by a geometric argument.)
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We can also confirm our previous statements about the eigenspaces of A.
The 1-eigenspace is

E1(A) = ker(A− 1I) = ker

(
0 0
0 −2

)
=

{(
x
0

)
: x ∈ R

}
.

So as expected, the 1-eigenspace is exactly the x-axis, and the eigenvectors
with eigenvalue 1 are all the points

(
x
0

)
with x 6= 0. A similar calculation

tells us that E−1(A) is exactly the y-axis.

ii. In Example E1.4(iv), we argued geometrically that the rotation opera-
tor Rπ/3 on R2 has no eigenvalues. Here is algebraic confirmation. The
standard matrix of Rπ/3 is(

cosπ/3 − sinπ/3
sinπ/3 cosπ/3

)
=

(
1/2 −

√
3/2√

3/2 1/2

)
(by Example D3.2(i)), which has characteristic polynomial

(1/2− λ)(1/2− λ) + (
√

3/2)2 = λ2 − λ+ 1.

This quadratic has discriminant (−1)2 − 4× 1× 1 = −3 < 0, so it has no
real roots. Hence Rπ/3 has no eigenvalues.

iii. Let

A =

 1 2 1
0 −1 0
−2 −2 4

 .

Then

χA(λ) = det

1− λ 2 1
0 −1− λ 0
−2 −2 4− λ

 ,

which after some calculation gives

χA(λ) = −(λ− 2)(λ− 3)(λ+ 1).

The roots of χA are 2, 3 and −1, so these are the eigenvalues of A.

To calculate the eigenspaces, we have to take each eigenvalue λ in turn
and compute Eλ(A) = ker(A − λI) using Gaussian elimination, as in
Example C7.10.

For instance, we calculate the 2-eigenspace as follows. We have

A− 2I =

−1 2 1
0 −3 0
−2 −2 2

 .

Computing in the usual way, we find that A− 2I has RREF1 0 −1
0 1 0
0 0 0


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and so

E2(A) = ker(A− 2I) =


t0
t

 : t ∈ R

 = span


1

0
1

 .

So the eigenvectors of A with eigenvalue 2 are the vectors
(
t
0
t

)
with t 6= 0,

and a basis of the 2-eigenspace E2(A) is
(

1
0
1

)
.

Applying a similar method to each of the other two eigenvalues, we even-

tually find that E3(A) = span
{(

1
0
2

)}
and E−1(A) = span

{(
1
−1
0

)}
.

(When you do calculations like this, it’s wise to check that your claimed
eigenvectors really are eigenvectors! For instance, you should check that

A multiplied by
(

1
0
1

)
really is equal to 2

(
1
0
1

)
.)

iv. Let

A =

−5 3 −3
−6 4 −6
0 0 −2

 .

A calculation similar to the one in (iii) shows that

χA(λ) = −(λ+ 2)2(λ− 1),

so the eigenvalues of A are −2 and 1.

Let us calculate the (−2)-eigenspace. We have

A− (−2)I =

−3 3 −3
−6 6 −6
0 0 0

 ,

which is a matrix of rank 1 and nullity 2. So this time, the eigenspace is
2-dimensional. One basis of it is 1

0
−1

 ,

0
1
1

 .

In this case, it was easy to spot a basis by inspection. In general, we can
calculate a basis of Eλ(A) = ker(A−λI) by the method in Example C7.10.

v. The characteristic polynomial of the diagonal matrix

A =


c1 0 · · · 0

0 c2
. . .

...
...

. . .
. . . 0

0 · · · 0 cn


is

det


c1 − λ 0 · · · 0

0 c2 − λ
. . .

...
...

. . .
. . . 0

0 · · · 0 cn − λ


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which by Example C3.1(v) gives

χA(λ) = (c1 − λ)(c2 − λ) · · · (cn − λ).

In Example E1.8(ii), we found that c1, c2, . . . , cn are eigenvalues of A. We
now know that they are the only eigenvalues of A, since they are the only
roots of χA.

Remark E2.5 The method illustrated in these examples can in principle be
used to compute the eigenvalues and eigenspaces of any square matrix. However,
I want to be honest about its limitations.

Certainly there’s no problem with this method for 2 × 2 matrices: it’s fast
and easy. But even for 3× 3 matrices, we run into problems. If I choose a 3× 3
matrix at random and ask you to find its eigenvalues using the method above,
it’s likely you won’t be able to. After all, its characteristic polynomial will be
some cubic (that is, some polynomial of degree three) with random coefficients,
so how are you going to find its roots? Probably the only method you’ve seen
for solving cubics is to guess a root by trying small integers and, assuming you
find one, reducing it to a quadratic. But the chances of finding a root by trial
and error when the matrix is chosen at random are very slim indeed.

(There is in fact a formula for the roots of a cubic polynomial, like the
quadratic formula but much more complicated. There’s even one for polynomials
of degree four. But it’s a theorem that no such formula exists for polynomials
of degree five or higher, as you’ll learn if you take Galois Theory in Year 4.)

It’s important to realize that we’re nice to you. When we give you a matrix
in an assignment or exam and ask you to compute its eigenvalues, we always
choose examples where it’s possible for you to do it, and the answers are almost
always small integers. But don’t let this mislead you into thinking that the
method is practical in general. It’s emphatically not!

Computers are perfectly capable of finding the roots of any polynomial to
any number of decimal places you want. But even on a computer, the charac-
teristic polynomial method for finding eigenvalues is wildly impractical. Com-
puting determinants by the method that we’ve learned takes an extremely long
time: about n! operations for an n × n matrix, and n! grows very fast with
n. For instance, we saw at the start of Section C6 that even for a 100 × 100
matrix (which is only a modest size), even on a supercomputer, it would take a
ridiculous number of years—far longer than the age of the universe. Since the
characteristic polynomial is a determinant, this method for computing eigenval-
ues is a disaster.

On the other hand, modern computer algebra packages can compute the
eigenvalues of a randomly-generated 100× 100 matrix in a fraction of a second.
That’s because they don’t use the characteristic polynomial to do it. If you
want to know how they actually do it, take Numerical Linear Algebra and
Applications next year!

In summary, the characteristic polynomial is highly impractical as a method
for computation. It is, however, very useful for theoretical purposes, as we are
about to see.

The definition of eigenvalue gives no immediate clue as to how many eigen-
values a matrix could have. For instance, could there be a matrix A such that
every real number is an eigenvalue of A? The answer is, in fact, no. As the
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examples above suggest, a matrix or linear operator can have only finitely many
eigenvalues. More exactly:

Corollary E2.6 An n× n square matrix or linear operator on Rn has at most
n eigenvalues. In particular, it has only finitely many eigenvalues.

Proof The eigenvalues of an operator are the same as those of its standard
matrix, so it is enough to prove the result for matrices. By Lemma E2.1, the
characteristic polynomial of an n× n matrix is a nonzero polynomial of degree
n. But a nonzero polynomial of degree n has at most n roots, so the result
follows from Proposition E2.3. �

Example E2.7 In Example E1.4(i), we considered the operator T on R2 that
reflects the plane in the x-axis, and we showed that 1 and −1 are eigenvalues of
T . Corollary E2.6 immediately implies that these are the only eigenvalues.

Although it was not obvious from the definition of eigenvalue that there
would only be finitely many, perhaps it should not be too surprising. Take a
square matrix A. For each scalar λ, we obtain another square matrix A − λI.
Now, in Workshop 6, you may have discovered that a square matrix ‘chosen at
random’ is ‘usually’ invertible (in some sense that we didn’t attempt to formulate
exactly). So, as λ varies, we would expect most of these matrices A− λI to be
invertible. In other words, we would expect λ to be an eigenvalue for only a few
exceptional values of λ. Corollary E2.6 makes this vague statement precise.

In any case, every square matrix or linear operator has attached to it a finite
set of scalars: its set of eigenvalues, which is called the spectrum of the matrix
or operator. This is related to usages of the word spectrum in the physical
sciences. When you hear people talk about mass spectroscopy or the emission
spectrum of hydrogen, there is a connection with eigenvalues.

Remark E2.8 (Non-examinable.) In some branches of mathematics, it is im-
portant to consider eigenvalues and eigenvectors for differential operators. This
course is not the place to give the definitions, but it is easy to see the resemblance
between differential equations such as

f ′ = λf

and the equation
T (x) = λx

in the definition of eigenvalue. If we write f ′ as D(f) then the first equation
becomes D(f) = λf . This D is an example of a ‘differential operator’, and it is
linear in the sense that D(af + bg) = (af + bg)′ = af ′ + bg′ = aD(f) + bD(g).
The right way to make the connection precise is to use the language of vector
spaces, but that also lies beyond this course.

The characteristic polynomial of a matrix tells us what the eigenvalues are.
But it also gives us information about how big the eigenspaces are. It is only
partial information, as we will see; but it is useful all the same.

Definition E2.9 Let A be a square matrix and let λ be an eigenvalue of A. The
geometric multiplicity of λ is dim(Eλ(A)), the dimension of the λ-eigenspace.
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By Proposition E1.14(ii), the geometric multiplicity of an eigenvalue is al-
ways at least 1.

Examples E2.10 i. Let

A =

3 0 0
0 3 0
0 0 5

 .

The eigenvalues are 3 and 5, and

E3(A) = ker(A− 3I) =
{( x

y
0

)
: x, y ∈ R

}
= span{e1, e2},

E5(A) = ker(A− 5I) =
{(

0
0
z

)
: z ∈ R

}
= span{e3}.

Hence 3 and 5 have geometric multiplicities 2 and 1, respectively.

ii. Let

A =

(
0 1
0 0

)
.

Then χA(λ) = λ2, so 0 is the only eigenvalue of A. We have

E0(A) = ker(A) =
{(

x
0

)
: x ∈ R

}
= span{e1},

so 0 has geometric multiplicity 1.

Let λ0 be an eigenvalue of a matrix A. Then χA(λ0) = 0, so the polynomial
χA(λ) has (λ − λ0) as a factor. Now when χA(λ) is written in fully factorized
form, it may contain as a factor not just (λ − λ0) but a higher power, say
(λ − λ0)k. This number k is called the algebraic multiplicity of λ0. It is
always at least 1.

Example E2.11 Let

A =


−3 0 0 0 0
0 −3 0 0 0
0 0 8 0 0
0 0 0 0 −1
0 0 0 1 0

 .

Then
χA(λ) = −(λ+ 3)2(λ− 8)(λ2 + 1).

Since λ2 + 1 has no real roots, χA(λ) factorizes no further (over R), so the only
eigenvalues of A are −3 and 8. The algebraic multiplicity of −3 is 2, and the
algebraic multiplicity of 8 is 1.

Now the crucial fact is:

Theorem E2.12 Let A be a square matrix and let λ be an eigenvalue of A.
Then the geometric multiplicity of λ is less than or equal to its algebraic multi-
plicity.

Proof Omitted. (You can find a proof in Lemma 4.26 of Poole, for instance.)�
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Examples E2.13 i. The diagonal matrix of Example E2.10(i) has charac-
teristic polynomial −(λ− 3)2(λ− 5), so the algebraic multiplicities of the
eigenvalues 3 and 5 are 2 and 1, respectively. These are equal to their
geometric multiplicities.

ii. On the other hand, in the 2×2 matrix A of Example E2.10(ii), the unique
eigenvalue 0 has algebraic multiplicity 2 (since χA(λ) = (λ − 0)2) but
geometric multiplicity only 1.

iii. Theorem E2.12 tells us that once we have calculated the characteristic
polynomial of a matrix, we immediately have an upper bound on the
dimension of every eigenspace, without actually having to calculate the
eigenspaces.

For instance, suppose that a certain 6 × 6 real matrix has characteristic
polynomial (λ− 3)(λ+ 2)3(λ2 + 5). Then the eigenvalues are 3 and −2.

The algebraic multiplicity of 3 is 1, so its geometric multiplicity is ≤ 1 by
Theorem E2.12. But as 3 is an eigenvalue, its geometric multiplicity is at
least 1; hence it is exactly 1.

The algebraic multiplicity of −2 is 3, so by Theorem E2.12, its geometric
multiplicity is ≤ 3. Thus, its geometric multiplicity is 1, 2 or 3. With
the information we are given, nothing more can be said; there are in fact
examples showing that all three possibilities occur.

We have been telling the story of the characteristic polynomial in terms of
matrices, but it can also be told for linear operators, as follows.

Lemma E2.14 Similar matrices have the same characteristic polynomial, and
therefore the same eigenvalues.

Proof Let A and B be similar n × n matrices. Then A = PBP−1 for some
invertible matrix P . Hence

χA(λ) = det(PBP−1 − λI) = det(P (B − λI)P−1) = det(B − λI) = χB(λ),

where the third equality holds because similar matrices have the same determi-
nant (Lemma D7.1). �

Now let T be a linear operator T on Rn. Proposition D6.10 tells us that
the matrix of T with respect to any basis of Rn is similar to the matrix of
T with respect to any other basis. So by Lemma E2.14, all these matri-
ces have the same characteristic polynomial. We may therefore define the
characteristic polynomial χT to be the characteristic polynomial of the ma-
trix of T with respect to any basis of Rn; it makes no difference which basis we
choose.

In particular, χT is equal to the characteristic polynomial χ[T ] of its standard
matrix. But the standard basis is not always the most convenient one, as the
following example shows.

Example E2.15 Let v1 =
(
3
1

)
and v2 =

(
7
4

)
, and let T be the unique linear

operator on R2 such that T (v1) = 2v1 and T (v2) = −v2, as in Example D6.5.
The matrix of T with respect to the basis v1,v2 is

B =

(
2 0
0 −1

)
,
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so the characteristic polynomial χT of T is given by

χT (λ) = χB(λ) = (λ− 2)(λ+ 1).

We calculated in Example D6.5 that the standard matrix of T is

A =
1

5

(
31 −63
12 −26

)
.

Since A and B are similar, χA(λ) = χB(λ). In this example, it is much easier
to calculate the characteristic polynomial of the non-standard matrix B than of
the standard matrix A.

E3 Diagonalizable matrices

Diagonal matrices are fantastically easy to work with. Take a diagonal matrix

A =


λ1 0 · · · 0

0 λ2
. . .

...
...

. . .
. . . 0

0 · · · 0 λn

 ,

which for convenience, I will write as

diag(λ1, λ2, . . . , λn).

(Here λ1, . . . , λn are any scalars.) Then it is very easy to calculate all the powers
of A: quite simply,

Ar = diag(λr1, λ
r
2, . . . , λ

r
n)

for any integer r ≥ 0. It is very easy to tell whether A is invertible: it is if every
λi is nonzero, and otherwise it’s not. If A is invertible then

A−1 = diag(1/λ1, 1/λ2, . . . , 1/λn)

(which in fact is just the formula above for Ar with r = −1). It is very easy to
calculate the determinant:

det(A) = λ1λ2 · · ·λn.

Also very easy are the rank and nullity: the rank is the number of values of i
such that λi 6= 0, and the nullity is the number of values of i such that λi = 0.
So, the algebra of diagonal matrices is incredibly straightforward.

The geometry is very easy too. Let T be the linear operator on Rn with
standard matrix A (that is, T = LA). Then T simply scales by a factor of λ1
in the e1 direction, λ2 in the e2 direction, and so on. (We met this kind of
operator in Example D2.2.) Figure E.2 shows the case A =

(
2 0
0 3

)
.

So, life would be a breeze if every matrix was diagonal. Of course, that’s
not true! Most matrices aren’t diagonal. And similarly, given a linear operator
T on Rn, the standard matrix of T is not usually diagonal. But many linear
operators do have the property that their matrix is diagonal if you choose the
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Figure E.2: The linear operator T on R2 with standard matrix diag(2, 3)

right basis. How do we know which basis is right? As we’ll see, the answer
involves eigenvectors.

The matrices of an operator T with respect to different bases are all similar,
so if the matrix of T with respect to one well-chosen basis is diagonal then all
the other matrices are similar to a diagonal matrix. There is a word for this.

Definition E3.1 A square matrix is diagonalizable if it is similar to some
diagonal matrix.

In other words, an n×n matrix A is diagonalizable if and only if there exists
an invertible n× n matrix P such that P−1AP is diagonal.

Example E3.2 Certainly every diagonal matrix is diagonalizable. But some
non-diagonal matrices are diagonalizable too. For instance, we showed in Ex-
ample D6.5 that 1

5

(
31 −63
12 −26

)
is similar to the diagonal matrix diag(2,−1), so it

is diagonalizable.

We’re interested in the equation P−1AP = D, where P is invertible and D
is diagonal. Here’s how to understand this equation:

Proposition E3.3 Let A, P and D be n × n matrices, with P invertible and
D diagonal. Write P = (v1|v2| · · · |vn) and D = diag(λ1, . . . , λn). Then

P−1AP = D ⇐⇒ Av1 = λ1v1, Av2 = λ2v2, . . . , Avn = λnvn.

Proof We have P−1AP = D if and only if AP = PD. For i ∈ {1, . . . , n}, the
ith column of AP is Avi (by Lemma A4.3(iii)) and the ith column of PD is
λivi. Hence AP = PD if and only if Avi = λivi for all i ∈ {1, . . . , n}. �

So, the columns of a diagonalizing matrix P are eigenvectors, and the entries
of the diagonal matrix are eigenvalues.

The central idea in this section is that diagonalizability is intimately con-
nected to the existence of enough eigenvectors:
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Proposition E3.4 Let T be a linear operator on Rn. The following are equiv-
alent:

i. the matrix of T with respect to some basis of Rn is diagonal;

ii. there is a basis of Rn consisting of eigenvectors of T ;

iii. there exist n linearly independent eigenvectors of T ;

iv. the standard matrix of T is diagonalizable.

Proof We have (ii)⇔(iii) by Proposition B5.4. Now we prove that (i)⇒(iv)⇒
(ii)⇒(i).

(i)⇒(iv) follows from Proposition D6.10.
For (iv)⇒(ii), suppose that [T ] is diagonalizable. Then P−1[T ]P =

diag(λ1, . . . , λn) for some invertible P and scalars λi. Since P is invertible,
its columns v1, . . . ,vn are a basis of Rn. By Proposition E3.3, [T ]vi = λivi
for all i ∈ {1, . . . , n}. On the other hand, T (x) = [T ]x for all x ∈ Rn. So for
each i, we have T (vi) = λivi. Moreover, vi 6= 0 (by Example B3.2(vi)). Hence
v1, . . . ,vn are eigenvectors.

(ii)⇒(i): if v1, . . . ,vn is a basis of eigenvectors with respective eigenvalues
λ1, . . . , λn, then the matrix of T with respect to v1, . . . ,vn is diag(λ1, . . . , λn).�

A linear operator T is said to be diagonalizable if it satisfies any of the
four equivalent conditions of Proposition E3.4. (If it satisfies one, it satisfies
them all.)

Examples E3.5 i. The operator T on R2 shown in Figure D.5 is diagonal-
izable, since v1,v2 is a basis of R2 consisting of eigenvectors of T .

ii. Let T be the operator on R2 that reflects in the x-axis. Then T has two
linearly independent eigenvectors, e1 and e2, so it is diagonalizable.

iii. Let V be a line through the origin in R3 and consider PV , orthogonal
projection onto V . Choose a nonzero point v1 on V and a basis v2,v3

for the plane V ⊥. Then v1,v2,v3 is a basis of R3. Now PV (v1) = v1

and PV (v2) = PV (v3) = 0, so the matrix of PV with respect to the basis
v1,v2,v3 is diag(1, 0, 0). Hence PV is diagonalizable.

Proposition E3.4 tells us what it means geometrically for an operator T to
be diagonalizable. It says that T is diagonalizable if and only if it is a scaling
operator of the type described in Example D2.2. Figures E.1 and E.2 show
an example where the basis concerned happens to be the standard basis (and
in particular, orthogonal). Figure E.3 shows another example on R2 with a
non-orthogonal basis v1,v2 of eigenvectors.

Translating from linear operators into square matrices, Proposition E3.4
implies:

Proposition E3.6 Let A be an n× n matrix. The following are equivalent:

i. there is a basis of Rn consisting of eigenvectors of A;

ii. there exist n linearly independent eigenvectors of A;

iii. A is diagonalizable.
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0
v1

T (v1) = 2v1

v2

T (v2) = 3v2

T

Figure E.3: A diagonalizable operator T on R2 with non-orthogonal eigenvectors

Proof Put T = LA. Then [T ] = A (by Theorem D3.7), and an eigenvector of
A is exactly an eigenvector of T . The result follows from Proposition E3.4. �

If v is an eigenvector of T with eigenvalue λ then so is every nonzero scalar
multiple of v. It follows that if v1 and v2 are two eigenvectors with different
eigenvalues then neither is a scalar multiple of the other; that is, v1 and v2

are linearly independent. The next result shows that the same is true for any
number of eigenvectors, not just two.

Proposition E3.7 Let A be a square matrix. Let v1, . . . ,vm be eigenvectors of
A, with eigenvalues λ1, . . . , λm respectively. If λ1, . . . , λm are pairwise distinct
(that is, λi 6= λj for all i 6= j) then v1, . . . ,vm are linearly independent.

Briefly put: eigenvectors with distinct eigenvalues are linearly independent.

Proof We prove this by induction on m. The result holds when m = 0, by
Example B3.2(v). Suppose that m ≥ 1, assume the result for m − 1, and let
c1, . . . , cm be scalars such that

c1v1 + c2v2 + · · ·+ cmvm = 0. (E:1)

We have to prove that c1 = c2 = · · · = cm = 0.
For all i ∈ {1, . . . ,m}, we have

(A− λmI)vi = Avi − λmvi = (λi − λm)vi.

So multiplying each side of (E:1) by A− λmI gives

c1(λ1 − λm)v1 + c2(λ2 − λm)v2 + · · ·+ cm−1(λm−1 − λm)vm−1 = 0.

By inductive hypothesis, v1, . . . ,vm−1 are linearly independent, so

c1(λ1 − λm) = c2(λ2 − λm) = · · · = cm−1(λm−1 − λm) = 0.

But λ1, . . . , λm are pairwise distinct, so c1 = c2 = · · · = cm−1 = 0. Now (E:1)
gives cmvm = 0, and since the eigenvector vm is by definition nonzero, cm = 0
too. So v1, . . . ,vm are linearly independent, completing the induction. �
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Remark E3.8 Since any linearly independent set in Rn has at most n elements,
Proposition E3.7 provides an alternative proof of the fact that an n× n matrix
has at most n eigenvalues (Corollary E2.6). This alternative proof has the
advantage of not relying on determinants.

Theorem E3.9 Let A be an n×n matrix with n distinct eigenvalues. Then A
is diagonalizable.

Proof By hypothesis, we can choose n eigenvectors v1, . . . ,vn with pairwise
distinct eigenvalues. By Proposition E3.7, v1, . . . ,vn are linearly independent.
Hence by Proposition E3.6, A is diagonalizable. �

Warning E3.10 The converse is false. For instance, the 2× 2 identity matrix
is certainly diagonalizable (it’s diagonal!) but its only eigenvalue is 1.

Examples E3.11 i. Let

A =

5 −1 −2
0 −6 3
0 0 3

 .

Then

χA(λ) = det

5− λ −1 −2
0 −6− λ 3
0 0 3− λ

 = −(λ− 5)(λ+ 6)(λ− 3).

(This determinant is most efficiently calculated by first expanding down
the first column of A−λI, then expanding down the second column of the
remaining 2 × 2 matrix, as in Proposition C3.2 and Example C3.3.) So
A has eigenvalues 5, −6 and 3. Since A is a 3 × 3 matrix with 3 distinct
eigenvalues, it is diagonalizable.

Suppose we wish to find an invertible matrix P and a diagonal matrix
D such that P−1AP = D. Proposition E3.3 tells us how: the diagonal
matrix D has the eigenvalues down the diagonal, and the columns of P
are any eigenvectors with those eigenvalues. In this example, we calculate
that1

0
0

 ∈ ker(A− 5I),

 1
11
0

 ∈ ker(A+ 6I),

7
2
6

 ∈ ker(A− 3I),

by the usual method for solving linear systems. Hence if we put

P =

1 1 7
0 11 2
0 0 6

 , D =

5 0 0
0 −6 0
0 0 3


then P−1AP = D.

Geometrically, this means that the linear operator LA : x 7→ Ax has the

effect of scaling by a factor of 5 in the direction of
(

1
0
0

)
, a factor of −6 in

the direction of
(

1
11
0

)
, and a factor of 3 in the direction of

(
7
2
6

)
.
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0 e1 = Ae1

e2

Ae2 =
(
2
1

)

Figure E.4: A shearing operator on the plane

ii. Let

A =

1 2 3
4 5 6
7 8 9

 .

After some calculation, we find that

χA(λ) = −λ3 + 15λ2 + 18λ.

Clearly 0 is a root of χA, and the quadratic formula gives (15±
√

297)/2
as the other two roots. So, these are the eigenvalues of A. The square
roots would make it somewhat painful to calculate eigenvectors, but even
without doing so, Theorem E3.9 immediately implies that there is a basis
of R3 consisting of eigenvectors of A. In other words, A is diagonalizable.

For all we know so far, every square matrix could be diagonalizable. This is
not, in fact, true.

Examples E3.12 i. We saw in Example E2.10(ii) that the only eigenvalue
of the matrix A =

(
0 1
0 0

)
is 0, and the 0-eigenspace is span{e1}. So there

is no basis of R2 consisting of eigenvectors of A, that is, A is not diago-
nalizable.

Another way to see this is that if A were diagonalizable then A would be
similar to a diagonal matrix whose diagonal entries are eigenvalues of A
(by Proposition E3.3). In this case, this would mean that A is similar to
the zero matrix. However, the only matrix similar to the zero matrix is
itself (as in Example D6.8(ii)), and A 6= 0.

ii. Take the 5×5 matrix A of Example E2.11. This has two eigenvalues, with
algebraic multiplicities 2 and 1. By Theorem E2.12, the dimensions of the
eigenspaces are at most 2 and 1 (respectively). Since 2 + 1 < 5, it is not
possible to find 5 linearly independent eigenvectors of A. Hence A is not
diagonalizable.

E4 Orthogonal matrices

In general, applying a linear operator to Rn distorts the geometry: both lengths
and angles can change. For instance, let A =

(
1 2
0 1

)
(Figure E.4). Then e2 has

length 1, but Ae2 =
(
2
1

)
has length

√
5. So the linear operator LA changes
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lengths. It also changes angles. For instance, e1 and e2 are orthogonal, but Ae1

and Ae2 are not.
From a geometric point of view, it is natural to pay special attention to op-

erators that do preserve lengths and angles. Those operators (or their standard
matrices) are called ‘orthogonal’.

Definition E4.1 A real square matrix A is orthogonal if A is invertible and

A−1 = AT .

So, A is orthogonal if and only if ATA = I and AAT = I. In fact, either
one of ATA = I and AAT = I implies the other (for square matrices A), by
Corollary C2.5.

This doesn’t appear to have anything to do with preservation of length and
angle! But we will eventually show that it really does. (We start from the
definition above, rather than an equivalent condition on preservation of length
and angle, because it is easier to work with algebraically.)

Examples E4.2 i. We saw in Example D3.2(i) that rotation by an angle
of θ, as a linear operator Rθ on R2, has standard matrix

[Rθ] =

(
cos θ − sin θ
sin θ cos θ

)
.

Our geometric intuition says that this matrix ought to be orthogonal,
because rotating the plane doesn’t change lengths or angles. And in fact
it is, since

[Rθ]
T

[Rθ] =

(
cos θ sin θ
− sin θ cos θ

)(
cos θ − sin θ
sin θ cos θ

)
=

(
1 0
0 1

)
.

ii. Let A = cI, where c is a scalar. Then the linear operator LA is simply
x 7→ cx. This doesn’t change angles, but it does change lengths (unless
c = ±1), so we would not expect A to be orthogonal. And indeed,

ATA = (cI)(cI) = c2I,

so A is orthogonal if and only if c = ±1.

If the definition of orthogonal matrix succeeds in capturing the notion of
‘keeps lengths and angles the same’, then the product of two orthogonal matrices
ought to be orthogonal. After all, if each stage of a two-stage process preserves
lengths and angles, then the composite process ought to preserve them too. For
the same kind of reason, the inverse (or equivalently transpose) of an orthogonal
matrix ought to be orthogonal, and the identity matrix should be orthogonal
too. This is the intuition behind the following lemma.

Lemma E4.3 Let A and B be orthogonal n× n matrices.

i. If A and B are orthogonal then AB is orthogonal.

ii. The identity matrix I is orthogonal.

iii. If A is orthogonal then so is AT .
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Proof For (i), if A and B are orthogonal then

(AB)T (AB) = BTATAB = BT IB = BTB = I,

so AB is orthogonal. For (ii), IT I = I2 = I. For (iii), just note that (AT )T =
A. �

Orthogonality is an important concept, and like many important concepts,
there are several equivalent ways of looking at it.

Proposition E4.4 Let A be a real square matrix. The following are equivalent:

i. A is orthogonal;

ii. the columns of A are orthonormal;

iii. the rows of A are orthonormal.

Proof We prove that (i)⇔(ii). Since the rows of A are the columns of AT , the
equivalence (i)⇔(iii) will then follow from Lemma E4.3(iii).

We use the convention that the (p, q)-entry of a matrix M is written as Mpq.
Write v1, . . . ,vn ∈ Rn for the columns of A. For i, k ∈ {1, . . . , n}, we have

(ATA)ik =

n∑
j=1

(AT )ijAjk =

n∑
j=1

AjiAjk = vi · vk.

Now

A is orthogonal ⇐⇒ ATA = I

⇐⇒ (ATA)ik =

{
1 if i = k

0 if i 6= k
for all i, k ∈ {1, . . . , n}

⇐⇒ vi · vk =

{
1 if i = k

0 if i 6= k
for all i, k ∈ {1, . . . , n}

⇐⇒ v1, . . . ,vn are orthonormal,

where the last step is by Lemma B6.3. �

In the light of this proposition, orthogonal matrices should really be called
orthonormal matrices. But unfortunately, they’re not.

Remark E4.5 Proposition E4.4 implies that if the rows of a square matrix are
orthonormal then so are the columns. Proving this from scratch is really quite
hard. Even for 2× 2 matrices, it’s not easy. If you think it is, try it!

Examples E4.6 i. In the rotation matrix [Rθ] of Example E4.2(i), both
columns have length 1 (because cos2 θ + sin2 θ = 1) and the dot product
of the two columns is 0. Hence the columns are orthonormal. This gives
a slightly easier proof that [Rθ] is orthogonal.

ii. By Proposition E4.4, the columns of an orthogonal matrix all have
length 1, which implies in particular that all the entries of an orthog-
onal matrix are between −1 and 1. So if you are given a matrix that
contains even one entry with absolute value > 1, you can immediately
conclude that it is not orthogonal.
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iii. Let v1, . . . ,vn be a basis of Rn, and recall from Theorem D6.4 that the cor-
responding change of basis matrix is (v1|v2| · · · |vn). By Proposition E4.4,
the basis is orthonormal if and only if its change of basis matrix is orthog-
onal.

The next few results fulfil the promise made at the start of this section: that
the orthogonal matrices are those that preserve angle and length.

Proposition E4.7 Let A be a real square matrix. Then A is orthogonal if and
only if

(Ax) · (Ay) = x · y

for all x,y ∈ Rn.

Proof Suppose A is orthogonal. Then for all x,y ∈ Rn, using Lemma A5.7,

(Ax) · (Ay) = (Ax)T (Ay) = xTATAy = xTy = x · y.

Conversely, suppose that (Ax) · (Ay) = x · y for all x,y ∈ Rn. Let i, j ∈
{1, . . . , n}. Then

(Aei) · (Aej) = ei · ej =

{
1 if i = j,

0 if i 6= j.

But Aei is the ith column of A (by Lemma A4.3(ii)), so the columns of A are
orthonormal. Hence by Proposition E4.4, A is orthogonal. �

The formula ‘x · y = ‖x‖ ‖y‖ cos θ’ for the dot product of vectors x and y
(where θ is the angle between them) demonstrates that the dot product com-
bines aspects of length and angle. Length can be expressed in terms of the dot
product, via the formula ‖x‖ =

√
x · x. Less obvious is the converse, that the

dot product can be expressed in terms of length alone. This is the main content
of the next lemma, which is related to the fact that the lengths of the sides of
a triangle determine its angles.

Lemma E4.8 (Polarization identity) Let x,y ∈ Rn. Then

x · y =
1

4

(
‖x + y‖2 − ‖x− y‖2

)
.

Proof We have

‖x + y‖2 − ‖x− y‖2 = (x + y) · (x + y)− (x− y) · (x− y)

= (x · x + 2x · y + y · y)− (x · x− 2x · y + y · y)

= 4x · y. �

We can now show that the orthogonal matrices are exactly those that pre-
serve length, in the following sense:

Proposition E4.9 Let A be a real square matrix. Then A is orthogonal if and
only if

‖Ax‖ = ‖x‖

for all x ∈ Rn.
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Proof Suppose that A is orthogonal. Then by Proposition E4.7,

‖Ax‖ =
√

(Ax) · (Ax) =
√

x · x = ‖x‖

for all x ∈ Rn.
Conversely, suppose ‖Ax‖ = ‖x‖ for all x ∈ Rn. We show that (Ax) ·(Ay) =

x · y for all x,y ∈ Rn; then Proposition E4.7 will imply that A is orthogonal.
Let x,y ∈ Rn. Then

(Ax) · (Ay) =
1

4

(
‖Ax +Ay‖2 − ‖Ax−Ay‖2

)
by the polarization identity

=
1

4

(
‖A(x + y)‖2 − ‖A(x− y)‖2

)
by linearity

=
1

4

(
‖x + y‖2 − ‖x− y‖2

)
by hypothesis on A

= x · y by the polarization identity,

as required. �

Warning E4.10 When A is an orthogonal matrix, the angle between Ax and
Ay is equal to the angle between x and y (assuming x 6= 0 6= y). This follows
from the definition of angle (Definition A3.4) together with Propositions E4.7
and E4.9. So, if A is orthogonal then the operator LA corresponding to A
preserves angles. However, the converse is false. For example, if A = 2I then
LA(x) = 2x for all x, so LA preserves angles even though A is not orthogonal.

We have been discussing orthogonality of matrices. But what should it mean
for an operator to be orthogonal?

Lemma E4.11 Let T be a linear operator on Rn. The following are equivalent:

i. the standard matrix of T is orthogonal;

ii. T (x) · T (y) = x · y for all x,y ∈ Rn;

iii. ‖T (x)‖ = ‖x‖ for all x ∈ Rn.

Proof Write A for the standard matrix of T . Then T = LA, so the result
follows from Propositions E4.7 and E4.9. �

A linear operator T is orthogonal if it satisfies any of the equivalent con-
ditions of Lemma E4.11.

Examples E4.12 i. Which linear operators on R2 are orthogonal?

We have already seen that when T is rotation of R2 by any angle, its stan-
dard matrix [T ] is orthogonal. So by definition, T itself is orthogonal. The
same is true for reflection of R2 in any line through the origin. Indeed, as
you discovered in Workshop 8, if Fθ denotes reflection in the line through
0 at angle θ from the positive x-axis then

[Fθ] =

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
.
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It is easy to see that the columns are orthonormal, so the operator Fθ is
orthogonal.

These results confirm our geometric intuition that rotation and reflection
preserve length. In fact, rotations and reflections are the only 2 × 2 or-
thogonal matrices. Proving this is a pleasant exercise.

ii. The orthogonal operators on R3 can also be completely classified. It turns
out that they are the following:

• rotation by any angle about any axis through the origin;

• reflection in any plane through the origin;

• ‘reflection in the origin’, that is, x 7→ −x.

An important difference between rotations and reflections is that rotations
have determinant 1 and reflections have determinant −1. There are no other
possibilities for the determinant, because of the following result.

Lemma E4.13 Every orthogonal matrix or operator has determinant ±1.

Proof Let A be an orthogonal matrix. Then

1 = det I = det(ATA) = det(AT ) detA = det(A)2

by parts (vi) and (v) of Proposition C3.4. Hence detA = ±1.
Now let T be an orthogonal operator. By definition, [T ] is orthogonal, so

det [T ] = ±1. But detT = det [T ], so detT = ±1. �

This is geometrically plausible. An orthogonal operator T preserves lengths
and angles, so it also preserves area (in the case of R2), volume (in the case of
R3), and so in in higher dimensions. We saw in Section D7 that applying T
multiplies volumes by a factor of |det(T )|. So, |det(T )| ought to be 1, giving
det(T ) = ±1. Lemma E4.13 proves that this is true.

E5 A little linear algebra over C
This course has been entirely based on the real numbers. We have been working
with vectors in Rn, linear subspaces of Rn, matrices with entries in R, linear
transformations between Rn and Rm, and linear systems with both coefficients
and solutions in R.

However, in much of what we’ve done, the only features of R that we have
really needed are that you can add, subtract, multiply and divide real numbers
(as long as you don’t try to divide by 0). A set equipped with operations of
addition, subtraction, multiplication and division, obeying the familiar laws, is
called a ‘field’. (You will learn the precise definition in a later course.) Other
examples of fields are C and Q. A less obvious example is the set of integers
modulo p, for any prime p; it is a highly significant fact that these can be added,
subtracted, multiplied and divided like real or complex numbers.

So the question arises: how much of the linear algebra that we have done in
this course still works if we replace R by some other field?

Before I give the answer, let me explain why I am asking at this particular
moment. Way back in Section A6, I mentioned that some facts about the real
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numbers are most easily proved by using the complex numbers. And it turns
out that some facts about linear algebra over R are most easily proved by using
linear algebra over C. In the final section of the course, we will meet one such
fact. For this reason, we are about to need some complex linear algebra.

The answer to the question is: most of the linear algebra that we have done
in this course still works with other fields in place of R. In particular, most of it
works when R is replaced by C. Let us now look a little more closely at linear
algebra over C.

The definitions of linear transformation, linear operator, eigenvector, eigen-
value, determinant and characteristic polynomial over C are all exactly the
same as over R, simply changing R to C throughout. For instance, let A be an
n × n complex matrix (that is, matrix with entries in C), and let λ ∈ C. An
eigenvector of A, with eigenvalue λ, is a nonzero vector z ∈ Cn such that
Az = λz. Just as for R (Proposition E2.3), a scalar λ ∈ C is an eigenvalue of A
if and only if it is a root of the characteristic polynomial χA.

Warning E5.1 The terminology concerning real and complex eigenvalues is
slightly delicate.

• For linear operators on Cn, the eigenvalues are complex numbers (which
may or may not be real), and the eigenvectors are in Cn.

• For linear operators on Rn, the eigenvalues are by definition real numbers,
and the eigenvectors are by definition in Rn.

• For complex matrices, the eigenvalues are complex numbers (which may
or may not be real), and the eigenvectors are in Cn.

• But for real matrices, the situation is less clear-cut. For example, what
does it mean to say ‘an eigenvalue of

(
0 −1
1 0

)
’? If we are treating it as a

real matrix, it has no eigenvalues. But if we are treating it as a complex
matrix, it has eigenvalues ±i.
So in the context of real matrices, it is helpful to speak of ‘real eigenvalues’
and ‘complex eigenvalues’, for clarity. For example, the matrix

(
0 −1
1 0

)
has

complex eigenvalues ±i, but no real eigenvalues at all.

We have seen that some real matrices have no real eigenvalues. A crucial
advantage of C over R is that every complex square matrix has an eigenvalue:

Theorem E5.2 Let n ≥ 1, and let A be an n×n complex matrix. Then A has
at least one eigenvalue.

Proof The characteristic polynomial χA is a polynomial over C of degree n ≥ 1,
so by the fundamental theorem of algebra (Theorem A6.1), has at least one root
in C. Any such root is an eigenvalue of A. �

Soon, we will use this result about complex matrices to prove a result about
real matrices; but first we need to consider complex conjugates.

Any m × n complex matrix A = (Aij) has a complex conjugate A. By

definition, this is the m × n complex matrix whose (i, j)-entry is Aij . Com-
plex conjugation of matrices preserves addition and multiplication, just as in
equations (A:14) (page 41):
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Lemma E5.3 Let A and B be m × n matrices over C, and let C be an n × p
matrix over C. Then

A+B = A+B, BC = B C.

Proof We prove the second equation; the first is no harder and is left as an
exercise. We use the convention that the (p, q)-entry of a matrix M is written
as Mpq.

First, both BC and B C are m × p matrices. Now let 1 ≤ i ≤ m and
1 ≤ k ≤ p. We have

(BC)ik = (BC)ik by definition of BC

=

n∑
j=1

BijCjk by definition of matrix multiplication

=

n∑
j=1

Bij Cjk by equations (A:14)

=

n∑
j=1

Bij Cjk by definition of B and of C

= (B C)ik by definition of matrix multiplication. �

The length of a complex vector z ∈ Cn is

‖z‖ =

√√√√ n∑
i=1

|zi|2.

If z happens to be real then this agrees with the familiar definition of length in
Rn. (But note that in general, z2i is not real, and not equal to |zi|2.)

Since a complex vector z can be regarded as an n × 1 complex matrix, we
already have a definition of the conjugate of z: it is the vector z ∈ Cn with ith
entry zi.

Lemma E5.4 zT z = ‖z‖2 for all z ∈ Cn.

Proof First, zT is a 1 × n matrix over C and z is an n × 1 matrix over C, so
zT z is a 1 × 1 matrix over C, that is, a complex number. Now using the fact
that ww = |w|2 for all w ∈ C (equation (A:15), page 41), we have

zT z =

n∑
i=1

zizi =

n∑
i=1

|zi|2 = ‖z‖2.
�

When z is real, this lemma simply says that zT z = ‖z‖2. Since xTy = x · y
for x,y ∈ Rn (by Lemma A5.7), this is the familiar statement that x ·x = ‖x‖2
for x ∈ Rn.

For real matrices A, we are often interested in the condition that A is sym-
metric: AT = A. For complex matrices A, symmetry turns out to be less inter-

esting than the condition that A
T

= A. (Such matrices are called ‘Hermitian’.)
Our next result concerns such matrices.
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Proposition E5.5 Let A be an n×n complex matrix such that A
T

= A. Then
every eigenvalue of A is real.

Proof Let λ ∈ C be an eigenvalue of A. Choose an eigenvector z ∈ Cn with
eigenvalue λ.

We will evaluate zTAz in two ways. Note that it is a 1 × 1 matrix over C,
that is, a complex number. On the one hand,

zTAz = zTλz = λzT z = λ‖z‖2

where the last step is by Lemma E5.4. On the other hand,

zTAz = zTA
T
z by hypothesis

= (A z)T z by Lemma A5.8(iii)

= (Az)T z by Lemma E5.3

= (λz)T z since Az = λz

= λ zT z directly from the definitions

= λ‖z‖2 by Lemma E5.4.

Putting together the two expressions for zTAz gives λ‖z‖2 = λ‖z‖2. But z 6= 0
by definition of eigenvector, so zi 6= 0 for some i, so ‖z‖2 =

∑n
i=1 |zi|2 > 0.

Hence λ = λ, or equivalently, λ is real. �

We now use what we know about complex matrices to prove a result that is
purely about real matrices.

Theorem E5.6 Every real symmetric matrix has at least one real eigenvalue.

Proof Let A be a real symmetric n×n matrix (where n ≥ 1). By Theorem E5.2,

A has at least one complex eigenvalue λ. Now A = A = A
T

since A is real and
symmetric, so λ is real by Proposition E5.5. �

The significance of this result will be revealed in the next and final section.

E6 Symmetric matrices

This whole course has been about the interplay of geometry and algebra. We
finish with a beautiful result stating that a certain geometric condition on linear
operators is equivalent to a certain algebraic condition on matrices.

By definition, a linear operator T is diagonalizable if and only if its matrix
with respect to some basis of Rn is diagonal. A typical diagonalizable operator
is shown in Figure E.3. But we can be more demanding and ask whether the
matrix of T with respect to some orthonormal basis of Rn is diagonal. Such an
operator T is called orthogonally diagonalizable. Figures E.2 and E.5 both
show examples.

Why should we care about orthogonal diagonalizability? It is because the
orthonormal bases are the most convenient ones, as we saw in Section B6. They
share many of the properties of the standard basis, which is the one we’re most
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0

v1

T (v1) = 2v1

v2

T (v2) = 3v2

T

Figure E.5: An orthogonally diagonalizable operator T on R2

familiar with. For instance, Lemma B6.6 shows how easy it is to express any
given vector as a linear combination of orthonormal basis vectors.

So if we’re dealing with an operator T , and we’re able to find an orthonor-
mal basis v1, . . . ,vn such that the matrix of T with respect to v1, . . . ,vn is
orthonormal, then the situation is almost as easy as if the standard matrix of T
were diagonal. And as we saw at the start of Section E3, that situation is very
easy indeed.

But given an operator, how can you tell whether it is orthogonally diagonaliz-
able? We will prove the major result—perhaps the highlight of the course—that
an operator is orthogonally diagonalizable if and only if its standard matrix is
symmetric.

The proof will take us most of the rest of this section. We will mostly work
with matrices rather than operators, so we will need the following definition.

Definition E6.1 A real square matrix A is orthogonally diagonalizable if

there exists an orthogonal matrix P such that P−1AP is diagonal.

Since the inverse of an orthogonal matrix is the same as its transpose, we
could equivalently have written PTAP instead of P−1AP .

Just as ordinary diagonalizability is equivalent to the existence of a basis
of eigenvectors, orthogonal diagonalizability is equivalent to the existence of an
orthonormal basis of eigenvectors:

Proposition E6.2 Let T be a linear operator on Rn. The following are equiv-
alent:

i. T is orthogonally diagonalizable;

ii. there is an orthonormal basis of Rn consisting of eigenvectors of T ;

iii. there exist n orthonormal eigenvectors of T ;

iv. the standard matrix of T is orthogonally diagonalizable.
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Proof This is almost identical to the proof of Proposition E3.4, inserting the
word ‘orthogonal’ or ‘orthonormal’ in appropriate places. �

In particular, the operator T is orthogonally diagonalizable if and only if the
matrix [T ] is orthogonally diagonalizable. So, it makes little difference whether
we work with operators or matrices. From now on, we stick with matrices.

Proposition E6.3 Let A be an n× n matrix. The following are equivalent:

i. there is an orthonormal basis of Rn consisting of eigenvectors of A;

ii. there exist n orthonormal eigenvectors of A;

iii. A is orthogonally diagonalizable.

Proof This follows from Proposition E6.2 in exactly the same way that Propo-
sition E3.6 followed from Proposition E3.4. �

As in the case of ordinary diagonalizability, if P−1AP = D with P or-
thogonal and D diagonal, then the columns of P form an orthonormal basis of
eigenvectors of A and the diagonal entries of D are the corresponding eigenval-
ues.

Example E6.4 Let

A =

(
5 −1
−1 5

)
.

Then χA(λ) = (λ − 4)(λ − 6), an eigenvector with eigenvalue 4 is
(
1
1

)
, and an

eigenvector with eigenvalue 6 is
(−1

1

)
. These eigenvectors are orthogonal but

not orthonormal. We scale them to make them orthonormal, and define P to
be the matrix with these orthonormal eigenvectors as its columns:

P =

(
1/
√

2 −1/
√

2

1/
√

2 1/
√

2

)
.

Then P is orthogonal, PTAP = diag(4, 6), and A is orthogonally diagonalizable.

Notice that in this example, the orthogonally diagonalizable matrix A was
symmetric. In fact:

Lemma E6.5 Every orthogonally diagonalizable matrix is symmetric.

Proof Let A be an orthogonally diagonalizable matrix. Then P−1AP = D for
some orthogonal matrix P and diagonal matrix D. We have A = PDP−1 =
PDPT , and D is symmetric, so

AT = (PDPT )T = (PT )TDTPT = PDPT = A.

Hence AT = A, that is, A is symmetric. �

We now prove the converse, which is much harder. It is one of several
related results called a ‘spectral theorem’ (because it has something to do with
the spectrum).
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Theorem E6.6 (Spectral theorem) A real square matrix is orthogonally di-
agonalizable if and only if it is symmetric.

Proof We have just proved ‘only if’. For ‘if’, we use induction on the size of
the matrix. It is clear for 1 × 1 matrices. Now let n ≥ 2, let A be an n × n
symmetric matrix, and suppose inductively that (n − 1) × (n − 1) symmetric
matrices are orthogonally diagonalizable.

By Theorem E5.6 (which we proved using linear algebra over C!), A has at
least one real eigenvalue. Thus, Av1 = λ1v1 for some λ1 ∈ R and vector v1 6= 0,
which we may assume to have length 1. By the orthonormal extension lemma
(Lemma B7.6), we can extend v1 to an orthonormal basis v1,v2, . . . ,vn of Rn.

(This is not going to be an orthonormal basis of eigenvectors of A, unless
we’re very lucky! So we have more work to do.)

Put Q = (v1|v2| · · · |vn). Then Q has orthonormal columns, so it is or-
thogonal. Now consider the matrix QTAQ = Q−1AQ. By Lemma A4.3(ii),
Qe1 = v1, so the equation Av1 = λ1v1 becomes AQe1 = λ1Qe1, or equiva-
lently Q−1AQe1 = λ1e1. Again by Lemma A4.3(ii), this means that the first
column of QTAQ is λ1e1. Moreover, QTAQ is symmetric, since

(QTAQ)T = QTAT (QT )T = QTAQ

(using the symmetry of A). So the first row of QTAQ is λ1e
T
1 . Hence

QTAQ =


λ1 0 · · · 0
0 a′11 · · · a′1,n−1
...

...
...

0 a′n−1,1 · · · a′n−1,n−1

 (E:2)

for some real numbers a′ij . Write A′ for the (n−1)× (n−1) matrix (a′ij). Since

QTAQ is symmetric, so is A′. By inductive hypothesis, A′ is orthogonally diag-
onalizable, so Q′TA′Q′ = diag(λ2, . . . , λn) for some (n− 1)× (n− 1) orthogonal
matrix Q′ and λ2, . . . , λn ∈ R.

For convenience, let us write equation (E:2) as

QTAQ =


λ1 0 · · · 0
0
... A′

0

 .

Define an n× n matrix R by

R =


1 0 · · · 0
0
... Q′

0

 .

(The idea now is that Q′ diagonalizes A′, and QTAQ is A′ in the last n − 1
coordinates, so R will diagonalize QTAQ. This will imply that QR diagonalizes
A, and we will also be able to show that QR is orthogonal.)
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We have

RT (QTAQ)R =


1 0 · · · 0
0
... Q′

0


T 

λ1 0 · · · 0
0
... A′

0




1 0 · · · 0
0
... Q′

0



=


λ1 0 · · · 0
0
... Q′TA′Q′

0


= diag(λ1, λ2, . . . , λn).

Put P = QR; then PTAP is diagonal.
It remains to prove that P is orthogonal. Indeed, Q is orthogonal (as noted

above), and R is orthogonal since

RTR =


1 0 · · · 0
0
... Q′

0


T 

1 0 · · · 0
0
... Q′

0

 =


1 0 · · · 0
0
... Q′TQ′

0

 = In.

So P is the product of two orthogonal matrices, and is therefore orthogonal by
Lemma E4.3. This completes the induction. �

Remark E6.7 This proof is long and may seem rather technical. However, if
we had the language of vector spaces available, we could rephrase the proof in
such a way that it only took a few lines and was geometrically intuitive. You
will learn about vector spaces in Honours Algebra next year.

We’ll finish with an example that looks very hard, but which the theory
we’ve developed makes easy.

Example E6.8 Let

A =

 14 −14 −16
−14 23 −2
−16 −2 8

 .

What is A99?
We observed at the beginning of Section E3 that powers of diagonal matrices

are very easy to calculate. Our matrix A is not diagonal, but it is symmetric,
so it must be orthogonally diagonalizable.

We calculate that A has characteristic polynomial

χA(λ) = −(λ+ 9)(λ− 36)(λ− 18),

so its eigenvalues are −9, 36 and 18. Using row reduction in the usual way,

we find an eigenvector
(

2
1
2

)
with eigenvalue −9, and normalizing so that it has

length 1 gives the eigenvector

(
2/3
1/3
2/3

)
. Similarly, we find unit-length eigenvectors
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(
−2/3
2/3
1/3

)
and

(
1/3
2/3
−2/3

)
with eigenvalues 36 and 18, respectively. These unit-

length eigenvectors are orthonormal, so if we put

P =

2/3 −2/3 1/3
1/3 2/3 2/3
2/3 1/3 −2/3


then P is orthogonal and PTAP = D, where D = diag(−9, 36, 18).

It follows that A = PDPT = PDP−1. Hence

A99 = (PDP−1)(PDP−1) · · · (PDP−1)

= PD99P−1

=

2/3 −2/3 1/3
1/3 2/3 2/3
2/3 1/3 −2/3

(−9)99 0 0
0 3699 0
0 0 1899

 2/3 1/3 2/3
−2/3 2/3 1/3
1/3 2/3 −2/3


by cancelling and using the fact that P−1 = PT . Multiplying this out, we
conclude that A99 is equal to

1

9

 4 · (−9)99 + 4 · 3699 + 1899 2 · (−9)99 − 4 · 3699 + 2 · 1899 4 · (−9)99 − 2 · 3699 − 2 · 1899

2 · (−9)99 − 4 · 3699 + 2 · 1899 (−9)99 + 4 · 3699 + 4 · 1899 2 · (−9)99 + 2 · 3699 − 4 · 1899

4 · (−9)99 − 2 · 3699 − 2 · 1899 2 · (−9)99 + 2 · 3699 − 4 · 1899 4 · (−9)99 + 3699 + 4 · 1899

 .

Of course, what we’ve really just done is found a formula for Ar for all positive
integers r.

Remark E6.9 We can use the same technique to find the powers of any diag-
onalizable matrix. In this example, our matrix was orthogonally diagonalizable
(that is, symmetric), which made it very easy to find the inverse of P : it’s
just the transpose. But we already have a general algorithm for calculating in-
verses (Section C6), so we could have found P−1 anyway, even if P hadn’t been
orthogonal. You will get some practice on this in the remaining workshops.

Could you have found the 99th power of this matrix without all the theory
we developed during this course? Maybe not!
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Summary of Chapter E

This is for you to fill in.

The most important definitions and ideas in this chapter

The most important results in this chapter

Points I didn’t understand
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Summary of the whole course

This is for you to fill in.

The most important definitions and ideas in the course

The most important results in the course

Points I didn’t understand
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