Magnitude and magnitude homology

Tom Leinster

Edinburgh

Plan

- 1. Magnitude, generally
- 2. The magnitude of a metric space

- 3. Magnitude homology, generally
- 4. The magnitude homology of a metric space

1. Magnitude, generally

Size

For many types of mathematical object, there is a canonical notion of size.

• Sets have cardinality. It satisfies

$$|X \cup Y| = |X| + |Y| - |X \cap Y|$$
$$|X \times Y| = |X| \times |Y|.$$

• Subsets of \mathbb{R}^n have volume. It satisfies

$$\operatorname{vol}(X \cup Y) = \operatorname{vol}(X) + \operatorname{vol}(Y) - \operatorname{vol}(X \cap Y)$$

 $\operatorname{vol}(X \times Y) = \operatorname{vol}(X) \times \operatorname{vol}(Y).$

• Topological spaces have Euler characteristic. It satisfies

 $\chi(X \cup Y) = \chi(X) + \chi(Y) - \chi(X \cap Y)$ (under hypotheses) $\chi(X \times Y) = \chi(X) \times \chi(Y).$

Challenge Find a general definition of 'size', including these and other examples.

One answer The magnitude of an enriched category.

The magnitude of an enriched category

Let $\mathscr{V} = (\mathscr{V}, \otimes, I)$ be a monoidal category equipped with a 'notion of the size of its objects'.

Formally, suppose we have a function

$$|\cdot|$$
: ob $\mathscr{V} \to k$

taking values in some semiring k, such that

$$U \cong V \Rightarrow |U| = |V|, \qquad |U \otimes V| = |U||V|, \qquad |I| = 1.$$

Given a $\mathscr V$ -enriched category ${f X}$ with finitely many objects, define a matrix

$$Z_{\mathbf{X}} = (|\mathbf{X}(x,y)|)_{x,y\in\mathbf{X}}$$

If $Z_{\mathbf{X}}$ is invertible, the magnitude of \mathbf{X} is

$$|\mathbf{X}| = \sum_{x,y \in \mathbf{X}} Z_{\mathbf{X}}^{-1}(x,y) \in k.$$

It can be understood as a notion of the size of X.

The magnitude of an ordinary category

Take $\mathscr{V} = \mathbf{FinSet}$ with usual cardinality $|\cdot|$. This gives a notion of the magnitude $|\mathbf{X}| \in \mathbb{Q}$ of a finite category \mathbf{X} .

'Recall': **X** gives rise to a topological space **BX** (its classifying space), built as follows:

- for each object of **X**, put a point into B**X**;
- for each map $x \to y$ in **X**, put an interval •——• into B**X**;
- for each commutative triangle in X, put a 2-simplex \blacktriangle into BX;

• . . .

Theorem Let ${\boldsymbol{\mathsf{X}}}$ be a finite category. Then

$$|\mathbf{X}| = \chi(B\mathbf{X}),$$

under hypotheses ensuring that $\chi(B\mathbf{X})$ is well-defined.

The magnitude of a metric space

Let \mathscr{V} be the category whose objects are the elements of $[0, \infty]$, with one map $u \to v$ when $u \ge v$, and with no maps $u \to v$ otherwise.

It is a monoidal category under addition.

Any metric space gives a \mathscr{V} -enriched category **X**:

- the objects of **X** are the points;
- $X(x, y) = d(x, y) \in [0, \infty];$
- composition in **X** is the triangle inequality.

We have the 'size function'

$$|\cdot|: [0,\infty] \rightarrow \mathbb{R}, \ u \mapsto e^{-u},$$

which has the required properties that $e^{-(u+v)} = e^{-u}e^{-v}$, etc. So we get a new invariant: the 'magnitude of a metric space'. 2. The magnitude of a metric space

- done explicitly -

The magnitude of a finite metric space

Let X be a finite metric space.

Write Z_X for the $X \times X$ matrix with entries

$$Z_X(x,y) = e^{-d(x,y)}$$

 $(x, y \in X).$

If Z_X is invertible (which it is if $X \subseteq \mathbb{R}^n$), the magnitude of X is

$$|X| = \sum_{x,y \in X} Z_X^{-1}(x,y) \in \mathbb{R}$$

—the sum of all the entries of the inverse matrix of Z_X .

First examples

• If $d(x, y) = \infty$ for all $x \neq y$ then |X| = cardinality(X).

Slogan: Magnitude is the 'effective number of points'.

• When t is small, X looks like a 1-point space.

- When t is small, X looks like a 1-point space.
- When t is moderate, X looks like a 2-point space.

- When t is small, X looks like a 1-point space.
- When t is moderate, X looks like a 2-point space.
- When t is large, X looks like a 3-point space.

- When t is small, X looks like a 1-point space.
- When t is moderate, X looks like a 2-point space.
- When t is large, X looks like a 3-point space.

Indeed, the magnitude of X as a function of t is:

Magnitude functions

Magnitude assigns to each metric space not just a *number*, but a *function*. For t > 0, write tX for X scaled up by a factor of t.

The magnitude function of a metric space X is the partially-defined function

$$egin{array}{ccc} (0,\infty) & o & \mathbb{R} \ t & \mapsto & |tX| \, , \end{array}$$

E.g.: the magnitude function of $X = (\stackrel{\leftarrow}{\bullet} \stackrel{\ell}{\to})$ is

A magnitude function has only finitely many singularities (none if $X \subseteq \mathbb{R}^n$). It is increasing for $t \gg 0$, and $\lim_{t\to\infty} |tX| = \text{cardinality}(X)$.

• When t is small, tX looks 0-dimensional.

- When t is small, tX looks 0-dimensional.
- When t is moderate, tX looks nearly 1-dimensional.

- When t is small, tX looks 0-dimensional.
- When t is moderate, tX looks nearly 1-dimensional.
- When t is large, tX looks 0-dimensional again.

- When t is small, tX looks 0-dimensional.
- When t is moderate, tX looks nearly 1-dimensional.
- When t is large, tX looks 0-dimensional again.

The magnitude function sees all this! Here's how...

Dimension at different scales (Willerton)

For a function $f:(0,\infty) \to \mathbb{R}$, the instantaneous growth of f at $t \in (0,\infty)$ is

$$growth(f, t) = \frac{d(\log f(t))}{d(\log t)} = slope of the log-log graph of f at t.$$

E.g.: If $f(t) = Ct^n$ then growth(f, t) = n for all t.

For a space X, the magnitude dimension of X at scale t is

$$\dim(X, t) = \operatorname{growth}(|tX|, t).$$

The magnitude of a compact metric space

A metric space M is positive definite if for every finite $Y \subseteq M$, the matrix Z_Y is positive definite.

E.g.: \mathbb{R}^n with Euclidean or taxicab metric; sphere with geodesic metric; hyperbolic space; any ultrametric space.

Theorem (Mark Meckes)

All sensible ways of extending the definition of magnitude from finite metric spaces to compact positive definite spaces are equivalent.

For a compact positive definite space X,

```
|X| = \sup\{|Y| : \text{ finite } Y \subseteq X\}.
```

Example: the magnitude of a rectangle

The straight line [0, L] of length L has magnitude $1 + \frac{1}{2}L$. So [0, L] has magnitude function $t \mapsto |t[0, L]| = |[0, tL]| = 1 + \frac{1}{2}L \cdot t^{1}$

For metric spaces A and B, let $A \times_1 B$ be their ' ℓ^1 product', given by

$$d_{A imes_1B}ig((a,b),(a',b')ig)=d_A(a,a')+d_B(b,b').$$

Lemma $|A \times_1 B| = |A| |B|.$

It follows that the rectangle $[0, L_1] \times_1 [0, L_2]$ has magnitude function

So, the magnitude function of a rectangle knows its Euler characteristic, perimeter, area and dimension!

Magnitude encodes geometric information

Theorem (Juan-Antonio Barceló & Tony Carbery) For compact $X \subseteq \mathbb{R}^n$ (with Euclidean metric),

$$\operatorname{vol}_n(X) = C_n \lim_{t \to \infty} \frac{|tX|}{t^n}$$

where C_n is a known constant.

Theorem (Heiko Gimperlein & Magnus Goffeng) Assume *n* is odd. For 'nice' compact $X \subseteq \mathbb{R}^n$ (meaning that ∂X is smooth and Cl(Int(X)) = X),

$$|tX| = c_n \operatorname{vol}_n(X)t^n + c_{n-1} \operatorname{vol}_{n-1}(\partial X)t^{n-1} + O(t^{n-2})$$

as $t \to \infty$, where c_n and c_{n-1} are known constants.

The magnitude function knows the volume and the surface area.

Magnitude encodes geometric information

Magnitude satisfies an asymptotic inclusion-exclusion principle:

Theorem (Gimperlein & Goffeng) Assume *n* is odd. Let $X, Y \subseteq \mathbb{R}^n$ with X, Y and $X \cap Y$ nice. Then

$$|t(X\cup Y)|+|t(X\cap Y)|-|tX|-|tY|
ightarrow 0$$

as $t \to \infty$.

It also encodes Minkowski dimension, one of the most important notions of fractional dimension:

Theorem (Meckes)

The Minkowski dimension of a compact subset of \mathbb{R}^n is equal to the asymptotic growth of its magnitude function.

The magnitude of the Euclidean ball

Not all results on magnitude are asymptotic!

Let B^n denote the unit ball in \mathbb{R}^n .

Theorem (Barceló & Carbery; Willerton) Assume *n* is odd. Then $|tB^n|$ is a known rational function of *t* over \mathbb{Z} .

Examples

•
$$|tB^{1}| = |[-t, t]| = 1 + t$$

• $|tB^{3}| = 1 + 2t + t^{2} + \frac{1}{3!}t^{3}$
• $|tB^{5}| = \frac{24 + 72t^{2} + 35t^{3} + 9t^{4} + t^{5}}{8(3 + t)} + \frac{t^{5}}{5!}$

3. Magnitude homology, generally

Two perspectives on Euler characteristic

So far: Euler characteristic has been treated as an analogue of cardinality. Alternatively: Given any homology theory H_* of any kind of object X, can define

$$\chi(X) = \sum_{n=0}^{\infty} (-1)^n \operatorname{rank} H_n(X).$$

Note:

- $\chi(X)$ is a number
- $H_*(X)$ is an *algebraic structure*, and functorial in X.

We say that H_* is a categorification of χ .

So, homology categorifies Euler characteristic.

The homology of an ordinary category

Any ordinary category **X** gives rise to a chain complex $C_*(\mathbf{X})$:

$$C_n(\mathbf{X}) = \coprod_{x_0, \dots, x_n \in \mathbf{X}} \mathbb{Z} \cdot (\mathbf{X}(x_0, x_1) \times \dots \times \mathbf{X}(x_{n-1}, x_n))$$

where $\mathbb{Z} \cdot -$: **Set** \rightarrow **Ab** is the free abelian group functor.

The homology $H_*(X)$ of X is the homology of $C_*(X)$.

Theorem (classical) $H_*(\mathbf{X}) = H_*(B\mathbf{X})$.

Since

$$\chi(B\mathbf{X}) = \sum (-1)^n \operatorname{rank} H_n(B\mathbf{X}),$$

it follows that

$$|\mathbf{X}| = \sum (-1)^n \operatorname{rank} H_n(\mathbf{X})$$

-for categories, homology categorifies magnitude.

The magnitude homology of an enriched category (Michael Shulman)

Let (\mathscr{V}, \otimes) be a monoidal category whose unit object is terminal. (E.g. **Set** or $[0, \infty]$.)

Let $A \colon \mathscr{V} \to \mathbf{Ab}$ be a functor.

Any \mathscr{V} -enriched category **X** gives rise to a chain complex $C_*(\mathbf{X}, A)$:

$$C_n(\mathbf{X}, A) = \prod_{x_0, \dots, x_n \in \mathbf{X}} A(\mathbf{X}(x_0, x_1) \otimes \dots \otimes \mathbf{X}(x_{n-1}, x_n)).$$

Definition: The magnitude homology $H_*(\mathbf{X}, A)$ of \mathbf{X} with coefficients in A is the homology of $C_*(\mathbf{X}, A)$.

Example: When $\mathscr{V} = \mathbf{Set}$ and $A = \mathbb{Z} \cdot -: \mathbf{Set} \to \mathbf{Ab}$, this is the ordinary homology of a category.

The general definition also gives a homology theory of metric spaces...

4. The magnitude homology of a metric space

Special case of graphs: Hepworth and Willerton (2015) General case of enriched categories: Shulman and Leinster (2017)

The shape of the definition

For this talk, a persistence module is a functor

$$A\colon ([0,\infty],\geq) \to \mathbf{Ab}.$$

That is: it's a family $(A(\ell))_{\ell \in [0,\infty]}$ of abelian groups, together with a homomorphism $\alpha_{\ell,k} \colon A(\ell) \to A(k)$ whenever $\ell \ge k$, such that $\alpha_{\ell,k} \circ \alpha_{m,\ell} = \alpha_{m,k}$ and $\alpha_{\ell,\ell} = id$.

The general definition of magnitude homology specializes to give a definition of

$$H_*(X,A),$$

the magnitude homology of a metric space X with coefficients in a persistence module A.

Each $H_n(X, A)$ is an abelian group.

Let X be a metric space and let A be a persistence module. There is a chain complex $C_*(X, A)$ with

$$C_n(X,A) = \coprod_{x_0,\ldots,x_n \in X} A(d(x_0,x_1)+\cdots+d(x_{n-1},x_n)).$$

The differential is

$$\partial = \sum_{i=0}^{n} (-1)^i \partial_i \colon C_n(X,A) \to C_{n-1}(X,A)$$

where (e.g.) in the case n = 2, the maps $\partial_0, \partial_1, \partial_2$ are given as follows:

the inequality $d(x_0, x_1) + d(x_1, x_2) \ge d(x_1, x_2)$ induces a homomorphism $\partial_0 \colon A(d(x_0, x_1) + d(x_1, x_2)) \to A(d(x_1, x_2)).$

Let X be a metric space and let A be a persistence module. There is a chain complex $C_*(X, A)$ with

$$C_n(X,A) = \coprod_{x_0,\ldots,x_n \in X} A(d(x_0,x_1)+\cdots+d(x_{n-1},x_n)).$$

The differential is

$$\partial = \sum_{i=0}^{n} (-1)^i \partial_i \colon C_n(X,A) \to C_{n-1}(X,A)$$

where (e.g.) in the case n = 2, the maps $\partial_0, \partial_1, \partial_2$ are given as follows:

the inequality $d(x_0, x_1) + d(x_1, x_2) \ge d(x_0, x_2)$ induces a homomorphism $\partial_1 : A(d(x_0, x_1) + d(x_1, x_2)) \rightarrow A(d(x_0, x_2)).$

Let X be a metric space and let A be a persistence module. There is a chain complex $C_*(X, A)$ with

$$C_n(X,A) = \coprod_{x_0,\ldots,x_n \in X} A(d(x_0,x_1)+\cdots+d(x_{n-1},x_n)).$$

The differential is

$$\partial = \sum_{i=0}^{n} (-1)^i \partial_i \colon C_n(X,A) \to C_{n-1}(X,A)$$

where (e.g.) in the case n = 2, the maps $\partial_0, \partial_1, \partial_2$ are given as follows:

the inequality $d(x_0, x_1) + d(x_1, x_2) \ge d(x_0, x_1)$ induces a homomorphism $\partial_2 \colon A(d(x_0, x_1) + d(x_1, x_2)) \to A(d(x_0, x_1)).$

Let X be a metric space and let A be a persistence module. There is a chain complex $C_*(X, A)$ with

$$C_n(X,A) = \coprod_{x_0,\ldots,x_n \in X} A(d(x_0,x_1)+\cdots+d(x_{n-1},x_n)).$$

The differential is

$$\partial = \sum_{i=0}^{n} (-1)^i \partial_i \colon C_n(X,A) \to C_{n-1}(X,A)$$

where (e.g.) in the case n = 2, the maps $\partial_0, \partial_1, \partial_2$ are given as follows:

the inequality $d(x_0, x_1) + d(x_1, x_2) \ge d(x_0, x_1)$ induces a homomorphism $\partial_2 \colon A(d(x_0, x_1) + d(x_1, x_2)) \to A(d(x_0, x_1)).$

The magnitude homology $H_*(X, A)$ is the homology of $C_*(X, A)$.

Magnitude homology with coefficients in a point module For each $\ell \in [0, \infty]$, define a persistence module A_{ℓ} by

$$A_\ell(k) = egin{cases} \mathbb{Z} & ext{if } k = \ell \ 0 & ext{otherwise.} \end{cases}$$

Then

$$C_n(X,A_\ell)=\mathbb{Z}\cdot\big\{(x_0,\ldots,x_n):d(x_0,x_1)+\cdots+d(x_{n-1},x_n)=\ell\big\}.$$

Equivalently, we can replace $C_*(X, A)$ by a normalized version:

$$C_n^{\sharp}(X,A_{\ell}) = \mathbb{Z} \cdot \{(x_0,\ldots,x_n) : d(x_0,x_1) + \cdots + d(x_{n-1},x_n) = \ell, x_0 \neq \cdots \neq x_n\}$$

The differential is $\partial = \sum_{i=1}^{n-1} (-1)^i \partial_i$, where

$$\partial_i(x_0, \dots, x_n) = \begin{cases} (x_0, \dots, x_{i-1}, x_{i+1}, \dots, x_n) & \text{if } x_i \text{ is between } x_{i-1} \text{ and } x_{i+1} \\ 0 & \text{otherwise.} \end{cases}$$

'Between' means that $d(x_{i-1}, x_i) + d(x_i, x_{i+1}) = d(x_{i-1}, x_{i+1})$.

H_1 detects convexity

A metric space X is Menger convex if for all distinct $x, y \in X$, there exists $z \in X$ between x and y with $x \neq z \neq y$.

Theorem Let X be a metric space. Then

X is Menger convex $\iff H_1(X, A_\ell) = 0$ for all $\ell > 0$.

Corollary Let X be a closed subset of \mathbb{R}^n . Then X is convex $\iff H_1(X, A_\ell) = 0$ for all $\ell > 0$.

And, for instance, if

 $X = \bullet \circ \circ \subset \mathbb{R}$

with all gaps of length $< \varepsilon$, then $H_1(X, A_\ell) = 0$ for all $\ell \ge \varepsilon$.

Back to Euler characteristic

Let X be a metric space. For any persistence module A, put

$$\chi(X,A) = \sum_{n=0}^{\infty} (-1)^n \operatorname{rank} H_n(X,A)$$

(if defined). In particular, we have an Euler characteristic

$$\chi(X,A_\ell)=\sum_{n=0}^\infty (-1)^n \operatorname{rank} H_n(X,A_\ell)$$

for each $\ell \in [0, \infty)$. Not just one Euler characteristic: many!

Make these Euler characteristics into the coefficients of a formal expression:

$$\chi(X) = \sum_{\ell \in [0,\infty)} \chi(X, A_\ell) q^\ell.$$

Claim: $\chi(X)$ is formally equal to |tX|, where $q = e^{-t}$. So I'm claiming:

Magnitude homology categorifies magnitude

Magnitude homology categorifies magnitude: 'proof'

Open questions

- 1. What information does the magnitude homology $H_*(X, A)$ capture when we use other persistence modules A as our coefficients?
- 2. What is the relationship between magnitude homology and persistent homology?
- 3. Which theorems about magnitude of metric spaces can be categorified to give theorems about magnitude homology?

Compare:

- Many theorems about *topological* Euler characteristic are shadows of theorems about homology.
- ▶ For the special case of graphs, Hepworth and Willerton already proved a Künneth theorem (categorifying the formula for $|X \times Y|$) and a Mayer–Vietoris theorem (categorifying formula for $|X \cup Y|$).

References

- General references on magnitude: Leinster, The magnitude of metric spaces
- Leinster and Meckes, The magnitude of a metric space: from category theory to geometric measure theory
- **Magnitude of finite metric spaces (in direction of data):** Willerton, Spread: a measure of the size of metric spaces
- Willerton, Instantaneous dimension of finite metric spaces via magnitude and spread
- Analytic aspects of magnitude: Meckes, Positive definite metric spaces
- Meckes, Magnitude, diversity, capacities, and dimensions of metric spaces
- Barceló and Carbery, On the magnitudes of compact sets in Euclidean spaces
- Willerton, The magnitude of odd balls via Hankel determinants of reverse Bessel polynomials
- Gimperlein and Goffeng, On the magnitude function of domains in Euclidean space
- $\label{eq:magnitude homology: \bullet Hepworth and Willerton, Categorifying the magnitude of a graph$
- Shulman & Leinster, Magnitude homology of enriched categories & metric spaces