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1. Magnitude, generally



Size
For many types of mathematical object, there is a canonical notion of size.

• Sets have cardinality. It satisfies

|X ∪ Y | = |X |+ |Y | − |X ∩ Y |
|X × Y | = |X | × |Y | .

• Subsets of Rn have volume. It satisfies

vol(X ∪ Y ) = vol(X ) + vol(Y )− vol(X ∩ Y )

vol(X × Y ) = vol(X )× vol(Y ).

• Topological spaces have Euler characteristic. It satisfies

χ(X ∪ Y ) = χ(X ) + χ(Y )− χ(X ∩ Y ) (under hypotheses)

χ(X × Y ) = χ(X )× χ(Y ).

Challenge Find a general definition of ‘size’, including these and other
examples.

One answer The magnitude of an enriched category.



The magnitude of an enriched category
Let V = (V ,⊗, I ) be a monoidal category equipped with a ‘notion of the
size of its objects’.

Formally, suppose we have a function

| · | : ob V → k

taking values in some semiring k , such that

U ∼= V ⇒ |U| = |V | , |U ⊗ V | = |U| |V | , |I | = 1.

Given a V -enriched category X with finitely many objects, define a matrix

ZX =
(
|X(x , y)|

)
x ,y∈X

.

If ZX is invertible, the magnitude of X is

|X| =
∑
x ,y∈X

Z−1X (x , y) ∈ k .

It can be understood as a notion of the size of X.



The magnitude of an ordinary category

Take V = FinSet with usual cardinality | · |.
This gives a notion of the magnitude |X| ∈ Q of a
finite category X.

‘Recall’: X gives rise to a topological space BX
(its classifying space), built as follows:

• for each object of X, put a point • into BX;

• for each map x → y in X, put an interval •——• into BX;

• for each commutative triangle in X, put a 2-simplex N into BX;

• . . .

Theorem Let X be a finite category. Then

|X| = χ(BX),

under hypotheses ensuring that χ(BX) is well-defined.



The magnitude of a metric space

Let V be the category whose objects are the elements of [0,∞], with one
map u → v when u ≥ v , and with no maps u → v otherwise.

It is a monoidal category under addition.

Any metric space gives a V -enriched category X:

• the objects of X are the points;

• X(x , y) = d(x , y) ∈ [0,∞];

• composition in X is the triangle inequality.

We have the ‘size function’

| · | : [0,∞] → R,
u 7→ e−u,

which has the required properties that e−(u+v) = e−ue−v , etc.

So we get a new invariant: the ‘magnitude of a metric space’.



2. The magnitude of a
metric space

— done explicitly —



The magnitude of a finite metric space

Let X be a finite metric space.

Write ZX for the X × X matrix with entries

ZX (x , y) = e−d(x ,y)

(x , y ∈ X ).

If ZX is invertible (which it is if X ⊆ Rn), the magnitude of X is

|X | =
∑

x ,y∈X
Z−1X (x , y) ∈ R

—the sum of all the entries of the inverse matrix of ZX .



First examples

• |∅| = 0.

• |•| = 1.

•
∣∣•← `→•

∣∣ = sum of entries of

(
e−0 e−`

e−` e−0

)−1
=

2

1 + e−`

0

1

2

`

• If d(x , y) =∞ for all x 6= y then |X | = cardinality(X ).

Slogan: Magnitude is the ‘effective number of points’.



Example: a 3-point space (Simon Willerton)
Take the 3-point space

X =

• When t is small, X looks like a 1-point space.

• When t is moderate, X looks like a 2-point space.
• When t is large, X looks like a 3-point space.

•
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Example: a 3-point space (Simon Willerton)
Take the 3-point space

X =

• When t is small, X looks like a 1-point space.
• When t is moderate, X looks like a 2-point space.
• When t is large, X looks like a 3-point space.

Indeed, the magnitude of X as a function of t is:



Magnitude functions

Magnitude assigns to each metric space not just a number, but a function.

For t > 0, write tX for X scaled up by a factor of t.

The magnitude function of a metric space X is the partially-defined function

(0,∞) → R
t 7→ |tX | .

E.g.: the magnitude function of X = (•← `→•) is

0

1

2
|tX |

t

2/(1 + e−`t)

A magnitude function has only finitely many singularities (none if X ⊆ Rn).

It is increasing for t � 0, and lim
t→∞

|tX | = cardinality(X ).



Dimension at different scales

Let X = , with subspace metric from R2.

• When t is small, tX looks 0-dimensional.

• When t is moderate, tX looks nearly 1-dimensional.

• When t is large, tX looks 0-dimensional again.

•
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Dimension at different scales

Let X = , with subspace metric from R2.

• When t is small, tX looks 0-dimensional.

• When t is moderate, tX looks nearly 1-dimensional.

• When t is large, tX looks 0-dimensional again.

The magnitude function sees all this!

Here’s how. . .



Dimension at different scales (Willerton)
For a function f : (0,∞)→ R, the instantaneous growth of f at t ∈ (0,∞) is

growth(f , t) =
d(log f (t))

d(log t)
= slope of the log-log graph of f at t.

E.g.: If f (t) = Ctn then growth(f , t) = n for all t.

For a space X , the magnitude dimension of X at scale t is

dim(X , t) = growth(|tX | , t).

E.g.: Let X = .

0 10 20 30 40 50
0

0.5

1.0

t

dim(X , t)



The magnitude of a compact metric space

A metric space M is positive definite if for every finite Y ⊆ M, the matrix
ZY is positive definite.

E.g.: Rn with Euclidean or taxicab metric; sphere with geodesic metric;
hyperbolic space; any ultrametric space.

Theorem (Mark Meckes)
All sensible ways of extending the definition of magnitude
from finite metric spaces to compact positive definite spaces
are equivalent.

For a compact positive definite space X ,

|X | = sup{|Y | : finite Y ⊆ X}.



Example: the magnitude of a rectangle

The straight line [0, L] of length L has magnitude 1 + 1
2L.

So [0, L] has magnitude function

t 7→ |t[0, L]| = |[0, tL]| = 1
H

Euler characteristic

+ 1
2L
H

length

· t1J
dimension

For metric spaces A and B, let A×1 B be their ‘`1 product’, given by

dA×1B

(
(a, b), (a′, b′)

)
= dA(a, a′) + dB(b, b′).

Lemma |A×1 B| = |A| |B|.
It follows that the rectangle [0, L1]×1 [0, L2] has magnitude function

t 7→ 1
N

Euler characteristic

+ 1
2(L1 +

N

semiperimeter

L2)t + 1
4L1

N
area

L2t
2J

dimension

So, the magnitude function of a rectangle knows its Euler characteristic,
perimeter, area and dimension!



Magnitude encodes geometric information

Theorem (Juan-Antonio Barceló & Tony Carbery)
For compact X ⊆ Rn (with Euclidean metric),

voln(X ) = Cn lim
t→∞

|tX |
tn

where Cn is a known constant.

Theorem (Heiko Gimperlein & Magnus Goffeng)
Assume n is odd. For ‘nice’ compact X ⊆ Rn

(meaning that ∂X is smooth and Cl(Int(X )) = X ),

|tX | = cn voln(X )tn + cn−1 voln−1(∂X )tn−1 + O(tn−2)

as t →∞, where cn and cn−1 are known constants.

The magnitude function knows the volume and the
surface area.



Magnitude encodes geometric information

Magnitude satisfies an asymptotic inclusion-exclusion principle:

Theorem (Gimperlein & Goffeng)
Assume n is odd. Let X ,Y ⊆ Rn with X , Y and X ∩ Y nice. Then

|t(X ∪ Y )|+ |t(X ∩ Y )| − |tX | − |tY | → 0

as t →∞.

It also encodes Minkowski dimension, one of the most important notions of
fractional dimension:

Theorem (Meckes)
The Minkowski dimension of a compact subset of Rn is equal to the
asymptotic growth of its magnitude function.



The magnitude of the Euclidean ball

Not all results on magnitude are asymptotic!

Let Bn denote the unit ball in Rn.

Theorem (Barceló & Carbery; Willerton)
Assume n is odd. Then |tBn| is a known rational function of t over Z.

Examples

•
∣∣tB1

∣∣ = |[−t, t]| = 1 + t

•
∣∣tB3

∣∣ = 1 + 2t + t2 + 1
3! t

3

•
∣∣tB5

∣∣ =
24 + 72t2 + 35t3 + 9t4 + t5

8(3 + t)
+

t5

5!
.



3. Magnitude homology, generally



Two perspectives on Euler characteristic

So far: Euler characteristic has been treated as an analogue of cardinality.

Alternatively: Given any homology theory H∗ of any kind of object X ,
can define

χ(X ) =
∞∑
n=0

(−1)n rankHn(X ).

Note:

• χ(X ) is a number

• H∗(X ) is an algebraic structure, and functorial in X .

We say that H∗ is a categorification of χ.

So, homology categorifies Euler characteristic.



The homology of an ordinary category

Any ordinary category X gives rise to a chain complex C∗(X):

Cn(X) =
∐

x0,...,xn∈X

Z ·
(
X(x0, x1)× · · · × X(xn−1, xn)

)
where Z · − : Set→ Ab is the free abelian group functor.

The homology H∗(X) of X is the homology of C∗(X).

Theorem (classical) H∗(X) = H∗(BX).

Since
χ(BX) =

∑
(−1)n rankHn(BX),

it follows that
|X| =

∑
(−1)n rankHn(X)

—for categories, homology categorifies magnitude.



The magnitude homology of an enriched category
(Michael Shulman)

Let (V ,⊗) be a monoidal category whose unit object is terminal.
(E.g. Set or [0,∞].)

Let A : V → Ab be a functor.

Any V -enriched category X gives rise to a chain complex C∗(X,A):

Cn(X,A) =
∐

x0,...,xn∈X

A
(
X(x0, x1)⊗ · · · ⊗ X(xn−1, xn)

)
.

Definition: The magnitude homology H∗(X,A) of X with coefficients in A is
the homology of C∗(X,A).

Example: When V = Set and A = Z · − : Set→ Ab, this is the ordinary
homology of a category.

The general definition also gives a homology theory of metric spaces. . .



4. The magnitude homology
of a metric space

Special case of graphs: Hepworth and Willerton (2015)

General case of enriched categories: Shulman and Leinster (2017)



The shape of the definition

For this talk, a persistence module is a functor

A : ([0,∞],≥)→ Ab.

That is: it’s a family (A(`))`∈[0,∞] of abelian groups, together with a
homomorphism α`,k : A(`)→ A(k) whenever ` ≥ k, such that
α`,k ◦ αm,` = αm,k and α`,` = id.

The general definition of magnitude homology specializes to give a definition
of

H∗(X ,A),

the magnitude homology of a metric space X with coefficients in a
persistence module A.

Each Hn(X ,A) is an abelian group.



The definition, explicitly

Let X be a metric space and let A be a persistence module.

There is a chain complex C∗(X ,A) with

Cn(X ,A) =
∐

x0,...,xn∈X
A
(
d(x0, x1) + · · ·+ d(xn−1, xn)

)
.

The differential is

∂ =
n∑

i=0

(−1)i∂i : Cn(X ,A)→ Cn−1(X ,A)

where (e.g.) in the case n = 2, the maps ∂0, ∂1, ∂2 are given as follows:

the inequality d(x0, x1) + d(x1, x2) ≥ d(x1, x2) induces

a homomorphism ∂0 : A
(
d(x0, x1) + d(x1, x2)

)
→ A

(
d(x1, x2)

)
.

The magnitude homology H∗(X ,A) is the homology of C∗(X ,A).
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x0,...,xn∈X
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.
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The definition, explicitly

Let X be a metric space and let A be a persistence module.

There is a chain complex C∗(X ,A) with

Cn(X ,A) =
∐

x0,...,xn∈X
A
(
d(x0, x1) + · · ·+ d(xn−1, xn)

)
.

The differential is

∂ =
n∑

i=0

(−1)i∂i : Cn(X ,A)→ Cn−1(X ,A)

where (e.g.) in the case n = 2, the maps ∂0, ∂1, ∂2 are given as follows:

the inequality d(x0, x1) + d(x1, x2) ≥ d(x0, x1) induces

a homomorphism ∂2 : A
(
d(x0, x1) + d(x1, x2)

)
→ A

(
d(x0, x1)

)
.

The magnitude homology H∗(X ,A) is the homology of C∗(X ,A).



The definition, explicitly

Let X be a metric space and let A be a persistence module.

There is a chain complex C∗(X ,A) with

Cn(X ,A) =
∐

x0,...,xn∈X
A
(
d(x0, x1) + · · ·+ d(xn−1, xn)

)
.

The differential is

∂ =
n∑

i=0

(−1)i∂i : Cn(X ,A)→ Cn−1(X ,A)

where (e.g.) in the case n = 2, the maps ∂0, ∂1, ∂2 are given as follows:

the inequality d(x0, x1) + d(x1, x2) ≥ d(x0, x1) induces

a homomorphism ∂2 : A
(
d(x0, x1) + d(x1, x2)

)
→ A

(
d(x0, x1)

)
.

The magnitude homology H∗(X ,A) is the homology of C∗(X ,A).



Magnitude homology with coefficients in a point module
For each ` ∈ [0,∞], define a persistence module A` by

A`(k) =

{
Z if k = `

0 otherwise.

Then

Cn(X ,A`) = Z ·
{

(x0, . . . , xn) : d(x0, x1) + · · ·+ d(xn−1, xn) = `
}
.

Equivalently, we can replace C∗(X ,A) by a normalized version:

C ]
n(X ,A`) = Z·

{
(x0, . . . , xn) : d(x0, x1)+· · ·+d(xn−1, xn) = `, x0 6= · · · 6= xn

}
.

The differential is ∂ =
∑n−1

i=1 (−1)i∂i , where

∂i (x0, . . . , xn) =

{
(x0, . . . , xi−1, xi+1, . . . , xn) if xi is between xi−1 and xi+1

0 otherwise.

‘Between’ means that d(xi−1, xi ) + d(xi , xi+1) = d(xi−1, xi+1).



H1 detects convexity
A metric space X is Menger convex if for all distinct x , y ∈ X , there exists
z ∈ X between x and y with x 6= z 6= y .

Theorem Let X be a metric space. Then

X is Menger convex ⇐⇒ H1(X ,A`) = 0 for all ` > 0.

Corollary Let X be a closed subset of Rn. Then

X is convex ⇐⇒ H1(X ,A`) = 0 for all ` > 0.

And, for instance, if

X = • • • • • • • • • • ⊆ R

with all gaps of length < ε, then H1(X ,A`) = 0 for all ` ≥ ε.



Back to Euler characteristic
Let X be a metric space. For any persistence module A, put

χ(X ,A) =
∞∑
n=0

(−1)n rankHn(X ,A)

(if defined). In particular, we have an Euler characteristic

χ(X ,A`) =
∞∑
n=0

(−1)n rankHn(X ,A`)

for each ` ∈ [0,∞). Not just one Euler characteristic: many!

Make these Euler characteristics into the coefficients of a formal expression:

χ(X ) =
∑

`∈[0,∞)

χ(X ,A`) q
`.

Claim: χ(X ) is formally equal to |tX |, where q = e−t . So I’m claiming:

Magnitude homology categorifies magnitude



Magnitude homology categorifies magnitude: ‘proof’

χ(X ) =
∑

`∈[0,∞)

∑
n∈N

(−1)n rankHn(X ,A`) q
` =

∑
`,n

(−1)n rankC ]
n(X ,A`) q

`

=
∑
n,`

(−1)n
∣∣{(x0, . . . , xn) : d(x0, x1) + · · ·+ d(xn−1, xn) = `, x0 6= · · · 6= xn

}∣∣q`
=
∑
n

(−1)n
∑

x0,...,xn: x0 6=···6=xn

qd(x0,x1)+···+d(xn−1,xn)

=
∑
n

(−1)n
∑

x0,...,xn∈X

(
qd(x0,x1) − δx0,x1

)
· · ·
(
qd(xn−1,xn) − δxn−1,xn

)
=
∑
n

(−1)n
∑

x0,...,xn∈X

(ZtX − I )x0,x1 · · · (ZtX − I )xn−1,xn

=
∑
n

(−1)n sum
(
(ZtX − I )n

)
where sum means the sum of all entries

= sum
(∑
n∈N

(I − ZtX )n
)

= sum
((

I − (I − ZtX )
)−1)

= sum
(
Z−1tX

)
= |tX | . . . formally, at least!



Open questions

1. What information does the magnitude homology H∗(X ,A) capture
when we use other persistence modules A as our coefficients?

2. What is the relationship between magnitude homology and persistent
homology?

3. Which theorems about magnitude of metric spaces can be categorified
to give theorems about magnitude homology?

Compare:

I Many theorems about topological Euler characteristic are shadows
of theorems about homology.

I For the special case of graphs, Hepworth and Willerton already
proved a Künneth theorem (categorifying the formula for |X × Y |)
and a Mayer–Vietoris theorem (categorifying formula for |X ∪ Y |).
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