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Background



Cardinality-like invariants

For many mathematical objects, there is a canonical notion of size.

Sets have cardinality
Vector spaces have dimension
Topological spaces have Euler characteristic
Posets have Euler characteristic
Probability spaces have entropy

Purpose of talk: introduce a new canonical notion of size. . .

Metric spaces have magnitude

. . . and provide evidence that it subsumes many invariants of integral
geometry.
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Where does magnitude come from?

There is a general concept of enriched category. It includes:

• sets

• posets

• (ordinary) categories

• associative algebras

• metric spaces

• . . .

There is a general definition of the magnitude of a (suitably finite) enriched
category. It includes:

• cardinality of finite sets

• Euler characteristic of posets

• . . .

and

• magnitude of metric spaces.



Where does magnitude come from?

There is a general concept of enriched category.

It includes:

• sets

• posets

• (ordinary) categories

• associative algebras

• metric spaces

• . . .

There is a general definition of the magnitude of a (suitably finite) enriched
category. It includes:

• cardinality of finite sets

• Euler characteristic of posets

• . . .

and

• magnitude of metric spaces.



Where does magnitude come from?

There is a general concept of enriched category. It includes:

• sets

• posets

• (ordinary) categories

• associative algebras

• metric spaces

• . . .

There is a general definition of the magnitude of a (suitably finite) enriched
category. It includes:

• cardinality of finite sets

• Euler characteristic of posets

• . . .

and

• magnitude of metric spaces.



Where does magnitude come from?

There is a general concept of enriched category. It includes:

• sets

• posets

• (ordinary) categories

• associative algebras

• metric spaces

• . . .

There is a general definition of the magnitude of a (suitably finite) enriched
category. It includes:

• cardinality of finite sets

• Euler characteristic of posets

• . . .

and

• magnitude of metric spaces.



Where does magnitude come from?

There is a general concept of enriched category. It includes:

• sets

• posets

• (ordinary) categories

• associative algebras

• metric spaces

• . . .

There is a general definition of the magnitude of a (suitably finite) enriched
category. It includes:

• cardinality of finite sets

• Euler characteristic of posets

• . . .

and

• magnitude of metric spaces.



Where does magnitude come from?

There is a general concept of enriched category. It includes:

• sets

• posets

• (ordinary) categories

• associative algebras

• metric spaces

• . . .

There is a general definition of the magnitude of a (suitably finite) enriched
category. It includes:

• cardinality of finite sets

• Euler characteristic of posets

• . . .

and

• magnitude of metric spaces.



Where does magnitude come from?

There is a general concept of enriched category. It includes:

• sets

• posets

• (ordinary) categories

• associative algebras

• metric spaces

• . . .

There is a general definition of the magnitude of a (suitably finite) enriched
category. It includes:

• cardinality of finite sets

• Euler characteristic of posets

• . . .

and

• magnitude of metric spaces.



Where does magnitude come from?

There is a general concept of enriched category. It includes:

• sets

• posets

• (ordinary) categories

• associative algebras

• metric spaces

• . . .

There is a general definition of the magnitude of a (suitably finite) enriched
category. It includes:

• cardinality of finite sets

• Euler characteristic of posets

• . . .

and

• magnitude of metric spaces.



Where does magnitude come from?

There is a general concept of enriched category. It includes:

• sets

• posets

• (ordinary) categories

• associative algebras

• metric spaces

• . . .

There is a general definition of the magnitude of a (suitably finite) enriched
category.

It includes:

• cardinality of finite sets

• Euler characteristic of posets

• . . .

and

• magnitude of metric spaces.



Where does magnitude come from?

There is a general concept of enriched category. It includes:

• sets

• posets

• (ordinary) categories

• associative algebras

• metric spaces

• . . .

There is a general definition of the magnitude of a (suitably finite) enriched
category. It includes:

• cardinality of finite sets

• Euler characteristic of posets

• . . .

and

• magnitude of metric spaces.



Where does magnitude come from?

There is a general concept of enriched category. It includes:

• sets

• posets

• (ordinary) categories

• associative algebras

• metric spaces

• . . .

There is a general definition of the magnitude of a (suitably finite) enriched
category. It includes:

• cardinality of finite sets

• Euler characteristic of posets

• . . .

and

• magnitude of metric spaces.



Where does magnitude come from?

There is a general concept of enriched category. It includes:

• sets

• posets

• (ordinary) categories

• associative algebras

• metric spaces

• . . .

There is a general definition of the magnitude of a (suitably finite) enriched
category. It includes:

• cardinality of finite sets

• Euler characteristic of posets

• . . .

and

• magnitude of metric spaces.



Where does magnitude come from?

There is a general concept of enriched category. It includes:

• sets

• posets

• (ordinary) categories

• associative algebras

• metric spaces

• . . .

There is a general definition of the magnitude of a (suitably finite) enriched
category. It includes:

• cardinality of finite sets

• Euler characteristic of posets

• . . .

and

• magnitude of metric spaces.



Where does magnitude come from?

There is a general concept of enriched category. It includes:

• sets

• posets

• (ordinary) categories

• associative algebras

• metric spaces

• . . .

There is a general definition of the magnitude of a (suitably finite) enriched
category. It includes:

• cardinality of finite sets

• Euler characteristic of posets

• . . .

and

• magnitude of metric spaces.



Where does magnitude come from?

There is a general concept of enriched category. It includes:

• sets

• posets

• (ordinary) categories

• associative algebras

• metric spaces

• . . .

There is a general definition of the magnitude of a (suitably finite) enriched
category. It includes:

• cardinality of finite sets

• Euler characteristic of posets

• . . .

and

• magnitude of metric spaces.



PLAN

Today (my talk)

1. Magnitude of finite metric spaces

2. Magnitude of infinite metric spaces

Tomorrow (Simon Willerton)

Example computations

Asymptotic behaviour of magnitude

Magnitude of manifolds



PLAN

Today (my talk)

1. Magnitude of finite metric spaces

2. Magnitude of infinite metric spaces

Tomorrow (Simon Willerton)

Example computations

Asymptotic behaviour of magnitude

Magnitude of manifolds



PLAN

Today (my talk)

1. Magnitude of finite metric spaces

2. Magnitude of infinite metric spaces

Tomorrow (Simon Willerton)

Example computations

Asymptotic behaviour of magnitude

Magnitude of manifolds



PLAN

Today (my talk)

1. Magnitude of finite metric spaces

2. Magnitude of infinite metric spaces

Tomorrow (Simon Willerton)

Example computations

Asymptotic behaviour of magnitude

Magnitude of manifolds



PLAN

Today (my talk)

1. Magnitude of finite metric spaces

2. Magnitude of infinite metric spaces

Tomorrow (Simon Willerton)

Example computations

Asymptotic behaviour of magnitude

Magnitude of manifolds



PLAN

Today (my talk)

1. Magnitude of finite metric spaces

2. Magnitude of infinite metric spaces

Tomorrow (Simon Willerton)

Example computations

Asymptotic behaviour of magnitude

Magnitude of manifolds



PLAN

Today (my talk)

1. Magnitude of finite metric spaces

2. Magnitude of infinite metric spaces

Tomorrow (Simon Willerton)

Example computations

Asymptotic behaviour of magnitude

Magnitude of manifolds



PLAN

Today (my talk)

1. Magnitude of finite metric spaces

2. Magnitude of infinite metric spaces

Tomorrow (Simon Willerton)

Example computations

Asymptotic behaviour of magnitude

Magnitude of manifolds



1. Magnitude of finite metric spaces



The definition of magnitude

Let A = {a1, . . . , an} be a finite metric space.

Write ZA for the n × n matrix with

(ZA)ij = e−d(ai ,aj ) ∈ [0, 1].

A weighting on A is a column vector w such that

ZAw =

1
...
1

 .

If A admits a weighting, the magnitude of A is

|A| = w1 + · · ·+ wn.

Fact: This is independent of the choice of weighting.

‘Usually’ ZA is invertible. Then there is exactly one weighting, and

|A| =
n∑

i ,j=1

(Z−1
A )ij .
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Basic examples

• |∅| = 0 and | • | = 1

• Let A = (•← r →•). Then

ZA =

(
e−0 e−r

e−r e−0

)
=

(
1 e−r

e−r 1

)
and

|A| = sum of all four entries of Z−1
A = 1 + tanh(r/2).

0

1

2

|A|

r

• If d(a, b) =∞ for all a 6= b then |A| = #A: magnitude = cardinality.
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The magnitude function of a space

Magnitude assigns to each metric space not just a number, but a function.

For t > 0, write tA for A scaled up by a factor of t:

dtA(a, b) = td(a, b).

The magnitude function of a metric space A is the partially-defined function

(0,∞) → R
t 7→ |tA|.

E.g.: the magnitude function of A = (•← 1→•) is

0

1

2

|tA|
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1 + tanh(t/2)
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• For t � 0, the magnitude function of A is strictly increasing

• lim
t→∞

|tA| = #A.
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Let A be the 5-point space given by the
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Positive definite spaces

Roughly, these are the spaces for which ‘surprising’ behaviour does not occur.

Definition

A finite metric space A is positive definite if its matrix ZA is positive definite.

Positive definite ⇒ invertible, so then |A| is defined.

Theorem

Let A = {a1, . . . , an} be a positive definite metric space. Then:

• |A| ≥ 0

• every subspace B ⊆ A is positive definite, and |B| ≤ |A|

• |A| = sup
v∈Rn\{0}

(
∑

vi )
2

v tZAv
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Subsets of RN

Theorem

Every finite subset of RN is positive definite.
In particular, every finite subset of RN has well-defined magnitude.

Outline of proof:

• Reduce to showing that the Fourier transform of x 7→ e−‖x‖ is
everywhere positive

• Use known formula for this Fourier transform.

More generally, write `N
p for RN with the `p metric.

Theorem (Meckes)

Let p ≤ 2. Then every finite subset of `N
p is positive definite.
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Digression: diversity and entropy

There is a definition of the entropy of a probability distribution on a finite set.

There is also a definition of the entropy of a probability distribution on a
finite metric space, taking the metric into account.

This is important in theoretical ecology:

• points represent species

• distances represent differences (e.g. genetic) between species

• probabilities represent relative frequencies of species

• entropy measures biological diversity.

Maximum diversity/entropy problem:
Given a list of species, which frequency distribution maximizes the diversity?

The solution is given in terms of weightings and magnitude.

Magnitude can be understood as something like
maximum entropy.
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2. Magnitude of infinite metric spaces



From finite to infinite spaces

Idea: Define magnitude of infinite spaces via finite approximations.

This works best if we stay in the world of positive definite spaces.

Definition

A metric space is positive definite if every finite subspace is positive definite.

E.g.: RN is positive definite.

Definition

Let A be a compact, positive definite metric space. The magnitude of A is

|A| = sup{|B| : B is a finite subset of A} ∈ [0,∞].

(These definitions are consistent with the definitions for finite spaces.)
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From finite to infinite spaces (digression)

Alternative idea: Instead of using finite approximations, work directly with
measures on the space.

A weight measure on a compact metric space A is a signed Borel measure w
such that

for all a ∈ A,

∫
A

e−d(a,b) dw(b) = 1.

If a weight measure exists, the measure magnitude of A is w(A).

Meckes has theorems stating that the two approaches give the same answers,
in so far as measure magnitude is defined.

But the measure approach currently has some limitations.
So in what follows, we use the finite-approximation definition of magnitude.
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Line segments

Theorem

Let L ≥ 0. Let (Ak) be a sequence of finite subsets of R such that

lim
k→∞

Ak = [0, L]

in the Hausdorff topology. Then

lim
k→∞

|Ak | = 1 + 1
2L.

Hence |[0, L]| = 1 + 1
2L, and [0, L] has magnitude function

t 7→ |t[0, L]| = |[0, tL]| = 1 + 1
2L · t

1

Magnitude comes from enriched category theory. . .
. . . but produces geometric invariants.
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Products

Let A and B be metric spaces. Write A⊗ B for their ‘`1-product’:
the set of points is A× B, and

dA⊗B((a, b), (a′, b′)) = dA(a, a′) + dB(b, b′).

E.g.: a cuboid [0, L1]× · · · × [0, LN ] ⊂ `N
1 , with the subspace metric, is

[0, L1]⊗ · · · ⊗ [0, LN ]

as an abstract metric space.

Lemma

|A⊗ B| = |A| · |B|.



Products

Let A and B be metric spaces. Write A⊗ B for their ‘`1-product’:
the set of points is A× B, and

dA⊗B((a, b), (a′, b′)) = dA(a, a′) + dB(b, b′).

E.g.: a cuboid [0, L1]× · · · × [0, LN ] ⊂ `N
1 , with the subspace metric, is

[0, L1]⊗ · · · ⊗ [0, LN ]

as an abstract metric space.

Lemma

|A⊗ B| = |A| · |B|.



Products

Let A and B be metric spaces. Write A⊗ B for their ‘`1-product’:
the set of points is A× B, and

dA⊗B((a, b), (a′, b′)) = dA(a, a′) + dB(b, b′).

E.g.: a cuboid [0, L1]× · · · × [0, LN ] ⊂ `N
1 , with the subspace metric, is

[0, L1]⊗ · · · ⊗ [0, LN ]

as an abstract metric space.

Lemma

|A⊗ B| = |A| · |B|.



Products

Let A and B be metric spaces. Write A⊗ B for their ‘`1-product’:
the set of points is A× B, and

dA⊗B((a, b), (a′, b′)) = dA(a, a′) + dB(b, b′).

E.g.: a cuboid [0, L1]× · · · × [0, LN ] ⊂ `N
1 , with the subspace metric, is

[0, L1]⊗ · · · ⊗ [0, LN ]

as an abstract metric space.

Lemma

|A⊗ B| = |A| · |B|.



Cuboids
Can now calculate magnitude function of [0, L1]× [0, L2] ⊂ `2

1

: it is

t 7→ |t
(
[0, L1]⊗ [0, L2]

)
| = |[0, tL1]⊗ [0, tL2]|

= |[0, tL1]| · |[0, tL2]|
=

(
1 + 1

2L1t
)
·
(
1 + 1

2L2t
)

= 1 + 1
2(L1 + L2)t + 1

4L1L2t
2

In general, the magnitude function of the cuboid
A = [0, L1]× · · · × [0, LN ] ⊂ `N

1 is

t 7→
N∑

i=0

2−iµi (A)t i

where µi is i-dimensional intrinsic volume.
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Pause for reflection

We know: the magnitude function of a cuboid A ⊂ `N
1 is

t 7→
N∑

i=0

2−iµi (A)t i .

Lesson: For this particular class of spaces, the magnitude function encodes
many important invariants:

• all the intrinsic volumes

• the dimension.

Conjectural principle: The same is true for a much larger class of spaces,
including convex subsets of RN with the Euclidean metric.
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Dimension
Example of this principle:

For a metric space A, define

dim(A) = growth(t 7→ |tA|)

where the growth of a function f : (0,∞)→ R is defined by

growth(f ) = inf {ν ∈ R :
f (t)

tν
is bounded for t � 0}.

E.g.: for nondegenerate cuboids A ⊂ `N
1 , we have dim(A) = N.

Theorem

Let A be a compact subset of RN , with Euclidean metric. Then

dim(A) ≤ N

with equality if A has nonzero Lebesgue measure.
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The Convex Conjecture

Conjecture

Let A be a compact, convex subset of RN , with Euclidean metric. Then

|A| =
N∑

i=0

1

i !ωi
µi (A)

where ωi is the volume of the unit i -ball.

If this is true then A has magnitude function t 7→
∑N

i=0
1

i!ωi
µi (A) · t i .
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So, all of the intrinsic volumes of a convex set (as well as the dimension)
can be extracted from its magnitude function.
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Evidence for the conjecture:

• We know that the magnitude function of A has growth N
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N!ωN

µN(A) for all compact A ⊂ RN

• A heuristic argument suggests that the top coefficient is right

• An analogous conjecture holds for many subsets of `N
1 , including cuboids

• Numerical computations support the conjecture.
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