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1. The cardinality of a finite metric space

Definition
Let A = {a1, . . . , an} be a finite metric space.
Write Z for the n × n matrix with Zij = e−2d(ai ,aj ).

The cardinality of A is

|A| =
∑
i ,j

(Z−1)ij ∈ R.

Remark
In principle, Z is defined by Zij = Cd(ai ,aj ) for some constant C .
We’ll see that taking C = e−2 is most convenient.

Warning (Tao)

There exist finite metric spaces whose cardinality is undefined
(i.e. with Z non-invertible).
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1. The cardinality of a finite metric space

Example (two-point spaces)

Let A = (•← d →•). Then

Z =

(
e−2·0 e−2·d

e−2·d e−2·0

)
=

(
1 e−2d

e−2d 1

)
,

Z−1 =
1

1− e−4d

(
1 −e−2d

−e−2d 1

)
,

|A| =
1

1− e−4d
(1− e−2d − e−2d + 1) = 1 + tanh(d) .

0

1

2

|A|

d
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1. The cardinality of a finite metric space

Cardinality assigns to each metric space not just a number, but a function.

Definition
Given t ∈ (0,∞), write tA for A scaled up by a factor of t.
The cardinality function of A is the partial function

χA : (0,∞) −→ R, t 7−→ |tA|.
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0

1

2

χA(t)

t



1. The cardinality of a finite metric space

Cardinality assigns to each metric space not just a number, but a function.

Definition
Given t ∈ (0,∞), write tA for A scaled up by a factor of t.
The cardinality function of A is the partial function

χA : (0,∞) −→ R, t 7−→ |tA|.

Generic example

0

no. points of A

χA(t)

t

︸ ︷︷ ︸
wild

︸ ︷︷ ︸
increasing



2. Some geometric measure theory
Ref: Schanuel, ‘What is the length of a potato?’

Suppose we want a ruler of length 1 cm: 0 1 .

A half-open interval is good:

• ◦1 cm

∪ • ◦1 cm = • ◦2 cm

A closed interval is not so good:

• •1 cm

∪ • •1 cm = • •2 cm
+ •

So we declare:

size([0, 1]) = 1 cm + 1 point = 1 cm1 + 1 cm0 = 1 cm + 1.

In general,
size([0, `]) = ` cm + 1.
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2. Some geometric measure theory

Examples

• Size of rectangle
`

k

is

(k cm + 1)(` cm + 1) = k` cm2 + (k + `) cm + 1.

• Size of hollow triangle
k `

m

is

(k cm + 1) + (` cm + 1) + (m cm + 1)− 3 = (k + ` + m) cm + 0.

• Similarly, can compute sizes of , , , . . .
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2. Some geometric measure theory

Fix n ∈ N. What ‘measures’ can be defined on the ‘nice’ subsets of Rn?

Hadwiger’s Theorem says that there are essentially n + 1 such measures.
They are called the intrinsic volumes,

µ0, µ1, . . . , µn,

and µd is d-dimensional: µd(tA) = tdµd(A).

Example

When n = 2, have three measures:

µ0 =

Euler characteristic

µ1 =

perimeter

µ2 =

area.
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Fix n ∈ N. What ‘measures’ can be defined on the ‘nice’ subsets of Rn?

Hadwiger’s Theorem says that there are essentially n + 1 such measures.
They are called the intrinsic volumes,

µ0, µ1, . . . , µn,

and µd is d-dimensional: µd(tA) = tdµd(A).

Example

When n = 2, have three measures:

µ0 = Euler characteristic

µ1 = perimeter

µ2 = area.



3. The cardinality of a compact metric space

Idea
Given a compact metric space A, choose a sequence

A0 ⊆ A1 ⊆ · · ·

of finite subsets of A, with
⋃

i Ai dense in A.

Try to define

|A| = lim
i→∞
|Ai |.

Theorem
Let A = [0, `] and take any sequence (Ai ) as above. Then

lim
i→∞
|Ai | = ` + 1.

Remark
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3. The cardinality of a compact metric space

Idea
Given a compact metric space A, choose a sequence

A0 ⊆ A1 ⊆ · · ·

of finite subsets of A, with
⋃

i Ai dense in A. Try to define

|A| = lim
i→∞
|Ai |.

Theorem
Let A = [0, `] and take any sequence (Ai ) as above. Then

lim
i→∞
|Ai | = ` + 1.

Remark
[0, `] has cardinality function t 7→ | [0, t`] | = `t + 1: so ‘t = cm’.



3. The cardinality of a compact metric space

Assume now that all spaces mentioned have well-defined cardinality.

Products
Let A and B be compact metric spaces. Then

|A× B| = |A| · |B|

as long as we give A× B the ‘d1 metric’:

d((a, b), (a′, b′)) = d(a, a′) + d(b, b′).

Example (rectangle)

With this metric, [0, k]× [0, `] =
`

k

has cardinality function

t 7→ (kt + 1)(`t + 1) = k` t2 + (k + `)t + 1.
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3. The cardinality of a compact metric space

Example (circle)

Let C` be the circle of circumference `, with metric
given by length of shortest arc.

a

b

d(a, b)

Then

|C`| =
`

1− e−`
=

∞∑
n=0

Bn
(−`)n

n!

where Bn is the nth Bernoulli number.

Asymptotics

• |C`| → 1 as `→ 0.

• |C`| − `→ 0 as `→∞: so when ` is large, |C`| ≈
H

perimeter

` +
H

Euler char

0.
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3. The cardinality of a compact metric space

Hypothesis

All the important invariants of compact metric spaces
can be derived from cardinality

Examples

• Euler characteristic

• Intrinsic volumes µ0, µ1, . . .

• Hausdorff dimension
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How do you quantify the diversity of an ecosystem?

Hundreds of numerical measures of biodiversity have been proposed.

diversity:

Example of a diversity measure

‘Effective number of species’
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How do you quantify the diversity of an ecosystem?

Hundreds of numerical measures of biodiversity have been proposed.

diversity:

Example of a diversity measure

‘Effective number of species’ = cardinality of the metric space of species

‘Measuring biological diversity’,
Andrew Solow (Marine Policy Center, Woods Hole),
Stephen Polasky (Agricultural and Resource Economics, Oregon State),
Environmental and Ecological Statistics 1 (1994), 95–107.


