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1. The cardinality of a finite metric space

Definition
Let A={a1,...,an} be a finite metric space.
Write Z for the n X n matrix with Z; = e—2d(ai.a))

The cardinality of A is
A=) (Z 1R,
ij

Remark
In principle, Z is defined by Zj; = C9(@-3)) for some constant C.
We'll see that taking C = e~2 is most convenient.

Warning (Tao)
There exist finite metric spaces whose cardinality is undefined
(i.e. with Z non-invertible).
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1. The cardinality of a finite metric space
Cardinality assigns to each metric space not just a number, but a function.

Definition
Given t € (0,00), write tA for A scaled up by a factor of t.
The cardinality function of A is the partial function

xa:(0,00) — R, t — |tA.

Generic example
xa(t)

no. points of A | --fi-emooe- //

wild increasing

-
\
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2. Some geometric measure theory
Ref: Schanuel, ‘What is the length of a potato?’

Suppose we want a ruler of length 1cm: )

A half-open interval is good:

1lcm
1lem = o 2cm o
U e————o0
A closed interval is not so good:
lcm 2cm
1 cm = &0 —|— [}

So we declare:
size([0,1]) = 1em + 1point = 1em! 4+ 1em® = 1em + 1.

In general,

‘size([O,E]) =/{cm+ 1.
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Examples

area
1 .
= X perimeter
e Size of rectangle 27P
/ Euler char

(kem + 1)(¢cm + 1) = kfcm? + k+€)cm+1

. . k 14 i perimeter
e Size of hollow triangle A is
— \ Euler char

(kem+ 1)+ (fem+1)+ (mem+1) —3=(k+ ¢+ m)cm + 0.

e Similarly, can compute sizes of A , ' , ‘ ,
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2. Some geometric measure theory

Fix n € N. What ‘measures’ can be defined on the ‘nice’ subsets of R"?

Hadwiger's Theorem says that there are essentially n 4+ 1 such measures.
They are called the intrinsic volumes,

Oy 1y -+ -y Hny
and jq is d-dimensional: pg(tA) = t9pq(A).
Example
When n = 2, have three measures:

o = Euler characteristic
U1 = perimeter

Uy = area.
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3. The cardinality of a compact metric space

Idea
Given a compact metric space A, choose a sequence

A C AL C---
of finite subsets of A, with J; A; dense in A. Try to define
A = lim ||
Theorem
Let A=0,¢] and take any sequence (A;) as above. Then
,lLrgo |Ail =+ 1.

Remark
[0, 4] has cardinality function t — |[0,t{]| = ¢t + 1: so 't = cm'.
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3. The cardinality of a compact metric space
Assume now that all spaces mentioned have well-defined cardinality.

Products
Let A and B be compact metric spaces. Then

|Ax Bl =|Al-|B|
as long as we give A x B the ‘d; metric’:

d((a, b), (4, b)) = d(a, &) + d(b, ).

Example (rectangle)

With this metric, [0, k] x [0, /] = ¢ - has cardinality function

k

ts (kt +1)(lt4+1) = kb t> + (k+ )t + 1.
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Then
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3. The cardinality of a compact metric space

Example (circle)

Let C; be the circle of circumference ¢, with metric a
given by length of shortest arc.
b
Then -
¢ (=0)"
Gl =T =2 B nl
n=0

where B, is the nth Bernoulli number.
A ) perimeter

symptotics Euler char

e |G| —1last—0. f

o |G| —¢ — 0as ¢ — oo: sowhen £ is large, |G| = £ + 0.
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3. The cardinality of a compact metric space

Hypothesis

All the important invariants of compact metric spaces
can be derived from cardinality

Examples

e Euler characteristic
e Intrinsic volumes pg, p1, - ..

e Hausdorff dimension
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How do you quantify the diversity of an ecosystem?

Hundreds of numerical measures of biodiversity have been proposed.

. J

Example of a diversity measure

‘Effective number of species’ = cardinality of the metric space of species‘

‘Measuring biological diversity’,

Andrew Solow (Marine Policy Center, Woods Hole),

Stephen Polasky (Agricultural and Resource Economics, Oregon State),
Environmental and Ecological Statistics 1 (1994), 95-107.



