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1. Isbell conjugacy
and

the reflexive completion



Conjugacy: the definition
Let A be a small category.

Every Set-valued functor on A has a conjugate:

X : A ÝÑ Set ù pX : Aop ÝÑ Set,
pX paq � rA,Sets

�
X ,Apa,�q

�
,

Y : Aop ÝÑ Set ù qY : A ÝÑ Set,
pY paq � rAop,Sets

�
Y ,Ap�, aq

�
.

These processes are adjoint:

rA,SetspX , qY q � rAop,SetspY , pX q
rA,Setsop p // rAop,Sets.

q
oo

E.g. In the conjugacy adjunction,

Apa,�q
� //

Ap�, aq�oo

for all a P A.



Conjugacy: examples


 Let G be a group, seen as a one-object category.
If X is a left G -set then pX is the right G -set HompX ,GLq,
where GL is the left regular representation of G .

Conjugacy is also defined for enriched categories.


 Let k be a field, seen as a one-object Ab-category.
Then rk ,Abs � Vectk , and if V P Vectk then pV � qV is the dual of V .


 Let P be a poset, seen as a 2-category.
Then rP, 2s is the poset of upwards-closed subsets U of P,
and pU is the downwards-closed set of lower bounds of U.



Interlude: how we teach the Yoneda lemma

Given X : A ÝÑ Set, get X 1 : A ÝÑ Set defined by

X 1paq � rA,SetspApa,�q,X q.

Then X 1 � X (Yoneda!).

Given X : A ÝÑ Set, also get pX : Aop ÝÑ Set, hence
qpX : A ÝÑ Set.

But in general,
qpX �� X .

We have the unit map X ÝÑ
qpX of the adjunction, but nothing in the

opposite direction.



The reflexive completion: definition

X : A ÝÑ Set is reflexive if the unit map X ÝÑ
qpX is iso.

Y : Aop ÝÑ Set is reflexive if the unit map Y ÝÑ
pqY is iso.

E.g. Representables are reflexive.

By adjointness, the full subcategory

preflexive functors A ÝÑ Setq � rA,Setsop

is equivalent to the full subcategory

preflexive functors Aop ÝÑ Setq � rAop,Sets.

The reflexive completion RpAq of A is either of these equivalent categories.

Remark The concept is self-dual: RpAopq � RpAqop.



The reflexive completion: examples


 RpHq � 1 � Rp1q.


 For a discrete category A with ¥ 2 objects, RpAq is A with initial and

terminal objects adjoined: .


 For a group G with ¥ 3 elements, RpG q is G with initial and terminal
objects adjoined.
But RpC2q is the full subcategory of rC2,Sets consisting of H, 1, C2,
and the free C2-set on 2 generators.


 For a field k as an Ab-category, Rpkq � pfin-dim k-vector spacesq.


 For a poset P, RpPq is the Dedekind–MacNeille completion of P.
It is complete. E.g. RpQq � RY t�8u.


 The reflexive completion of a metric space is closely related to its tight
span/injective envelope (Willerton).



An obstacle

The word ‘completion’ suggests that R �R � R. Isbell proved this.

But we defined RpAq only for small A, and RpAq is not obviously small.

So how is RpRpAqq even defined?

Some set-theoretic care is required. . .

Three open questions: Over Set,


 A small ñ RpAq small?


 A finite ñ RpAq finite?


 Is there an explicit construction of RpAq?



The basic definitions, without smallness

Let A be a locally small category.

A Set-valued functor on A is small if it is a small colimit of representables.

When X : A ÝÑ Set is small, pX : A op ÝÑ Set can be defined as before
(but need not be small). Similarly for Y : A op ÝÑ Set and qY : A ÝÑ Set.

X is reflexive if X is small, pX is small, and X
unit
ÝÑ

qpX is iso. Similarly for Y .

The reflexive completion RpA q is the full subcategory

preflexive functors A ÝÑ Setq � rA ,Setsop

or equivalently the full subcategory

preflexive functors A op ÝÑ Setq � rA op,Sets.



2. Characterizations of the
reflexive completion



Density

Recall A functor F : A ÝÑ B is dense if the ‘nerve’ functor

B ÝÑ rA op,Sets
b ÞÑ BpF�, bq

is full and faithful.

F is small-dense if also BpF�, bq is small for each b P B.

Codensity and small-codensity are defined dually.

A full, faithful, small-dense and small-codense functor will be called a
snug embedding.

Nice property If A
F
ÝÑ B

G
ÝÑ C are full and faithful then

G � F is snug ðñ F and G are snug.



First characterization of the reflexive completion
Let A be a locally small category.

Since representables are reflexive, we have A ãÑ RpA q (Yoneda).

Fact This embedding is snug.

Theorem (essentially Isbell)
RpA q is the largest category into which A embeds snugly.

I.e.: if A
G
ÝÑ B is a snug embedding, there is a unique snug G such that

B
G // RpA q

A
G

bbFFFF
Yoneda

99rrrrr

commutes.

Corollary (Isbell) R2pA q � RpA q.

Definition A is reflexively complete if the only reflexive presheaves on A
are the representables.

Then A is reflexively complete ðñ A � RpBq for some B.



Second characterization of the reflexive completion

We just showed: RpA q is the largest category into which A embeds snugly.

Similarly: the completion rA of a metric space A is the largest metric space
into which A embeds densely.

But alternatively: rA is the unique complete metric space into which A
embeds densely.

Similarly:

Theorem RpA q is the unique reflexively complete category into which A
embeds snugly.

(More precisely: A ãÑ RpA q is the unique-up-to-equivalence snug
embedding of A into a reflexively complete category.)



When do two categories have equivalent reflexive
completions?

By the second characterization theorem, any snug embedding A ÝÑ B
induces an equivalence RpA q � RpBq:

RpA q
� // RpBq

A

OO

// B.

OO

So:

Theorem The following are equivalent for categories A and B:


 RpA q � RpBq


 there is a cospan A ÝÑ � ÐÝ B of snug embeddings


 there is a zigzag A ÝÑ � ÐÝ � � � ÝÑ � ÐÝ B of snug embeddings.



3. Limits in
reflexive completions



A trap

The reflexive (Dedekind–MacNeille) completion of a poset is complete.

So, we might guess that the reflexive completion of any category is complete.

False!

E.g. Take any non-posetal finite A such that RpAq is finite. Then RpAq is
a non-posetal finite category, so does not have finite products (Freyd).

For posets, complete ðñ reflexively complete.

For general categories, only ñ holds.



Which limits exist in reflexive completions?

For a small category A:


 RpAq is Cauchy-complete, that is, has absolute (co)limits.
(It also contains the Cauchy-completion of A.)


 RpAq has terminal and initial objects.
(Viewing RpAq as a subcategory of rAop,Sets, the terminal object is
the terminal presheaf, but the initial object is Conep�, idAq.)

Theorem The following are equivalent for a small category J:


 J-limits exist in RpAq for every small category A


 J is empty or J-limits are absolute.



Summary



Summary


 Isbell conjugacy is a canonical adjunction rA,Setsop Õ rAop,Sets.


 The reflexive completion RpAq is the invariant part of this adjunction.


 RpAq is the largest category
containing A as a full, small-dense and small-codense subcategory.


 RpAq is the unique reflexively complete category
containing A as a full, small-dense and small-codense subcategory.


 RpAq � RpBq iff A and B can be joined by a zigzag of full, faithful,
small-dense and small-codense functors.


 RpAq has initial and terminal objects and absolute (co)limits,
and in general, no other (co)limits.

But we lack both an explicit construction and a universal characterization
of the reflexive completion.

Someone should find them.


