#### The Reflexive Completion

Tom Avery Tom Leinster University of Edinburgh

- 1. Isbell conjugacy and the reflexive completion
- 2. Characterizations of the reflexive completion
  - 3. Limits in reflexive completions

1. Isbell conjugacy and the reflexive completion

#### Conjugacy: the definition

Let **A** be a small category.

Every **Set**-valued functor on **A** has a conjugate:

These processes are adjoint:

$$\begin{split} [\mathbf{A},\mathbf{Set}](X,\check{Y}) &\cong [\mathbf{A}^{\mathrm{op}},\mathbf{Set}](Y,\hat{X}) \\ [\mathbf{A},\mathbf{Set}]^{\mathrm{op}} \xrightarrow{\widehat{\phantom{aaaa}}} [\mathbf{A}^{\mathrm{op}},\mathbf{Set}]. \end{split}$$

E.g. In the conjugacy adjunction,

$$\mathbf{A}(a,-) \stackrel{\longrightarrow}{\triangleleft} \mathbf{A}(-,a)$$

for all  $a \in \mathbf{A}$ .

#### Conjugacy: examples

• Let G be a group, seen as a one-object category. If X is a left G-set then  $\hat{X}$  is the right G-set Hom $(X, G_L)$ , where  $G_L$  is the left regular representation of G.

Conjugacy is also defined for enriched categories.

- Let k be a field, seen as a one-object Ab-category.
  Then [k, Ab] = Vect<sub>k</sub>, and if V ∈ Vect<sub>k</sub> then V = V is the dual of V.
- Let P be a poset, seen as a 2-category.
  Then [P, 2] is the poset of upwards-closed subsets U of P, and Û is the downwards-closed set of lower bounds of U.

#### Interlude: how we teach the Yoneda lemma

Given  $X: \mathbf{A} \longrightarrow \mathbf{Set}$ , get  $X': \mathbf{A} \longrightarrow \mathbf{Set}$  defined by

$$X'(a) = [\mathbf{A}, \mathbf{Set}](\mathbf{A}(a, -), X).$$

Then  $X' \cong X$  (Yoneda!).

Given  $X : \mathbf{A} \longrightarrow \mathbf{Set}$ , also get  $\hat{X} : \mathbf{A}^{\mathrm{op}} \longrightarrow \mathbf{Set}$ , hence  $\check{\hat{X}} : \mathbf{A} \longrightarrow \mathbf{Set}$ . But in general,  $\check{\hat{X}} \cong X$ .

We have the unit map  $X \longrightarrow \overset{\times}{X}$  of the adjunction, but nothing in the opposite direction.

#### The reflexive completion: definition

 $X: \mathbf{A} \longrightarrow \mathbf{Set}$  is reflexive if the unit map  $X \longrightarrow \check{X}$  is iso.

 $Y: \mathbf{A}^{\mathrm{op}} \longrightarrow \mathbf{Set}$  is reflexive if the unit map  $Y \longrightarrow \widehat{\check{Y}}$  is iso.

E.g. Representables are reflexive.

By adjointness, the full subcategory

(reflexive functors  $A \longrightarrow Set$ )  $\subseteq [A, Set]^{op}$ 

is equivalent to the full subcategory

 $(\text{reflexive functors } \mathbf{A}^{\mathsf{op}} \longrightarrow \mathbf{Set}) \subseteq [\mathbf{A}^{\mathsf{op}}, \mathbf{Set}].$ 

The reflexive completion  $\mathscr{R}(\mathbf{A})$  of  $\mathbf{A}$  is either of these equivalent categories. Remark The concept is self-dual:  $\mathscr{R}(\mathbf{A}^{op}) \simeq \mathscr{R}(\mathbf{A})^{op}$ .

#### The reflexive completion: examples

- $\mathscr{R}(\varnothing) = \mathbf{1} = \mathscr{R}(\mathbf{1}).$
- For a discrete category A with ≥ 2 objects, *R*(A) is A with initial and terminal objects adjoined:
- For a group G with ≥ 3 elements, R(G) is G with initial and terminal objects adjoined.
  But R(C<sub>2</sub>) is the full subcategory of [C<sub>2</sub>, Set] consisting of Ø, 1, C<sub>2</sub>, and the free C<sub>2</sub>-set on 2 generators.
- For a field k as an **Ab**-category,  $\mathscr{R}(k) = (\text{fin-dim } k\text{-vector spaces})$ .
- For a poset P, *R*(P) is the Dedekind–MacNeille completion of P. It is complete. E.g. *R*(Q) = R ∪ {±∞}.
- The reflexive completion of a metric space is closely related to its tight span/injective envelope (Willerton).

#### An obstacle

- The word 'completion' suggests that  $\mathscr{R} \circ \mathscr{R} \simeq \mathscr{R}$ . Isbell proved this.
- But we defined  $\mathscr{R}(\mathbf{A})$  only for small  $\mathbf{A}$ , and  $\mathscr{R}(\mathbf{A})$  is not obviously small.
- So how is  $\mathscr{R}(\mathscr{R}(\mathbf{A}))$  even defined?
- Some set-theoretic care is required...
- Three open questions: Over Set,
  - A small  $\Rightarrow \mathscr{R}(A)$  small?
  - A finite  $\Rightarrow \mathscr{R}(\mathbf{A})$  finite?
  - Is there an explicit construction of *R*(A)?

#### The basic definitions, without smallness

Let  $\mathscr{A}$  be a *locally* small category.

A **Set**-valued functor on  $\mathscr{A}$  is small if it is a small colimit of representables. When  $X : \mathscr{A} \longrightarrow \mathbf{Set}$  is small,  $\hat{X} : \mathscr{A}^{\mathrm{op}} \longrightarrow \mathbf{Set}$  can be defined as before (but need not be small). Similarly for  $Y : \mathscr{A}^{\mathrm{op}} \longrightarrow \mathbf{Set}$  and  $\check{Y} : \mathscr{A} \longrightarrow \mathbf{Set}$ . X is reflexive if X is small,  $\hat{X}$  is small, and  $X \xrightarrow{\mathrm{unit}} \check{X}$  is iso. Similarly for Y. The reflexive completion  $\mathscr{R}(\mathscr{A})$  is the full subcategory

$$(\mathsf{reflexive functors}\ \mathscr{A} \longrightarrow \mathbf{Set}) \subseteq [\mathscr{A}, \mathbf{Set}]^{\mathsf{op}}$$

or equivalently the full subcategory

$$(\mathsf{reflexive functors}\ \mathscr{A}^\mathsf{op} \longrightarrow \mathbf{Set}) \subseteq [\mathscr{A}^\mathsf{op}, \mathbf{Set}].$$

# 2. Characterizations of the reflexive completion

#### Density

Recall A functor  $F: \mathscr{A} \longrightarrow \mathscr{B}$  is dense if the 'nerve' functor

| $\mathscr{B}$ | $\longrightarrow$ | $[\mathscr{A}^{op}, \mathbf{Set}]$ |
|---------------|-------------------|------------------------------------|
| b             | $\mapsto$         | $\mathscr{B}(F-,b)$                |

is full and faithful.

*F* is small-dense if also  $\mathscr{B}(F-, b)$  is small for each  $b \in \mathscr{B}$ .

Codensity and small-codensity are defined dually.

A full, faithful, small-dense and small-codense functor will be called a snug embedding.

Nice property If  $\mathscr{A} \xrightarrow{F} \mathscr{B} \xrightarrow{G} \mathscr{C}$  are full and faithful then

 $G \circ F$  is snug  $\iff F$  and G are snug.

#### First characterization of the reflexive completion

- Let  $\mathscr{A}$  be a locally small category.
- Since representables are reflexive, we have  $\mathscr{A} \hookrightarrow \mathscr{R}(\mathscr{A})$  (Yoneda).
- Fact This embedding is snug.
- Theorem (essentially Isbell)
- $\mathscr{R}(\mathscr{A})$  is the largest category into which  $\mathscr{A}$  embeds snugly.
- I.e.: if  $\mathscr{A} \xrightarrow{\mathsf{G}} \mathscr{B}$  is a snug embedding, there is a unique snug  $\overline{\mathsf{G}}$  such that



commutes.

- $\label{eq:corollary} {\rm (Isbell)} \ \ \mathscr{R}^2(\mathscr{A}) \simeq \mathscr{R}(\mathscr{A}).$
- Definition  $\mathscr{A}$  is reflexively complete if the only reflexive presheaves on  $\mathscr{A}$  are the representables.
- Then  $\mathscr{A}$  is reflexively complete  $\iff \mathscr{A} \simeq \mathscr{R}(\mathscr{B})$  for some  $\mathscr{B}$ .

#### Second characterization of the reflexive completion

We just showed:  $\mathscr{R}(\mathscr{A})$  is the largest category into which  $\mathscr{A}$  embeds snugly. Similarly: the completion  $\widetilde{A}$  of a metric space A is the largest metric space into which A embeds densely.

But alternatively:  $\widetilde{A}$  is the *unique complete* metric space into which A embeds densely.

Similarly:

Theorem  $\mathscr{R}(\mathscr{A})$  is the unique reflexively complete category into which  $\mathscr{A}$  embeds snugly.

(More precisely:  $\mathscr{A} \hookrightarrow \mathscr{R}(\mathscr{A})$  is the unique-up-to-equivalence snug embedding of  $\mathscr{A}$  into a reflexively complete category.)

## When do two categories have equivalent reflexive completions?

By the second characterization theorem, any snug embedding  $\mathscr{A} \longrightarrow \mathscr{B}$  induces an equivalence  $\mathscr{R}(\mathscr{A}) \simeq \mathscr{R}(\mathscr{B})$ :



So:

Theorem The following are equivalent for categories  $\mathscr{A}$  and  $\mathscr{B}$ :

- $\mathscr{R}(\mathscr{A})\simeq \mathscr{R}(\mathscr{B})$
- there is a cospan  $\mathscr{A} \longrightarrow \cdot \longleftarrow \mathscr{B}$  of snug embeddings
- there is a zigzag A → · ← · · · → · ← B of snug embeddings.

*3. Limits in reflexive completions* 

#### A trap

- The reflexive (Dedekind–MacNeille) completion of a poset is complete.
- So, we might guess that the reflexive completion of any category is complete. False!
- E.g. Take any non-posetal finite **A** such that  $\mathscr{R}(\mathbf{A})$  is finite. Then  $\mathscr{R}(\mathbf{A})$  is a non-posetal finite category, so does not have finite products (Freyd).
- For posets, complete  $\iff$  reflexively complete.
- For general categories, only  $\Rightarrow$  holds.

#### Which limits exist in reflexive completions?

For a small category  $\mathbf{A}$ :

- $\mathscr{R}(\mathbf{A})$  is Cauchy-complete, that is, has absolute (co)limits. (It also contains the Cauchy-completion of  $\mathbf{A}$ .)
- \$\mathcal{R}(\mathbf{A})\$ has terminal and initial objects. (Viewing \$\mathcal{R}(\mathbf{A})\$ as a subcategory of \$[\mathbf{A}^{op}, \mathbf{Set}]\$, the terminal object is the terminal presheaf, but the initial object is \$Cone(-, id\_\mathbf{A})\$.)

Theorem The following are equivalent for a small category J:

- J-limits exist in  $\mathscr{R}(\mathbf{A})$  for every small category  $\mathbf{A}$
- J is empty or J-limits are absolute.

### Summary

#### Summary

- The reflexive completion  $\mathscr{R}(\mathbf{A})$  is the invariant part of this adjunction.
- $\mathscr{R}(\mathbf{A})$  is the largest category containing  $\mathbf{A}$  as a full, small-dense and small-codense subcategory.
- $\mathscr{R}(\mathbf{A})$  is the unique reflexively complete category containing  $\mathbf{A}$  as a full, small-dense and small-codense subcategory.
- $\mathscr{R}(\mathbf{A}) \simeq \mathscr{R}(\mathbf{B})$  iff  $\mathbf{A}$  and  $\mathbf{B}$  can be joined by a zigzag of full, faithful, small-dense and small-codense functors.
- $\mathscr{R}(\mathbf{A})$  has initial and terminal objects and absolute (co)limits, and in general, no other (co)limits.

But we lack both an *explicit construction* and a *universal characterization* of the reflexive completion.

Someone should find them.