
Freyd's construction of [0; 1] as a terminal coalgebra

Work on Pos0;1 (posets with distinct endpoints), with

Φ : Pos0;1 −→ Pos0;1

Φ(X ) = {(x ; 0) | x ∈ X } ∪ {(1; y) | y ∈ X } := X ∨ X
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Pos0;1 is not l.f.p (no terminal object). It is �nitely accessible and
consistent �nite diagrams have colimits.

Why does such a Φ have a terminal coalgebra?

We claim that it is for the same reasons that every �nitary Φ on an l.f.p
category has terminal coalgebra!
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Every �nitely accessible category K is, to within equivalence, Flat(A ; Set)
and every �nitary endofunctor Φ : K −→ K is, to within isomorphism,

Φ ∼= M ⊗− ,where M : A op ×A −→ Set is a at module.
When K = Pos0;1 then A ∼= (Pos0;1

�n )op and

M (X ;Y ) = {Y −→ Φ(X ) in Pos
0;1

�n }.

If A has �nite limits then K is l.f.p and can support interesting examples
of endofunctors, e.g power series

Φ(X ) =
⊔
n

Pn × X n

Tom's description of the terminal coalgebra can be restated as:
T : A −→ Set is the colimit of the diagram(

Complex(M )
)op pr

op

0 // A op Y // [A ; Set]

We need to know that T is a at functor, i.e Complex(M ) is co�ltered.
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Lemma: Assume that for every �nite non-empty diagram in Complex(M )
we have limits "levelwise", for all n ≥ 0. Then Complex(M ) is co�ltered.

Corollary: (i) Every �nitary endofunctor of an l.f.p category has a terminal
coalgebra.
(ii) Freyd's endofunctor has a terminal coalgebra.

Sketch of the Proof:

Let (a•;m•), (a ′•;m
′
•) in Complex(M ) be a discrete diagram, i.e

: : : an �
mn // an−1 � // : : : � // a2 �

m2 // a1 �
m1 // a0

: : : a ′n �
m ′
n

// a ′n−1 � // : : : � // a ′
2

�
m ′

2

// a ′
1

�
m ′

1

// a ′
0
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One may object that not all �nite colimits exist in Pos
0;1

�n
∼= A op , so why

should we have "levelwise" limits?

E.g 3
u //

d
// 2 with u(middle) = 1, d(middle) = 0 can not be coequalized.

But when Y
u //

d
// X can not be coequalized then there can be no

: : : � // • �
m1 //

����

X

����
: : : � // • �

m ′
1 // Y

in Complex(M )
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More generally terminal coalgebras for �nitary endofunctors on �nitely
accessible categories exist, provided that

(i) Cones exist "at the head" of �nite diagrams of complexes

(ii) A technical �niteness condition holds, that allows us to infer the
existence of cones at the level of complexes (not just at the head), using a
topological version of K�onig's Lemma due to A. Stone
This way

• Tom's modules for topological self-similarity become examples

• Pavlovi�c & Pratt's construction of the continuum and Cantor's space as
terminal coalgebras become examples, if we work on the �nitely accessible
category Lin with suitable endofunctors.

For details: http://www.math.upatras.gr/∼pkarazer
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