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Work on Pos%! (posets with distinct endpoints), with
® : Pos®! — Pos¥?

O(X)={(z,0)|ze X} U{(1l,y)|lye X} =X VX

Pos%®! is not I.f.p (no terminal object). It is finitely accessible and
consistent finite diagrams have colimits.

Why does such a ® have a terminal coalgebra? )

We claim that it is for the same reasons that every finitary ¢ on an |.f.p
category has terminal coalgebra!
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Every finitely accessible category % is, to within equivalence, Flat(.<7, Set)

and every finitary endofunctor ® : # — % is, to within isomorphism,
=M Q® — ,where M : &/ x o/ — Set is a flat module.

When % = Pos®! then o7 = (Posg’r})oz’ and

M(X,Y)={Y — &(X) in Posg: }.
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(Complex(M))op LI [« Set]
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Tom'’s description of the terminal coalgebra can be restated as:
T : o/ — Set is the colimit of the diagram

e
(Complex(M))op LI [« Set]

We need to know that 7 is a flat functor, i.e Complex(M) is cofiltered. J
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Lemma: Assume that for every finite non-empty diagram in Complex(M)
we have limits " levelwise”, for all n > 0. Then Complex(M) is cofiltered. J
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One may object that not all finite colimits exist in Posg’; = o/ °P, so why
should we have " levelwise” limits?

u
Eg 3 2 with u(middle) = 1, d(middle) = 0 can not be coequalized.
d
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More generally terminal coalgebras for finitary endofunctors on finitely
accessible categories exist, provided that
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category Lin with suitable endofunctors.

For details: http://www.math.upatras.gr/~pkarazer J
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