Terminal coalgebras via modules

Tom Leinster (Glasgow/EPSRC) Apostolos Matzaris (Patras)

with

Panagis Karazeris (Patras) Jiří Velebil (Prague)

Plan

We'll give a new proof of an old theorem (Bird, Makkai–Paré, Barr, Adámek):

-and we'll construct the terminal coalgebra.

Plan

We'll give a new proof of an old theorem (Bird, Makkai–Paré, Barr, Adámek):

every finitary endofunctor of a locally finitely presentable category has a terminal coalgebra

-and we'll *construct* the terminal coalgebra.

Apostolos will show how the methods extend to a wider context.

For example, they cover the characterizations of the real numbers by Freyd and Pavlović–Pratt.

Coalgebras

Let $\Phi : \mathscr{C} \longrightarrow \mathscr{C}$ be an endofunctor of a category \mathscr{C} . A Φ -coalgebra is a pair (X, ξ) with

$$X \in \mathscr{C}, \qquad \xi : X \longrightarrow \Phi(X).$$

There is an obvious notion of map of Φ -coalgebras.

Example

 $\mathscr{C} =$ **Set**, $\Phi = 1 + - = \{*\} \amalg -:$ then a Φ -coalgebra is a set X together with a partial map $\xi : X \longrightarrow X$.

The category of Φ -coalgebras may have a terminal object a terminal coalgebra for Φ .

Example

In the previous example, the terminal coalgebra (T, τ) has $T = \mathbb{N} \cup \{\infty\}$.

Modules

Let \mathscr{A} and \mathscr{B} be categories.

A module (or bimodule, or profunctor, or distributor) $M : \mathscr{B} \longrightarrow \mathscr{A}$ is a functor $M : \mathscr{B}^{op} \times \mathscr{A} \longrightarrow \mathbf{Set}$.

We write

$$m \in M(b,a)$$
 as $b \stackrel{m}{\leftrightarrow} a$.

m

Example

A functor $\mathscr{A} \longrightarrow \textbf{Set}$ is the same as a module $1 \longrightarrow \mathscr{A}$.

Tensor product of modules

There is a tensor product

$$\mathscr{C} \xrightarrow{\mathsf{N}} \mathscr{B} \xrightarrow{\mathsf{M}} \mathscr{A} \qquad \mapsto \qquad \mathscr{C} \xrightarrow{\mathsf{M} \otimes \mathsf{N}} \mathscr{A}$$

of modules, defined by

$$(M \otimes N)(c, a) = \int^b M(c, b) \times N(b, a) = \left(\coprod_b M(c, b) \times N(b, a) \right) \Big/ \sim .$$

$$\begin{array}{c} \mathsf{Fix a module} \ \mathscr{A} \xrightarrow{M} \mathscr{A}. \ \begin{array}{c} \mathsf{Then} \\ & \swarrow \end{array} \in \ [\mathscr{A}, \mathbf{Set}] \\ & \mathbf{1} \xrightarrow{M \otimes X} \\ & \mathbf{1} \xrightarrow{M} \mathscr{A} \xrightarrow{M} \mathscr{A} \end{array} \mapsto \qquad \begin{array}{c} \mathsf{1} \xrightarrow{M \otimes X} \\ & \mathbf{1} \xrightarrow{M} \mathscr{A} \end{array}$$

so we have an endofunctor $M \otimes -$ of $[\mathscr{A}, \mathbf{Set}]$. Explicitly,

$$(M\otimes X)(a) = \left(\coprod_{b\in\mathscr{A}} M(b,a) \times X(b)\right) \Big/ \sim .$$

The equivalence class of $(b \xrightarrow{m} a, x \in X(b))$ is written $m \otimes x$.

Coalgebras and modules

Fix a module $\mathscr{A} \xrightarrow{M} \mathscr{A}$. A coalgebra for $[\mathscr{A}, \mathbf{Set}]^{\bigcirc M \otimes -}$ consists of

a functor $\mathscr{A} \xrightarrow{X} \mathbf{Set}$ and a natural transformation $X \xrightarrow{\xi} M \otimes X$. The components of ξ are maps

$$\xi_a: X(a) \longrightarrow (M \otimes X)(a) = (\coprod_b M(b,a) \times X(b)) / \sim .$$

Take an element $x \in X(a)$. Then:

• $\xi_{a}(x) = m_1 \otimes x_1$ for some $a_1 \xrightarrow{m_1} a$ and $x_1 \in X(a_1)$ • $\xi_{a_1}(x_1) = m_2 \otimes x_2$ for some $a_2 \xrightarrow{m_2} a_1$ and $x_2 \in X(a_2)$

So x gives rise to a diagram

$$\cdots \xrightarrow{m_3} a_2 \xrightarrow{m_2} a_1 \xrightarrow{m_1} a \qquad (*)$$

-a complex ending in a. But many choices were involved!

Essential uniqueness of the complex

Q. To what extent is the complex (*) uniquely determined by the element x?

A. All the complexes arising from x in this way are in the same connected-component of the category Complex(a) of complexes ending at a —as long as $X : \mathscr{A} \longrightarrow Set$ is a sum of flat functors. (If \mathscr{A} has finite limits, this just means that X preserves pullbacks.)

So then:

Given a coalgebra (X,ξ) and an object $a \in \mathscr{A}$, every element $x \in X(a)$ gives rise *canonically* to a connected-component of **Complex**(a).

A terminal coalgebra theorem

Let $\mathscr{A} \xrightarrow{M} \mathscr{A}$ be a flat module.

Then $[\mathscr{A}, \mathbf{Set}]^{\bigcirc M \otimes -}$ restricts to an endofunctor $\mathbf{Flat}(\mathscr{A}, \mathbf{Set})^{\bigcirc M \otimes -}$. There is a particular coalgebra (\mathcal{T}, τ) for this restricted endofunctor, with

 $T(a) = \{$ connected-components of the category **Complex** $(a)\}.$

We know: for every coalgebra (X, ξ) , there is a canonical map $X \longrightarrow T$. Theorem

Suppose that the category **Complex**(M) of all complexes is cofiltered. Then (T, τ) is the terminal coalgebra for $\operatorname{Flat}(\mathscr{A}, \operatorname{Set})^{\bigcirc M \otimes -}$.

A terminal coalgebra theorem

Let \mathscr{A} be a category with finite limits.

Let $\mathscr{A} \xrightarrow{M} \mathscr{A}$ be a module such that for each $a \in \mathscr{A}$, the functor $M(a, -) : \mathscr{A} \longrightarrow \mathbf{Set}$ preserves finite limits.

Then $[\mathscr{A}, \mathbf{Set}]^{\bigcirc M \otimes -}$ restricts to an endofunctor $\mathbf{FinLim}(\mathscr{A}, \mathbf{Set})^{\bigcirc M \otimes -}$. There is a particular coalgebra (\mathcal{T}, τ) for this restricted endofunctor, with

 $T(a) = \{$ connected-components of the category **Complex** $(a)\}.$

We know: for every coalgebra (X, ξ) , there is a canonical map $X \longrightarrow T$. Theorem

every finitary endofunctor is of this form (T, τ) is the terminal coalgebra for $(FinLim(\mathscr{A}, Set))^{\bigcirc (M \otimes -)}$ every LFP category is of this form