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Plan

We'll give a new proof of an old theorem (Bird, Makkai—Paré, Barr,
Addmek):

e.g. on Set: free group/ring/. ..

every @initary endofunctoD
of aqocally finitely presentable catego@
has a terminal coalgebra /‘

e.g. Set, Group, Ring, Vect,
Cat, [¢°P, Set]

—and we'll construct the terminal coalgebra.



Plan

We'll give a new proof of an old theorem (Bird, Makkai—Paré, Barr,
Addmek):

every finitary endofunctor
of a locally finitely presentable category
has a terminal coalgebra

—and we'll construct the terminal coalgebra.

Apostolos will show how the methods extend to a wider context.

For example, they cover the characterizations of the real numbers by Freyd
and Pavlovi¢—Pratt.



Coalgebras

Let ® : ¥ — ¥ be an endofunctor of a category % .
A d-coalgebra is a pair (X, ) with

XeT, £ X — O(X).
There is an obvious notion of map of ®-coalgebras.

Example

¢ =Set, =1+ — = {x} I —: then a ®-coalgebra
is a set X together with a partial map £ : X — X.

The category of ®-coalgebras may have a terminal object—
a terminal coalgebra for ®.

Example

In the previous example, the terminal coalgebra (T,7) has T = N U {occ}.



Modules

Let o7 and A be categories.

A module (or bimodule, or profunctor, or distributor) M : B —— o/
is a functor M : °P x &/ — Set.

We write
m € M(b, a) as b — a.

Example

A functor &/ — Set is the same as a module 1 7.



Tensor product of modules

There is a tensor product

N M M®N
C —+ B+ o — C —+ o

of modules, defined by
b
(M®N)(c,a):/ M(c, b) x N(b, a) = (]_[ M(c, b) x N(b,a))/w.
b

M
Fix a module &/ —— /. Then
€ [+, Set]
x5 u \‘Me@x
1+ o + o — 1+ o,

so we have an endofunctor M @ — of [<7, Set]. Explicitly,

(M@ X)(a) = (]_[ M(b, a) ><X(b)>/~.

bea/

The equivalence class of (b Hmﬁ a, x € X(b)) is written m @ x.



Coalgebras and modules
_ M O Me— .
Fix a module & —— /. A coalgebra for [«7, Set] consists of

X .
a functor &/ ~— Set and a natural transformation X i» M X.

The components of £ are maps

€ X(a) — (M® X)(a) = (][ M(b,a) x X(b))/ ~
b

Take an element x € X(a). Then:

e £3(x) = m ® xq for some a; —m|i> aand x; € X(a1)

m
o £, (x1) = ma ® xp for some ap —Ii a1 and x2 € X(a2)

So x gives rise to a diagram

‘—n;1>32—m|i>al—m|i>a ()

—a complex ending in a. But many choices were involved!



Essential uniqueness of the complex

Q. To what extent is the complex () uniquely determined by the element x?

A. All the complexes arising from x in this way are in the same
connected-component of the category Complex(a) of complexes ending at a

—as long as X : &/ — Set is a sum of flat functors.
(If o7 has finite limits, this just means that X preserves pullbacks.)

So then:
Given a coalgebra (X, &) and an object a € &7, every element x € X(a)
gives rise canonically to a connected-component of Complex(a).



A terminal coalgebra theorem

M
Let & —— & be a flat module.

Then [, Set]QM@f restricts to an endofunctor Flat(</, Set)QM@f

There is a particular coalgebra (T, 7) for this restricted endofunctor, with
T(a) = {connected-components of the category Complex(a)}.
We know: for every coalgebra (X, &), there is a canonical map X — T.

Theorem

Suppose that the category Complex(M) of all complexes is cofiltered.

Then (T, ) is the terminal coalgebra for Flat(<7, Set)QM®_ .



A terminal coalgebra theorem

Let &7 be a category with finite limits.

M
Let &/ —— & be a module such that for each a € &, the functor
M(a, —) : o — Set preserves finite limits.

M@— Me—
Then [z;z%,Set]Q ¥ restricts to an endofunctor FinLim(</, Set)Q N
There is a particular coalgebra (T, 7) for this restricted endofunctor, with
T(a) = {connected-components of the category Complex(a)}.

We know: for every coalgebra (X, &), there is a canonical map X — T.

Theorem
every finitary endofunctor is of this form ﬁ

(T,7) is the terminal coalgebra for (FinLim(<7, Set) O

every LFP category is of this form J



