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1. Definitions



Levels of generality

Magnitude cohomology is defined for enriched categories. . .
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. . . but today, I’ll only discuss it for metric spaces, especially graphs.

Graph means finite undirected graph, seen as a metric space with the
shortest path metric.



Magnitude cohomology
Let X be a metric space.

For integers n ≥ 0 and real ℓ ≥ 0, put

MCn,ℓ(X ) = Z·{(x0, . . . , xn) : d(x0, x1)+· · ·+d(xn−1, xn) = ℓ, x0 ̸= · · · ̸= xn}

(the free abelian group on {(n, ℓ)-paths}).
Define ∂ : MCn,ℓ(X ) → MCn−1,ℓ(X ) as

∑
0<i<n(−1)i∂i , where

∂i (x0, . . . , xn) =

{
(x0, . . . , xi−1, xi+1, . . . , xn) if xi is between xi−1 and xi+1

0 otherwise.

This defines an R+-graded chain complex MC∗,∗(X ).

Let MC ∗,∗(X ) be the dual complex:

MCn,ℓ(X ) = Hom(MCn,ℓ(X ),Z).

The magnitude cohomology MH∗,∗(X ) is the homology of MC ∗,∗(X ).
It is an (N× R+)-graded abelian group.



Cohomology forms a graded ring

Given

ϕ ∈
{
functions {(n, ℓ)-paths} → Z

}
⊆ MCn,ℓ(X ),

ψ ∈
{
functions {(p, k)-paths} → Z

}
⊆ MCp,k(X ),

define

ϕ · ψ ∈
{
functions {(n + p, ℓ+ k)-paths} → Z

}
⊆ MCn+p,ℓ+k(X )

by
(ϕ · ψ)(z0, . . . , zn+p) = ϕ(z0, . . . , zn)ψ(zn, . . . , zn+p)

if

d(z0, z1) + · · ·+ d(zn−1, zn) = ℓ, d(zn, zn+1) + · · ·+ d(zn+p−1, zn+p) = k ,

or as 0 otherwise.

This induces an (N× R+)-graded ring structure on MH∗,∗(X ).



2. Properties of magnitude
cohomology



The product is noncommutative

For a finite metric space with at least two points, the product on magnitude
cohomology is never commutative.

Hepworth shows that when V is a cartesian monoidal category (⊗ = ×), the
product on magnitude cohomology of V-enriched categories is commutative.

But our V is ([0,∞),+, 0), which is not cartesian (+ ̸= max), and our
product is not commutative.



Magnitude cohomology is trivial when homology is

Hepworth establishes a short exact sequence

0 → Ext(MHn−1,ℓ(X ),Z) → MHn,ℓ(X ) → Hom(MHn,ℓ(X ),Z) → 0

relating magnitude homology MH∗,∗ and magnitude cohomology MH∗,∗.

In particular, if MHn,ℓ(X ) = 0 for all (n, ℓ) ̸= (0, 0) then the same is true for
MHn,ℓ(X ).

We know that MH∗,∗(X ) is trivial when X is a convex subset of RN .

So the same is true of MH∗,∗(X ): all convex sets have trivial magnitude
cohomology.



3. Magnitude cohomology is a
complete invariant



The recovery theorem

Hepworth shows that for finite metric spaces X (and slightly more generally),
the graded ring MH∗,∗(X ) determines X completely — up to isometry.

Warning This is false for general metric spaces: consider convex sets.

So, magnitude cohomology defines an embedding

MH∗,∗ : {iso classes of finite metric spaces} ↪→ {iso classes of graded rings}.

General question Is viewing finite metric spaces as special graded rings a
helpful viewpoint?

E.g. is it helpful for graphs?



The recovery theorem: digging deeper

In fact, to recover the space X from the graded ring MH∗,∗(X ), you only
need the part of the ring in homological degrees n = 0, 1.

Observation For an N-graded ring R = (Rn)n∈N:

• R0 is a ring

• R1 is an (R0,R0)-bimodule, i.e. has compatible left and right actions by
R0.

So taking the degree 0 and degree 1 parts gives a forgetful functor

GrRing = (N-graded rings) → Bimod,

where an object of Bimod is a ring A together with an (A,A)-bimodule.



The recovery theorem for graphs
Let G be a graph (undirected and finite), seen as a metric space: points are
vertices, distances are shortest path lengths.

Write V (G ) for the set of vertices and E (G ) ⊆ V (G )× V (G ) for the set of
directed edges.

A short calculation shows:

MH0,ℓ(G ) =

{
ZV (G) if ℓ = 0

0 otherwise,

MH1,ℓ(G ) =

{
ZE(G) if ℓ = 1

0 otherwise.

Then:

• MH0,0(G ) is a ring by pointwise multiplication

• MH1,1(G ) is an (MH0,0(G ),MH0,0(G ))-bimodule via

(α · ϕ · β)(x , y) = α(x)ϕ(x , y)β(y)

(α, β ∈ MH0,0(G ), ϕ ∈ MH1,1(G ), (x , y) ∈ E (G )).



How to recover a graph from its cohomology ring

• From the ring MH0,0(G ) = ZV (G), we can extract V (G ) as the set of
primitive idempotents.

• From the bimodule MH1,1(G ) = ZE(G), we can extract E (G ): for
primitive idempotents (vertices) x and y , the set

x ·MH1,1(G ) · y ⊆ MH1,1(G )

is nontrivial if and only if (x , y) ∈ E (G ).



The recovery theorem for graphs: functorial version
For graphs, Hepworth’s theorem states that the functor

MH∗,∗ : Graphop → GrRing

is injective on isomorphism classes of objects.

He also notes (essentially) that even after composing with the forgetful
functor GrRing → Bimod, the composite

MH∗,∗ : Graphop → Bimod

is still injective on iso classes of objects.

In fact, we can go even further and show that the functor

MH∗,∗ : Graphop → Bimod

is full and faithful, which implies injectivity on iso classes. So:

Magnitude homology sets up a dual equivalence
between Graph and a full subcategory of

Bimod.



Where next?

Hepworth proves substantial, detailed results on presentations of the
magnitude cohomology ring, for various classes of graph.

But one can also look in different directions. For instance:

• Does magnitude cohomology similarly set up a dual equivalence between
the category of finite metric spaces and some category of algebras?

• When graphs are seen as bimodules, how should we understand the
higher magnitude (co)homology groups?

• When Graph is embedded into Bimodop or GrRingop, what becomes of
the various graph products (×,□,⊠, . . .)?

• Are any network-inspired operations on graphs usefully viewed in terms
of their cohomology bimodules or graded rings?

• What is the magnitude cohomology of a random graph?


