Magnitude cohomology of graphs

Tom Leinster

Edinburgh

After Richard Hepworth, Magnitude cohomology, Mathematische Zeitschrift 301 (2022), 3617–3640

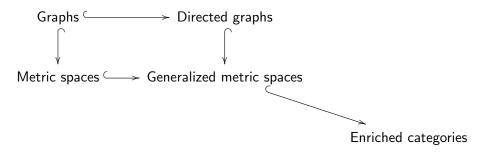
Plan

- 1. Definitions
- 2. Properties of magnitude cohomology
- 3. Magnitude cohomology is a complete invariant

1. Definitions

Levels of generality

Magnitude cohomology is defined for enriched categories...



... but today, I'll only discuss it for metric spaces, especially graphs. Graph means finite undirected graph, seen as a metric space with the shortest path metric.

Magnitude cohomology

Let X be a metric space.

For integers $n \ge 0$ and real $\ell \ge 0$, put

$$MC_{n,\ell}(X) = \mathbb{Z} \cdot \{(x_0,\ldots,x_n) : d(x_0,x_1) + \cdots + d(x_{n-1},x_n) = \ell, x_0 \neq \cdots \neq x_n\}$$

(the free abelian group on $\{(n, \ell)$ -paths}).

Define $\partial: MC_{n,\ell}(X) \to MC_{n-1,\ell}(X)$ as $\sum_{0 < i < n} (-1)^i \partial_i$, where

$$\partial_i(x_0, \dots, x_n) = \begin{cases} (x_0, \dots, x_{i-1}, x_{i+1}, \dots, x_n) & \text{if } x_i \text{ is between } x_{i-1} \text{ and } x_{i+1} \\ 0 & \text{otherwise.} \end{cases}$$

This defines an \mathbb{R}^+ -graded chain complex $MC_{*,*}(X)$.

Let $MC^{*,*}(X)$ be the dual complex:

$$MC^{n,\ell}(X) = \text{Hom}(MC_{n,\ell}(X),\mathbb{Z}).$$

The magnitude cohomology $MH^{*,*}(X)$ is the homology of $MC^{*,*}(X)$. It is an $(\mathbb{N} \times \mathbb{R}^+)$ -graded abelian group.

Cohomology forms a graded ring

Given

$$\phi \in \{ \text{functions } \{(n, \ell)\text{-paths} \} \to \mathbb{Z} \} \subseteq MC^{n, \ell}(X), \\ \psi \in \{ \text{functions } \{(p, k)\text{-paths} \} \to \mathbb{Z} \} \subseteq MC^{p, k}(X), \end{cases}$$

define

$$\phi \cdot \psi \in \{ \text{functions } \{(n+p,\ell+k)\text{-paths}\} \to \mathbb{Z} \} \subseteq MC^{n+p,\ell+k}(X)$$

by

$$(\phi \cdot \psi)(z_0,\ldots,z_{n+p}) = \phi(z_0,\ldots,z_n)\psi(z_n,\ldots,z_{n+p})$$

if

$$d(z_0, z_1) + \cdots + d(z_{n-1}, z_n) = \ell$$
, $d(z_n, z_{n+1}) + \cdots + d(z_{n+p-1}, z_{n+p}) = k$,

or as 0 otherwise.

This induces an $(\mathbb{N} \times \mathbb{R}^+)$ -graded ring structure on $MH^{*,*}(X)$.

2. Properties of magnitude cohomology

The product is noncommutative

- For a finite metric space with at least two points, the product on magnitude cohomology is never commutative.
- Hepworth shows that when \mathcal{V} is a *cartesian* monoidal category ($\otimes = \times$), the product on magnitude cohomology of \mathcal{V} -enriched categories is commutative.
- But our \mathcal{V} is ([0, ∞), +, 0), which is not cartesian (+ \neq max), and our product is not commutative.

Magnitude cohomology is trivial when homology is

Hepworth establishes a short exact sequence

 $0 \to \mathsf{Ext}(MH_{n-1,\ell}(X),\mathbb{Z}) \to MH^{n,\ell}(X) \to \mathsf{Hom}(MH_{n,\ell}(X),\mathbb{Z}) \to 0$

relating magnitude homology $MH_{*,*}$ and magnitude cohomology $MH^{*,*}$.

In particular, if $MH_{n,\ell}(X) = 0$ for all $(n, \ell) \neq (0, 0)$ then the same is true for $MH^{n,\ell}(X)$.

We know that $MH_{*,*}(X)$ is trivial when X is a convex subset of \mathbb{R}^N .

So the same is true of $MH^{*,*}(X)$: all convex sets have trivial magnitude cohomology.

3. Magnitude cohomology is a complete invariant

The recovery theorem

Hepworth shows that for finite metric spaces X (and slightly more generally), the graded ring $MH^{*,*}(X)$ determines X completely — up to isometry.

Warning This is false for general metric spaces: consider convex sets.

So, magnitude cohomology defines an embedding

 $MH^{*,*}$: {iso classes of finite metric spaces} \hookrightarrow {iso classes of graded rings}.

General question Is viewing finite metric spaces as special graded rings a helpful viewpoint?

E.g. is it helpful for graphs?

The recovery theorem: digging deeper

In fact, to recover the space X from the graded ring $MH^{*,*}(X)$, you only need the part of the ring in homological degrees n = 0, 1.

Observation For an \mathbb{N} -graded ring $R = (R^n)_{n \in \mathbb{N}}$:

- R⁰ is a ring
- R^1 is an (R^0, R^0) -bimodule, i.e. has compatible left and right actions by R^0 .

So taking the degree 0 and degree 1 parts gives a forgetful functor

GrRing = (\mathbb{N} -graded rings) \rightarrow **Bimod**,

where an object of **Bimod** is a ring A together with an (A, A)-bimodule.

The recovery theorem for graphs

Let G be a graph (undirected and finite), seen as a metric space: points are vertices, distances are shortest path lengths.

Write V(G) for the set of vertices and $E(G) \subseteq V(G) \times V(G)$ for the set of *directed* edges.

A short calculation shows:

$$MH^{0,\ell}(G) = \begin{cases} \mathbb{Z}^{V(G)} & \text{if } \ell = 0\\ 0 & \text{otherwise,} \end{cases}$$
$$MH^{1,\ell}(G) = \begin{cases} \mathbb{Z}^{E(G)} & \text{if } \ell = 1\\ 0 & \text{otherwise.} \end{cases}$$

Then:

- $MH^{0,0}(G)$ is a ring by pointwise multiplication
- $MH^{1,1}(G)$ is an $(MH^{0,0}(G), MH^{0,0}(G))$ -bimodule via

$$(\alpha \cdot \phi \cdot \beta)(x, y) = \alpha(x)\phi(x, y)\beta(y)$$

 $(\alpha, \beta \in MH^{0,0}(G), \ \phi \in MH^{1,1}(G), \ (x, y) \in E(G)).$

How to recover a graph from its cohomology ring

- From the ring $MH^{0,0}(G) = \mathbb{Z}^{V(G)}$, we can extract V(G) as the set of primitive idempotents.
- From the bimodule *MH*^{1,1}(*G*) = Z^{E(G)}, we can extract *E*(*G*): for primitive idempotents (vertices) *x* and *y*, the set

$$x \cdot MH^{1,1}(G) \cdot y \subseteq MH^{1,1}(G)$$

is nontrivial if and only if $(x, y) \in E(G)$.

The recovery theorem for graphs: functorial version For graphs, Hepworth's theorem states that the functor

 $\textit{MH}^{*,*} \colon \mathbf{Graph}^{\mathsf{op}} \to \mathbf{GrRing}$

is injective on isomorphism classes of objects.

He also notes (essentially) that even after composing with the forgetful functor $\textbf{GrRing} \to \textbf{Bimod},$ the composite

```
MH^{*,*}: Graph<sup>op</sup> \rightarrow Bimod
```

is still injective on iso classes of objects.

In fact, we can go even further and show that the functor

```
MH^{*,*}: Graph<sup>op</sup> \rightarrow Bimod
```

is full and faithful, which implies injectivity on iso classes. So:

Magnitude homology sets up a dual equivalence between **Graph** and a full subcategory of **Bimod**.

Where next?

Hepworth proves substantial, detailed results on presentations of the magnitude cohomology ring, for various classes of graph.

But one can also look in different directions. For instance:

- Does magnitude cohomology similarly set up a dual equivalence between the category of finite metric spaces and some category of algebras?
- When graphs are seen as bimodules, how should we understand the higher magnitude (co)homology groups?
- When Graph is embedded into Bimod^{op} or GrRing^{op}, what becomes of the various graph products (×,□,⊠,...)?
- Are any network-inspired operations on graphs usefully viewed in terms of their cohomology bimodules or graded rings?
- What is the magnitude cohomology of a random graph?