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Here’s the problem. You’re dealing with groups, or rings, or Lie algebras, or
Kapranov–Kontsevich–Kuratowski algebras, or whatever. You have a proof that
some equation holds in all groups or rings or . . . . Now you want to conclude that
it holds in all internal groups or rings or . . . . Do you really have to draw lots
of huge diagrams? Or is there some general principle telling you that because
the equation holds in set-based algebras, it must also hold in internal algebras?

The point of this note is to show that yes: there is such a general principle.
There is a magic wand. By uttering the right words (which begin ‘ah, but . . . ’)
you can conclude that your apparently set-based proof is actually a proof valid
in all internal situations.

Warning There are surely limitations to this principle. I’m not going to
attempt to state them.
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1 ‘Ordinary’ elements

The basic observation is this. Fix a one-point set, 1. Then for sets X, there is
a natural one-to-one correspondence between elements of X and maps 1 -

X.
This observation is trivial, but central to what follows. I’ll now make some

further trivial-but-important observations.
Let X be a set. Given an element x of X, write x for the corresponding

function 1 - X (whose image is {x}). Now suppose that we have an element
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x of X and a map f : X - Y of sets. The composite map

1
x- X

f- Y

has image {f(x)}, so
f ◦x = f(x).

Since there’s a natural one-to-one correspondence between elements of X and
maps 1 - X, you might dare to write x as x. The equation then reads

f ◦x = f(x).

Some people write composites f ◦ e as simply fe. Some (rather fewer) people
write f(x) as simply fx. The equation then reads

fx = fx.

So these various abbreviations are compatible with each other.
Another way to say this is that under the correspondence between elements

and maps from 1, evaluation corresponds to composition.
All of these things are facts, like them or not. But anyone who works with

an isomorphism for long enough winds up regarding the isomorphic things as
really the same. So we’re led to the point of view that the elements of a set X
are the maps 1 - X. Elements are a special case of maps; evaluation is a
special case of composition.

2 Generalized elements

In non-mathematical speech, ‘elements’ are the basic things, the building blocks,
the fundamentals. (Think of Euclid’s Elements, or elements in chemistry.) The
usage of ‘generalized element’ follows that tradition.

Generalized elements are, of course, going to be more general than ordinary
elements, which are also called ‘points’. Knowing about the points of a structure
is almost never enough—in fact, the only subject where it is enough is set theory.
(The whole idea of sets is that they’re nothing more than collections of points.)
If you’re studying a group, you don’t just want to know about its points, i.e.
its (ordinary) elements; you need to know the multiplication too. In projective
geometry, the basic things are not only the points but also the lines, planes,
etc., and the incidence relations between them; those are what might be called
the ‘elements’ of the subject, in the tradition described above.

Let A be a category and X ∈ A. A generalized element of X is simply a
map in A with codomain X. To be more specific, we call a map x : S - X
an element of X of shape S or an S-element of X, and write x ∈S X.

Examples

• In Set, the 1-elements of a set are just its ordinary elements.
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• In Top, the 1-elements of a space (where 1 is a one-point space) are its
points. Write ∆n ∈ Top for the standard topological n-simplex; then the
∆n-elements of a space X are the n-simplices in X. Sometimes it’s useful
to think of S-elements as ‘figures of shape S’.

• In Group, the 1-elements of a group G (where 1 is the trivial group) are
very boring: there’s just one of them. The Z-elements of G correspond
one-to-one with the ordinary elements of G: consider where 1 ∈ Z is
mapped to. The (Z/7Z)-elements of G are the ordinary elements of G of
order 1 or 7, for the same kind of reason.

• Fix a topological space B and let VBB be the category of real vector
bundles over B. Write L for the trivial line bundle over B, i.e. B×R with
its projection to B. Then in VBB , the L-elements of a vector bundle X
are exactly the global sections of X.

In Set, a map X - Y can be evaluated at an ordinary element of X,
producing an ordinary element of Y . We learned above that when ordinary
elements are thought of as generalized elements of shape 1, this evaluation is
simply composition of functions.

In any category A and for any S ∈ A, a map f : X - Y can be composed
with an S-element x : S - X of X, producing an S-element fx of Y . It does
no harm to think of fx as ‘f evaluated at x’, by analogy with the case A = Set,
or to write fx as f(x).

Tautologously, all that matters about a map of sets is what it does to or-
dinary elements of the domain. In other words, if f, g : X - Y are two
maps of sets and f(x) = g(x) for all ordinary elements x of X, then f = g. An
analogous statement is true for general categories and generalized elements:

Lemma 2.1 Let A be a category and f, g : X - Y maps in A. Then

f = g ⇐⇒ fx = gx for all generalized elements x of X.

Proof ‘⇒ ’ is immediate. For ‘⇐’, take x to be the identity map 1X : X -

X. 2

Question for class discussion: do objects of a category have elements? In
Categories for the Working Mathematician, Mac Lane characterizes category
theory with some phrase such as ‘living without elements’. Maybe that’s borne
of the observation that in many categories, such as AbGp or Group, maps from
the terminal object 1 are trivial, so the obvious generalization of the notion of
element isn’t useful. Lawvere’s generalized elements seem to be a satisfactory
substitute appropriate for general category theory. However, they’re a big gen-
eralization: even in the motivating category, Set, generalized elements are more
general than ordinary elements.
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3 Products

Let’s pretend we know almost no category theory, and let’s try to figure out
what it might mean to take the ‘product’ of two objects of a category.

We know what it means to take the product of two sets. Let X and Y be
sets; then an element of X × Y is an element of X together with an element of
Y .

Now let A be a category and let X and Y be objects of A. Given the
observations of the last paragraph, we’d want it to be the case that for any
S ∈ A, an S-element of X × Y amounts to an S-element of X together with
an S-element of Y . This says that for any S ∈ A, the maps S - X × Y
correspond one-to-one with pairs of maps (S - X, S - Y ). And give or
take some details, that’s the standard definition of product in a category.

If X and Y are sets, x is an element of X, and y is an element of Y , then
we write (x, y) for the corresponding element of X × Y . Similarly, let A be a
category and S ∈ A. If X and Y are objects of A, x is an S-element of X, and
y is an S-element of Y , then we write (x, y) for the corresponding element of
X × Y . In other words, given maps x : S - X and y : S - Y , we write

(x, y) : S - X × Y

for the corresponding map into X × Y .
(Don’t confuse this with another ‘product construction’: maps f : X ′ -

X and g : Y ′ - Y give rise to a map X ′ × Y ′ - X × Y . This is really
the observation that product is functorial: you can take the product of maps as
well as objects. So this map is written f × g. Similarly, if we were doing tensor
products then we’d write it as f ⊗ g : X ′ ⊗ Y ′ - X ⊗ Y .)

Example Let A be a category with products, X ∈ A, and µ : X ×X -

X in A. Let x, y ∈S X, for some S. What could the expression ‘µ(x, y)’ mean?
Well, we’ve just made the convention that (x, y) is the S-element of X ×X

corresponding to the elements x ∈S X and y ∈S Y . And we saw earlier that a
map can be ‘evaluated’ at any S-element of its domain, producing an S-element
of its codomain; thus, µ(x, y) is the S-element of X obtained by evaluating µ
at (x, y). In ordinary categorical language, it’s just the composite of the maps
µ and (x, y).

Special case: if A is the category of sets and x, y are ordinary elements of X
then µ(x, y) is the ordinary element of X obtained by evaluating the function µ
at the pair (x, y) ∈ X ×X.

When we’re working in Set and µ is being thought of as a binary operation,
everyone agrees that it’s harmless to write x · y or xy instead of µ(x, y). It’s
equally harmless to do this for generalized elements of an arbitrary category,
and later I’ll do just that. If that ever gives you vertigo, you can of course just
go through and replace every occurrence of ‘xy’ with ‘µ(x, y)’.
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Example Let A be a category with products and let f : X - X ′ and
g : Y - Y ′ be maps in A. As noted above, they give rise to a map

X × Y
f×g- X ′ × Y ′.

Let x ∈S X and y ∈S Y , for some S ∈ A. Then

(f × g)(x, y) = (f(x), g(y)) ∈S X ′ × Y ′

—exercise. (To do it, you’ll first need to make explicit what f × g actually is.)

Example Again, let A be a category with products. Let µ : X ×X - X
in A, and consider the composite map

ν =
(
X ×X ×X

µ×1X- X ×X
µ- X

)
.

I claim that if S ∈ A and x, y, z ∈S X then

ν(x, y, z) = (xy)z.

This is clear for ordinary elements.
Proof: by definition, the left-hand side is the composite µ ◦ (µ×1X) ◦ (x, y, z).

By the previous example, this is equal to µ ◦ (µ(x, y), 1X(z)). But since xy is an
abbreviation for µ(x, y) and 1X(z) = 1X ◦ z = z, that’s the right-hand side. (To
apply the previous example, take ‘f ’ to be µ, ‘g’ to be 1X , ‘x’ to be (x, y), and
‘y’ to be z. I’m pretending that the threefold product X ×X ×X is equal to
(X ×X)×X; of course it’s not, and strictly speaking the expression ((x, y), z)
should appear in the argument somewhere.)

Example Again, let A be a category with products and µ : X ×X - X
in A. I claim that the diagram

X ×X ×X
1X × µ- X ×X

X ×X

µ× 1X
?

µ
- X

µ
?

commutes if and only if

(xy)z = x(yz) for all S ∈ A and x, y, z ∈S X.

(Another way of expressing that condition is ‘(xy)z = x(yz) for all generalized
elements x, y, z of X of the same shape’. If you don’t say that they’re all of the
same shape, the statement’s meaningless: xy is undefined.)

Proof: by Lemma 2.1, the diagram commutes if and only if

µ(µ× 1X)t = µ(1X × µ)t
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for all generalized elements t of X × X × X—in other words, for all S ∈ A
and for all S-elements t of X × X × X. As observed above, an S-element of
X×X×X is a triple (x, y, z) of S-elements of X. Hence the diagram commutes
if and only if

µ(µ× 1X)(x, y, z) = µ(1X × µ)(x, y, z)

for all S ∈ A and x, y, z ∈S X. But by the last example, the left-hand side of
this equation is (xy)z. Similarly, the right-hand side is x(yz).

Definitions without diagrams We’ve just seen how a diagram can be re-
placed by an equation. This means that we can write down definitions of internal
algebraic structures without using diagrams.

For example, a group (or internal group) in a category A with products
is an object X together with maps

µ : X ×X - X, ι : X - X, η : 1 - X

such that

(xy)z = x(yz), ex = x = xe, x−1x = e = xx−1

whenever S ∈ A and x, y, z ∈S X.
(Here, as usual, xy means µ(x, y), x−1 means ι(x), and e is the value of η at

the unique S-element of the terminal object 1. To put it another way, xy is the
composite of µ with S

(x,y)- X ×X, and x−1 is the composite of ι with S
x-

X, and e is the composite of η with S
!- 1. It’s useful to keep in mind that

1 is the product of no things; it’s a nullary product, and can be treated in just
the same way as binary etc. products.)

Why is that equivalent to the usual definition of group in A? (By the ‘usual
definition’ I mean a definition like that above, but with the equations replaced
by certain commutative diagrams.) Well, the last example showed that the
associativity equation (xy)z = x(yz) is equivalent to the usual commutative
square, and the same kind of thing works for the other equations.

Presenting the definition of internal group in this way allows us to avoid the
process of translating the familiar group axioms into diagrams. This process is
both automatic and tedious, so it’s both possible and desirable to avoid it.

Replacing a diagram by an equation isn’t always a positive step: diagrams
can sometimes be topologically or geometrically suggestive, as in the pen-
tagon/associator story. But there are times when it’s useful. One of them
is doing proofs without diagrams. . .

4 Proofs without diagrams

Or: ‘how to stare at a proof in Set and see that it’s valid in any category’.
Let’s use the theory of groups as an example. A simple equation that holds

in all groups is
(xy)−1 = y−1x−1. (1)
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This can be proved as follows, writing e for the identity:

(xy)−1 = (xy)−1e = (xy)−1(xx−1) = (xy)−1((xe)x−1)
= (xy)−1((x(yy−1))x−1) = (xy)−1(((xy)y−1)x−1)
= (xy)−1((xy)(y−1x−1)) = ((xy)−1(xy))(y−1x−1)
= e(y−1x−1) = y−1x−1.

(Basically the argument is this: (xy)−1 = (xy)−1xyy−1x−1 = y−1x−1. But I’ve
done it in full detail, assuming nothing more than the group axioms. See the
remarks below.)

Now let’s prove the analogue of (1) for internal groups. This says that if
(X, µ, ι, η) is a group in some category A with products, then the diagram

X ×X
µ - X

X ×X

sym
?

ι× ι
- X ×X

µ
- X

ι
?

commutes. You might prove this by drawing a huge version of this diagram,
dividing it judiciously into many polygons (one for each equality in the proof
above), noting that each polygon commutes, and concluding that the whole
diagram commutes. Or, you could do the following.

First note that, just as in the example in the previous section, this diagram
commutes if and only if (1) holds for all S ∈ A and S-elements x, y of X. So
all we have to do is show that each of the nine equalities in the proof above is
valid for S-elements. Take the first one, (xy)−1 = (xy)−1e. In the last section
we listed the axioms for an internal group, and one of them was xe = e for all
S-elements x of X. So replacing ‘x’ by (xy)−1, we see that the first step is valid.
The other steps are also applications of the group axioms, so hold for analogous
reasons.

And that’s it! You’re done. Proof finished.
I wrote out the proof of (1) in full and excruciating detail, to make the

principles clear. Of course, we usually take the associativity axiom for granted
and allow ourselves to write expressions like xyz, knowing that it doesn’t matter
how you bracket it. This step-skipping is just as valid for generalized elements
as ordinary elements, and I’ll do it from now on.

For another example, let’s take a more complicated identity in the theory of
groups. Define the commutator [−,−] by [x, y] = xyx−1y−1, and conjugation
(−)(−) by xy = yxy−1. Then in ordinary groups, we have

[xy, z] = [y, z]x[x, z]. (2)

Proof:

[xy, z] = xyz(xy)−1z−1 = xyzy−1x−1z−1 = x[y, z]zx−1z−1 = x[y, z]x−1[x, z] = [y, z]x[x, z].
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To state the analogue for internal groups, we first have to define commutator
and conjugacy. Again, let (X, µ, ι, η) be a group in a category A with products.
We define the commutator κ : X ×X - X as the composite

X×X
∆×∆- X×X×X×X

1X×sym×1X- X×X×X×X
1X×X×ι×ι- X×X×X×X

µ×µ- X×X
µ- X

and conjugation γ : X × X - X as another composite. (There’s no harm
in writing κ and γ as [−,−] and (−)(−).) We then draw a diagram involving κ
and γ, whose commutativity is the analogue of equation (2).

The definition of κ is set up exactly so that κ(x, y) = xyx−1y−1 for all
generalized elements x, y of X of the same shape. That’s the acid test: if it
weren’t the case, we’d have defined κ wrong. Similarly, we define γ in whatever
way makes it true that γ(x, y) = yxy−1 for all generalized elements x, y of X
of the same shape. That’s why I didn’t bother writing down the definition of
γ: because as soon as I’d done it, I would have said ‘all that matters about γ is
that γ(x, y) = yxy−1 for all S ∈ A and x, y ∈S X’.

Similarly, I didn’t bother drawing the diagram analogous to (2), because
as soon I’d drawn it I would have said ‘all that matters about this diagram
is that its commutativity is equivalent to the statement that (2) holds for all
generalized elements x, y, z of X of the same shape’. That’s how we know we’ve
got the diagram right.

To prove the commutativity of this undrawn diagram, all we have to do is
show that each step of the proof of (2) is valid for generalized elements. So, take
S ∈ A and x, y, z ∈S X. The first step of the proof, [xy, z] = xyz(xy)−1z−1,
comes from the definition of κ (as in the last-but-one paragraph). The second
step comes from the equation (xy)−1y−1x−1, which we proved above. And so
on. So the diagram commutes; and that’s the magic wand.
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