Galois Theory Assignment 1

Overview of Galois theory; rings and fields

The deadline for submitting this work is **12 noon on Tuesday 26 January**, through Gradescope. To avoid technical problems, please start uploading by 11.55am. Please report any mistakes to Tom.Leinster@ed.ac.uk.

Take care over communication and presentation. Your answers should be coherent, logical arguments written in full sentences. Marks will be awarded for this.

1. Let f be a quadratic polynomial over \mathbb{Q} . Using the definition of Galois group in Chapter 1 of the notes, prove that $\operatorname{Gal}(f)$ is S_2 if f has two distinct irrational roots, and trivial otherwise.

(Here 'irrational' means not in \mathbb{Q} ; so any non-real complex number is irrational. Hint: use an argument like the first proof of Example 1.1.6, replacing $\sqrt{2}$ by the square root of the discriminant of f.)

- 2. (i) Let R be a ring and let $I_0 \subseteq I_1 \subseteq \cdots$ be ideals of R. Prove that $\bigcup_{n=0}^{\infty} I_n$ is an ideal of R.
 - (ii) Let R be a principal ideal domain and let $I_0 \subseteq I_1 \subseteq \cdots$ be ideals of R. Prove that there is some $n \ge 0$ such that $I_n = I_{n+1} = I_{n+2} = \cdots$.
 - (iii) Let R be an integral domain. Let $r, s \in R$ with $r \neq 0$ and s not a unit. Prove that $\langle rs \rangle$ is a proper subset of $\langle r \rangle$.
 - (iv) Let R be a principal ideal domain. Let $r \in R$ be neither 0 nor a unit. Prove that some irreducible divides r.

(Hint: if not then, writing $r_0 = r$, we have $r_0 = r_1 s_1$ for some non-units r_1 and s_1 . Apply the same argument to r_1 , and so on forever, then consider the ideals $\langle r_n \rangle$ to get a contradiction.)

This result is the first step towards proving that in a principal ideal domain, every nonzero element can be expressed as a product of irreducibles in an essentially unique way. We won't need that fact except in rings of polynomials, where we'll use a different proof.