Galois Theory Assignment 2

Polynomials and field extensions

The deadline for submitting this work is **12 noon on Tuesday 9 February**, through Gradescope. To avoid technical problems, please start uploading by 11.55am. Please report any mistakes to Tom.Leinster@ed.ac.uk.

Take care over communication and presentation. Your answers should be coherent, logical arguments written in full sentences. Marks will be awarded for this.

- 1. Which of the following polynomials are irreducible over \mathbb{Q} ?
 - (i) $1 + 2t 5t^3 + 2t^6$
 - (ii) $4 3t 2t^2$
 - (iii) $4 13t 2t^3$
 - (iv) $1 + t + t^2 + t^3 + t^4 + t^5$
 - (v) $1 + t + t^2 + t^3 + t^4 + t^5 + t^6$
 - (vi) $2.2 + 3.3t 1.1t^3 + t^7$ (where the dots are decimal points, not products)
 - (vii) $1 + t^4$.
- 2. Let M : K be a field extension and $\alpha, \beta \in M$. Call α and β indistinguishable or conjugate over K if for all $p \in K[t]$, we have $p(\alpha) = 0 \iff p(\beta) = 0$. (You saw this definition in Chapter 1 for $\mathbb{C} : \mathbb{R}$ and $\mathbb{C} : \mathbb{Q}$.)
 - (i) Prove that α and β are indistinguishable over K if and only if *either* both are transcendental *or* both are algebraic and they have the same minimal polynomial.
 - (ii) Show that if there exists an irreducible polynomial $p \in K[t]$ such that $p(\alpha) = 0 = p(\beta)$, then α and β are indistinguishable over K.
 - (iii) Show that if α and β are indistinguishable over K then $K(\alpha) \cong K(\beta)$ over K.