Galois Theory Assignment 5

Solvability by radicals and finite fields

The deadline for submitting this work is **12 noon on Tuesday 30 March**, through Gradescope. To avoid technical problems, please start uploading by 11.55am. Please report any mistakes to Tom.Leinster@ed.ac.uk.

Instructions:

- Please do this work on your own, without consulting others.
- No justification is necessary. Your complete hand-in should be something like '1b 2a 3e ...'.
- 1. How many subfields does \mathbb{F}_{243} have?
 - (a) 1
 - (b) 3
 - (c) 5
 - (d) 6
 - (e) none of the above.

2. Let K and L be fields of order 125. How many isomorphisms $K \to L$ are there?

- (a) 1
- (b) 3
- (c) 5
- (d) impossible to say (depends on what K and L are)
- (e) none of the above.

3. How many homomorphisms $\mathbb{F}_{27} \to \mathbb{F}_{19683}$ are there?

- (a) 0
- (b) 1
- (c) 3
- (d) 9
- (e) none of the above.

4. How many homomorphisms $\mathbb{F}_4 \to \mathbb{F}_8$ are there?

- (a) 0
- (b) 1
- (c) 2
- (d) 3
- (e) none of the above.
- 5. Which of the following polynomials over \mathbb{Q} is *not* solvable by radicals?
 - (a) $t^7 2$
 - (b) $t^7 + 2t^4 t^3 2$
 - (c) $t^7 + t^6 + t^5 + t^4 + t^3 + t^2 + t + 1$
 - (d) $t^7 10t^5 + 15t + 5$
 - (e) they are all solvable by radicals.

- 6. Let K be a field and $n \ge 1$. Is $\operatorname{Gal}_K(t^n 1)$ abelian?
 - (a) yes, always
 - (b) yes when $K = \mathbb{Q}$ or $n \leq 2$, but never otherwise
 - (c) yes when char K = 0 or $n \leq 2$, but never otherwise
 - (d) yes when char K = 0 or $n \le 2$, and sometimes but not always otherwise
 - (e) none of the above.
- 7. Let K be a field of characteristic 0, let $n \ge 1$, and suppose that $t^n 1$ splits in K. Let $0 \ne a \in K$ and let $\varphi \in \operatorname{Gal}_K(t^n a)$. Viewing φ as a K-linear operator on $\operatorname{SF}_K(t^n a)$, how many roots of $t^n a$ in $\operatorname{SF}_K(t^n a)$ are eigenvectors of φ ? (Hint: Lemma 9.1.8.)
 - (a) none
 - (b) 1
 - (c) n
 - (d) it depends on the choice of K, n, a and φ
 - (e) none of the above.
- 8. Up to isomorphism, how many groups G are there such that $G \cong \operatorname{Gal}_{\mathbb{Q}}(f)$ for some polynomial f of degree 5 over \mathbb{Q} that is not solvable by radicals?
 - (a) 1
 - (b) 2
 - (c) 3
 - (d) 5
 - (e) none of the above.
- 9. Let α be a generator of the multiplicative group $\mathbb{F}_{65536}^{\times}$. How many roots does the polynomial $t^{256} \alpha$ have in \mathbb{F}_{65536} ?
 - (a) none
 - (b) 2
 - (c) 8
 - (d) 256
 - (e) none of the above.
- 10. What is the smallest integer $r \geq 0$ with the following property: there exist intermediate fields

$$\mathbb{Q} = L_0 \subseteq L_1 \subseteq \cdots \subseteq L_r = \mathrm{SF}_{\mathbb{Q}}(t^3 - 2)$$

such that $L_i: L_{i-1}$ is normal and $\operatorname{Gal}(L_i: L_{i-1})$ is abelian for all $i \in \{1, \ldots, r\}$?

- (a) 1
- (b) 2
- (c) 3
- (d) there is no such chain of intermediate fields
- (e) none of the above.